KR20210114335A - 베이스 플레이트의 오염 방지 방법 - Google Patents
베이스 플레이트의 오염 방지 방법 Download PDFInfo
- Publication number
- KR20210114335A KR20210114335A KR1020210017875A KR20210017875A KR20210114335A KR 20210114335 A KR20210114335 A KR 20210114335A KR 1020210017875 A KR1020210017875 A KR 1020210017875A KR 20210017875 A KR20210017875 A KR 20210017875A KR 20210114335 A KR20210114335 A KR 20210114335A
- Authority
- KR
- South Korea
- Prior art keywords
- base plate
- polycrystalline silicon
- isolating
- isolating device
- isolation
- Prior art date
Links
- 238000011109 contamination Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 36
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 238000002955 isolation Methods 0.000 claims description 48
- 238000007664 blowing Methods 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 17
- 238000003306 harvesting Methods 0.000 description 15
- 238000005192 partition Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000009423 ventilation Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000408529 Libra Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
- C01B33/035—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B17/00—Methods preventing fouling
- B08B17/02—Preventing deposition of fouling or of dust
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B5/00—Cleaning by methods involving the use of air flow or gas flow
- B08B5/02—Cleaning by the force of jets, e.g. blowing-out cavities
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Silicon Compounds (AREA)
Abstract
[과제] 다결정 실리콘의 제조에 이용하는 베이스 플레이트의 오염을 방지하는 수단을 제공한다.
[해결 수단] 베이스 플레이트의 오염 방지 방법은, 베이스 플레이트 및 상기 베이스 플레이트를 덮는 덮개를 갖는 반응기 내에서 다결정 실리콘을 제조하는 공정과, 상기 어떤 다결정 실리콘의 제조가 종료한 후에, 상기 덮개를 상기 베이스 플레이트로부터 제거하는 공정과, 상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정을 갖는다.
[해결 수단] 베이스 플레이트의 오염 방지 방법은, 베이스 플레이트 및 상기 베이스 플레이트를 덮는 덮개를 갖는 반응기 내에서 다결정 실리콘을 제조하는 공정과, 상기 어떤 다결정 실리콘의 제조가 종료한 후에, 상기 덮개를 상기 베이스 플레이트로부터 제거하는 공정과, 상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정을 갖는다.
Description
본 발명은 다결정 실리콘의 제조에 이용하는 베이스 플레이트의 오염 방지 방법에 관한 것이다.
다결정 실리콘은 반도체 제조용의 단결정 실리콘이나 태양전지 제조용 실리콘의 원료이다. 다결정 실리콘의 제조 방법으로서는 지멘스법이 알려져 있고, 본 방법에서는, 일반적으로, 시란계 원료 가스를 가열된 실리콘 심선에 접촉시키는 것에 의해, 해당 실리콘 심선의 표면에 CVD(Chemical Vapor Deposition)법으로 다결정 실리콘을 석출시킨다.
지멘스법에서 사용되는 반응기는 일반적으로는 벨 자(bell jar)라고 불리는 조종(釣鐘)형의 덮개와, 베이스 플레이트라고 불리는 전극이나 원료 가스 공급, 배기구 등이 마련된 저면부로 이루어지고, 서로가 플랜지에 의해서 접속되어 있다.
전극은 절연물을 사이에 두고 베이스 플레이트를 관통하고, 배선을 통해서 별도의 전극에 접속되거나, 반응기 밖에 배치된 전원에 접속된다. 기상 성장 중에 다결정 실리콘이 석출되는 것을 방지하기 위해, 또는 금속의 온도가 상승하여 다결정 실리콘 중의 중금속 오염을 일으키지 않도록, 전극과 베이스 플레이트와 벨 자는 물 등의 냉매를 이용하여 냉각된다.
전극 또는 심선 홀더에 고정된 실리콘 심선은 줄 열에 의해서 가열되고, 가스 노즐로부터 공급되는 원료 가스, 예를 들면, 트리클로로실란과 수소의 혼합 가스를 내뿜음으로써 실리콘 심선 상에 고순도의 실리콘을 기상 성장시켜서, 실리콘 로드가 된다.
실리콘 로드의 성장이 끝난 후, 실리콘 로드가 충분히 제열(除熱)된다. 반응기 내를 무해한 기체로 채운 후에 벨 자와 베이스 플레이트의 플랜지 볼트가 분리된다. 벨 자가 크레인으로 들어 올려져서 벨 자 세정기에 운반되어서 고압 세정수 등에 의해서 세정된다. 베이스 플레이트 상에서는 실리콘 로드가 수확된 후에 베이스 플레이트 상에 떨어진 실리콘 로드의 파편 등이 청소된다. 실리콘 로드의 수확 및 베이스 플레이트의 청소는 작업자의 수작업으로 실행된다.
베이스 플레이트의 청소가 끝난 후에 새롭게 심선과 심선 홀더가 베이스 플레이트 상의 전극에 세트되고, 세정이 끝난 벨 자가 다시 크레인으로 운반되어서 베일 플레이트와 플랜지로 다시 접속된다.
근년, 폴리실리콘 로드에 대한 불순물의 저감 요구는 점점 더 높아지고 있고, 특히, 폴리실리콘 로드의 내부(벌크)의 오염은 표면 오염과 같이 후속 공정에서 세정하여 제거하는 것이 불가능하기 때문에 제품의 품질에 주는 영향이 크다.
이 벌크에 포함되는 불순물로서는, 원료 가스 그 자체에 포함되어 있는 불순물, 반응기 재질, 반응기 내면의 표면 오염 등이 요인으로서 고려된다. 반응기 내면의 표면 오염이 반응기 개방 중의 주위의 분위기나 반응기를 폐쇄하기 직전의 반응 용기의 내표면의 청정도에 의해서 영향을 미치는 것은 알려져 있다.
그래서 예를 들면, 특허문헌 1에서 나타내는 바와 같이 베이스 플레이트의 청소가 실행된다. 또한 특허문헌 2나 특허문헌 3에서 나타내는 바와 같이 반응기를 포함하는 방 전체를 청정하게 유지하려는 시도가 실행되어 있다.
그러나 특허문헌 1과 같이 베이스 플레이트 상의 청소를 실행하고 있어도 충분하지는 않다. 베이스 플레이트는 전극, 원료 가스 공급구, 배기 가스구 등에 의해 복잡한 형상을 하고 있고, 또한 실리콘 로드의 도괴(倒壞)나 일부분의 낙하로 작은 상처가 무수히 생기고 있기 때문에, 한 번 오염된 베이스 플레이트의 오염을 완전히 제거하여, 청정한 상태까지 청소하는 것은 매우 곤란하다.
또한, 과도한 청소 행위가 베이스 플레이트에 새로운 상처를 만들어서 오염이 잔류하는 요인이나 된다. 게다가, 청소 도구 그 자체가 결락(缺落)하여 베이스 플레이트 상에 남아서 오염의 원인이 되기도 한다.
그래서 특허문헌 2와 같이 반응기가 있는 방 전체를 클린룸으로 하는 것으로써 청정하게 유지함으로써 불순물을 저감시킬 수 있다. 그러나 이것에는 방 설계를 당초부터 계획하고 있지 않으면 안 된다. 게다가 거대한 지멘스법의 반응기를 여러 대 설치 가능한 클린 룸을 작성하여, 유지하려면 경제적으로도 곤란하다.
또한, 비록 방 전체를 클린룸이라고 해도 내부에서 작업자가 실행하는 작업에 의해서 발생하는 파티클이나, 벨 자의 이동에 사용하는 크레인과 천칭 등의 사용에 의해서 발생하는 금속 가루나 오일 등, 방의 내부에 존재하는 오염원으로부터의 새롭게 발생하는 오염에 대해서는 효과가 바로는 얻어지지 않는 문제가 있다.
특허문헌 3은 방의 청소를 일정 간격으로 실행하고 있지만, 이쪽에서도 방금 전과 마찬가지로 새롭게 발생하는 오염에 대해서는 효과가 바로는 얻어지지 않는 문제가 있다.
그래서 본 발명은 다결정 실리콘의 제조에 이용하는 베이스 플레이트의 오염을 방지하는 수단을 코스트를 들이지 않고 제공하는 것이다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법은,
베이스 플레이트 및 상기 베이스 플레이트를 덮는 덮개를 갖는 반응기 내에서 다결정 실리콘을 제조한 후에, 상기 덮개를 상기 베이스 플레이트로부터 제거하는 공정과,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정을 구비해도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법에 있어서,
상기 격리 장치는 필터를 거쳐서 공기를 상기 베이스 플레이트를 향해서 내뿜을 수 있는 필터 유닛을 갖고,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정에 있어서, 상기 필터 유닛이 상기 베이스 플레이트를 향해서 기체를 내뿜어도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법에 있어서,
상기 필터 유닛이 1시간당, 상기 격리 장치 내의 용량의 30배 이상의 기체를 공급해도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법에 있어서,
상기 필터 유닛이 1시간당, 상기 격리 장치 내의 용량의 90배 이상의 기체를 공급해도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법에 있어서,
상기 격리 장치가 이동부를 갖고,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정 전에, 상기 이동부를 이용하여 상기 격리 장치가 이동되어도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법은,
상기 격리 장치를 제거하고, 상기 덮개를 상기 베이스 플레이트에 설치한 후, 다음의 다결정 실리콘의 제조를 개시하는 공정을 더 구비해도 좋다.
본 발명에 의한 베이스 플레이트의 오염 방지 방법에 있어서,
상기 베이스 플레이트를 포함하는 공간의 격리 장치에 의한 격리는, 상기 다결정 실리콘의 제조 종료 후에 상기 덮개를 상기 베이스 플레이트로부터 제거한 후로부터, 다음의 다결정 실리콘의 제조를 개시하기 위해서 상기 덮개를 상기 베이스 플레이트에 설치할 때까지의 90% 이상의 시간에 실행되어도 좋다.
본 발명에 있어서, 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 태양을 채용하는 경우에는, 다결정 실리콘의 제조에 이용하는 베이스 플레이트의 오염을 방지할 수 있다.
도 1은 본 발명의 실시형태에 의한 격리 장치를 이용하여 베이스 플레이트를 격리, 보호하고 있는 태양을 도시하는 도면이며, 벨 자의 측방과 격리 장치의 측방 단면을 도시한 도면이다.
도 2는 본 발명의 실시형태에 의한 격리 장치가 필터 유닛을 갖는 태양을 도시한 측방 단면도이다.
도 3은 본 발명의 실시형태에 의한 격리 장치가 필터 유닛을 갖는 태양의 상방 평면도이다.
도 4는 격리 장치를 이용한 태양을 설명하기 위한 플로우이다.
도 2는 본 발명의 실시형태에 의한 격리 장치가 필터 유닛을 갖는 태양을 도시한 측방 단면도이다.
도 3은 본 발명의 실시형태에 의한 격리 장치가 필터 유닛을 갖는 태양의 상방 평면도이다.
도 4는 격리 장치를 이용한 태양을 설명하기 위한 플로우이다.
반응기는 베이스 플레이트(8)와, 베이스 플레이트(8)에 연결된 덮개인 벨 자(4)를 갖고 있다. 도 1에서는 베이스 플레이트(8)로부터 벨 자(4)가 분리되어 있는 태양을 도시하고 있지만, 이용시에는 베이스 플레이트(8)에 벨 자(4)가 플랜지 등을 거쳐서 장착되어 있다.
베이스 플레이트(8)에는, 원료 가스를 공급하는 원료 가스 공급 노즐(9), 전극(10), 전극(10)에 마련된 심선 홀더(11), 심선 홀더(11)에 마련된 실리콘 심선(12)이 마련되어 있다. 다결정 실리콘을 생성하는 경우에는, 실리콘 심선(12)의 표면에 예를 들면, CVD(Chemical Vapor Deposition)법에 따라서 다결정 실리콘을 석출시킨다.
격리 장치(30)는 상하 방향으로 연장되는 파티션(31)과, 파티션(31)의 정상면(표면)에 마련된 천정부(32)를 가져도 좋다. 파티션(31)은 상하 방향으로 연장되는 지주(33)와 좌우 방향으로 연장되는 지주(33)에 의해서 보지되어도 좋다. 파티션(31)은 비닐 등으로 구성되어도 좋다.
베이스 플레이트(8)로부터 분리된 벨 자(4)는 천칭(2) 및 후크(3)를 거쳐서, 크레인(1)에 의해서 이동되어도 좋다. 상하 방향 또는 수평 방향으로 이동시킴으로써 베이스 플레이트(8)에 대한 개폐를 실행할 수 있다. 베이스 플레이트(8)로부터 분리된 벨 자(4)는, 벨 자 세정대 등의 벨 자 세정기로 이동된다. 벨 자를 이동시킬 때, 각 구성요소에서 사용되어 있는 윤활용 오일이나, 각각의 간섭에 의해서 미소한 금속 가루가 발생하고, 그들을 포함하여 오염된 공기(A1)가 지표면을 향해서 흘러간다. 본 실시형태에서는, 이 오염된 공기(A1)가 베이스 플레이트(8)로 도달하는 것을 막기 위해서, 공간을 격리 가능하게 하는 격리 장치(30)를, 베이스 플레이트(8) 전체를 덮도록 설치한다. 이에 의해서, 베이스 플레이트(8)를 격리하여, 보호할 수 있고, 그 결과로서, 베이스 플레이트(8)의 표면의 오염을 막을 수 있다.
본 실시형태에서는, 격리 장치(30)를 설치하기 위한 스페이스를 확보할 때까지 벨 자(4)를 이동시키고, 그 시점에서 벨 자(4)의 이동을 정지시켜도 좋다. 그리고, 격리 장치(30)에 의해서 베이스 플레이트(8)를 덮은 후에, 벨 자(4)의 이동을 재차 개시해도 좋다. 본 태양에 의하면, 벨 자(4)의 이동에 따른 베이스 플레이트(8)의 표면의 오염을 극력 방지할 수 있는 점에서 유익하다.
도 2에 도시되는 바와 같이, 격리 장치(30)는 천정부(32)에 FFU(Fan Filter Unit; 필터 유닛)(36)를 가져도 좋다. 본 태양을 채용하는 경우에는, 청정화된 공기(A2)를 베이스 플레이트(8) 상에 직접 내뿜을 수 있다. 이 때문에, 격리 보호된 공간 내에서 작업자(90)(도 1 참조)가 실리콘 심선(12)의 세워놓음 등의 작업을 실행해도, 작업에 의해서 발생한 분진을 포함하는 공기(15)가 베이스 플레이트(8) 상에 도달하는 것을 방지할 수 있고, 베이스 플레이트(8)를 청정하게 유지할 수 있다.
FFU(36)에서는 HEPA 필터를 이용하는 것이 바람직하고, ULPA 필터를 이용하는 것이 보다 바람직하다. FFU(36)에서는 저유기물·저붕소 ULPA 필터를 이용하는 것이 더욱 보다 바람직하다.
격리 장치(30)에 의한 베이스 플레이트(8)의 보호는 반응기의 개방 중(베이스 플레이트(8)로부터 벨 자(4)를 제거하는 동안)의 모든 시간에 반드시 사용할 필요는 없다. 예를 들어, 벨 자(4)의 이동 중이나 방의 청소 등의 금속 가루를 비롯한 발진의 발생이 예상되는 시간만의 부분적인 사용이어도 좋다.
격리 장치(30)는 그 장소에서 조립해도 좋고, 크레인 등으로 운반해도 좋지만, 분진을 발생시키지 않는다고 하는 관점으로부터는, 격리 장치(30)에 캐스터 등의 이동부(7)가 마련되어 있는 것이 유익하다.
반응기 내에서 지멘스법에 의해 다결정 실리콘을 성장시키는 경우에는, 부 생성물로서 염산이 발생하는 환경에 있다. 이 때문에, 본 경우에는 격리 장치(30)가 사용되는 환경은 산성 분위기에 있다. 이를 비추어 볼 때, FFU(36)의 외장이나 클린 부스의 골조 등의 금속 부분에는 산성 분위기에 의해서 녹슬지 않도록, 테이프를 감아서 보호를 하는 것이 바람직하다.
FFU(36)의 외장이나 클린 부스의 골조 등의 금속 부분에 수지 코팅을 실시하는 것도 유효하다. 또한 코트하는 수지의 아웃가스(outgas)를 낮추는 것에 의해, 청소한 베이스 플레이트(8)의 오염을 보다 저감하는 효과가 있기 때문에 바람직하다.
금속 오염, 특히, Zn가 혼입하는 원인은 불명하였다. 그렇지만, 발명자가 열심히 노력하여 오염원을 조사한 결과, 공조기 필터실 및 송풍 덕트 내면의 아연 도금이 부식하는 등 하여, 아연 도금이 벗겨지고, 해당 아연 도금이 실내에 날아드는 것이 주된 오염 원인인 것이 판명되었다.
이 때문에, 베이스 플레이트(8) 상의 작업, 특히, 베이스 플레이트(8)의 청소, 다결정 실리콘을 지멘스법으로 성장시키기 위한 실리콘 심선의 설치 작업을 할 때, 작업을 하는 공간을 단기적으로 격리 장치(30)로 격리하는 것이 금속 오염에 유효하다고 판명되었다.
또한, 격리 장치(30)로 격리된 공간 내에서 작업을 하는 작업자(90)는, 베이스 플레이트(8)를 청소하고, 새로운 심선을 설치하기 위해서, 안전을 위해서 헬멧을 장착하고, 마스크, 고글, 니트릴 장갑, 방진복을 장착하고 작업에 착수한다.
다결정 실리콘을 취출할 때 및 취출한 후의 다결정 실리콘의 파편을 제거하는 작업은, 해당 파편에 의한 절창(切創)을 방지하기 위해 케플러 장갑·앞치마, 프로텍터 등을 사용하고 작업을 한다.
이때, 작업자(90)로부터 발생하는 오염 물질인 Na 및 Ca를 베이스 플레이트(8)에 부착시키지 않도록, 격리 장치(30) 내의 FFU(36)를 거친 다운플로우의 기류를 어지럽히지 않고 계외에 배출하는 것이 바람직하다(도 2 참조). 또한 FFU(36)를 거친 다운플로우를 실행할 때에는, 그 기류가 계외에 배기되도록, 격리 장치(30)의 파티션(31)의 하부에 개구부를 마련하여 격리 장치(30) 내의 기류에 혼란을 일으키지 않도록 하는 것이 바람직하다.
개구부는 파티션(31) 전체에 걸쳐서 균등하게 개구하는 것이 바람직하다. FFU(36)에 의해 격리 장치(30) 내에 송풍되는 풍량을 고려하면, 일정 시간에 있어서의 공간의 환기 횟수가 많을수록, FFU(36)에 의해 격리 장치(30) 내에 송풍되는 풍량은 많아진다. 기류를 어지럽히지 않도록 하기 위해서는, 적절하게, 개구부의 개구의 넓이를 조절하는 것이 바람직하다. 개구부의 개구의 넓이는 격리 장치(30)의 높이 위치를 조정함으로써 변경할 수 있도록 되어도 좋고, 파티션(31)의 상하 방향의 길이를 조정함으로써 변경할 수 있도록 되어도 좋다.
또한, 도 3에 도시되는 바와 같이, 격리 장치(30)의 형상이 상방에서 바라볼 때 사각 형상인 경우에는, 파티션(31)의 하부의 풍량에 차이가 생긴다. 이 때문에, 상방에서 바라봤을 때 평면시에 있어서의, 파티션(31)의 중앙부의 개구부를 단부(코너부)보다 크게 하여, 기류가 어지럽히지 않도록 하는 것도 바람직하다. 도 2에서는 분진을 포함하는 공기를 부호 A3로 나타내고 있다.
격리 장치(30) 내에서, FFU(36)로부터 다운플로우된 기류가 작업자(90)에 닿는 것에 의해서 어지럽혀지는 일이 있다(도 1 참조). 이와 같이 기류가 어지럽혀지면, 기류가 격리 장치(30)로부터 계외에 배출되기 어려운 상황이 발생하는 것이 고려된다. 본 경우에는 Na 및 Ca가 격리 장치(30) 내에 잔류할 가능성이 있고, 베이스 플레이트(8)나 설치를 하고 있는 실리콘 심선에 부착하는 Na 및 Ca가 많아져서 바람직하지 않다. 그 때문에, FFU(36)로부터 다운플로우로 흐르는 기류는 격리 장치(30) 계외로 배출되는 흐름을 만드는 쪽이 바람직하다.
구체적으로는 격리 장치(30)의 중심부에서 외측을 향함에 따라 기류의 흐름을 약하게 하는 방법을 채용하는 것이 고려된다. 도 2에 도시되는 바와 같이, 중앙의 FFU(36)의 풍량을 강하게 하고, 주변부의 FFU(36)의 풍량을 약하게 하는 것에 의해, 격리 장치(30) 내의 기류에 혼란을 일으키는 일 없이, 계외에 배출을 할 수 있다. 도 3에 도시되는 태양으로 말하면, 중앙부에 위치하는 FFU(36)의 풍량이, 해당 FFU(36)를 둘러싸고 배치되는 8개의 FFU(36)의 풍량보다 커지는 태양을 채용하는 것이 고려된다.
이러한 태양을 채용하는 대신에, 또는 이러한 태양을 채용하면서, 격리 장치(30)의 중심으로부터 외측을 향해서 경사 방향의 기류를 발생시키고(도 2의 화살표(A2) 참조), 작업자(90)에 닿은 기류를 계외로 압출하는 효과를 발휘하도록 해도 좋다.
기류 전체의 속도가 빠르면 빠를수록, 오염 물질을 신속하게 계외에 배출하기 때문에 바람직하다. 공간의 환기 횟수가 30회/h 이상이면, 오염 물질을 삭감하는 효과가 현저하게 보여지기 때문에 바람직하다. 또한 공간의 환기 횟수가 90회/h 이상이라고 하면 더욱 바람직하다. 본 실시형태에 있어서, 공간의 환기 횟수가 n회/h라고 하는 것은, 격리 장치(30) 내의 공간의 용적의 n배의 공기를 1시간에 송풍하는 것을 의미하고 있다. 이 때문에, 공간의 환기 횟수가 30회/h 이상이라고 하는 것은, 1시간에 격리 장치(30) 내의 공간의 용적의 30배의 공기를 송풍하는 것을 의미하고, 공간의 환기 횟수가 90회/h 이상이라고 하는 것은, 1시간에 격리 장치(30) 내의 공간의 용적의 90배의 공기를 송풍하는 것을 의미하고 있다.
또한 격리 장치(30)를 상방에서 바라봤을 경우, 그 중심부로부터의 원의 면적(도 3의 부호 80 참조)이 파티션(31)에 의해서 구획되는 면적의 1/2 내에 있어서의 풍량이 해당 원의 외부에 있어서의 풍량의 1.5배가 되는 것이 바람직하고, 1.8배가 되는 것이 보다 바람직하고, 2.0배가 되는 것이 더욱 보다 바람직하다.
다음에, 격리 장치(30)를 이용한 태양의 일례에 대해서, 도 4를 이용하여 설명한다.
베이스 플레이트(8) 및 베이스 플레이트(8)를 덮는 덮개인 벨 자(4)를 갖는 반응기 내에서 어떤 다결정 실리콘(금회 다결정 실리콘)을 지멘스법에 따라서 제조한다(다결정 실리콘 제조 공정(S1)).
어떤 다결정 실리콘의 제조가 종료한 후에, 벨 자(4)를 베이스 플레이트(8)로부터 제거한다(분리 공정(S2)).
다음에, 제조된 해당 어떤 다결정 실리콘을 수확한다(수확 공정(S3)).
해당 어떤 다결정 실리콘을 수확한 후, 벨 자(4)가 제거된 베이스 플레이트(8)를 포함하는 공간을 격리 장치(30)에 의해서 격리한다(격리 공정(S4)). 격리 장치(30)의 이동은 캐스터 등으로 이루어지는 이동부(7)를 이용하여 실행되도 좋다. 격리 장치(30)에 의해서 베이스 플레이트(8)를 포함하는 공간을 격리된 상태로, 제조된 다결정 실리콘의 수확, 베이스 플레이트(8)의 청소 등이 실행된다.
격리 장치(30)에 의한 격리는 어떤 다결정 실리콘의 제조 종료 후에 벨 자(4)를 베이스 플레이트(8)로부터 제거하고, 해당 어떤 다결정 실리콘의 수확을 종료한 후에 실행한다. 그리고, 격리 장치(30)로 격리하고 나서 다음의 준비를 실행하기 위해서 격리 장치(30)를 뺄 때까지를 격리 시간으로 한다.
다결정 실리콘의 제조가 종료한 후, 벨 자(4)를 베이스 플레이트(8)로부터 제거하고 나서, 다음의 다결정 실리콘의 제조를 개시하기 위해서 벨 자(4)를 베이스 플레이트(8)에 다시 설치할 때까지의 시간을 해방 시간으로 하면, 격리 시간은 해방 시간의 70% 이상을 차지하도록 해도 좋다. 단, 보다 외기에 노출되는 시간을 짧게 하기 위해서는, 격리 시간이 해방 시간의 80% 이상을 차지하도록 해도 좋다.
벨 자(4)를 베이스 플레이트(8)로부터 제거한 후에 다결정 실리콘의 수확이 신속하게 실행된다. 이 수확에 필요로 하는 시간은 예를 들면, 0.5시간 이상 1.5시간 이하 사이이다. 다결정 실리콘을 수확한 후에, 격리 장치(30)에 의해서 베이스 플레이트(8)를 격리하는데 필요로 하는 시간은 예를 들면, 5분 내지 10분 정도이다. 벨 자(4)를 베이스 플레이트(8)로부터 제거한 후로부터, 다음의 다결정 실리콘의 제조를 개시하기 위해서 벨 자(4)를 베이스 플레이트(8)에 다시 설치할 때까지의 시간은 예를 들면, 3시간 이상 12시간 이하이다.
베이스 플레이트(8)를 포함하는 공간이 격리 장치(30)에 의해서 격리되어 있는 동안, 격리 장치(30)에 장착된 필터 유닛은 1시간당 격리 장치(30) 내의 용량의 30배 이상의 기체를 공급해도 좋다(30회/h 이상이 되어도 좋다). 보다 바람직하게는, 베이스 플레이트(8)를 포함하는 공간이 격리 장치(30)에 의해서 격리되어 있는 동안, 격리 장치(30)에 장착된 필터 유닛은 1시간당 격리 장치(30) 내의 용량의 90배 이상의 기체를 공급해도 좋다(90회/h 이상이 되어도 좋다). 또한, 격리 장치(30) 내의 용량이란, 격리 장치(30)로 둘러싸인 공간의 용량을 의미하고, 파티션(31) 및 천정부(32)에 의해서 둘러싸인 공간의 용량을 의미하고 있다(도 2의 회색 부분 참조).
격리 장치(30)를 제거하고, 벨 자(4)를 베이스 플레이트(8)에 다시 설치한다(설치 공정(S5)). 그 후에, 다음의 다결정 실리콘(차회 다결정 실리콘)의 제조를 지멘스법에 따라서 개시한다. 이후는 상기의 일련의 공정을 반복한다.
[실시예]
다음에 실시예에 대해서 설명한다.
지멘스법의 반응 방법에 있어서, 다결정 실리콘 로드의 수확 후로부터 심선을 세우고 끝나는 작업을 포함하여 벨 자로 폐쇄될 때까지 동안의 7.0시간, 임핀저에 의해서 베이스 플레이트(8) 상 부근의 공기를 포집하고, 그 영향을 확인한다. 포집액에는 순수한 물 230g을 사용하고, 흡인량은 2.0L/min으로 하였다. 포집 후의 액을 ICP-MS으로 직접 금속 성분을 분석하였다. 또한, 후술하는 실시예 및 비교예 중 어느 하나에 있어서도, 벨 자(4)를 베이스 플레이트(8)로부터 제거하고, 다결정 실리콘을 수확할 때까지의 시간은 1.0시간이었다.
[비교예 1]
반응기를 개방한 후의 8.0시간 동안, 특히, 베이스 플레이트(8)를 보호하지 않고 작업을 실행하였다.
[실시예 1]
반응기를 개방하고, 1.0시간 걸려서 다결정 실리콘 로드의 수확한 후에, 지주(33)와 비닐로 이루어지는 파티션(31)을 갖는 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호하고, 주위의 공간으로부터 격리하였다. 이때의 격리 시간은 6.4시간이었다(다결정 실리콘 로드의 수확한 후에 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호할 때까지 0.1시간 걸려서, 격리 장치(30)를 제거하고, 벨 자(4)를 베이스 플레이트(8)에 다시 설치할 때까지 0.5시간 걸렸다). 그 결과, Zn나 Ni, Fe 등의 금속 오염을 극적으로 막을 수 있게 되었다. 또한 격리 장치(30)의 계외로부터 혼입하고 있었다고 생각되는 Ca 오염을 저감하여, Ca 오염을 약 1/4로 할 수 있었다. 또한, 실시예 1에서는, 격리 시간이 해방 시간의 80%(=6.4/8.0)를 차지하고 있다.
[실시예 2]
반응기를 개방하고, 1.0시간 걸려서 다결정 실리콘 로드의 수확한 후에, 지주(33)와 비닐로 이루어지는 파티션(31)을 갖는 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호하고, 주위의 공간으로부터 격리하였다. 상부에 장착된 FFU(36)(NITTA제 ULPA 필터)에 의해서 격리된 공간의 환기 횟수가 30회/h가 되도록 조정하였다. FFU(36)의 외장이나 격리 장치(30)의 케이스의 골조 등의 금속 부분은 산성 분위기에서 작업을 하기 때문에, 방수를 위해, 테이프로 보호를 하고 있다. 그 결과, 게다가 작업자(90)에 의해서 발생하고 있다고 생각되는 Ca 및 Na를 저감할 수 있었다. 또한, 실시예 2에서도 실시예 1과 마찬가지로 격리 시간은 6.4시간이었다(다결정 실리콘 로드의 수확한 후에 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호할 때까지 0.1시간 걸려서, 격리 장치(30)를 제거하고, 벨 자(4)를 베이스 플레이트(8)에 다시 설치하기까지 0.5시간 걸렸다).
[실시예 3]
반응기를 개방하고, 1.0시간 걸려서 다결정 실리콘 로드의 수확한 후에, 지주(33)와 비닐로 이루어지는 파티션(31)을 갖는 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호하고, 주위의 공간으로부터 격리하였다. 상부에 장착된 FFU(36)에 의해서 격리된 공간의 환기 횟수가 90회/h가 되도록 조정하였다. 그 결과, 작업자(90)에 의해서 발생하고 있다고 생각되는 Na 및 Ca를 더욱 저감하는 것이 가능하게 되었다. 또한, 실시예 3에서도 실시예 1 및 2와 마찬가지로 격리 시간은 6.4시간이었다(다결정 실리콘 로드의 수확한 후에 격리 장치(30)에 의해서 베이스 플레이트(8)를 보호할 때까지 0.1시간 걸려서, 격리 장치(30)를 제거하고, 벨 자(4)를 베이스 플레이트(8)에 다시 설치할 때까지 0.5시간 걸렸다).
비교예 1 및 실시예 1 내지 3의 결과를 표에 나타내면 하기대로이다.
[표 1]
베이스 플레이트(8)를 주위의 공간으로부터 격리 장치에 의해서 격리함으로써 특히, Fe, Ni, Zn 및 Ca의 저감을 확인할 수 있었다. 또한, 청정한 공기를 베이스 플레이트(8) 상에 흘림으로써 작업자(90)에 의해서 발생하고 있다고 생각되는 Na 및 Ca를 저감할 수 있는 것을 확인할 수 있었다.
게다가 환기 횟수를 30회/h, 90회/h로 늘리는 것에 의해 Na 및 Ca의 새로운 저감이 확인되었다.
1 : 크레인
2 : 천칭
3 : 후크
4 : 벨 자(덮개)
7 : 이동부
8 : 베이스 플레이트
9 : 원료 가스 공급 노즐
10 : 전극
11 : 심선 홀더
12 : 실리콘 심선
30 : 격리 장치
31 : 파티션
36 : FFU(필터 유닛)
80 : 격리 장치의 중심으로부터 1/2의 면적의 범위를 나타내는 원
90 : 작업자
A1 : 오염된 공기
A2 : 청정한 공기
A3 : 분진을 포함하는 공기
2 : 천칭
3 : 후크
4 : 벨 자(덮개)
7 : 이동부
8 : 베이스 플레이트
9 : 원료 가스 공급 노즐
10 : 전극
11 : 심선 홀더
12 : 실리콘 심선
30 : 격리 장치
31 : 파티션
36 : FFU(필터 유닛)
80 : 격리 장치의 중심으로부터 1/2의 면적의 범위를 나타내는 원
90 : 작업자
A1 : 오염된 공기
A2 : 청정한 공기
A3 : 분진을 포함하는 공기
Claims (7)
- 베이스 플레이트 및 상기 베이스 플레이트를 덮는 덮개를 갖는 반응기 내에서 다결정 실리콘을 제조한 후에, 상기 덮개를 상기 베이스 플레이트로부터 제거하는 공정과,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정을 구비하는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 1 항에 있어서,
상기 격리 장치는 필터를 거쳐서 공기를 상기 베이스 플레이트를 향해서 내뿜을 수 있는 필터 유닛을 갖고,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정에 있어서, 상기 필터 유닛이 상기 베이스 플레이트를 향해서 기체를 내뿜는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 2 항에 있어서,
상기 필터 유닛이 1시간당, 상기 격리 장치 내의 용량의 30배 이상의 기체를 공급하는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 2 항에 있어서,
상기 필터 유닛이 1시간당, 상기 격리 장치 내의 용량의 90배 이상의 기체를 공급하는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 격리 장치가 이동부를 갖고,
상기 베이스 플레이트를 포함하는 공간을 격리 장치에 의해서 격리하는 공정 전에, 상기 이동부를 이용하여 상기 격리 장치가 이동되는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 격리 장치를 제거하고, 상기 덮개를 상기 베이스 플레이트에 설치한 후에, 다음의 다결정 실리콘의 제조를 개시하는 공정을 더 구비하는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법. - 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
상기 베이스 플레이트를 포함하는 공간의 격리 장치에 의한 격리는, 상기 다결정 실리콘의 제조 종료 후에 상기 덮개를 상기 베이스 플레이트로부터 제거한 후로부터, 다음의 다결정 실리콘의 제조를 개시하기 위해서 상기 덮개를 상기 베이스 플레이트에 설치할 때까지 동안의 70% 이상의 시간에 실행되는 것을 특징으로 하는
베이스 플레이트의 오염 방지 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020041075A JP7217720B2 (ja) | 2020-03-10 | 2020-03-10 | ベースプレートの汚染防止方法 |
JPJP-P-2020-041075 | 2020-03-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210114335A true KR20210114335A (ko) | 2021-09-23 |
KR102648155B1 KR102648155B1 (ko) | 2024-03-14 |
Family
ID=77457294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210017875A KR102648155B1 (ko) | 2020-03-10 | 2021-02-08 | 베이스 플레이트의 오염 방지 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11505862B2 (ko) |
JP (1) | JP7217720B2 (ko) |
KR (1) | KR102648155B1 (ko) |
CN (1) | CN113371716B (ko) |
DE (1) | DE102021103795A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6395924U (ko) | 1986-12-12 | 1988-06-21 | ||
JP2006242419A (ja) * | 2005-03-01 | 2006-09-14 | Sanki Eng Co Ltd | クリーンブースおよびそのクリーンブースを用いた作業システム |
JP2016521239A (ja) | 2013-04-11 | 2016-07-21 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Cvd製造空間の清掃 |
JP2016536249A (ja) | 2013-10-28 | 2016-11-24 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | 多結晶シリコンの製造方法 |
WO2017221952A1 (ja) * | 2016-06-23 | 2017-12-28 | 三菱マテリアル株式会社 | 多結晶シリコンロッド及びその製造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620525A (en) * | 1990-07-16 | 1997-04-15 | Novellus Systems, Inc. | Apparatus for supporting a substrate and introducing gas flow doximate to an edge of the substrate |
JPH0728511Y2 (ja) * | 1991-03-20 | 1995-06-28 | 新日本空調株式会社 | 可搬式クリーンブースにおける曲面多孔板吹出構造 |
JPH09264575A (ja) * | 1996-03-28 | 1997-10-07 | Matsushita Electric Ind Co Ltd | 製造装置及び清浄方法 |
US6413321B1 (en) * | 2000-12-07 | 2002-07-02 | Applied Materials, Inc. | Method and apparatus for reducing particle contamination on wafer backside during CVD process |
TWI240763B (en) * | 2001-05-16 | 2005-10-01 | Ind Tech Res Inst | Liquid phase deposition production method and device |
US7927423B1 (en) * | 2005-05-25 | 2011-04-19 | Abbott Kenneth A | Vapor deposition of anti-stiction layer for micromechanical devices |
US9056291B2 (en) * | 2005-11-30 | 2015-06-16 | Micronics, Inc. | Microfluidic reactor system |
EP2036856B1 (en) * | 2007-09-04 | 2018-09-12 | Mitsubishi Materials Corporation | Clean bench and method of producing raw material for single crystal silicon |
CN102576664A (zh) * | 2009-08-11 | 2012-07-11 | 应用材料公司 | 用于rf物理气相沉积的处理套件 |
CA2842407A1 (en) * | 2011-07-20 | 2013-01-24 | Hemlock Semiconductor Corporation | Manufacturing apparatus for depositing a material on a carrier body |
DE202011103798U1 (de) * | 2011-07-28 | 2012-10-29 | Michael Harro Liese | Schnellverschluss für Reaktoren und Konvertoren |
DE102013200660A1 (de) * | 2013-01-17 | 2014-07-17 | Wacker Chemie Ag | Verfahren zur Abscheidung von polykristallinem Silicium |
WO2014143910A1 (en) * | 2013-03-15 | 2014-09-18 | Hemlock Semiconductor Corporation | Manufacturing apparatus for depositing a material and a gasket for use therein |
KR20150000819A (ko) * | 2013-06-25 | 2015-01-05 | 한화케미칼 주식회사 | 화학기상증착 반응기 및 폴리실리콘의 제조방법 |
DE102013219070A1 (de) * | 2013-09-23 | 2015-03-26 | Wacker Chemie Ag | Verfahren zur Herstellung von polykristallinem Silicium |
JP2016033437A (ja) | 2014-07-31 | 2016-03-10 | 樹産業株式会社 | クリーンブース |
DE102014216325A1 (de) | 2014-08-18 | 2016-02-18 | Wacker Chemie Ag | Verfahren zur Herstellung von polykristallinem Silicium |
CN204789066U (zh) * | 2015-07-09 | 2015-11-18 | 重庆科技学院 | 高效过滤器外反吹扫少维护取样探头 |
JP6734769B2 (ja) | 2016-12-21 | 2020-08-05 | 株式会社サンロード | 簡易クリーンブース |
US20190058242A1 (en) * | 2017-08-21 | 2019-02-21 | Joseph Akwo Tabe | Energy harvesting substrate network and communication apparatus |
CN107720757B (zh) * | 2017-11-13 | 2018-07-03 | 亚洲硅业(青海)有限公司 | 一种多晶硅还原炉停炉冷却方法及多晶硅还原炉冷却系统 |
JP2020041075A (ja) | 2018-09-12 | 2020-03-19 | 旭化成株式会社 | 塗料組成物及び塗膜の製造方法 |
CN110304633B (zh) * | 2019-07-17 | 2020-12-15 | 亚洲硅业(青海)股份有限公司 | 一种还原炉硅棒出炉装置 |
-
2020
- 2020-03-10 JP JP2020041075A patent/JP7217720B2/ja active Active
-
2021
- 2021-02-08 KR KR1020210017875A patent/KR102648155B1/ko active IP Right Grant
- 2021-02-18 DE DE102021103795.6A patent/DE102021103795A1/de active Pending
- 2021-03-01 US US17/187,963 patent/US11505862B2/en active Active
- 2021-03-03 CN CN202110236189.4A patent/CN113371716B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6395924U (ko) | 1986-12-12 | 1988-06-21 | ||
JP2006242419A (ja) * | 2005-03-01 | 2006-09-14 | Sanki Eng Co Ltd | クリーンブースおよびそのクリーンブースを用いた作業システム |
JP2016521239A (ja) | 2013-04-11 | 2016-07-21 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Cvd製造空間の清掃 |
JP2016536249A (ja) | 2013-10-28 | 2016-11-24 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | 多結晶シリコンの製造方法 |
WO2017221952A1 (ja) * | 2016-06-23 | 2017-12-28 | 三菱マテリアル株式会社 | 多結晶シリコンロッド及びその製造方法 |
KR20190019053A (ko) * | 2016-06-23 | 2019-02-26 | 미쓰비시 마테리알 가부시키가이샤 | 다결정 실리콘 로드 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP7217720B2 (ja) | 2023-02-03 |
DE102021103795A1 (de) | 2021-09-16 |
US20210285099A1 (en) | 2021-09-16 |
KR102648155B1 (ko) | 2024-03-14 |
US11505862B2 (en) | 2022-11-22 |
CN113371716B (zh) | 2024-06-11 |
CN113371716A (zh) | 2021-09-10 |
JP2021143083A (ja) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102317256B1 (ko) | 청정화된 다결정 실리콘 덩어리 파쇄물의 제조 장치, 및 그 제조 장치를 이용한 청정화된 다결정 실리콘 덩어리 파쇄물의 제조 방법 | |
TWI422717B (zh) | 用於製造單晶矽的原料之清潔台與方法 | |
EP2036856B1 (en) | Clean bench and method of producing raw material for single crystal silicon | |
CN105803528A (zh) | 多晶硅及其制造方法 | |
US9738531B2 (en) | Process for producing polycrystalline silicon | |
KR101731410B1 (ko) | 다결정 실리콘의 증착 방법 | |
KR20210114335A (ko) | 베이스 플레이트의 오염 방지 방법 | |
CN110359089B (zh) | 集尘罐、单晶生长设备及单晶生长方法 | |
JP2014231464A (ja) | 多結晶シリコン材料の製造方法 | |
CN102600690B (zh) | 加工装置 | |
KR20200133724A (ko) | 실리콘다결정 충전작업용의 클린부스 | |
KR101500208B1 (ko) | 폐가스 가이드장치 | |
JP2003173978A (ja) | 半導体薄膜製造装置のクリーニング方法および装置 | |
US20110155182A1 (en) | High pressure cleaner | |
JP5454152B2 (ja) | エピタキシャルウェーハの製造装置 | |
CN220007027U (zh) | 一种用于自动化数控机床的防护罩 | |
CN215293031U (zh) | 一种过滤式离心风机进风口防护装置 | |
CN213300908U (zh) | 闭式冷却塔 | |
CN220825078U (zh) | 一种分类筛沙机 | |
CN219722264U (zh) | 羊绒生产车间除尘清理装置 | |
CN218982567U (zh) | 连接器振动除杂装置 | |
SA517380919B1 (ar) | طريقة لإنتاج سيليكون متعدد البللورات | |
CN212345506U (zh) | 防护外壳及全自动折叠口罩机 | |
EP1113095A1 (en) | FZ Method single crystal growing apparatus | |
KR20230120807A (ko) | 잉곳 성장장치에 적용된 필터링 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |