KR20210157431A - 시스템 발견 및 시그널링 - Google Patents

시스템 발견 및 시그널링 Download PDF

Info

Publication number
KR20210157431A
KR20210157431A KR1020217041707A KR20217041707A KR20210157431A KR 20210157431 A KR20210157431 A KR 20210157431A KR 1020217041707 A KR1020217041707 A KR 1020217041707A KR 20217041707 A KR20217041707 A KR 20217041707A KR 20210157431 A KR20210157431 A KR 20210157431A
Authority
KR
South Korea
Prior art keywords
sequence
subcarrier
time domain
symbol
cyclic shift
Prior art date
Application number
KR1020217041707A
Other languages
English (en)
Other versions
KR102391843B1 (ko
Inventor
마이클 제이. 사이먼
케빈 에이. 셀비
마크 언쇼
산디프 마부두루 칸나파
Original Assignee
원 미디어, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원 미디어, 엘엘씨 filed Critical 원 미디어, 엘엘씨
Priority to KR1020227013829A priority Critical patent/KR102451527B1/ko
Publication of KR20210157431A publication Critical patent/KR20210157431A/ko
Application granted granted Critical
Publication of KR102391843B1 publication Critical patent/KR102391843B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/102Combining codes
    • H04J13/107Combining codes by concatenation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Radio Transmission System (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

확장 가능 통신 시스템이 본 명세서에서 설명된다. 시스템은 루트 인덱스 값을 수신하고, 루트 값에 기초하여 일정 진폭 제로 자기상관 시퀀스를 생성하는 제1 모듈을 포함한다. 시스템은 시드 값을 수신하고, 시드 값에 기초하여 의사 잡음 시퀀스를 생성하는 제2 모듈을 더 포함한다. 시스템은 의사 잡음 시퀀스에 의해 일정 진폭 제로 자기상관 시퀀스를 변조하고, 복소 시퀀스를 생성하는 제3 모듈을 더 포함한다. 시스템은 복소 시퀀스를 시간 도메인 시퀀스로 변환하는 제4 모듈을 더 포함하며, 제4 모듈은 시간 도메인 시퀀스에 순환 시프트를 적용하여 시프트된 시간 도메인 시퀀스를 획득한다.

Description

시스템 발견 및 시그널링{SYSTEM DISCOVERY AND SIGNALING}
관련 출원들에 대한 상호 참조
본 출원은 2015년 3월 9일자로 출원된 미국 특허 출원 제62/130,365호로부터 우선권을 주장하며, 이는 그 전체가 본원에 참조로 포함된다.
개시내용의 분야
본 개시내용은 무선 통신 분야에 관한 것으로서, 보다 상세하게는 방송 네트워크들에서 강건한 신호 검출 및 서비스 발견을 가능하게 하기 위한 메커니즘에 관한 것이다.
방송 스펙트럼은 상이한 주파수들로 나누어지며, 상이한 지리 영역들에서의 다양한 용도들을 위해 상이한 방송기들 사이에 할당된다. 스펙트럼의 주파수들은 방송기들에 부여된 라이선스들에 기초하여 할당된다. 할당들에 기초하여, 방송기는 소정의 지리적 반경 내에서 소정 주파수 상에서 텔레비전 신호와 같은 특정 타입의 콘텐츠를 방송하는 것으로 제한될 수 있다. 할당된 스펙트럼 밖에서의 방송은 방송기에 대한 위반일 수 있다.
방송기가 해당 지리적 반경 내에서 다른 타입의 콘텐츠를 전송하기를 원할 경우, 방송기는 추가 스펙트럼 라이선스를 획득해야 하고, 이어서 해당 주파수 내에서 추가 주파수를 할당받을 수 있다. 마찬가지로, 방송기가 다른 지리적 반경 내에서 콘텐츠를 전송하기를 원할 경우, 방송기는 해당 영역에 대한 추가 스펙트럼 라이선스를 획득해야 할 수도 있다. 그러나 추가 스펙트럼 라이선스를 획득하는 것은 어렵고, 시간이 많이 걸리고, 비용이 많이 들고, 비실용적일 수 있다.
또한, 방송기는 라이선스를 부여받은 스펙트럼의 전체 부분을 항상 충분히 이용하지는 못할 수 있다. 이것은 방송 스펙트럼의 이용에 있어서 비효율을 초래할 수 있다.
또한, 방송 스펙트럼의 예상되는 사용은 변할 수 있다. 예를 들어, 현재의 방송 텔레비전 솔루션들은 모놀리식(Monolithic)이며, 주요 단일 서비스를 위해 설계된다. 그러나, 방송기들은 모바일 방송 및 IoT 서비스들을 포함하는 장래의 방송 텔레비전에 더하여 다수의 무선 기반 타입의 콘텐츠를 제공할 것을 예상할 수 있다. 특히, 다수의 장치 모두가 방송 텔레비전 외의 공통 소스로부터 동일한 데이터를 수신하기를 원할 수 있는 많은 시나리오가 있다. 하나의 그러한 예는 다양한 지리 위치들 내의 많은 수의 모바일 통신 장치 모두가 예를 들어 소프트웨어 갱신 또는 비상 경보와 같은 동일한 콘텐츠를 전달하는 공통 방송 신호를 수신할 필요가 있을 수 있는 모바일 통신 서비스들이다. 이러한 시나리오들에서는, 동일한 데이터를 각각의 장치에 개별적으로 시그널링하는 것이 아니라 그러한 장치들에 데이터를 방송 또는 멀티캐스팅하는 것이 훨씬 더 효율적이다. 따라서, 하이브리드 솔루션이 바람직할 수 있다.
방송 스펙트럼을 보다 효율적으로 이용하기 위해서, 상이한 타입의 콘텐츠가 단일 RF 채널 내에서 함께 시간 다중화될 수 있다. 또한, 상이한 전송 콘텐츠 세트들이 상이한 인코딩 및 전송 파라미터들로 동시에, 시분할 다중화(TDM) 방식으로, 주파수 분할 다중화(FDM) 방식으로, 계층 분할 다중화(LDM) 방식으로 또는 이들의 조합으로 전송될 필요가 있을 수 있다. 전송될 콘텐츠의 양은 시간 및/또는 주파수에 따라 변할 수 있다.
또한, 상이한 품질 레벨들을 갖는 콘텐츠(예를 들어, 고화질 비디오, 표준 화질 비디오 등)는 상이한 전파 채널 특성들 및 상이한 수신 환경들을 갖는 상이한 장치 그룹들로 전송될 필요가 있을 수 있다. 다른 시나리오들에서, 특정 장치에 장치 고유 데이터를 전송하는 것이 바람직할 수 있으며, 해당 데이터를 인코딩하고 전송하는 데 사용되는 파라미터들은 장치의 위치 및/또는 전파 채널 조건들에 의존할 수 있다.
동시에, 고속 무선 데이터에 대한 요구는 계속 증가하고 있으며, 잠재적 시변 방식으로 (예를 들어, 무선 스펙트럼의 소정 부분과 같은) 이용 가능 무선 자원들의 가장 효율적인 사용을 가능하게 하는 것이 바람직하다.
예시적인 확장 가능 통신 시스템이 본 명세서에서 설명된다. 시스템은 루트 인덱스 값을 수신하고, 루트 값에 기초하여 일정 진폭 제로 자기상관 시퀀스를 생성하는 제1 모듈을 포함한다. 시스템은 시드 값을 수신하고, 시드 값에 기초하여 의사 잡음 시퀀스를 생성하는 제2 모듈을 더 포함한다. 시스템은 의사 잡음 시퀀스에 의해 일정 진폭 제로 자기상관 시퀀스를 변조하고, 복소 시퀀스를 생성하는 제3 모듈을 더 포함한다. 시스템은 복소 시퀀스를 시간 도메인 시퀀스로 변환하는 제4 모듈을 더 포함하며, 제4 모듈은 시간 도메인 시퀀스에 순환 시프트를 적용하여 시프트된 시간 도메인 시퀀스를 획득한다.
예시적인 확장 가능 통신 방법이 본 명세서에서 설명된다. 방법은 루트 인덱스 값을 수신하고, 루트 값에 기초하여 일정 진폭 제로 자기상관 시퀀스를 생성하는 단계를 포함한다. 방법은 시드 값을 수신하고, 시드 값에 기초하여 의사 잡음 시퀀스를 생성하는 단계를 더 포함한다. 방법은 의사 잡음 시퀀스에 의해 일정 진폭 제로 자기상관 시퀀스를 변조하고, 복소 시퀀스를 생성하는 단계를 더 포함한다. 방법은 복소 시퀀스를 시간 도메인 시퀀스로 변환하고, 시간 도메인 시퀀스에 순환 시프트를 적용하여 시프트된 시간 도메인 시퀀스를 획득하는 단계를 더 포함한다.
첨부 도면들에는, 아래에서 제공되는 상세한 설명과 함께 청구 발명의 예시적인 실시예들을 설명하는 구조들이 도시된다. 동일한 요소들은 동일한 참조 번호들로 식별된다. 단일 컴포넌트로 도시된 요소들은 다수 컴포넌트로 대체될 수 있고, 다수의 컴포넌트로 도시된 요소들은 단일 컴포넌트로 대체될 수 있음을 이해해야 한다. 도면은 일정한 축척으로 그려진 것은 아니며, 소정 요소들의 비율은 예시의 목적으로 과장될 수 있다.
도 1은 예시적인 방송 네트워크를 도시한다.
도 2는 부트스트랩 심볼들을 생성하기 위한 예시적인 시스템을 도시한다.
도 3은 ZC+PN의 복소 I/Q 성상도를 도시한다.
도 4a-4b는 각각 예시적인 프레임 제어 구성들을 도시한다.
도 5는 예시적인 필드 종료 시그널링을 도시한다.
도 6은 도 1에 도시된 예시적인 신호 파형을 도시한다.
도 7은 부트스트랩 심볼들을 생성하기 위한 예시적인 시스템을 도시한다.
도 8은 예시적인 PN 시퀀스 생성기를 도시한다.
도 9는 주파수 도메인 시퀀스의 서브캐리어들로의 매핑의 예시도이다.
도 10a-10b는 예시적인 시간 도메인 구조들을 도시한다.
도 11은 부트스트랩 심볼들을 생성하기 위한 예를 도시한다.
본 명세서에서는 강건하고 확장 가능한 시그널링 프레임워크, 특히 강건한 검출 및 서비스 발견, 시스템 동기화, 및 수신기 구성을 가능하게 하도록 설계된 부트스트랩 신호가 설명된다. 부트스트랩은 2개의 주요 기능: 이어지는 파형의 디코딩을 시작하기 위해 저레벨 시그널링을 통해 방출되고 있는 파형을 발견하기 위한 동기화 및 시그널링을 제공한다. 그것은 시간이 지남에 따라 진화하기 위한 확장성을 제공하는 강건한 파형이다. 특히, 부트스트랩 신호는 현재의 방송 시스템에 대해 작동할 뿐만 아니라, 모바일 방송 및 IoT 서비스들을 포함하는 새로운 서비스들의 지원도 가능하게 한다.
강건한 시그널링 시스템은 신호가 높은 잡음, 낮은 '캐리어 대 잡음비'(CNR) 및 높은 도플러 환경들에서 발견되는 것을 가능하게 한다. 부트스트랩 신호만이 강건할 수 있고, 부트스트랩에 이어지는 실제 파형은 강건하지 않을 수 있다는 것을 알아야 한다. 강건한 부트스트랩 신호를 갖는 것은 수신기들이 덜 이상적인 환경들에서 픽업하고 있는 신호에 대한 잠금을 달성하고 유지하도록 수신기들에 의한 동기화를 가능하게 한다. 잡음 조건들이 악화되고, 수신기가 더 이상 페이로드와 잡음을 구별할 수 없을 때, 부트스트랩을 통해 채널에 대해 잠긴 채로 계속 유지될 수 있다. 잡음 조건들이 개선될 때, 수신기는 어디서 채널을 발견할지를 이미 알고 있으므로 전체 재취득 프로세스를 수행할 필요가 없다.
장차 전송될 서비스 타입들 각각에 대해 하나씩인 많은 상이한 파형이 확장 가능 시그널링 시스템을 이용하여 시그널링될 수 있다. 따라서, 사용될 필요가 있을 수 있지만 현재 존재하지 않는 새로운 파형들도 부트스트랩을 통해 시그널링될 수 있다.
다음의 두문자어들 및 약어들이 본 명세서에서 사용될 수 있다는 것을 알아야 한다.
BSR: 기저대역 샘플링 레이트
BW: 대역폭
CAZAC: 일정 진폭 제로 자기상관
DC: 직류
EAS: 비상 경보 시스템
FFT: 고속 푸리에 변환
IEEE: 전기 및 전자 엔지니어 협회
IFFT: 고속 푸리에 역변환
kHz: 킬로헤르츠
LDM: 계층 분할 다중화
LFSR: 선형 피드백 시프트 레지스터
MHz: 메가헤르츠
ms: 밀리초
PN: 의사 잡음
μs: 마이크로초
ZC: 자도프 추(Zadoff-Chu)
도 1은 방송 네트워크(106)를 통해 다양한 타입의 콘텐츠(104A, 104B, 104C)(이하, 콘텐츠(104))를 제공하는 복수의 콘텐츠 제공자(102A, 102B, 102C)(이하, 콘텐츠 제공자(102))를 포함하는 예시적인 방송 네트워크 통신 시스템(100)을 도시한다. 3개의 콘텐츠 제공자(102)가 도시되지만, 시스템(100)은 임의의 적절한 수의 콘텐츠 제공자(102)를 포함할 수 있다는 것을 알아야 한다. 게다가, 콘텐츠 제공자들(102)은 텔레비전 방송 신호, 소프트웨어 갱신, 비상 경보 등과 같은 임의의 적절한 타입의 콘텐츠의 제공자들일 수 있다. 콘텐츠 제공자들(102)은 게이트웨이(108)에 대한 무선 또는 유선 접속을 통해 콘텐츠(104)를 제공할 수 있다는 것을 더 알아야 한다.
콘텐츠(104)는 게이트웨이(108)에서 단일 RF 채널(110) 안으로 시간 다중화된다. 방송 수신기들(112A, 112B, 112C)(이하, 방송 수신기(112))은 RF 채널(110)을 통해 방송 신호들(114)을 식별 및 수신하도록 구성된다. 3개의 상이한 타입의 방송 수신기들(112)(랩탑 컴퓨터(112A), 모바일 전화(112B) 및 텔레비전(112C))이 도시되지만, 시스템(100)은 임의의 적절한 수 및 타입의 방송 수신기들(112)을 포함할 수 있다는 것을 알아야 한다.
부트스트랩(도시되지 않음)은 특정 기간 동안 전송되고 있는 신호(114)의 타입 또는 형태를 저레벨에서 지시하며, 따라서 방송 수신기(112)는 신호(114)를 발견 및 식별할 수 있고, 이 신호는 또한 해당 신호(114)를 통해 이용 가능한 서비스들을 어떻게 수신할지를 지시한다. 따라서, 부트스트랩은 동기화/검출 및 시스템 구성을 가능하게 하기 위한 모든 전송 프레임의 통합 부분으로서 의존된다. 설명되는 바와 같이, 부트스트랩 설계는 프레임 구성 및 콘텐츠 제어 정보를 방송 수신기(112)에 전달하기 위한 유연한 시그널링 접근법을 포함한다. 신호 설계는 물리 매체 상에 신호 파라미터들을 변조하는 메커니즘을 설명한다. 시그널링 프로토콜은 전송 프레임 구성을 지배하는 파라미터 선택들을 통신하는 데 사용되는 특정 인코딩을 설명한다. 이것은 신뢰성 있는 서비스 발견을 가능하게 하면서 공통 프레임 구조로부터의 진화하는 시그널링 요구를 수용하기 위한 확장성을 제공한다. 특히, 부트스트랩의 설계는 채널 대역폭에 관계없는 보편적인 신호 발견을 가능하게 한다.
부트스트랩은 또한 시간 분산 및 다중 경로 페이딩, 도플러 시프트, 및 캐리어 주파수 오프셋과 같은 다양한 채널 장애들의 존재시에도 신뢰성 있는 검출을 가능하게 한다. 게다가, 다수의 서비스 상황이 신호 발견 동안 모드 검출에 기초하여 액세스 가능하여 시스템 구성에 있어서의 광범위한 유연성을 가능하게 한다. 부트스트랩은 또한 계층적 시그널링 구조에 기초하여 서비스 능력의 계속적인 진화를 수용하기 위한 확장성을 촉진한다. 따라서, 아직 구상되지 않은 새로운 신호 타입들이 콘텐츠 제공자(102)에 의해 제공되고, 부트스트랩 신호의 사용을 통해 전송 신호(114) 내에서 식별될 수 있다. 더욱이, 검출된 서비스 모드/타입에 기초하여 해석되는 재사용 가능 비트 필드들은 제공되는 확장성의 레벨에도 불구하고 비트 효율적인 시그널링을 가능하게 한다. 일례로, 부트스트랩은 낮은 신호 레벨들에서도 강건한 신호이고 검출 가능하도록 구성된다. 결과적으로, 부트스트랩 내의 개별 시그널링 비트들은 그들이 전송을 위해 점유하는 물리 자원들과 관련하여 비교적 비쌀 수 있다. 따라서, 부트스트랩은 시스템 발견을 위해 그리고 후속 신호의 초기 디코딩을 위해 필요한 최소량의 정보만을 시그널링하도록 의도될 수 있다.
일반 부트스트랩 개요
여기서는 후술될 구현 예와 무관한 부트스트랩이 설명된다. 더 설명되는 바와 같이, ATSC 3.0은 부트스트랩 능력의 하나의 예시적인 구현이며, 일반 부트스트랩 능력에 대한 소정의 제약들을 설정한다. 부트스트랩 형성에 있어서의 이러한 일반 개념들의 인식은 본 기술분야의 기술자들이 RF 스펙트럼 내의 다양한 대역폭들 및 주파수 대역들의 장래의 통신 시스템들에서의 이러한 기술의 광범위한 적용성을 파악하는 것을 도울 것이다.
도 2는 부트스트랩을 생성하기 위한 예시적인 시스템(200)을 도시한다. 시스템(200)에 의해 생성되는 부트스트랩 신호(202)는 (0-N)으로 라벨링된 (N) OFDM 심볼들로 구성된다. 주파수 점유 또는 대역폭은 설계에 의해 포스트 부트스트랩 신호(206) 또는 파형보다 작다. 포스트 부트스트랩 신호(204)는 부트스트랩에 의해 시그널링되고 수신기에 의해 소비되고 있는 서비스를 나타낸다. 포스트 부트스트랩 신호(204)는 설명되는 바와 같이 장래의 유연성 및 확장성을 가능하게 하는 임의의 파형일 수 있다.
여기서는 부트스트랩 신호가 설명된다. 기저대역 샘플링 레이트(BSR)는 다음 식으로 표시된다.
식(2)
Figure pat00001
여기서, Fs는 주파수 샘플링이고, N은 선택된 대역폭을 통해 스케일링할 동작 변수이고, M은 대역폭을 선택하기 위한 팩터(MHz)이다.
OFDM 서브캐리어 간격(Hz 단위)은 다음과 같이 정의된다.
식(3)
Figure pat00002
여기서, FFT(Size)는 2의 소정 제곱(예로서, 1024, 2048, 4096, 8192 등)이다.
미국에서의 6MHz 방송 텔레비전 대역폭에 대한 하나의 예시적인(ATSC 3.0) 설계 프로세스에서는, (WCDMA에 기초하는) LTE에 대한 기존의 관계로 인해 M=0.384가 선택된다. 다른 관계들이 선택될 수도 있다. 따라서, 이러한 하나의 예에서는 다음과 같다.
식(4)
Figure pat00003
이어서, 선택된 대역폭을 지원하도록 FFT(Size)의 일부를 통해 매핑될 자도프 추 시퀀스 길이 N(ZC)가 (소수(prime number)에 기초하여) 선택된다. 따라서, 다음과 같다.
식(5)
Figure pat00004
여기서, NZC는 FFT의 중심(DC를 포함하는 1500개의 서브캐리어)에 매핑되고, 제로 패딩이 나머지 서브캐리어들 상에서 사용된다. ATSC 3.0 예에서, N(ZC)=1499가 선택되었다. 따라서, 다음과 같다.
Figure pat00005
결과적으로, 설명되는 예시적인 ATSC 3.0 구현에서, 설계는 4.5MHz 대역폭을 소비하며, 모바일 환경에서 방송 대역을 위한 적절한 도플러 성능(MPH)을 제공할 ΔF=3000Hz를 갖는다.
위의 일반적인 식들 내의 파라미터들에 대한 다른 선택들이 더 넓은 대역폭들 또는 주파수 대역들(도플러) 등을 가능하게 할 수 있다는 것을 알아야 한다. 특히, ATSC 3.0에서는 값(N)이 0으로 지정되지만, (0-127)의 전체 범위가 N에 대해 이용 가능하다. 도시된 예에서, N은 6MHz를 달성하기 위해 N=0으로 제한된다. 그러나, N=127을 대체함으로써, 50MHz보다 큰 대역폭이 지원될 수 있음을 알아야 한다. 이것은 부트스트랩의 확장성을 예시한다.
도 2를 다시 참조하면, 시스템은 자도프 추 모듈 또는 시퀀스 생성기(206) 및 의사 잡음(PN) 모듈 또는 시퀀스 생성기(208)를 더 포함한다. 자도프 추(ZC) 시퀀스는 무선 신호들에 적용될 때 한 쌍의 흥미로운 특성 - 이들 중 하나는 일정 진폭 신호의 특성임 - 을 발생시키는 복소값 수학 시퀀스이다. 이것은 다음과 같이 정의될 수 있다.
식(6)
Figure pat00006
도 3은 각각의 I/Q 값이 단위 원(302) 상에 위치하고 이 단위 원(302) 주위의 위상으로서 설명되는 ZC+PN의 복소 I/Q 성상도(300)를 도시하며, 여기서 진폭은 일정하다.
(ZC)의 다른 이론적 특성은 루트 시퀀스의 상이한 순환 시프트된 버전들이 신호 상에 부과될 수 있고, 이상적인 제로 자기상관을 유발할 수 있다는 것이라는 것을 알아야 한다. 시프트되지 않은 생성된 자도프 추 시퀀스는 "루트 시퀀스"로서 알려져 있다. 도 2를 다시 참조하면, 주로 동기화 및 버저닝(versioning)을 위해 사용되는 심볼 #0은 시프트되지 않았다. 그러나, (ZC)를 단독으로 사용함에 의한 이론적 제로 자기상관은 큰 범위의 순환 시프트들에 걸쳐 달성되지 않는다는 것을 알아야 한다.
이러한 기본 설계 요구의 결과로서, 이론적인 이상적 자기상관을 갖는 다수의 순환 시프트의 필요성이 예측되었으며, 어떤 것은 (ZC)에만 고유하지는 않다. 또한, ZC에 더하여 의사 잡음(PN) 시퀀스를 도입함으로써, 이론적인 이상적 자기상관 근처에 접근하도록 모든 순환 시프트들이 가능해질 수 있다는 것이 시뮬레이션 및 실험들을 통해 발견되고 개발되었다.
도 4b는 단지 ZC 단독 및 결과적인 비이상적 자기상관의 시뮬레이션의 결과들을 도시하는 반면, 도 4a는 ZC+PN 및 결과적인 이상에 가까운 자기상관의 시뮬레이션의 결과들을 도시한다. 특히, PN 시퀀스는 도 3에 도시된 본래의 ZC 시퀀스의 바람직한 일정 진폭 제로 자기상관 파형("CAZAC") 특성들을 보유하는 개별 복소 서브캐리어들을 위상 회전시킨다. 추가된 위상 회전은 동일한 루트 시퀀스의 순환 시프트들 사이에 더 큰 신호 분리를 제공하여, 도 4b에 도시된 PN 시퀀스 변조의 추가 없이 ZC 시퀀스를 사용하여 관측되는 가짜 자기상관 응답들을 억제하도록 의도된다. 따라서, 알 수 있듯이, (ZC+PN)의 발견은 순환 시프트들의 메커니즘에 의해 통신되는 시그널링 강건성 및 용량(심볼당 비트 수)을 크게 개선한다.
도 2를 다시 참조하면, 제1 심볼 #0은 순환 시프트를 갖지 않는 루트인 반면, 심볼 1-N은 순환 시프트들의 메커니즘을 통해 시그널링을 전달한다. 또한, 매핑 모듈(210)에 의해 매핑 및 제로 패딩이 심볼 #0에 적용되는 것으로 보인다. 심볼들(1-N)은 ZC에 PN을 추가하여 도시된 바와 같은 반사 대칭을 유발하며, 이는 나중에 예로서 설명될 것이다.
이어서, 신호는 IFFT 모듈(212)로 전송되고, 주파수 도메인으로부터 시간 도메인으로 변환된다. 이어서, 신호는 시간 도메인에서 처리된다. IFFT를 벗어난 신호는 "A"로 지칭되고, 이는 또한 "B" 및 "C"로 알려진, "A"로부터 도출된 프리픽스(pre-fix) 및 포스트픽스(post-fix) 섹션을 갖는다. 심볼 #0은 시간 시퀀스 "CAB"를 갖는 반면, 모든 다른 심볼들은 "BCA"의 시간 시퀀스를 갖는다. 이것의 목적은 강건성을 증가시키고, 동기화 및 버저닝을 위해 사용되는 심볼 #0을 구별하기 위한 것이라는 것을 알아야 한다.
부트스트랩 심볼들의 길이는 다음과 같이 정의된다.
식(7)
Figure pat00007
일례(ATSC 3.0)에서, 심볼 길이는 500㎲이다.
심볼들의 수를 확장하기 위한 능력을 가능하게 하기 위해, 도 5에 도시된 바와 같이, 부트스트랩 시퀀스 내의 최종 심볼 상의 (ZC)의 반전의 메커니즘이 사용된다. 특히, 이전 심볼 기간에 관한 최종 심볼 기간에서의 180도 위상 반전에 의해 필드 종료가 시그널링된다. 따라서, 수신기가 신호의 끝을 식별할 수 있기 위해 신호가 얼마나 오래 존재할 것인지를 미리 지정할 필요 없이, 수신기는 대신에 신호의 끝을 지시할 신호 내의 반전된 심볼을 찾을 수 있다. 이것은 부트스트랩이 유연하고 확장 가능한 것을 가능하게 하는데, 이는 신호가 얼마나 오래 존재할지에 대한 사전 지식이 필요하지 않기 때문이다. 따라서, 부트스트랩 길이를 미리 정의하고, 추가 공간을 낭비하거나 충분한 공간을 예약하지 않는 대신(이 경우, 의도된 정보를 완전히 전송하지 못할 수 있음), 부트스트랩의 길이는 발견될 수 있다는 점에서 유연하다. 더욱이, 반전된 신호는 비교적 검출하기 쉬우며, 따라서 구현을 위해 상당한 추가 자원을 요구하지 않을 수 있다.
수신기는 그가 이해하지 못하는 메이저 버전(루트)을 적절히 무시할 것임을 알아야 한다. 이것은 장래에 레거시 수신기들을 교란시키지 않고 확장성을 보장한다. 실제로, 하나의 그러한 시그널링 방법이 ATSC 3.0에 의해 제공되며, 이는 본 명세서에서 나중에 설명되고 표 2에 예시된다.
도 6은 도 1에 도시된 예시적인 신호 파형(114)을 도시한다. 신호 파형(114)은 포스트 부트스트랩 파형(604) 또는 파형의 나머지에 의해 이어지는 부트스트랩(602)을 포함한다. 부트스트랩(602)은 신호 파형(114) 안으로의 보편적인 진입점을 제공한다. 이것은 모든 방송 수신기들(112)에게 알려진 고정 구성(예로서, 샘플링 레이트, 신호 대역폭, 서브캐리어 간격, 시간 도메인 구조)을 사용한다.
유연한 또는 가변적인 샘플링이 부트스트랩에서 정의되게 하는 것은 이전에는 가능하지 않았던 유연성을 제공함을 알아야 한다. 특히, 고정된 또는 정의된 샘플링 레이트를 대역폭의 함수로서 갖는 특정 서비스에 대한 솔루션을 설계하는 것이 아니라, 유연한 샘플링 레이트는 상이한 요구들 및 제약들을 갖는 다양한 서비스들을 수용하기 위해 다양한 상이한 대역폭들에 대한 스케일링을 가능하게 한다. 따라서, 동기화 및 발견을 위한 동일 시스템은 큰 범위의 대역폭들에 대해 사용될 수 있고, 큰 대역을 서빙할 수 있는데, 이는 대역의 상이한 섹션들이 상이한 타입의 서비스들에 더 적합할 수 있기 때문이다.
부트스트랩(602)은 다수의 심볼로 구성될 수 있다. 예를 들어, 부트스트랩(202)은 서비스 발견, 대략적인 동기화, 주파수 오프셋 추정 및 초기 채널 추정을 가능하게 하기 위해 각각의 파형의 시작에 배치된 동기화 심볼(606)로부터 시작될 수 있다. 부트스트랩(602)의 나머지(608)는 시작될 신호 파형(114)의 나머지의 수신 및 디코딩을 허용하기에 충분한 제어 시그널링을 포함할 수 있다.
부트스트랩(602)은 유연성, 스케일링 가능성 및 확장성을 보이도록 구성된다. 예를 들어, 부트스트랩(602)은 증가된 유연성에 대한 버저닝을 구현할 수 있다. 특히, 부트스트랩(602) 설계는 (특정 서비스 타입 또는 모드에 대응하는) 메이저 버전 번호 및 (특정 메이저 버전 내의) 마이너 버전을 가능하게 할 수 있다. 일례로, 버저닝은 (설명되는 바와 같이) 부트스트랩 심볼 콘텐츠에 대한 기본 인코딩 시퀀스를 생성하는 데 사용되는 자도프 추 루트(메이저 버전) 및 의사 잡음 시퀀스 시드(마이너 버전)의 적절한 선택을 통해 시그널링될 수 있다. 부트스트랩(602) 내의 시그널링 필드들의 디코딩은 검출된 서비스 버전과 관련하여 수행될 수 있으며, 이는 각각의 할당된 비트 필드가 재사용 가능하고, 지시된 서비스 버전에 기초하여 구성되는 계층적 시그널링을 가능하게 한다. 부트스트랩(612) 내의 시그널링 필드들의 신택스 및 시맨틱스는 예를 들어 메이저 및 마이너 버전이 참조하는 표준들 내에서 지정될 수 있다.
스케일링 가능성 및 확장성을 더 보이기 위해, 부트스트랩(602) 심볼마다 시그널링되는 비트들의 수는 특정 메이저/마이너 버전에 대해 최대한으로 정의될 수 있다. 심볼당 최대 비트 수는 아래 식에 의해 정의된다.
식(1)
Figure pat00008
이 식은 원하는 순환 시프트 허용 한계에 의존하며, 이 허용 한계는 또한 예상 채널 전개 시나리오들 및 환경들에 의존한다. 가능할 경우, 서비스 버전에 대한 변경을 요구하지 않고 추가적인 새로운 시그널링 비트들이 역호환 방식으로 기존 심볼들에 추가될 수 있다.
결과적으로, 부트스트랩(602) 신호 지속기간은 전체 심볼 기간들 내에서 확장 가능하며, 각각의 새로운 심볼은 최대 Nbps개의 추가 시그널링 비트를 전달한다. 따라서, 부트스트랩(602) 신호 용량은 필드 종료에 도달할 때까지 크게 증가될 수 있다.
도 7은 부트스트랩(602) 심볼들을 생성하기 위한 예시적인 시스템(700)을 도시한다. 설명되는 바와 같이, 각각의 부트스트랩(602) 심볼에 대해 사용되는 값들은 시퀀스 생성기(708)를 이용하여 의사 잡음(PN) 커버 시퀀스(702)에 의해 변조된 자도프 추(ZC) 시퀀스(704)를 이용하여 주파수 도메인에서 생성된다. ZC 루트(704) 및 PN 시드(702)는 서비스의 메이저 및 마이너 버전들을 각각 결정한다. 결과적인 복소 시퀀스는 고속 푸리에 역변환("IFFT") 입력(706)에서 서브캐리어마다 적용된다. 시스템(700)은 시퀀스 생성기(708)의 출력을 IFFT 입력(706)에 매핑하기 위한 서브캐리어 매핑 모듈(710)을 더 포함한다. PN 시퀀스(702)는 본래의 ZC 시퀀스(704)의 바람직한 일정 진폭 제로 자기상관(CAZAC) 특성들을 보유하는 개별 복소 서브캐리어들에 대해 위상 회전을 도입한다. PN 시퀀스(702)는 또한 자기상관 응답에서의 가짜 방출들을 억제하여, 동일 루트 시퀀스의 순환 시프트들 사이에 추가적인 신호 분리를 제공한다.
특히 의사 잡음 시퀀스로 ZC 시퀀스를 변조하는 것은 파형이 쉽게 발견될 수 있게 하는 상이한 특성들을 파형에 제공한다는 것을 더 알아야 한다. 특히, PN 시퀀스로 변조하는 것은 더 적은 불확실성을 갖는 이상에 가까운 상관을 유발한다. 그러한 조합은 시뮬레이션을 통해 알고리즘들 및 시퀀스들의 많은 조합을 테스트한 후에 발견되었다. 특히, PN 시퀀스로 ZC 시퀀스를 변조하는 것은 상관 동안 어떠한 가짜 신호도 생성하지 않고 쉽게 상관되는 신호를 생성하는 예상치 못한 결과를 낳았다. 이것은 신호가 쉽게 발견될 수 있게 하며, 이는 수신기가 고잡음 환경에서도 신호와 상관할 수 있다는 것을 의미한다.
부트스트랩 - 구현(ATSC 3.0 예)
여기서는 예시적인 부트스트랩(602)의 예시적인 구현이 설명된다. 본 명세서에서 설명되는 예들은 부트스트랩의 특정 구현을 참조할 수 있지만, 부트스트랩(602)은 후술하는 예 이외의 더 광범위한 응용들을 가질 것이라는 것이 고려된다는 것을 알아야 한다.
부트스트랩 사양 - 크기
일례로, 부트스트랩(602) 구조는 부트스트랩(602)에 의해 시그널링되는 버전 번호들 및/또는 다른 정보가 진화할 때에도 일정하게 유지되도록 의도된다. 일례로, 부트스트랩(602)은 파형(604)의 나머지에 대해 사용되는 채널 대역폭에 관계없이 6.144 메가샘플/초의 고정 샘플링 레이트 및 4.5MHz의 고정 대역폭을 사용한다. 각각의 샘플의 시간 길이도 샘플링 레이트에 의해 고정된다. 따라서, 다음과 같다.
식(2A)
Figure pat00009
2048의 FFT 크기는 3kHz의 서브캐리어 간격을 유발한다.
식(3)
Figure pat00010
이 예에서, 각각의 부트스트랩(602) 심볼은 ~333.33μs의 지속기간을 갖는다. (CAB 또는 BCA)를 사용하여 나중에 설명될 시간 도메인에서 처리될 때, Tsymbol의 정확한 길이는 500μs이다. 부트스트랩(602)의 전체 지속기간은 Ns로서 지정되는 부트스트랩(602) 심볼 수에 의존한다. 고정된 수의 부트스트랩(602) 심볼이 가정되지 않아야 한다.
식(4)
Figure pat00011
일반적으로 사용되고 이 예에서 6MHz 방송보다 작은 최저 대역폭으로서 5MHz를 또한 커버하는 현재의 산업 합의에 기초하여 4.5MHz 대역폭이 선택될 수 있다는 것을 알아야 한다. 따라서, 기저대역 샘플링 레이트는 다음 식을 사용하여 계산될 수 있다.
식(5)
Figure pat00012
양호한 이득을 갖는 2048 FFT 길이를 선택하는 것은 양호한 도플러 성능을 제공하는 3KHz의 Δf를 유발한다. 대역의 다른 섹션들에 대해 유사한 시스템이 구현될 수 있다는 것을 알아야 한다. 예를 들어, 식 및 N 값이 해당 특정 대역폭에 대해 최적화되는 동일한 식의 변형이 20MHz와 같은 다른 대역폭들에 대해 사용될 수 있다.
LTE 시스템들(및 WCDMA에 대한 관계)과 관련된 0.384MHz 팩터에 기초하는 BSR 식에 따라, 새로운 시스템은 다른 구현들에 대해 사용되는 발진기(들) 없이 작동할 수 있음을 알아야 한다. 게다가, 현재 표준들에서 설명되는 모든 현재 대역폭들에 대한 모든 3GPP LTE 기저대역 샘플링 레이트들도 값(N)을 삽입함으로써 식으로부터 계산될 수 있다. 따라서, 식을 채택하는 것은 여전히 작동하는 LTE 변형의 소정 유형의 변형을 포함하는 장비의 장래의 버전들을 가능하게 한다. 그러나, BSR 식은 다른 적절한 팩터들에 유사하게 기초할 수 있다는 것을 알아야 한다.
여기서 설명되는 예들은 2048의 선택된 FFT 크기를 이용하지만, 다른 적절한 FFT 크기들이 유사하게 사용될 수 있다는 것을 더 알아야 한다. 수신기는 먼저 착신 신호를 동기화하고 식별하여 그의 정보의 디코딩을 시작할 수 있어야 한다. 그러나, 2048의 FFT 크기와 같은 더 긴 시그널링 시퀀스는 더 높은 이득을 가지며, 따라서 발견하기가 더 쉬운데, 이는 수신기가 발견하거나 상관하는 데 이용 가능한 정보의 양이 더 많기 때문이다.
기존의 셀룰러 통신에서, 이득은 팩터가 아닐 수 있는데, 이는 통신이 유니캐스트 방식으로 이루어지고, 주요 동기화 신호(PSS)가 다수의 사용자에 의한 랜덤 액세스를 위해 빈번하게 삽입되기 때문이다. 더욱이, 방송기들은 과거에는 이득에 관심이 없었을 수 있는데, 이는 방송이 일반적으로 높은 지대에 있는 정적 수신기들에 대해 의도되었을 수 있기 때문이다. 그러나, 모바일 장치로 또는 열악한 수신을 갖는 위치들로 방송할 때, 더 높은 이득이 더 중요해질 수 있다. 그러나, 모바일 장치는 이득을 위해 의지할 최적의 안테나 형상을 갖지 못할 수 있고, 최상의 수신을 위해 이상적으로 배치되지 못할 수 있으며, 따라서 수학적인 이득에 의존할 수 있다.
따라서, FFT=2048 예와 같은 더 긴 신호 길이들은 상관할 더 긴 시퀀스들을 제공하며, 따라서 더 강건한 수신을 유발한다. 예를 들어, 더 긴 신호를 이용하여, 부트스트랩은 잡음 바닥 아래의 지하 위치들에서 발견될 수 있다. 게다가, 더 긴 신호 길이들은 또한 더 고유한 시퀀스들을 가능하게 한다. 예를 들어, 각각의 송신기는 고유 시퀀스를 할당받을 수 있고, 이어서 수신기들은 시퀀스들을 독립적으로 검색할 수 있다. 이러한 정보는 예를 들어 글로벌 포지셔닝 시스템(GPS) 시스템들에 의해 TDOA 기술들을 이용하여 수신기의 위치를 계산하는 데 사용될 수 있으며, 이는 여기서는 설명되지 않는다.
다른 적절한 신호 길이들이 선택될 수 있지만, 여기서는 성능을 최적화하기 위해 2048의 신호 길이가 식별되었다는 것을 알아야 한다. 특히, 상이한 신호 길이를 선택하는 것은 성능에 영향을 줄 수 있는 이득의 양을 포함하는 상이한 파라미터들 사이의 절충을 유발할 수 있다.
부트스트랩 사양 - 주파수 도메인 시퀀스
일례로, 자도프 추(ZC) 시퀀스는 Nzc=1499의 길이를 가지며, 이는
Figure pat00013
=3kHz의 서브캐리어 간격과 함께 4.5MHz보다 크지 않은 채널 대역폭을 유발하는 최대 소수이다. ZC 시퀀스는 메이저 버전 번호에 대응하는 루트 q에 의해 파라미터화된다.
식(5)
Figure pat00014
여기서,
Figure pat00015
그리고,
Figure pat00016
의사 잡음 시퀀스를 사용하여 ZC 시퀀스를 변조하는 것은 ZC 루트 상의 제약들의 완화를 가능하게 하였다. ZC(예를 들어, LTE 주요 동기화 시퀀스)를 이용하는 이전의 시그널링 방법들은 양호한 자기상관 특성들을 보장하기 위해 소수 루트들을 선택하는 것으로 제한되었지만, 이 시스템에서 PN 변조는 ZC에 대해 비소수 루트들이 선택될 때에도 양호한 자기상관을 가능하게 한다. ZC에 대한 비소수 루트들을 갖는 것은 더 많은 파형의 생성을 가능하게 하여, 시스템이 더 많은 타입의 서비스를 시그널링하는 것을 가능하게 하는데, 즉 더 확장 가능한 시스템이 생성된다.
도 8은 예시적인 PN 시퀀스 생성기(708)를 도시한다. PN 시퀀스 생성기(808)는 길이(차수) l=16의 선형 피드백 시프트 레지스터(LFSR)(802)로부터 도출된다. 그의 동작은 시퀀스 출력(808)에 기여하는 요소들을 지정하는 마스크(806)에 의해 이어지는 LFSR 피드백 경로 내의 탭들을 지정하는 생성기 다항식(804)에 의해 지배된다. 생성기 다항식(804)의 사양 및 레지스터들의 초기 상태는 마이너 버전 번호에 대응하는 시드를 나타낸다. 즉, 시드는
Figure pat00017
로서 정의된다.
PN 시퀀스 생성기 레지스터들(802)은 새로운 부트스트랩(602) 내의 제1 심볼의 생성 전에 시드로부터의 초기 상태로 재초기화된다. PN 시퀀스 생성기(708)는 부트스트랩(602) 내의 하나의 심볼로부터 다음 심볼로 계속 시퀀싱하며, 동일한 부트스트랩(602) 내의 연속 심볼들에 대해서는 재초기화되지 않는다.
PN 시퀀스 생성기(708)의 출력은 0 또는 1의 값을 가질 p(k)로서 정의된다. p(0)은 PN 시퀀스 생성기(708)가 적절한 시드 값으로 초기화된 후의 그리고 시프트 레지스터(802)의 임의의 클럭킹 전의 PN 시퀀스 생성기 출력과 동일할 것이다. 시프트 레지스터(802)가 우측 위치 상에서 클럭킹될 때마다 새로운 출력 p(k)가 후속적으로 생성될 것이다. 따라서, 일례에서, PN 시퀀스 생성기(708)에 대한 생성기 다항식(804)은 다음과 같이 정의될 것이다.
식(6)
Figure pat00018
여기서,
Figure pat00019
도 9는 주파수 도메인 시퀀스의 서브캐리어들로의 매핑(900)의 예시도이다. DC 서브캐리어에 매핑되는 ZC 시퀀스 값(즉,
Figure pat00020
)은 0이 되어 DC 서브캐리어는 공백이 된다. 서브캐리어 인덱스들은 인덱스 0을 갖는 중앙 DC 서브캐리어로 예시된다.
ZC 및 PN 시퀀스들의 곱은 DC 서브캐리어에 대해 반사 대칭을 갖는다. ZC 시퀀스는 DC 서브캐리어에 대해 고유한 반사 대칭을 갖는다. DC 서브캐리어에 대한 PN 시퀀스의 반사 대칭은 DC 서브캐리어 아래의 서브캐리어들에 할당된 PN 시퀀스 값들을 DC 서브캐리어 위의 서브캐리어들에 거울 반사함으로써 도입된다. 예를 들어, 도시된 바와 같이, 서브캐리어 -1 및 +1에서의 PN 시퀀스 값들은 서브캐리어 -2 및 +2에서의 PN 시퀀스 값들과 같이 동일하다. 결과적으로, ZC 및 PN 시퀀스들의 곱도 DC 서브캐리어에 대해 반사 대칭을 갖는다.
여기서 설명되는 대칭은 더 강건한 신호를 가능하게 하여 신호가 더 쉽게 발견될 수 있게 한다는 것을 알아야 한다. 특히, 대칭은 발견을 위한 추가적인 도움(즉, 추가적인 이득)으로 작용한다. 이것은 수신기가 찾을 수 있는 신호의 추가적인 특징이며, 이는 신호가 더 쉽게 발견될 수 있게 한다. 따라서, 이것은 부트스트랩이 잡음 바닥 아래에서도 인식될 수 있게 하는 요소들 중 하나이다.
매핑(900)이 도시하는 바와 같이, 부트스트랩의 n번째 심볼
Figure pat00021
에 대한 서브캐리어 값들은 다음과 같이 표현될 수 있다.
식(7)
Figure pat00022
여기서,
Figure pat00023
그리고,
Figure pat00024
여기서, c(k)는 +1 또는 -1의 값을 갖는다. ZC 시퀀스는 각각의 심볼에 대해 동일한 반면, PN 시퀀스는 각각의 심볼과 함께 진행한다는 것을 알아야 한다.
일례에서, 부트스트랩 내의 최종 심볼은 해당 특정 심볼에 대한 서브캐리어 값들의 위상 반전(즉, 180도 회전)에 의해 지시된다. 이러한 부트스트랩 종료 시그널링은 메이저 또는 마이너 버전 번호들의 변경을 요구하지 않고 역호환 방식으로 추가 시그널링 용량을 위해 부트스트랩 내의 심볼들의 수가 증가되는 것을 가능하게 함으로써 확장성을 가능하게 한다. 위상 반전은 단지 각각의 서브캐리어 값에
Figure pat00025
을 곱하는 것을 포함한다.
식(8)
Figure pat00026
이러한 위상 반전은 수신기들이 부트스트랩의 종점을 정확하게 결정하는 것을 가능하게 한다. 예를 들어, 수신기는 수신기가 설계되고 하나 이상의 부트스트랩 심볼에 의해 확장된 마이너 버전보다 늦은 마이너 버전에 대해 부트스트랩의 종점을 결정할 수 있다. 결과적으로, 수신기들은 고정된 수의 부트스트랩 심볼을 가정할 필요가 없다. 게다가, 수신기들은 수신기가 디코딩할 준비가 되지 않은 부트스트랩 심볼의 시그널링 비트 콘텐츠를 무시할 수 있지만, 부트스트랩 심볼 자체의 존재를 여전히 검출할 수 있다.
매핑된 후, 주파수 도메인 시퀀스는 NFFT=2048 포인트 IFFT를 통해 시간 도메인으로 변환된다.
식(9)
Figure pat00027
부트스트랩 사양 - 심볼 시그널링
An(t) 시간 도메인 시퀀스의 시간 도메인 내의 순환 시프트들의 사용을 통해 부트스트랩 심볼들을 통해 정보가 시그널링된다. 이 시퀀스는 NFFT=2048의 길이를 가지며, 따라서 2048개의 상이한 순환 시프트가 가능하다(0에서 2047까지 포함). 2048개의 가능한 순환 시프트를 이용하여, 최대 log2(2048)=11 log2(2048)=11 비트가 시그널링될 수 있다. 이러한 비트 모두가 실제로 사용되지는 않을 것이라는 것을 알아야 한다. 특히,
Figure pat00028
는 n번째 부트스트랩 심볼
Figure pat00029
에 대해 사용되는 시그널링 비트들의 수를 나타내고,
Figure pat00030
은 그러한 비트들의 값들을 나타낸다.
수신된 부트스트랩 심볼 내의 활성 시그널링 비트들의 수는 수신기에 의해 예상된 시그널링 비트들의 수(
Figure pat00031
)보다 클 수 있다. 역호환성을 유지하면서 장래의 시그널링 확장을 촉진하기 위해, 수신기는 수신된 부트스트랩 심볼 내의 활성 시그널링 비트들의 수가 해당 수신기에 의해 예상된 시그널링 비트들의 수(
Figure pat00032
)보다 크지 않은 것으로 가정하지 않을 것이다. 예를 들어, 하나 이상의 특정 부트스트랩 심볼에 대한
Figure pat00033
는 역호환성을 여전히 유지하면서 이전에 사용되지 않은 시그널링 비트들을 사용하기 위해 동일한 메이저 버전 내에 새로운 마이너 버전을 정의할 때 증가될 수 있다. 따라서, 특정 메이저/마이너 버전에 대한 시그널링 비트들을 디코딩하도록 준비된 수신기는 동일한 메이저 버전 내의 더 늦은 마이너 버전에서 사용될 수 있는 임의의 새로운 추가 시그널링 비트들을 무시할 수 있다.
여기서 설명되는 예들에서 시간 도메인에서의 심볼의 부트스트랩 사이의 상관 피크들 사이의 거리는 시그널링 정보를 인코딩하는 것이라는 것을 알아야 한다. 특히, 심볼 #0은 기준점(절대 시프트)이고, 그것과 (제1 피크에 관한) 후속 피크들 간의 거리는 정보를 전달한다. 그러한 거리의 의미는 예를 들어 정의된 탐색표로부터 결정될 수 있다. 따라서, 수신기는 비트들을 디코딩하려고 시도하지 않는 대신, 상관 피크들을 식별하려고 시도한다. 수신기가 피크를 발견하면, 수신기는 다음 피크를 기다리며, 그들 간의 시간은 시그널링 정보를 보유한다. 이것은 더 강건한 시스템을 생성하는데, 이는 예를 들어 256개의 순환 시프트를 사용하여 8 비트의 이진 정보를 표현하는 것이 비교적 비용이 많이 들 수 있는 경우에도 고잡음 조건들에서 피크들 간의 시간 차이가 쉽게 발견되기 때문이다. 그러나, 부트스트랩에 이어지는 페이로드에 대한 실제 시그널링은 정보를 전달하는 실제 비트들을 갖는 변조 스킴을 여전히 포함할 수 있다.
일례에서, 이전 부트스트랩 심볼에 대한 순환 시프트에 관하여 n번째 부트스트랩 심볼
Figure pat00034
에 대해 순환 시프트가
Figure pat00035
로서 표현된다.
Figure pat00036
은 그레이 코드 방법을 사용하여 n번째 부트스트랩 심볼에 대한 시그널링 비트 값들로부터 계산된다.
Figure pat00037
은 비트들의 세트(
Figure pat00038
)로서 이진 형태로 표현된다.
Figure pat00039
의 각각의 비트는 다음과 같이 계산될 수 있다.
식(10)
Figure pat00040
여기서, 모듈로 연산에 의해 이어지는 시그널링 비트들의 합산은 해당 시그널링 비트들에 대한 논리 배타적 OR 연산을 효과적으로 수행한다.
이 식은 수신된 부트스트랩 심볼에 대한 상대 순환 시프트를 추정할 때 상대 순환 시프트(
Figure pat00041
)가 수신기에서의 임의의 에러들에 대한 최대 허용 한계를 제공하도록 계산되는 것을 보장한다. 특정 부트스트랩 심볼에 대한 유효 시그널링 비트들의 수(
Figure pat00042
)가 동일한 메이저 버전 내의 장래의 마이너 버전에서 증가되는 경우, 식은 더 이른 마이너 버전에 대해 준비된 수신기가 디코딩하도록 준비된 시그널링 비트 값들을 정확하게 디코딩하는 것을 여전히 가능하게 하여 역호환성이 유지되는 방식으로 그러한 장래의 마이너 버전 부트스트랩 심볼에 대한 상대 순환 시프트들이 계산되는 것도 보장한다.
일반적으로, 시그널링 비트
Figure pat00043
의 예상되는 강건성은
Figure pat00044
인 경우에
Figure pat00045
의 강건성보다 클 것이라는 것을 알아야 한다.
일례에서, 제1 부트스트랩 심볼은 초기 시간 동기화를 위해 사용되며, ZC 루트 및 PN 시드 파라미터들을 통해 메이저 및 마이너 버전 번호들을 시그널링한다. 이 심볼은 어떠한 추가 정보도 시그널링하지 않으며, 따라서 항상 0의 순환 시프트를 갖는다.
n번째 부트스트랩 심볼에 적용되는 미분 인코딩된 절대 순환 시프트
Figure pat00046
는 시간 도메인 시퀀스의 길이의 모듈로에 대해, 부트스트랩 심볼 n-1에 대한 절대 순환 시프트와 부트스트랩 심볼 n에 대한 상대 순환 시프트를 합산함으로써 계산된다.
식(11)
Figure pat00047
이어서, 절대 순환 시프트를 적용하여, IFFT 연산의 출력으로부터 시프트된 시간 도메인 시퀀스를 획득한다.
식(12)
Figure pat00048
부트스트랩 사양 - 시간 도메인 구조
각각의 부트스트랩 심볼은 3개의 부분(A, B, C)으로 구성되며, 이들 부분 각각은 복소값 시간 도메인 샘플들의 시퀀스로 구성된다. 부분 A는 적절한 순환 시프트가 적용되는 주파수 도메인 구조의 IFFT로서 도출되는 반면, B 및 C는 A로부터 취해진 샘플들로 구성되며, (서브캐리어 간격과 동일한)
Figure pat00049
의 주파수 시프트 및
Figure pat00050
의 가능한 위상 시프트가 부분 B의 샘플들을 계산하는 데 사용되는 주파수 도메인 시퀀스들에 도입된다. 부분 A, B 및 C는 각각 NA=NFFT=2048, NB=504 및 NC=520개의 샘플을 포함한다. 결과적으로, 각각의 부트스트랩 심볼은 500㎲의 동일한 시간 길이 동안
Figure pat00051
개의 샘플을 포함한다.
일례로, 시간 도메인 구조는 두 가지 변형: CAB 및 BCA를 포함한다. 동기화 검출을 위해 제공되는 부트스트랩의 초기 심볼(즉, 부트스트랩 심볼 0)은 C-A-B 변형을 사용한다. 나머지 부트스트랩 심볼들(즉, 부트스트랩 심볼 n, 여기서, 1≤n<Ns)은 필드 종료를 지시하는 부트스트랩 심볼까지 포함하는 B-C-A 변형을 따른다.
부트스트랩의 일부를 반복하는 것은 개선된 초기 동기화 및 발견을 가능하게 한다는 것을 알아야 하는데, 이는 수신기가 이러한 반복을 특정 순서로 예상하는 것을 알며, 고잡음 조건들에서도 신호가 더 쉽게 발견되고 잠기기 때문이다.
도 10a는 예시적인 CAB 구조(1010)를 도시한다. 이 예에서, 부분 C(1012)는 부분 A(1014)의 최종 NB=504개의 샘플로 구성되며,
Figure pat00052
의 주파수 시프트 및
Figure pat00053
의 위상 시프트가 부분 A(1014)를 계산하는 데 사용되는 본래의 주파수 도메인 시퀀스 Sn(k)에 적용된다. 부분 B(1016)에 대한 샘플들은 계산되는 순환 시프트된 시간 도메인 시퀀스의 최종 NB개의 샘플의 부정으로서 간주될 수 있으며, 입력 주파수 도메인 시퀀스는 주파수가 더 높은 하나의 서브캐리어 위치만큼 시프트된 Sn(k)(즉,
Figure pat00054
, 여기서, Sn(k)는 부분 B(1016)에 대한 주파수 및 위상 시프트된 샘플들을 생성하기 위한 입력 주파수 도메인 시퀀스임)와 동일하다. 대안으로서, 부분 B(1016) 샘플들을 생성하기 위한 주파수 및 위상 시프트들은 다음 식에 나타난 바와 같이 부분 A로부터 적절히 추출된 샘플들에
Figure pat00055
을 곱함으로써 시간 도메인에 도입될 수 있다.
식(13)
Figure pat00056
도 10b는 예시적인 BCA 구조(1020)를 도시한다. 이 예에서, 부분 C(1012)는 다시 A(1014)의 최종 NC=520개의 샘플로 구성되지만, B(1016)는 C(1012)의 처음 NB=504개의 샘플로 구성되고,
Figure pat00057
의 주파수 시프트가 부분 A(1014)를 계산하는 데 사용되는 본래의 주파수 도메인 시퀀스들 Sn(k)에 적용된다. 예시적인 CAB 구조(1010)와 관련하여 설명된 것과 유사한 방식으로, 부분 B(1016)에 대한 샘플들은 계산되는 순환 시프트된 시간 도메인 시퀀스의 최종 NB개의 샘플로서 간주될 수 있고, 입력 주파수 도메인 시퀀스는 주파수가 더 낮은 하나의 서브캐리어 위치만큼 시프트된 Sn(k)(즉,
Figure pat00058
, 여기서, Sn(k)는 부분 B(1016)에 대한 주파수 시프트된 샘플들을 생성하기 위한 입력 주파수 도메인 시퀀스임)와 동일하다. 대안으로서, 부분 B(1016) 샘플들을 생성하기 위한 주파수 시프트는 다음 식에 나타난 바와 같이 부분 A(1014)로부터의 적절한 샘플들에
Figure pat00059
을 곱함으로써 시간 도메인에 도입될 수 있고, 부분 A(1014)로부터의 적절한 샘플들의 정확한 추출을 설명하기 위해 -520Ts의 일정한 시간 오프셋이 포함된다.
식(14)
Figure pat00060
부분 B(1016)에 대한 샘플들은 CAB 구조(1010) 및 BCA 구조(1020) 각각에 대해 부분 A(1014)의 약간 상이한 섹션들로부터 취해질 수 있다는 것을 알아야 한다.
부트스트랩 신호 구조
여기서는 예시적인 부트스트랩 신호 구조가 설명된다. 시그널링 세트 또는 구조는 구성 파라미터 값들, 제어 정보 필드들의 리스트, 및 특정 시그널링 비트들에 대한 그러한 값들 및 필드들의 할당을 포함한다. 부트스트랩 신호 구조는 여기서 설명되는 예와 상이한 다른 적절한 형태들을 취할 수 있다는 것을 알아야 한다.
여기서 설명되는 예시적인 부트스트랩 신호 구조는 메이저 버전 번호가 0과 동일할 때 적용될 수 있다. 대응하는 ZC 시퀀스 루트(q)는 137이다. 부트스트랩 내의 (초기 동기화 심볼을 포함하는) 심볼들의 기본 수는 Ns = 4일 것이다. Ns = 4는 전송될 수 있는 심볼들의 최소 수를 나타낸다는 것을 알아야 한다. 따라서, 추가적인 시그널링 비트들의 전송을 가능하게 하기 위해, Ns = 4는 부트스트랩 신호 내에서 전송되어야 하는 심볼들의 최소 수(그러나 반드시 최대는 아님)를 나타낸다.
일례에서, 의사 잡음 시퀀스 생성기에 대한 생성기 다항식은 다음과 같이 정의된다.
식(15)
Figure pat00061
그리고, 의사 잡음 시퀀스 생성기에 대한 초기 레지스터 상태는 다음과 같이 정의된다.
식(16)
Figure pat00062
일례에서, 주어진 메이저 버전 내의 선택된 부트스트랩 마이너 버전에 대한 PN 시퀀스 생성기의 초기 레지스터 상태는 사용되고 있는 대응하는 마이너 버전을 시그널링하기 위해 미리 정의된 값들의 리스트로부터의 값으로 설정된다. 표 1은 각각의 마이너 버전에 대한 PN 시퀀스 생성기의 예시적인 초기 레지스터 상태들을 나타낸다.
Figure pat00063
부트스트랩 신호 구조는 메이저 및 마이너 버전 신호들에 이어지는 추가적인 시그널링 필드들을 포함할 수 있다. 예를 들어, 신호 구조는 웨이크업 비트를 포함할 수 있다. 이것은 예를 들어 비상 경보 웨이크업 비트일 수 있다. 이것은 온(1) 또는 오프(0)인 1 비트 필드이다.
신호 구조는 동일한 메이저 및 마이너 버전 필드의 다음 프레임에 대한 최소 시간 간격을 더 포함할 수 있다. 이것은 프레임 A에 대한 부트스트랩의 시작으로부터 프레임 B에 대한 부트스트랩의 시작의 가장 이른 가능한 발생까지 측정된 기간으로서 정의된다. 부트스트랩 B는 시그널링된 최소 시간 간격 값에서 시작하고 시그널링되었을 수 있는 다음으로 더 높은 최소 시간 간격 값에서 끝나는 시간 윈도우 내에 위치하도록 보장된다. 최고의 가능한 최소 시간 간격 값이 시그널링되는 경우, 이 시간 윈도우는 종료되지 않는다. 예시적인 신호 매핑 식이 다음과 같이 정의될 수 있다.
식(17)
Figure pat00064
따라서, X=10의 예시적인 시그널링된 값은 부트스트랩 B가 부트스트랩 A의 시작으로부터의 700ms에서 시작되고 부트스트랩 A의 시작으로부터의 800ms에서 끝나는 시간 윈도우 내의 어딘가에 위치한다는 것을 지시할 것이다.
이 양은 시그널링된 최소 시간 간격 값이 증가함에 따라 입도가 증가하면서 슬라이딩 스케일을 통해 시그널링된다. X는 시그널링되는 5 비트 값을 나타내고, T는 현재 프레임과 동일한 버전 번호와 매칭되는 다음 프레임에 대한 밀리초 단위의 최소 시간 간격을 나타낸다. 표 2는 예시적인 값들을 나타낸다.
Figure pat00065
신호 구조는 시스템 대역폭 필드를 더 포함할 수 있다. 이 필드는 현재 프레임의 포스트 부트스트랩 부분에 대해 사용되는 시스템 대역폭을 시그널링한다. 값들은 00=6MHz, 01=7MHz, 10=8MHz, 11=8MHz 초과를 포함한다. "8MHz 초과" 옵션은 8MHz를 초과하는 시스템 대역폭을 사용하는 장래의 동작을 촉진한다는 것을 알아야 한다. 8MHz를 초과하는 시스템 대역폭을 처리하도록 준비되지 않은 수신기들은 이 필드가 11과 동일한 프레임들을 무시할 수 있다.
표 3은 일례에서 부트스트랩 시그널링 필드들이 특정 시그널링 비트들 및 부트스트랩 심볼들에 매핑되는 것을 나타낸다. 각각의 시그널링 필드의 최상위 내지 최하위 비트들은 지정된 시그널링 비트들에 좌에서 우로 주어진 순서로 매핑된다.
Figure pat00066
는 n번째 부트스트랩 심볼의 i 번째 시그널링 비트를 나타내고, 부트스트랩 심볼 0은 어떠한 특정 시그널링 비트도 전달하지 않는다는 것을 알아야 한다.
Figure pat00067
도 11은 예시적인 확장 가능 통신 방법을 도시한다. 단계 1102에서, 제1 모듈은 루트 인덱스 값을 수신하고, 루트 값에 기초하여 일정 진폭 제로 자기상관 시퀀스를 생성한다. 단계 1104에서, 제2 모듈은 시드 값을 수신하고, 시드 값에 기초하여 의사 잡음 시퀀스를 생성한다. 단계 1106에서, 제3 모듈은 의사 잡음 시퀀스에 의해 일정 진폭 제로 자기상관 시퀀스를 변조하고, 복소 시퀀스를 생성한다. 단계 1108에서, 제4 모듈은 복소 시퀀스를 시간 도메인 시퀀스로 변환하고, 시간 도메인 시퀀스에 순환 시프트를 적용하여 시프트된 시간 도메인 시퀀스를 획득한다.
본 명세서에서 설명된 임의의 다양한 실시예는 임의의 다양한 형태로, 예로서 컴퓨터 구현 방법, 컴퓨터 판독 가능 메모리 매체, 컴퓨터 시스템 등으로서 실현될 수 있다. 시스템은 주문형 집적 회로(ASIC)와 같은 하나 이상의 주문 설계 하드웨어 장치에 의해, 필드 프로그래머블 게이트 어레이(FPGA)와 같은 하나 이상의 프로그래머블 하드웨어 요소에 의해, 저장된 프로그램 명령어들을 실행하는 하나 이상의 프로세서에 의해 또는 이들의 임의 조합에 의해 실현될 수 있다.
일부 실시예들에서, 비일시적 컴퓨터 판독 가능 메모리 매체는 프로그램 명령어들 및/또는 데이터를 저장하도록 구성될 수 있으며, 프로그램 명령어들은 컴퓨터 시스템에 의해 실행되는 경우에 컴퓨터 시스템으로 하여금 방법, 예로서 본 명세서에서 설명된 임의의 방법 실시예 또는 본 명세서에서 설명된 방법 실시예들의 임의 조합 또는 본 명세서에서 설명된 임의의 방법 실시예의 임의의 서브세트 또는 그러한 서브세트들의 임의의 조합을 수행하게 한다.
일부 실시예들에서, 컴퓨터 시스템은 프로세서(또는 프로세서들의 세트) 및 메모리 매체를 포함하도록 구성될 수 있으며, 메모리 매체는 프로그램 명령어들을 저장하고, 프로세서는 메모리 매체로부터 프로그램 명령어들을 판독하고 실행하도록 구성되고, 프로그램 명령어들은 본 명세서에서 설명된 임의의 다양한 방법 실시예(또는 본 명세서에서 설명된 방법 실시예들의 임의 조합 또는 본 명세서에서 설명된 임의의 방법 실시예의 임의의 서브세트 또는 그러한 서브세트들의 임의의 조합)를 구현하도록 실행될 수 있다. 컴퓨터 시스템은 임의의 다양한 형태로 실현될 수 있다. 예를 들어, 컴퓨터 시스템은 개인용 컴퓨터(임의의 그의 다양한 실현), 워크스테이션, 카드 상의 컴퓨터, 박스 내의 주문형 컴퓨터, 서버 컴퓨터, 클라이언트 컴퓨터, 핸드헬드 장치, 모바일 장치, 웨어러블 컴퓨터, 감지 장치, 텔레비전, 비디오 취득 장치, 생체 조직에 내장된 컴퓨터 등일 수 있다. 컴퓨터 시스템은 하나 이상의 디스플레이 장치를 포함할 수 있다. 본 명세서에 개시된 임의의 다양한 계산 결과는 디스플레이 장치를 통해 표시될 수 있거나 달리 사용자 인터페이스 장치를 통해 출력으로 제공될 수 있다.
"포함한다(includes)" 또는 "포함하는(including)"이라는 용어가 명세서 또는 청구항들에서 사용되는 경우, 그것은 "포함하는(comprising)"이라는 용어가 청구항에서 전이어(transitional word)로서 사용될 때 해석되는 바와 같이 그 용어와 유사한 방식으로 포괄적인 것으로 의도된다. 또한, "또는"이라는 용어(예로서, A 또는 B)가 사용되는 경우, 그것은 "A 또는 B 또는 둘 다"를 의미하는 것을 의도한다. 출원인이 "둘 다가 아니라 A 또는 B만"을 지시하도록 의도할 때는 "둘 다가 아니라 A 또는 B만"이라는 용어가 사용될 것이다. 따라서, 본 명세서에서 "또는"이라는 용어의 사용은 배타적이 아니라 포괄적으로 사용된다. 문헌[Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995)]을 참조한다. 또한, 명세서 또는 청구항들에서 "안에" 또는 "안으로"라는 용어가 사용되는 경우, 그것은 "위에" 또는 "위로"를 추가로 의미하는 것을 의도한다. 또한, 명세서 또는 청구항들에서 "접속"이라는 용어가 사용되는 경우, 그것은 "직접 접속"뿐만 아니라 "간접 접속", 예로서 다른 컴포넌트 또는 컴포넌트들을 통한 접속도 의미하는 것을 의도한다.
본 출원은 그의 실시예들의 설명에 의해 예시되었지만, 그리고 실시예들은 상당히 상세하게 설명되었지만, 출원인은 첨부된 청구항들의 범위를 그러한 상세로 제한하거나 어떠한 방식으로도 한정하는 것을 의도하지 않는다. 추가적인 장점들 및 변경들이 본 기술분야의 기술자들에게 자명할 것이다. 따라서, 본 출원은 그의 더 넓은 양태들에서 특정 상세들, 대표적인 장치 및 방법, 및 도시되고 설명된 설명 예들로 한정되지 않는다. 따라서, 출원인의 일반적인 발명 개념의 사상 또는 범위로부터 벗어나지 않고서 그러한 상세들로부터 일탈들이 이루어질 수 있다.

Claims (19)

  1. 통신 시스템으로서,
    프로그램 명령어들을 저장하도록 구성되는 메모리; 및
    프로세서
    를 포함하고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해,
    시드 값에 기초하여 PN 시퀀스(Pseudo-Noise sequence)를 생성하고,
    루트 인덱스 값(root index value)에 기초하여 CAZAC 시퀀스(constant amplitude zero auto-correlation sequence)를 생성하고,
    복수의 서브캐리어 중 각 서브캐리어가 서브캐리어 값을 갖도록 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 곱을 상기 복수의 서브캐리어에 매핑하며 -
    상기 복수의 서브캐리어 중 DC 서브캐리어의 서브캐리어 값은 0이고,
    각 서브캐리어의 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱과 연관된 상기 PN 시퀀스의 각 컴포넌트 값은 상기 DC 서브캐리어에 대해 반사 대칭을 갖고,
    상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱은 제2 시퀀스와 상기 CAZAC 시퀀스의 곱을 포함하고, 상기 제2 시퀀스는 상기 PN 시퀀스에 기초하고 상기 DC 서브캐리어에 대해 반사 대칭을 가짐 - ;
    상기 복수의 서브캐리어 중 각 서브캐리어의 상기 서브캐리어 값들을 시간 도메인 시퀀스(time domain sequence)로 변환하도록 구성되고,
    하나 이상의 수신기 장치는 상기 시간 도메인 시퀀스를 사용하여 초기 동기화를 수행할 수 있는, 통신 시스템.
  2. 제1항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해,
    상기 복수의 심볼 중 각 심볼에 걸쳐 상기 CAZAC 시퀀스와 제2 PN 시퀀스의 곱을 상기 복수의 서브캐리어에 매핑하도록 더 구성되고, 상기 제2 PN 시퀀스는 상기 복수의 심볼에 걸쳐 연속적으로 진행하는 PN 시퀀스인, 통신 시스템.
  3. 제1항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해, 상기 복수의 심볼의 종료를 지시하기 위해 최종 심볼에 선행하는 심볼에 관한 상기 복수의 심볼 중 상기 최종 심볼의 상기 복수의 서브캐리어와 연관된 CAZAC 시퀀스를, 180도 위상 반전에 의해, 반전시키도록 더 구성되는, 통신 시스템.
  4. 제1항에 있어서, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해, 시프트된 시간 도메인 시퀀스를 획득하기 위해 상기 시간 도메인 시퀀스에 순환 시프트를 적용하도록 더 구성되는, 통신 시스템.
  5. 제4항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해, 선행 심볼의 절대 순환 시프트 및 상기 하나의 심볼의 상대 순환 시프트에 기초하여 상기 하나의 심볼의 상기 순환 시프트를 생성하도록 더 구성되고, 상기 상대 순환 시프트는 상기 선행 심볼의 상기 절대 순환 시프트에 관한 것인, 통신 시스템.
  6. 제5항에 있어서, 상기 복수의 심볼은 고정 샘플링 레이트 및 고정 대역폭을 갖는, 통신 시스템.
  7. 제6항에 있어서, 상기 고정 샘플링 레이트는 6.144 메가샘플/초이고, 상기 고정 대역폭은 4.5MHz인, 통신 시스템.
  8. 제1항에 있어서, 상기 서브캐리어 값들을 상기 시간 도메인 시퀀스로 변환하기 위해, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해, 2048 포인트 IFFT (Inverse Fast Fourier Transform)를 사용하여 상기 서브캐리어 값들을 상기 시간 도메인 시퀀스로 변환하도록 구성되는, 통신 시스템.
  9. 방법으로서,
    시드 값에 기초하여 PN 시퀀스를 생성하는 단계;
    루트 인덱스 값에 기초하여 CAZAC 시퀀스를 생성하는 단계;
    복수의 서브캐리어 중 각 서브캐리어가 서브캐리어 값을 갖도록 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 곱을 상기 복수의 서브캐리어에 매핑하는 단계로서,
    상기 복수의 서브캐리어 중 DC 서브캐리어의 서브캐리어 값은 0이고,
    각 서브캐리어의 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱과 연관된 상기 PN 시퀀스의 각 컴포넌트 값은 상기 DC 서브캐리어에 대해 반사 대칭을 갖고,
    상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱은 제2 시퀀스와 상기 CAZAC 시퀀스의 곱을 포함하고, 상기 제2 시퀀스는 상기 PN 시퀀스에 기초하고 상기 DC 서브캐리어에 대해 반사 대칭을 가지는, 상기 매핑하는 단계; 및
    상기 복수의 서브캐리어 중 각 서브캐리어의 상기 서브캐리어 값들을 시간 도메인 시퀀스로 변환하는 단계를 포함하고,
    하나 이상의 수신기 장치는 상기 시간 도메인 시퀀스를 사용하여 초기 동기화를 수행할 수 있는, 방법.
  10. 제9항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 방법은,
    상기 복수의 심볼 중 각 심볼에 걸쳐 상기 CAZAC 시퀀스와 제2 PN 시퀀스의 곱을 상기 복수의 서브캐리어에 매핑하는 단계를 더 포함하고, 상기 제2 PN 시퀀스는 상기 복수의 심볼에 걸쳐 연속적으로 진행하는 PN 시퀀스인, 방법.
  11. 제9항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 방법은,
    상기 복수의 심볼의 종료를 지시하기 위해 최종 심볼에 선행하는 심볼에 관한 상기 복수의 심볼 중 상기 최종 심볼의 상기 복수의 서브캐리어와 연관된 CAZAC 시퀀스를, 180도 위상 반전에 의해, 반전시키는 단계를 더 포함하는, 방법.
  12. 제9항에 있어서,
    시프트된 시간 도메인 시퀀스를 획득하기 위해 상기 시간 도메인 시퀀스에 순환 시프트를 적용하는 단계 - 상기 순환 시프트는 통신 정보를 나타냄 -; 및
    상기 시프트된 시간 도메인 시퀀스를 상기 하나 이상의 수신기 장치에 송신하는 단계를 더 포함하는, 방법.
  13. 제12항에 있어서, 상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 방법은,
    선행 심볼의 절대 순환 시프트 및 상기 하나의 심볼의 상대 순환 시프트에 기초하여 상기 하나의 심볼의 상기 순환 시프트를 생성하는 단계 - 상기 상대 순환 시프트는 상기 선행 심볼의 상기 절대 순환 시프트에 관한 것임 -를 더 포함하는, 방법.
  14. 제13항에 있어서, 상기 복수의 심볼은 6.144 메가샘플/초의 고정 샘플링 레이트 및 4.5MHz의 고정 대역폭을 갖는, 방법.
  15. 제9항에 있어서, 상기 서브캐리어 값들을 상기 시간 도메인 시퀀스로 변환하는 단계는,
    2048 포인트 IFFT를 사용하여 상기 서브캐리어 값들을 상기 시간 도메인 시퀀스로 변환하는 단계를 포함하는, 방법.
  16. 송신 장치로서,
    프로그램 명령어들을 저장하는 메모리; 및
    프로세서
    를 포함하고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해,
    시드 값에 기초하여 PN 시퀀스를 생성하고,
    루트 인덱스 값에 기초하여 CAZAC 시퀀스를 생성하고,
    복수의 서브캐리어 중 각 서브캐리어가 서브캐리어 값을 갖도록 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 곱을 상기 복수의 서브캐리어에 매핑하며 -
    상기 복수의 서브캐리어 중 DC 서브캐리어의 서브캐리어 값은 0이고,
    각 서브캐리어의 상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱과 연관된 상기 PN 시퀀스의 각 컴포넌트 값은 상기 DC 서브캐리어에 대해 반사 대칭을 갖고,
    상기 PN 시퀀스와 상기 CAZAC 시퀀스의 상기 곱은 제2 시퀀스와 상기 CAZAC 시퀀스의 곱을 포함하고, 상기 제2 시퀀스는 상기 PN 시퀀스에 기초하고 상기 DC 서브캐리어에 대해 반사 대칭을 가짐 -;
    상기 서브캐리어 값들을 시간 도메인 시퀀스로 변환하고,
    상기 시간 도메인 시퀀스를 하나 이상의 수신기 장치에 송신하도록 구성되고, 상기 하나 이상의 수신기 장치는 상기 시간 도메인 시퀀스를 사용하여 초기 동기화를 수행할 수 있고,
    상기 시간 도메인 시퀀스는 복수의 심볼 중의 하나의 심볼이고, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해, 상기 복수의 심볼의 종료를 지시하기 위해 최종 심볼에 선행하는 심볼에 관한 상기 복수의 심볼 중 상기 최종 심볼의 상기 복수의 서브캐리어와 연관된 CAZAC 시퀀스를, 180도 위상 반전에 의해, 반전시키도록 더 구성되는, 송신 장치.
  17. 제16항에 있어서, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해,
    선행 심볼의 절대 순환 시프트 및 상기 하나의 심볼의 상대 순환 시프트에 기초하여 상기 하나의 심볼의 순환 시프트를 생성하고 - 상기 상대 순환 시프트는 상기 선행 심볼의 상기 절대 순환 시프트에 관한 것임 -,
    시프트된 시간 도메인 시퀀스를 획득하기 위해 상기 시간 도메인 시퀀스에 상기 순환 시프트를 적용하도록 더 구성되는, 송신 장치.
  18. 제17항에 있어서, 상기 순환 시프트를 적용하기 위해, 상기 프로세서는, 상기 프로그램 명령어들을 실행함에 의해,
    상기 순환 시프트를 적용하기 전에 상기 상대 순환 시프트 및 상기 절대 순환 시프트를 추가하도록 더 구성되는, 송신 장치.
  19. 제17항에 있어서, 상기 시프트된 시간 도메인 시퀀스는 파형의 수신 및 디코딩을 허용하도록 구성된 제어 시그널링(control signaling)을 포함하는, 송신 장치.
KR1020217041707A 2015-03-09 2016-03-09 시스템 발견 및 시그널링 KR102391843B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227013829A KR102451527B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562130365P 2015-03-09 2015-03-09
US62/130,365 2015-03-09
KR1020207008031A KR102342727B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
PCT/US2016/021547 WO2016145070A1 (en) 2015-03-09 2016-03-09 System discovery and signaling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207008031A Division KR102342727B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227013829A Division KR102451527B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Publications (2)

Publication Number Publication Date
KR20210157431A true KR20210157431A (ko) 2021-12-28
KR102391843B1 KR102391843B1 (ko) 2022-04-29

Family

ID=56879042

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020227013829A KR102451527B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020177027464A KR102093214B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020217041707A KR102391843B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020227034195A KR102500030B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020237004890A KR102541395B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020207008031A KR102342727B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020227013829A KR102451527B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020177027464A KR102093214B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020227034195A KR102500030B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020237004890A KR102541395B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링
KR1020207008031A KR102342727B1 (ko) 2015-03-09 2016-03-09 시스템 발견 및 시그널링

Country Status (9)

Country Link
US (5) US10079708B2 (ko)
EP (1) EP3269058B1 (ko)
JP (1) JP6662890B2 (ko)
KR (6) KR102451527B1 (ko)
CN (3) CN110661590B (ko)
CA (4) CA3201041A1 (ko)
MX (1) MX371499B (ko)
TW (4) TWI809802B (ko)
WO (1) WO2016145070A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484567B (zh) 2009-08-21 2016-02-10 阿瓦尔有限公司 基于分组的ofdm系统中的报头重复
CN106797264B (zh) 2014-08-25 2019-06-28 第一媒体有限责任公司 灵活的正交频分复用phy传输数据帧前导码的动态配置
WO2016125992A1 (ko) * 2015-02-04 2016-08-11 엘지전자(주) 방송 신호 송수신 장치 및 방법
KR102451527B1 (ko) 2015-03-09 2022-10-06 원 미디어, 엘엘씨 시스템 발견 및 시그널링
US10568026B2 (en) 2015-03-24 2020-02-18 ONE Media, LLC High priority notification system and method
GB2540593A (en) * 2015-07-22 2017-01-25 Sony Corp Receiver and method of receiving
ES2909239T3 (es) * 2016-01-15 2022-05-05 Ntt Docomo Inc Terminal de usuario, estación base inalámbrica y método de comunicación inalámbrica
US11570597B2 (en) * 2016-02-08 2023-01-31 Qualcomm Incorporated Pilot design for uplink (UL) narrow-band internet of things (NB-IoT)
US10432384B2 (en) 2016-08-26 2019-10-01 Sinclair Broadcast Group, Inc. Band segmented bootstraps and partitioned frames
US10809348B2 (en) * 2016-12-07 2020-10-20 Verizon Patent And Licensing Inc. Positioning based on phase and time differences of signals
KR20190035391A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 프리앰블 심볼의 생성 장치와 방법, 및 프리앰블 심볼의 검출 장치와 방법
KR102395353B1 (ko) * 2017-10-11 2022-05-10 한국전자통신연구원 부트스트랩 신호 복호화 장치 및 방법
KR20200125656A (ko) 2018-02-26 2020-11-04 싱클레어 브로드캐스트 그룹, 인코포레이티드 차세대 멀티-채널-테넌트 가상화 브로드캐스트 플랫폼 및 5g 융합
JP7091779B2 (ja) * 2018-03-30 2022-06-28 ソニーグループ株式会社 受信装置、及び受信方法
CA3121124A1 (en) 2018-11-30 2020-06-04 Sinclair Broadcast Group, Inc. Atsc 3.0 physical layer extensions to enable mobility broadcast 5g convergence
US11510238B2 (en) * 2019-03-29 2022-11-22 Qualcomm Incorporated Random access for a non-terrestrial network
US11240082B1 (en) * 2019-04-10 2022-02-01 Arctan, Inc. Methods and systems for modulating and de modulating data
US11522641B2 (en) * 2019-05-22 2022-12-06 Hitachi Kokusai Electric Inc. Data transmission system for multiplexing a plurality of pieces of data in a layered division multiplexing (LDM) method and transmitting multiplexed data, reception device used in the data transmission system, and data transmission method therefor
CN112752351A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 基于序列的信号传输的方法和通信装置
WO2021107578A1 (ko) * 2019-11-27 2021-06-03 한국전자통신연구원 베이스밴드 샘플링 레이트 계수를 시그널링하는 방송 신호 프레임을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
KR102448858B1 (ko) * 2019-11-27 2022-09-30 한국전자통신연구원 베이스밴드 샘플링 레이트 계수를 시그널링하는 방송 신호 프레임을 이용한 방송 신호 송신 장치 및 방송 신호 송신 방법
KR102432820B1 (ko) 2020-04-22 2022-08-17 한국전자통신연구원 4 계층 ldm 신호 송수신 장치 및 방법
US11729039B2 (en) 2020-08-31 2023-08-15 Sinclair Broadcast Group, Inc. ATSC 3.0 single frequency networks used for positioning navigation timing and synergy 4G / 5G networks
CN115208725B (zh) * 2022-05-07 2024-02-02 中国人民解放军国防科技大学 一种联合ofdm同步与信息调制的方法、装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070106913A (ko) * 2006-05-01 2007-11-06 엘지전자 주식회사 통신 시스템에서의 코드 시퀀스 생성 방법 및 송신 장치
KR20090106412A (ko) * 2007-01-10 2009-10-08 콸콤 인코포레이티드 순환적으로 시프트된 시퀀스들을 사용하는 정보의 전송
KR20110056302A (ko) * 2008-08-27 2011-05-26 퀄컴 인코포레이티드 주파수 도메인 pn 시퀀스
KR20150006319A (ko) * 2013-07-08 2015-01-16 삼성전자주식회사 데이터 구조 생성 방법 및 이를 이용하는 장치
WO2016154386A1 (en) * 2015-03-24 2016-09-29 One Media Llc High priority notification system and method

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052411A (en) * 1998-04-06 2000-04-18 3Com Corporation Idle mode for digital subscriber line
US6289000B1 (en) 2000-05-19 2001-09-11 Intellon Corporation Frame control encoder/decoder for robust OFDM frame transmissions
WO2001091318A1 (en) 2000-05-25 2001-11-29 Samsung Electronics Co., Ltd Apparatus and method for transmission diversity using more than two antennas
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US7623467B1 (en) 2003-09-17 2009-11-24 Atheros Communications, Inc. Wireless channel estimation
US7920884B2 (en) 2004-06-04 2011-04-05 Qualcomm Incorporated Frame structures for a wireless communication system with multiple radio technologies
US20060221810A1 (en) 2005-03-10 2006-10-05 Bojan Vrcelj Fine timing acquisition
US20070183386A1 (en) 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
KR101037829B1 (ko) 2006-04-25 2011-05-31 닛본 덴끼 가부시끼가이샤 파일럿 신호 전송 방법 및 무선 통신 장치
JP5441257B2 (ja) 2006-06-19 2014-03-12 テキサス インスツルメンツ インコーポレイテッド ワイヤレス・ネットワーク向けランダム・アクセス構造
US8094638B2 (en) 2006-08-22 2012-01-10 Texas Instruments Incorporated Adaptive selection of transmission parameters for reference signals
US8571120B2 (en) 2006-09-22 2013-10-29 Texas Instruments Incorporated Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
PL2360850T3 (pl) 2006-09-30 2015-04-30 Huawei Tech Co Ltd Sposób i urządzenie do rozdzielania sekwencji i przetwarzania sekwencji w systemie łączności
US7778151B2 (en) 2006-10-03 2010-08-17 Texas Instruments Incorporated Efficient scheduling request channel for wireless networks
EP2087605B1 (en) 2006-10-03 2012-03-21 QUALCOMM Incorporated Method and apparatus for processing primary and secondary synchronization signals for wireless communication
JP4917101B2 (ja) * 2006-10-06 2012-04-18 パナソニック株式会社 無線通信装置および無線通信方法
CN101166166B (zh) 2006-10-20 2010-12-29 中兴通讯股份有限公司 上行多用户码域导频信道估计系统及估计方法
US8457039B2 (en) 2006-10-24 2013-06-04 Texas Instruments Incorporated Random access channel design with hybrid CDM and FDM multiplexing of access
JP4978384B2 (ja) 2006-10-31 2012-07-18 日本電気株式会社 移動通信システム、送信装置、および送信信号生成方法
KR100811892B1 (ko) 2006-11-17 2008-03-10 한국전자통신연구원 고속 무선 통신 시스템에서의 채널 등화 및 반송파 복원방법 및 수신 장치
GB2458418B (en) * 2006-12-19 2011-08-03 Lg Electronics Inc Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
JP4934727B2 (ja) 2006-12-29 2012-05-16 ノキア コーポレイション パイロット信号またはプリアンブル信号におけるzadoff−chu系列の使用制限を提供する装置、方法、およびコンピュータプログラム
WO2008082262A2 (en) * 2007-01-05 2008-07-10 Lg Electronics Inc. Method for setting cyclic shift considering frequency offset
US8406201B2 (en) * 2007-03-19 2013-03-26 Lg Electronics Inc. Methods and procedures to allocate UE dedicated signatures
US8223908B2 (en) 2007-05-02 2012-07-17 Qualcomm Incorporated Selection of acquisition sequences for optimal frequency offset estimation
KR100956494B1 (ko) 2007-06-14 2010-05-07 엘지전자 주식회사 제어신호 전송 방법
ES2968530T3 (es) 2007-06-15 2024-05-10 Optis Wireless Technology Llc Aparato de comunicación inalámbrica y procedimiento de difusión de señal de respuesta
ES2425765T3 (es) 2007-06-19 2013-10-17 Panasonic Corporation Aparato de comunicación inalámbrica y método de ensanchamiento de señal de respuesta
KR20090006708A (ko) 2007-07-12 2009-01-15 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
JP5340156B2 (ja) 2007-08-14 2013-11-13 パナソニック株式会社 無線通信装置および応答信号拡散方法
RU2492580C2 (ru) 2007-08-15 2013-09-10 Нокиа Сименс Нетворкс Ой Передача запроса планирования, обеспечивающая поддержку большого доплеровского сдвига
US8683529B2 (en) 2007-08-24 2014-03-25 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
JP5094975B2 (ja) 2007-09-03 2012-12-12 三星電子株式会社 Sc−fdma通信システムにおけるシーケンスホッピング
US20090073944A1 (en) 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
US8625568B2 (en) 2007-09-21 2014-01-07 Lg Electronics Inc. Method of mapping physical resource to logical resource in wireless communication system
EP2043291B1 (en) 2007-09-28 2011-05-18 LG Electronics Inc. Apparatus and method for transmitting and receiving an OFDM signal
US8045628B2 (en) 2007-10-18 2011-10-25 Nokia Corporation Digital video broadcast service discovery
US7652980B2 (en) 2007-11-02 2010-01-26 Nokia Corporation Orthogonal frequency division multiplexing synchronization
GB2454262B (en) * 2007-11-05 2011-02-09 British Broadcasting Corp Signal discovery
WO2009075540A2 (en) 2007-12-12 2009-06-18 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
KR100937430B1 (ko) 2008-01-25 2010-01-18 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
US8774156B2 (en) 2008-01-29 2014-07-08 Texas Instruments Incorporated ACKNAK and CQI channel mapping schemes in wireless networks
KR100937429B1 (ko) * 2008-02-04 2010-01-18 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
US8223857B2 (en) 2008-02-17 2012-07-17 Lg Electronics Inc. Method of communication using frame
WO2009110744A2 (ko) * 2008-03-04 2009-09-11 엘지전자 주식회사 레거시 서포트 모드를 지원하는 레인징 구조, 멀티플렉싱 방법 및 시그널링 방법
EP2104295B3 (en) 2008-03-17 2018-04-18 LG Electronics Inc. Reference signal generation using gold sequences
US8199739B2 (en) * 2008-03-29 2012-06-12 Qualcomm Incorporated Return link time adjustments in FDD OFDMA or SC-FDM systems
ES2432761T3 (es) 2008-06-04 2013-12-05 Sony Corporation Nueva estructura de trama para sistemas de múltiples portadoras
KR101571566B1 (ko) 2008-08-11 2015-11-25 엘지전자 주식회사 무선 통신 시스템에서 제어신호 전송 방법
US8089858B2 (en) * 2008-08-14 2012-01-03 Sony Corporation Frame and signalling pattern structure for multi-carrier systems
GB2463508B (en) 2008-09-16 2011-04-13 Toshiba Res Europ Ltd Wireless communications apparatus
US8644397B2 (en) 2008-09-23 2014-02-04 Qualcomm Incorporated Efficient multiplexing of reference signal and data in a wireless communication system
KR101549004B1 (ko) * 2008-12-31 2015-09-11 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 모드 결정 기법
US8335278B2 (en) 2008-11-04 2012-12-18 Electronics And Telecommunications Research Institute Method for transmitting common feedback channel and transceiver therefor
WO2010082805A2 (ko) * 2009-01-19 2010-07-22 엘지전자 주식회사 주파수 집성 시스템에서 반송파를 설정하는 방법 및 이를 위한 장치
EP2211515B1 (en) 2009-01-22 2016-05-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving uplink sounding signal in broadband wireless communication system
KR101562223B1 (ko) 2009-01-22 2015-10-26 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 사운딩 신호 송수신 장치 및 방법
KR20100091876A (ko) * 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
US9288026B2 (en) * 2009-06-22 2016-03-15 Qualcomm Incorporated Transmission of reference signal on non-contiguous clusters of resources
US20110105135A1 (en) 2009-11-03 2011-05-05 Motorola-Mobility, Inc. Interference coordination in heterogeneous networks using wireless terminals as relays
US9036567B2 (en) 2010-02-03 2015-05-19 Qualcomm Incorporated Logical channel mapping for increased utilization of transmission resources
CA2819405C (en) 2010-02-23 2017-06-27 Lg Electronics Inc. Broadcasting signal transmission device, broadcasting signal reception device, and method for transmitting/receiving broadcasting signal using same
CN102209377B (zh) 2010-03-31 2015-01-28 中兴通讯股份有限公司 辅同步信号的生成方法和装置
JP5883845B2 (ja) * 2010-04-04 2016-03-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の送信方法及び装置
US8867574B2 (en) * 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
CN103026650B (zh) 2010-07-26 2016-06-08 Lg电子株式会社 在无线通信系统中发送扩展上行链路控制信息的方法和设备
WO2012026366A1 (ja) 2010-08-27 2012-03-01 シャープ株式会社 送信装置、受信装置、通信システム、送信方法、受信方法、通信方法、コンピュータプログラムおよび半導体チップ
GB2483238B (en) 2010-08-31 2017-07-19 Samsung Electronics Co Ltd Method and apparatus for signalling in digital radio systems
KR101080906B1 (ko) 2010-09-20 2011-11-08 주식회사 이노와이어리스 기준 신호 생성 장치 및 이를 이용한 프리앰블 시퀀스 검출 장치
JP5427162B2 (ja) 2010-11-26 2014-02-26 株式会社Nttドコモ 無線基地局装置及び制御情報検出方法
JP5487136B2 (ja) 2011-02-14 2014-05-07 株式会社Nttドコモ 非周期的チャネル状態情報通知方法、無線基地局装置、ユーザ端末
WO2012150810A2 (ko) 2011-05-02 2012-11-08 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 적용 방법 및 장치
EP2732591B1 (en) 2011-07-14 2018-11-07 Lantiq Beteiligungs-GmbH & Co.KG Probe frame for single-input single-output, SISO, and multi-input multi-output, MIMO, communications
KR20130009392A (ko) 2011-07-15 2013-01-23 삼성전자주식회사 컨트롤러의 동작 방법과 상기 컨트롤러를 포함하는 메모리 시스템
US9240822B2 (en) 2011-08-15 2016-01-19 Mediatek Inc. Method of handling power reduction at transmitter and related communication device
CN102404724B (zh) 2011-10-28 2015-07-08 华为技术有限公司 用户筛选方法及用于用户筛选的基站
CN102413091B (zh) 2011-11-11 2014-03-26 中国科学院上海微系统与信息技术研究所 一种基于对称cazac序列的ofdm系统同步方法
WO2013073557A1 (ja) 2011-11-15 2013-05-23 シャープ株式会社 通信システム、通信方法、基地局装置及び移動局装置
KR102070780B1 (ko) 2012-02-20 2020-01-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호 송신 방법 및 장치
KR102114625B1 (ko) 2012-03-02 2020-05-25 엘지전자 주식회사 모바일 방송을 통하여 긴급 경보 서비스를 제공하는 장치 및 방법
JP6208409B2 (ja) 2012-04-06 2017-10-04 株式会社Nttドコモ ユーザ装置及び通信方法
WO2013172729A1 (en) 2012-05-15 2013-11-21 Intel Corporation Receiver with doppler tolerant equalization
CN103428143B (zh) * 2012-05-22 2016-09-21 普天信息技术研究院有限公司 一种同步信号发送方法
US20130322563A1 (en) 2012-06-04 2013-12-05 Qualcomm Incorporated Communication device, method, computer-program product and apparatus for transmitting a pilot sequence with a reduced peak-to-average power ratio contribution
CN102932307B (zh) 2012-10-26 2014-12-24 中国科学院上海微系统与信息技术研究所 一种利用cazac序列的ofdm系统时域同步方法
KR102216247B1 (ko) 2012-11-29 2021-02-17 엘지전자 주식회사 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
JP6186445B2 (ja) 2012-11-30 2017-08-23 フラウンホファー‐ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ 光ofdma通信ネットワークでのレンジング用プリアンブルの設計及び検波
US20140169488A1 (en) 2012-12-17 2014-06-19 Qualcomm Incorporated Narrow-band preamble for orthogonal frequency-division multiplexing system
CN104871471B (zh) 2012-12-18 2018-04-10 Lg电子株式会社 在无线通信系统中发送ack/nack的方法和设备
US9088455B2 (en) * 2012-12-20 2015-07-21 Broadcom Corporation OFDM or OFDMA signaling for ranging and data
EP3709730A1 (en) 2013-01-16 2020-09-16 Interdigital Patent Holdings, Inc. Discovery signal generation and reception
US9369325B2 (en) 2013-01-17 2016-06-14 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN104937861B (zh) 2013-01-25 2018-03-23 Lg 电子株式会社 在无线通信系统中测量基站之间的信道的方法和设备
EP2953287B1 (en) 2013-01-31 2019-12-04 Lg Electronics Inc. Method and apparatus for transmitting receipt acknowledgement in wireless communication system
EP2763321B1 (en) * 2013-02-05 2020-04-08 Semtech Corporation Low power long range transmitter
US9008203B2 (en) 2013-03-13 2015-04-14 Sony Corporation Transmitters, receivers and methods of transmitting and receiving
US9794043B2 (en) 2013-04-09 2017-10-17 Lg Electronics Inc. Method and device for transmitting channel status information in wireless access system
CN103532898B (zh) 2013-04-22 2017-03-22 上海数字电视国家工程研究中心有限公司 基于cazac序列的ofdm训练符号同步方法
KR102045339B1 (ko) 2013-04-26 2019-11-15 삼성전자 주식회사 기기 대 기기 무선 통신에서의 발견 신호 자원 지시 방법
JP6561226B2 (ja) 2013-06-05 2019-08-21 サターン ライセンシング エルエルシーSaturn Licensing LLC ペイロードデータおよび緊急情報を送信するための送信装置および送信方法
CN103281282B (zh) * 2013-06-13 2016-04-06 湖南国科微电子股份有限公司 一种dvb-t2系统中频偏估计的方法
GB2515539A (en) 2013-06-27 2014-12-31 Samsung Electronics Co Ltd Data structure for physical layer encapsulation
US9680680B2 (en) 2013-08-01 2017-06-13 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN105637859B (zh) 2013-08-01 2019-04-19 Lg 电子株式会社 发送广播信号的设备、接收广播信号的设备、发送广播信号的方法以及接收广播信号的方法
EP3031162B1 (en) 2013-08-11 2022-10-05 Coherent Logix, Incorporated Broadcast/broadband convergence network
EP3036955B1 (en) 2013-08-19 2021-10-06 Coherent Logix Incorporated Parameterized radio waveform for operating in multiple wireless environments
MX349870B (es) 2013-08-23 2017-08-17 Lg Electronics Inc Aparato para la transmision de señales de radiodifusion, aparato para la recepcion de señales de radiodifusion, metodo para transmitir señales de radiodifusion y metodo para recibir señales de radiodifusion.
KR20160068888A (ko) * 2013-11-11 2016-06-15 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법
US9379928B2 (en) * 2013-11-17 2016-06-28 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US9210022B2 (en) * 2013-11-25 2015-12-08 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast, signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP3092760A4 (en) 2014-01-08 2017-10-18 LG Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US9596116B2 (en) 2014-02-20 2017-03-14 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN103825859A (zh) * 2014-03-10 2014-05-28 江苏物联网研究发展中心 一种正交频分复用信号的同步捕获方法及接收端设备
US10148476B2 (en) 2014-04-05 2018-12-04 Shanghai National Engineering Research Center Of Digital Television Co., Ltd. Preamble symbol generation and receiving method, and frequency-domain symbol generation method and device
CN105323048B (zh) 2014-05-28 2019-05-03 上海数字电视国家工程研究中心有限公司 物理帧中前导符号的生成方法
CN105991266B (zh) 2015-01-30 2019-12-13 上海数字电视国家工程研究中心有限公司 前导符号的生成方法、接收方法、生成装置及接收装置
CN105282078B (zh) 2014-06-19 2019-02-26 上海数字电视国家工程研究中心有限公司 对频域ofdm符号的预处理方法及前导符号的生成方法
CN105024791B (zh) 2014-04-28 2018-12-18 上海数字电视国家工程研究中心有限公司 物理帧中前导符号的生成方法
CN105991495B (zh) 2015-01-26 2019-04-30 上海数字电视国家工程研究中心有限公司 物理层中的定时同步方法
CN106878223A (zh) 2014-04-16 2017-06-20 上海数字电视国家工程研究中心有限公司 频域ofdm符号的生成方法
EP3136670A4 (en) 2014-04-21 2018-01-24 LG Electronics Inc. Broadcasting signal transmission apparatus, broadcasting signal reception apparatus, broadcasting signal transmission method, and broadcasting reception method
CN106713206A (zh) 2014-04-24 2017-05-24 上海数字电视国家工程研究中心有限公司 物理帧中前导符号的生成方法
CN109861935A (zh) 2014-04-29 2019-06-07 上海数字电视国家工程研究中心有限公司 频域ofdm符号的生成方法及前导符号的生成方法
CN106992951A (zh) 2014-04-30 2017-07-28 上海数字电视国家工程研究中心有限公司 频域ofdm符号的生成方法
US9253428B2 (en) 2014-05-21 2016-02-02 Arthur Webb Allison, III Broadcasting system with digital television signals and metadata that modulate respective sets of OFDM carriers
US9497056B2 (en) 2014-06-09 2016-11-15 Allen LeRoy Limberg Conveying metadata by modulation of pilot carriers in COFDM broadcasting
CN106850485A (zh) 2014-06-12 2017-06-13 上海数字电视国家工程研究中心有限公司 频域ofdm符号的生成方法
CN107222444B (zh) 2014-07-10 2020-02-14 上海数字电视国家工程研究中心有限公司 物理帧中前导符号的接收处理方法
CN106797264B (zh) 2014-08-25 2019-06-28 第一媒体有限责任公司 灵活的正交频分复用phy传输数据帧前导码的动态配置
CN111787632B (zh) 2014-08-25 2024-03-08 相干逻辑公司 用于广播和双向、分组交换通信的共享频谱接入
EP3206404B1 (en) 2014-10-12 2019-10-02 LG Electronics Inc. -1- Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
CN104506271B (zh) * 2014-12-01 2017-07-04 中国科学院计算技术研究所 一种zc序列的产生方法和装置
CN106105068B (zh) 2014-12-08 2019-03-12 Lg电子株式会社 广播信号发送装置、广播信号接收装置、广播信号发送方法以及广播信号接收方法
CN106685882A (zh) 2014-12-10 2017-05-17 上海数字电视国家工程研究中心有限公司 频域ofdm符号的生成方法
WO2016108368A1 (ko) 2014-12-29 2016-07-07 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
CN110798421A (zh) 2015-02-12 2020-02-14 上海数字电视国家工程研究中心有限公司 前导符号的接收方法及装置
CN106656898B (zh) 2015-02-12 2020-06-09 上海数字电视国家工程研究中心有限公司 前导符号的接收装置
CN106685884A (zh) * 2015-02-12 2017-05-17 上海数字电视国家工程研究中心有限公司 前导符号的接收方法
WO2016129974A1 (en) 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Transmitting apparatus and receiving apparatus and controlling method thereof
KR102451527B1 (ko) 2015-03-09 2022-10-06 원 미디어, 엘엘씨 시스템 발견 및 시그널링
KR102113130B1 (ko) * 2018-11-26 2020-05-20 (주)답스 Atsc3.0 시스템 기반의 샘플링 주파수 동기 검출장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070106913A (ko) * 2006-05-01 2007-11-06 엘지전자 주식회사 통신 시스템에서의 코드 시퀀스 생성 방법 및 송신 장치
KR20090106412A (ko) * 2007-01-10 2009-10-08 콸콤 인코포레이티드 순환적으로 시프트된 시퀀스들을 사용하는 정보의 전송
KR20110056302A (ko) * 2008-08-27 2011-05-26 퀄컴 인코포레이티드 주파수 도메인 pn 시퀀스
KR20150006319A (ko) * 2013-07-08 2015-01-16 삼성전자주식회사 데이터 구조 생성 방법 및 이를 이용하는 장치
WO2016154386A1 (en) * 2015-03-24 2016-09-29 One Media Llc High priority notification system and method

Also Published As

Publication number Publication date
US11012282B2 (en) 2021-05-18
CN110661590A (zh) 2020-01-07
BR112017018486A2 (pt) 2018-04-17
KR102541395B1 (ko) 2023-06-07
US20230269123A1 (en) 2023-08-24
CN107431549A (zh) 2017-12-01
US20170310523A1 (en) 2017-10-26
EP3269058B1 (en) 2020-07-08
US10158518B2 (en) 2018-12-18
KR20220139438A (ko) 2022-10-14
CA3132119C (en) 2023-07-25
US10079708B2 (en) 2018-09-18
WO2016145070A1 (en) 2016-09-15
KR20170126955A (ko) 2017-11-20
KR20200033990A (ko) 2020-03-30
TW202231034A (zh) 2022-08-01
CA2976144C (en) 2022-03-29
CA3201041A1 (en) 2016-09-15
MX2017010626A (es) 2017-12-07
TWI809802B (zh) 2023-07-21
CA3132119A1 (en) 2016-09-15
KR102451527B1 (ko) 2022-10-06
JP2018514959A (ja) 2018-06-07
EP3269058A1 (en) 2018-01-17
TWI691188B (zh) 2020-04-11
CN112737727A (zh) 2021-04-30
EP3269058A4 (en) 2018-11-14
CN107431549B (zh) 2019-10-25
CN110661590B (zh) 2021-04-20
MX371499B (es) 2020-01-31
CA3200997A1 (en) 2016-09-15
TW202133595A (zh) 2021-09-01
KR102391843B1 (ko) 2022-04-29
US11627030B2 (en) 2023-04-11
TWI731609B (zh) 2021-06-21
US20190116079A1 (en) 2019-04-18
TWI764721B (zh) 2022-05-11
US20210258199A1 (en) 2021-08-19
US20160269980A1 (en) 2016-09-15
CN112737727B (zh) 2024-04-02
KR20230026533A (ko) 2023-02-24
TW201644242A (zh) 2016-12-16
JP6662890B2 (ja) 2020-03-11
KR102093214B1 (ko) 2020-03-25
CA2976144A1 (en) 2016-09-15
KR102500030B1 (ko) 2023-02-16
KR102342727B1 (ko) 2021-12-24
KR20220061257A (ko) 2022-05-12
TW202029713A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
KR102391843B1 (ko) 시스템 발견 및 시그널링
US11153056B2 (en) Band segmented bootstraps and partitioned frames

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant