KR20210036889A - 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법 - Google Patents

혈전 제거 기기 및 이를 이용하는 혈전 제거 방법 Download PDF

Info

Publication number
KR20210036889A
KR20210036889A KR1020210036603A KR20210036603A KR20210036889A KR 20210036889 A KR20210036889 A KR 20210036889A KR 1020210036603 A KR1020210036603 A KR 1020210036603A KR 20210036603 A KR20210036603 A KR 20210036603A KR 20210036889 A KR20210036889 A KR 20210036889A
Authority
KR
South Korea
Prior art keywords
stent body
stretching
blood clot
removal device
wire
Prior art date
Application number
KR1020210036603A
Other languages
English (en)
Other versions
KR102452816B1 (ko
Inventor
민지영
민성우
단쿠이노추
Original Assignee
주식회사 엔벤트릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔벤트릭 filed Critical 주식회사 엔벤트릭
Publication of KR20210036889A publication Critical patent/KR20210036889A/ko
Application granted granted Critical
Publication of KR102452816B1 publication Critical patent/KR102452816B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00915Material properties transparent or translucent for radioactive radiation
    • A61B2017/0092Material properties transparent or translucent for radioactive radiation for X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2212Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having a closed distal end, e.g. a loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320733Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a flexible cutting or scraping element, e.g. with a whip-like distal filament member

Abstract

본 출원은 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법에 관한 것으로, 제1 튜브형 바디 및 제2 튜브형 바디를 포함하는 스트럿 구조체, 제1 길이를 가지고 제1 튜브형 바디의 제1 근위 정션 및 제1 원위 정션과 연결되고, 그 사이에서 연장되는 제1 와이어 및 제2 길이를 가지고 제2 튜브형 바디의 제2 근위 정션 및 제2 원위 정션과 연결되고, 그 사이에서 연장되는 제2 와이어를 포함하고, 상기 제1 와이어는 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하고, 상기 제2 와이어는 제2 근위 정션과 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하는 혈전 제거 기기를 개시한다.

Description

혈전 제거 기기 및 이를 이용하는 혈전 제거 방법 {DEVICE FOR REMOVING CLOT AND METHOD FOR REMOVING CLOT USING THE SAME}
본 출원은 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법에 관한 것으로 보다 상세하게는 기계적 혈전 제거술(mechanical thrombectomy)에 이용되는 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법에 관한 것이다.
혈관질환 중 하나인 허혈성 혈관질환은 혈관의 폐색(vessel occlusion)이나 협착(vascular stenosis)으로 인한 혈류량 감소에 기인한다. 따라서 허혈성 혈관질환의 치료를 위해서는 환자의 혈관으로부터 혈전을 제거하는 것이 무엇보다 중요하다. 과거에는 정맥 내에 혈전 용해제를 주사하여 혈전을 용해시키는 것이 대표적인 치료 방법이었으나, 최근에는 스텐트 리트리버(stent retriever)와 같이 혈관으로부터 기계적으로 혈전을 제거하는 기계적 혈전 제거술이 대두되고 있다.
그러나 기계적 혈전 제거술을 이용하는 임상에서 혈전의 회수 과정 중 스텐트 리트리버와 같은 혈전 제거 기기에 변형이 발생함에 따라 혈전이 혈전 제거 기기로부터 빠져나가거나 파편화되어 재관류율이 저하될 뿐 아니라 혈전 제거 기기와 혈관벽과의 마찰로 인해 혈관벽이 손상되는 등의 문제가 다수 보고되고 있어 이의 개선이 시급하게 요청되고 있다.
본 발명의 일 과제는, 혈전 제거 과정에서 과도한 변형이 억제되는 혈전 제거 기기 및 이를 이용한 혈전 제거 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상에 따르면, 제1 튜브형 바디 및 상기 제1 튜브형 바디 내부에 배치된 제2 튜브형 바디를 포함하는 스트럿 구조체 - 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디 중 하나는 다른 하나에 대해 슬라이딩 가능하고, 상기 스트럿 구조체는 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디의 상대적인 위치에 따라서 혈전을 인바이팅하는 마우스를 열거나 닫을 수 있도록 구성됨 -, 제1 길이를 가지고 제1 근위말단에서 제1 원위말단까지 연장되는 제1 와이어 - 상기 제1 근위말단은 상기 제1 튜브형 바디의 근위말단 부분의 제1 근위 정션(junction)에서 고정적으로 연결되고, 상기 제1 원위말단은 상기 제1 튜브형 바디의 원위말단 부분과 제1 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제1 길이는 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리보다 큼 - 및 제2 길이를 가지고 제2 근위말단에서 제2 원위말단까지 연장되는 제2 와이어 - 상기 제2 근위말단은 상기 제2 튜브형 바디의 근위말단 부분과 제2 근위 정션에서 고정적으로 연결되고, 상기 제2 원위말단은 상기 제2 튜브형 바디의 원위말단 부분과 제2 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제2 길이는 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리보다 큼 -를 포함하고, 상기 제1 와이어는 상기 제1 튜브형 바디의 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하고, 상기 제2 와이어는 상기 제2 튜브형 바디의 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하고, 이를 통해 상기 제1 와이어 및 상기 제2 와이어는 상기 스트럿 구조체의 단면적의 감소 및 상기 스트럿 구조체에 맞물린 혈전의 분리를 야기하는 상기 스트럿 구조체의 과도한 스트레칭을 방지하는 혈전 제거 기기를 제공한다.
본 발명의 다른 양상에 따르면, 두 길이 말단 및 두 원주 말단을 포함하는 소정의 바운더리 형상을 가지는 복수의 셀을 포함하는 스트럿 구조체 및 상기 스트럿 구조체에 연결되고, 환자의 혈관으로부터 상기 스트럿 구조체를 회수하는(extracting, retrieving) 조작을 받도록 구성되며, 조작을 받아 상기 스트럿 구조체의 길이방향을 따라 상기 스트럿 구조체를 이동시키도록 구성된 풀 와이어를 포함하는 혈전 제거 기기에 있어서, 상기 복수의 셀은 상기 바운더리에 대응하는 제1 스트럿 구성(element)을 포함하고, 상기 복수의 셀 중 일부는, 상기 두 길이 말단 중 하나에서 상기 두 길이 말단 중 다른 하나로 선형으로 연장되고, 상기 바운더리에 의해 정의된 내부 영역을 상기 스트럿 구조체의 길이방향으로 가로지르는 제2 스트럿 구성(element)을 더 포함하고, 상기 제2 스트럿 구성은 상기 복수의 셀 중 일부의 길이 증가를 방지하고, 상기 길이 증가는 상기 스트럿 구조체의 길이 방향의 이동에 기인하여 상기 제2 스트럿 구성이 없는 상기 복수의 셀 중 나머지에서 발생하며, 그로 인해 상기 복수의 셀 중 일부는 상기 회수하는 과정에서 상기 스트럿 구조체의 길이변화를 감소시키는 혈전 제거 기기를 제공한다.
본 발명의 과제의 해결 수단이 상술한 해결 수단들로 제한되는 것은 아니며, 언급되지 아니한 해결 수단들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예에 따르면, 안티 스트레칭 와이어나 안티 스트레칭 구조의 셀 등의 안티 스트레칭 메커니즘이 스텐트 바디의 과도한 변형을 억제함으로써 혈전 제거 과정에서 혈전 제거 기기에 결합되거나 포획된 혈전의 이탈 또는 파편화가 방지되어 재관류율이 향상될 수 있다.
또한, 본 발명의 실시예에 따르면, 스텐트 바디의 과도한 변형을 억제함으로써 혈관벽에 가해지는 마찰이 최소화되어 혈관벽의 손상이 방지될 수 있다.
본 발명의 효과가 상술한 효과로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 혈전 제거 과정에서 발생하는 종래의 혈전 제거 기기의 형상 변형의 일 예에 관한 도면이다.
도 2은 혈전 제거 과정에서 발생하는 종래의 혈전 제거 기기의 형상 변형의 다른 예에 관한 도면이다.
도 3은 종래의 혈전 제거 기기에서 발생하는 혈전 파편화에 관한 도면이다.
도 4는 종래의 혈전 제거 기기에서 발생하는 혈전 이탈에 관한 도면이다.
도 5는 본 명세서의 일 실시예(one embodiment)에 따른 혈전 제거 기기의 일 예(one example)를 도시한 도면이다.
도 6은 도 5에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도7은 본 명세서의 일 실시예에 따른 혈전 제거 기기의 다른 예(another example)를 도시한 도면이다.
도 8는 도 7에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도9는 본 명세서의 일 실시예에 따른 혈전 제거 기기의 또 다른 예(still another)를 도시한 도면이다.
도 10은 도 9에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도 11은 본 명세서의 일 실시예에 따른 혈전 제거 기기의 다시 또 다른 예(yet another)를 도시한 도면이다.
도 12는 도 11에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도 13은 본 명세서의 일 실시예에 따른 혈전 제거 기기의 일 구현예(one implementation)를 도시한 도면이다.
도 14는 본 명세서의 일 실시예에 따른 혈전 제거 기기의 일 구현예를 도시한 도면이다.
도 15는 본 명세서의 다른 실시예(another embodiment)에 따른 혈전 제거 기기의 일 예를 도시한 도면이다.
도 16은 본 명세서의 다른 실시예에 따른 혈전 제거 기기의 다른 예를 도시한 도면이다.
도 17은 본 명세서의 또 다른 실시예(still another)에 따른 혈전 제거 기기의 일 예를 도시한 도면이다.
도 18은 도 17에 따른 혈전 제거 기기의 형상 변형의 일 예에 관한 도면이다.
도 19는 도 17에 따른 혈전 제거 기기의 형상 변형의 다른 예에 관한 도면이다.
도 20 내지 24는 본 명세서의 또 다른 실시예에 따른 혈전 제거 기기의 예시들에 관한 도면이다.
도 25는 본 명세서의 다시 또 다른 실시예(yet another)에 따른 혈전 제거 기기의 일 예에 관한 도면이다.
도 26 및 도 27은 도 25에 따른 혈전 제거 기기의 서로 다른 상태에 관한 도면이다.
도 28은 도 25에 따른 혈전 제거 기기의 동작에 관한 측면도이다.
도 29는 도 25에 따른 혈전 제거 기기의 동작에 관한 분해도이다.
도 30은 도 25에 따른 혈전 제거 기기의 형상 변형의 일 예에 관한 도면이다.
도 31 내지 도 35는 본 명세서의 다시 또 다른 실시예에 따른 혈전 제거 기기의 예시들에 관한 도면이다.
도 36은 본 명세서의 또 다시 또 다른 실시예(yet still another embodiment)에 따른 혈전 제거 기기의 일 예에 관한 도면이다.
도 37은 도 36에 따른 혈전 제거 기기의 전개도이다.
도 38은 도 36에 따른 혈전 제거 기기의 안티 스트레칭 셀의 일 예에 관한 도면이다.
도 39는 도 36에 따른 혈전 제거 기기의 안티 스트레칭 셀의 다른 예시들에 관한 도면이다.
도 40은 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다른 예에 관한 도면이다.
도 41은 도 40에 따른 혈전 제거 기기의 전개도이다.
도 42는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 또 다른 예에 관한 도면이다.
도 43은 도 42에 따른 혈전 제거 기기의 전개도이다.
도 44는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다시 또 다른 예에 관한 도면이다.
도 45는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 또 다시 또 다른 예에 관한 도면이다.
도 46은 도 45에 따른 혈전 제거 기기의 전개도의 일 예다.
도 47은 도 45에 따른 혈전 제거 기기의 전개도의 다른 예이다.
도 48은 도 47에 따른 혈전 제거 기기에 관한 도면이다.
도 49는 도 45에 따른 혈전 제거 기기의 전개도의 또 다른 예이다.
도 50 내지 도 58은 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다양한 예시들에 관한 도면이다.
도 59는 본 명세서의 실시예에 따른 혈전 제거 방법의 일 예의 순서도이다.
도 60은 본 명세서의 실시예에 따른 혈전 제거 방법의 다른 예의 순서도이다.
본 명세서에 기재된 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하여 가능한 현재 널리 사용되고 있는 일반적인 용어를 선택하였으나 이는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 다만, 이와 달리 특정한 용어를 임의의 의미로 정의하여 사용하는 경우에는 그 용어의 의미에 관하여 별도로 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 한다.
본 명세서에 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것으로 도면에 도시된 형상은 본 발명의 이해를 돕기 위하여 필요에 따라 과장되어 표시된 것일 수 있으므로 본 발명이 도면에 의해 한정되는 것은 아니다.
본 명세서에서 본 발명에 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 이에 관한 자세한 설명은 필요에 따라 생략하기로 한다.
본 명세서의 일 양상에 따르면, 혈전 제거 기기는 제1 튜브형 바디 및 상기 제1 튜브형 바디 내부에 배치된 제2 튜브형 바디를 포함하는 스트럿 구조체 - 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디 중 하나는 다른 하나에 대해 슬라이딩 가능하고, 상기 스트럿 구조체는 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디의 상대적인 위치에 따라서 혈전을 인바이팅하는 마우스를 열거나 닫을 수 있도록 구성됨 -, 제1 길이를 가지고 제1 근위말단에서 제1 원위말단까지 연장되는 제1 와이어 - 상기 제1 근위말단은 상기 제1 튜브형 바디의 근위말단 부분의 제1 근위 정션(junction)에서 고정적으로 연결되고, 상기 제1 원위말단은 상기 제1 튜브형 바디의 원위말단 부분과 제1 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제1 길이는 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리보다 큼 - 및 제2 길이를 가지고 제2 근위말단에서 제2 원위말단까지 연장되는 제2 와이어 - 상기 제2 근위말단은 상기 제2 튜브형 바디의 근위말단 부분과 제2 근위 정션에서 고정적으로 연결되고, 상기 제2 원위말단은 상기 제2 튜브형 바디의 원위말단 부분과 제2 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제2 길이는 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리보다 큼 -를 포함하고, 상기 제1 와이어는 상기 제1 튜브형 바디의 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하고, 상기 제2 와이어는 상기 제2 튜브형 바디의 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하고, 이를 통해 상기 제1 와이어 및 상기 제2 와이어는 상기 스트럿 구조체의 단면적의 감소 및 상기 스트럿 구조체에 맞물린 혈전의 분리를 야기하는 상기 스트럿 구조체의 과도한 스트레칭을 방지한다. 또한, 상기 제1 와이어는 상기 제1 튜브형 바디의 원주면에 장착되고, 상기 제2 와이어는 상기 제2 튜브형 바디의 원주면에 장착될 수 있다. 또한, 상기 스트럿 구조체가 상기 제1 와이어 및 상기 제2 와이어를 통해 변형이 제한될 때, 상기 제1 와이어는 상기 스트럿 구조체의 중심축에 대해 제1 방사방향에 위치하고, 제2 와이어는 상기 스트럿 구조체의 중심축에 대해 제2 방사방향에 위치하고, 상기 제1 방사방향은 상기 제2 방사방향과 일치할 수 있다. 또한, 상기 제1 방사방향은 상기 제2 방사방향과 반대일 수 있다.
본 명세서의 다른 양상에 따르면, 혈전 제거 기기는 제1 튜브형 바디 및 상기 제1 튜브형 바디 내부에 배치된 제2 튜브형 바디를 포함하는 스트럿 구조체 - 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디 중 하나는 다른 하나에 대해 슬라이딩 가능하고, 상기 스트럿 구조체는 상기 제1 튜브형 바디 및 상기 제2 튜브형 바디의 상대적인 위치에 따라서 혈전을 인바이팅하는(inviting, 유인하는) 마우스를 열거나 닫을 수 있도록 구성됨 -, 제1 길이를 가지고 제1 근위말단에서 제1 원위말단까지 연장되는 제1 와이어 - 상기 제1 근위말단은 상기 제1 튜브형 바디의 근위말단 부분과 제1 근위 정션(junction)에서 고정적으로 연결되고, 상기 제1 원위말단은 상기 제1 튜브형 바디의 원위말단 부분과 제1 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제1 길이는 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리보다 큼 - 및 제2 길이를 가지고 제2 근위말단에서 제2 원위말단까지 연장되는 제2 와이어 - 상기 제2 근위말단은 상기 제2 튜브형 바디의 근위말단 부분과 제2 근위 정션에서 고정적으로 연결되고, 상기 제2 원위말단은 상기 제2 튜브형 바디의 원위말단 부분과 제2 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제2 길이는 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리보다 큼 -를 포함하고, 상기 제2 튜브형 바디에 대한 상기 제1 튜브형 바디의 길이 비율은, 상기 제1 튜브형 바디의 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하는 상기 제1 와이어 및 상기 제2 튜브형 바디의 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하는 상기 제2 와이어에 의해 일정하게 유지된다.
본 명세서의 또 다른 양상에 따르면, 혈전 제거 기기는 제1 세그먼트, 상기 제1 세그먼트의 원위에 위치하는 제2 세그먼트 및 상기 제1 세그먼트와 상기 제2 세그먼트를 연결하고, 상기 제1 세그먼트 및 상기 제2 세그먼트의 길이방향의 축과 평행한 제1 가상라인을 따라 연장되는 제1 브릿지를 포함하는 스트럿 구조체 및 제1 길이를 가지고 근위말단에서 원위말단까지 연장되는 제1 와이어 - 상기 제1 와이어의근위말단은 상기 제1 세그먼트와 제1 점에서 고정적으로 연결되고, 상기 제1 와이어의 원위말단은 상기 제2 세그먼트와 제2 점에서 고정적으로 연결되며, 상기 스트럿 구조체가 상기 축을 따라 스트레칭 되지 않을 때, 상기 제1 길이는 상기 제1 점과 상기 제2 점 사이의 거리보다 큼 -를 포함하고, 상기 제1 와이어는 상기 스트럿 구조체의 상기 제1 점과 상기 제2 점 사이의 거리를 상기 제1 길이 내로 제한하고, 상기 제1 점은 상기 제1 가상라인을 따라 상기 제1 브릿지의 근위에 위치하고, 상기 제2 점은 상기 제1 가상라인을 따라 상기 제1 브릿지의 원위에 위치하며, 이를 통해 상기 스트럿 구조체가 상기 축을 따라 스트레칭되면 상기 제1 와이어는 상기 제1 브릿지에 나란히(alongside) 배치된다. 또한, 상기 제1 점은 상기 제1 세그먼트의 근위 부분에 위치하고, 상기 제2 점은 상기 제2 세그먼트의 원위 부분에 위치할 수 있다. 또한, 상기 스트럿 구조체는 상기 제2 세그먼트의 원위에 위치하는 제3 세그먼트 및 상기 제2 세그먼트와 상기 제3 세그먼트를 연결하고, 상기 제2 세그먼트 및 상기 제3 세그먼트의 길이방향의 축과 평행한 제2 가상라인을 따라 연장되는 제2 브릿지를 더 포함하고, 상기 혈전 제거 기기는 제2 길이를 가지고 근위말단에서 원위말단까지 연장되는 제2 와이어 - 상기 제2 와이어의 근위말단은 상기 제2 세그먼트와 제3 점에서 고정적으로 연결되고, 상기 제2 와이어의 원위말단은 상기 제3 세그먼트와 제4 점에서 고정적으로 연결되며, 상기 스트럿 구조체가 상기 축을 따라 스트레칭 되지 않을 때, 상기 제2 길이는 상기 제3 점과 상기 제4 점 사이의 거리보다 큼 - 를 더 포함하며, 상기 제2 와이어는 상기 스트럿 구조체의 상기 제3 점과 상기 제4 점 사이의 거리를 상기 제2 길이 내로 제한하고, 상기 제3 점은 상기 제2 가상라인을 따라 상기 제2 브릿지의 근위에 위치하고, 상기 제4 점은 상기 제2 가상라인을 따라 상기 제2 브릿지의 원위에 위치하며, 이를 통해 상기 스트럿 구조체가 상기 축을 따라 스트레칭되면 상기 제2 와이어는 상기 제2 브릿지에 나란히(alongside) 배치될 수 있다. 또한, 상기 제2 세그먼트의 상기 제2 점은 상기 제2 세그먼트의 상기 제3 점보다 근위에 위치할 수 있다. 또한, 상기 제1 가상라인 및 상기 제2 가상라인은 상기 스트럿 구조체의 원주면에 위치하고, 상기 스트럿 구조체의 중심축에 대해 상기 제1 가상라인에서 상기 제2 가상라인까지의 회전각은 대략적으로 90도일 수 있다.
본 명세서의 또 다른 양상에 따르면, 제1 세그먼트, 상기 제1 세그먼트의 원위에 위치하는 제2 세그먼트 및 상기 제1 세그먼트와 상기 제2 세그먼트를 연결하는 브릿지를 포함하는 스트럿 구조체, 제1 길이를 가지고 근위말단에서 원위말단까지 연장되는 제1 와이어 - 상기 제1 와이어의근위말단은 상기 제1 세그먼트의 근위부분과 제1 근위 정션(junction)에서 고정적으로 연결되고, 상기 제1 와이어의 원위말단은 상기 제1 세그먼트의 원위부분과 제1 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제1 길이는 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리보다 큼 - 및 제2 길이를 가지고 근위말단에서 원위말단까지 연장되는 제2 와이어 - 상기 제2 와이어의근위말단은 상기 제2 세그먼트의 근위부분과 제2 근위 정션(junction)에서 고정적으로 연결되고, 상기 제2 와이어의 원위말단은 상기 제2 세그먼트의 원위부분과 제2 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제2 길이는 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리보다 큼 -을 포함하고, 상기 제1 와이어는 상기 제1 세그먼트의 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하고, 상기 제2 와이어는 상기 제2 세그먼트의 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하고, 이를 통해 상기 제1 와이어 및 상기 제2 와이어는 상기 스트럿 구조체의 단면적의 감소 및 상기 스트럿 구조체에 맞물린 혈전의 분리를 야기하는 상기 스트럿 구조체의 과도한 스트레칭을 방지하는 혈전 제거 기기를 제공한다. 또한 상기 제1 와이어는 상기 제1 세그먼트의 원주면에 장착되고, 상기 제2 와이어는 상기 제2 세그먼트의 원주면에 장착될 수 있다. 또한, 상기 스트럿 구조체가 상기 제1 와이어 및 상기 제2 와이어를 통해 변형이 제한될 때, 상기 제1 와이어는 상기 제2 와이어와 평행할 수 있다. 또한, 상기 제1 와이어는 상기 제2 와이어와 일직선 상에 위치할 수 있다. 또한, 상기 스트럿 구조체의 중심축에 대해 상기 제1 와이어에서 상기 제2 와이어까지의 회전각은 대략적으로 180도일 수 있다.
본 명세서의 또 다른 양상에 따르면, 제1 세그먼트, 상기 제1 세그먼트의 원위에 위치하는 제2 세그먼트 및 상기 제1 세그먼트와 상기 제2 세그먼트를 연결하는 브릿지를 포함하는 스트럿 구조체, 제1 길이를 가지고 근위말단에서 원위말단까지 연장되는 제1 와이어 - 상기 제1 와이어의근위말단은 상기 제1 세그먼트의 근위부분과 제1 근위 정션(junction)에서 고정적으로 연결되고, 상기 제1 와이어의 원위말단은 상기 제1 세그먼트의 원위부분과 제1 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제1 길이는 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리보다 큼 - 및 제2 길이를 가지고 근위말단에서 원위말단까지 연장되는 제2 와이어 - 상기 제2 와이어의근위말단은 상기 제2 세그먼트의 근위부분과 제2 근위 정션(junction)에서 고정적으로 연결되고, 상기 제2 와이어의 원위말단은 상기 제2 세그먼트의 원위부분과 제2 원위 정션에서 고정적으로 연결되며, 상기 스트럿 구조체가 무부하 상태일 때, 상기 제2 길이는 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리보다 큼 - 을 포함하고, 상기 제2 세그먼트에 대한 상기 제1 세그먼트의 길이 비율은, 상기 제1 세그먼트의 상기 제1 근위 정션과 상기 제1 원위 정션 사이의 거리를 상기 제1 길이 내로 제한하는 상기 제1 와이어 및 상기 제2 세그먼트의 상기 제2 근위 정션과 상기 제2 원위 정션 사이의 거리를 상기 제2 길이 내로 제한하는 상기 제2 와이어에 의해 일정하게 유지되는 혈전 제거 기기를 제공한다.
본 명세서의 또 다른 양상에 따르면, 두 길이 말단 및 두 원주 말단을 포함하는 소정의 바운더리 형상을 가지는 복수의 셀을 포함하는 스트럿 구조체 및 상기 스트럿 구조체에 연결되고, 환자의 혈관으로부터 상기 스트럿 구조체를 회수하는(extracting, retrieving) 조작을 받도록 구성되며, 조작을 받아 상기 스트럿 구조체의 길이방향을 따라 상기 스트럿 구조체를 이동시키도록 구성된 풀 와이어를 포함하는 혈전 제거 기기에 있어서, 상기 복수의 셀은 상기 바운더리에 대응하는 제1 스트럿 구성(element)을 포함하고, 상기 복수의 셀 중 일부는, 상기 두 길이 말단 중 하나에서 상기 두 길이 말단 중 다른 하나로 선형으로 연장되고, 상기 바운더리에 의해 정의된 내부 영역을 상기 스트럿 구조체의 길이방향으로 가로지르는 제2 스트럿 구성(element)을 더 포함하고, 상기 제2 스트럿 구성(element)은 상기 복수의 셀 중 일부의 길이 증가를 방지하고, 상기 길이 증가는 상기 스트럿 구조체의 길이 방향의 이동에 기인하여 상기 제2 스트럿 구성(element)이 없는 상기 복수의 셀 중 나머지에서 발생하며, 그로 인해 상기 복수의 셀 중 일부는 상기 회수하는 과정에서 상기 스트럿 구조체의 길이변화를 감소시키는 혈전 제거 기기를 제공한다. 또한, 상기 복수의 셀 중 일부는 제1 셀 및 제2 셀을 포함하고, 상기 제1 셀 및 상기 제2 셀은 상기 스트럿 구조체의 길이방향의 중심축에 대해 서로 상이한 방사방향에 위치할 수 있다. 또한, 상기 제1 셀 및 상기 제2 셀의 제2 스트럿 구성(element)은 상기 스트럿 구조체의 길이방향을 따라 중첩(overlapping)될 수 있다. 또한, 상기 제1 셀 및 상기 제2 셀은 상기 스트럿 구조체의 길이방향을 따라 순차적으로 위치할 수 있다. 또한, 상기 제1 셀 및 상기 제2 셀은 상기 스트럿 구조체의 길이방향을 따라 이격되어 위치할 수 있다. 또한, 상기 복수의 셀 중 일부는 상기 스트럿 구조체의 길이방향을 따라 순차적으로 위치한 제1 셀, 제2 셀 및 제3 셀을 포함하고, 상기 제1 셀 및 상기 제2 셀이 상기 스트럿 구조체의 길이방향의 중심축에 대해 가지는 각도는 상기 제2 셀 및 제3 셀이 상기 스트럿 구조체의 길이방향의 중심축에 대해 가지는 각도와 실질적으로 동일할 수 있다.
본 명세서의 또 다른 양상에 따르면, 제1 셀 및 제2 셀 - 상기 제1 셀 및 상기 제2 셀은 두 길이 말단 및 두 원주 말단을 포함하는 소정의 형상을 가짐-을 포함하는 복수의 셀을 포함하는 스트럿 구조체 및 상기 스트럿 구조체에 연결되고, 환자의 혈관으로부터 상기 스트럿 구조체를 회수하는(extracting, retrieving) 조작을 받도록 구성되며, 조작을 받아 상기 스트럿 구조체의 길이방향을 따라 상기 스트럿 구조체를 이동시키도록 구성된 풀 와이어를 포함하는 혈전 제거 기기에 있어서, 상기 제1 셀은 상기 소정의 형상의 바운더리에 대응되는 제1 스트럿 구성을 포함하고, 상기 제2 셀은 상기 소정의 형상의 바운더리에 대응되는 상기 제1 스트럿 구성 및 상기 두 길이 말단 중 하나에서 상기 두 길이 말단 중 다른 하나로 선형으로 연장되고, 상기 바운더리에 의해 정의된 내부 영역을 상기 스트럿 구조체의 길이방향으로 가로지르는 적어도 하나의 제2 스트럿 구성을 포함하며, 상기 스트럿 구조체가 근위로 이동하면, 상기 제1 셀은 상기 소정의 형상으로부터 상이하게 변형되는 반면 상기 적어도 하나의 제2 스트럿 구성이 상기 제2 셀을 상기 소정의 형상으로 유지하고, 그로 인해 제2 셀은 상기 회수하는 과정에서 상기 스트럿 구조체의 길이변화를 감소시키는 혈전 제거 기기를 제공한다.
본 명세서의 또 다른 양상에 따르면, 무부하 조건하에서 동일한 형상을 가지는 제1 셀 및 제2 셀을 포함하는 복수의 셀을 형성하는 제1 스트럿을 포함하는 구조체 및 제2 셀에 배치되고, 제1 조인트(joint) 및 제2 조인트(joint) 사이에서 연장되는 제2 스트럿을 포함하는 안티 스트레칭 구조 -상기 제1 조인트는 상기 제1 스트럿 상에 위치하고, 상기 제2 셀의 근위부분에 위치하며, 제2 조인트는 상기 제1 스트럿 상에 위치하고, 상기 제2 셀의 원위부분에 위치함-를 포함하는 혈전 제거 기기에 있어서, 상기 안티 스트레칭 구조는, 상기 구조체의 길이 방향의 이동 중에, 상기 무부하 조건에서 상기 제1 조인트 및 제2 조인트 사이의 거리와 실질적으로 동일한 길이를 가지는 상기 제2 스트럿에 의해 상기 제2 셀의 길이 증가를 방지하고, 그로 인해 상기 제2 셀은 상기 구조체의 과도한 스트레칭을 방지하는 혈전 제거 기기를 제공한다. 또한, 상기 제2 스트럿은 상기 구조체의 길이방향의 축에 대해 미리 정해진 값보다 작은 각도를 가지는 직선을 따라 연장될 수 있다. 하나의 상기 제1 셀과 다른 하나의 상기 제1 셀은 상기 구조체의 길이방향의 중심 축에 대해 서로 마주볼 수 있다. 하나의 상기 제1 셀과 다른 하나의 상기 제1 셀은 서로 인접하지 않을 수 있다.
본 명세서의 또 다른 양상에 따르면, 복수의 행을 포함하고, 각각의 상기 복수의 행은 복수의 셀을 포함하는 구조체 및 상기 구조체와 연결되고, 조작을 받아 환자의 혈관 내의 상기 구조체를 이동시키도록 구성된 풀 와이어; 를 포함하는 혈전 제거 기기에 있어서, 각각의 상기 복수의 행에 포함된 상기 복수의 셀 중 일부는 제1 셀이고, 각각의 상기 복수의 행에 포함된 상기 복수의 셀 중 나머지는 제2 셀이며, 제2 셀은 상기 제2 셀의 바운더리를 형성하는 제1 스트럿을 포함하고, 상기 제1 셀은 상기 제1 셀의 바운더리를 형성하는 상기 제1 스트럿 및 상기 제1 셀의 상기 바운더리에서 길이방향으로 연장되고 상기 제1 셀의 바운더리의 내부 영역을 횡단하는 제2 스트럿을 포함하며, 상기 제2 스트럿은 상기 구조체의 길이 방향의 이동 중에, 각각의 상기 복수의 행의 제1 셀의 길이를 유지하고, 그로 인해 상기 제1 셀은 상기 구조체의 과도한 스트레칭을 방지하는 혈전 제거 기기를 제공한다.
본 명세서는 혈전 제거 기기 및 이를 이용한 혈전 제거 방법에 관한 것이다.
혈전 제거 기기란 혈관 질환의 치료에 사용되는 기기로서, 혈전 제거 기기는 기계적 방식으로 혈관으로부터 혈관을 제거할 수 있다.
일반적으로 혈전 제거 기기는 혈관벽에 들러붙은 혈전으로 인해 막히거나 저하된 혈류의 흐름을 복원하기 위하여 혈관으로부터 혈전을 제거하는데 이용되며, 허혈성 뇌졸증 등과 같은 뇌 혈관 질환의 치료에 주로 사용된다.
혈전 제거 기기(clot removal device)는 혈관 폐색이나 혈관 협착을 막기 위해 체내에 삽입되는 기존의 스텐트(stent)와 유사한 구조적 특징을 가지고 있어 흔히 스텐트 리트리버라고 불리기도 하며, 의학적으로는 기계적 혈전 제거 기구(mechanical thrombectomy device) 등으로 불리기도 한다.
혈전 제거 기기를 이용하여 혈전 제거하는 과정은 다음과 같이 설명될 수 있다.
먼저 사용자의 혈관에서 혈류가 막힌 위치를 검출한 뒤, 해당 위치까지 가이드 와이어를 이동시킨다. 가이드 와이어가 혈전의 부근에 자리잡으면 가이드 와이어의 안내를 받아 카테터를 혈전 부근까지 이동시킨다. 카테터까지 적당한 위치에 자리를 잡으면, 이제 본격적으로 카테터를 이용해 스텐트 리트리버, 즉 혈전 제거 기기를 체내로 삽입한다. 여기서, 혈전 제거 기기는 압축된 상태(collapsed configuration)에서 튜브 형태의 카테터의 내부를 따라 혈전 부근까지 이동할 수 있다. 혈전 제거 기기가 혈전 부근에 도달하면, 혈전 제거 기기를 해당 위치에 고정시키고 카테터를 회수하여 혈전 제거 기기를 카테터 외부로 나오게 한다(released from). 후술하겠지만, 혈전 제거 기기는 니티놀(Nitinol)이나 니티놀 기반의 기억 형상 합금과 같은 고탄성의 소재를 이용하여 제조되므로, 카테터로부터 나온 혈전 제거 기기는 팽창하여 전개 상태(deployed configuration)로 형태가 변화하게 되며, 이러한 팽창 과정에서 그 부근에 위치한 혈전과 결합(engaging)하게 된다. 혈전 제거 기기가 혈전과 충분히 잘 결합한 뒤, 풀 와이어를 통해 혈전 제거 기기와 함께 혈전을 체외로 회수함으로써 혈관 내의 혈전이 제거되고 재관류가 이루어지는 것이다.
이하에서는 본 명세서의 실시예들에 따른 혈전 제거 기기에 관하여 설명한다.
상술한 바와 같이 혈전 제거 기기는 기계적 혈전 제거술(mechanical thrombectomy)에 이용되는 장치로서, 구체적으로는 혈류 복원을 위해 혈관에 위치한 혈전을 소지(hold)하여 몸 밖으로 회수하는 장치이다. 종래의 혈전 제거 기기는 혈전 제거 과정 중 형상 변형(shape deformation)이 발생하며 이로 인해 혈전 제거 기기에 소지된 혈전이 혈전 제거 기기로부터 이탈되거나 파편화되는 문제점을 가진다. 본 명세서의 실시예에 따른 혈전 제거 기기는 이러한 문제점을 해결하기 위해 안출된 것으로 형상 변형이 억제되는 혈전 제거 기기로서, 보다 상세하게는 스텐트 바디의 형상 변형을 억제하는 안티 스테레칭 메커니즘(anti-stretching mechanism)을 가지는 혈전 제거 기기이다.
이하에서는 본 명세서의 실시예들에 따른 혈전 제거 기기에 관하여 설명하기에 앞서 종래의 혈전 제거 기기에서 발생하는 형상 변형에 대하여 살펴보기로 한다.
도 1은 혈전 제거 과정에서 발생하는 종래의 혈전 제거 기기(10)의 형상 변형의 일 예에 관한 도면이다.
압축 상태로 카테터 내부에 수용되어 있던 혈전 제거 기기가 카테터로부터 해제되면 혈전 제거 기기는 전개 상태로 팽창하게 되며 대개 스텐트 바디의 단면이 혈관의 단면을 거의 채우기까지 팽창이 이루어지고, 이러한 팽창 과정 중에 스텐트 바디를 구성하는 스트럿(strut)이 혈전을 파고들어 스텐트 바디와 혈전이 결합된다. 스텐트 바디와 혈전의 결합이 완료되면, 혈전을 혈관으로부터 제거하기 위해 혈전과 결합된 혈전 제거 기기를 체외 방향으로 이동시키게 된다.
이때 혈전 제거 기기에는 다음과 같은 힘이 작용함에 따라 그 길이가 늘어날 수 있다.
- 풀 와이어에 의해 체외 방향으로의 혈전 제거 기기에 인가되는 횡 방향의 힘(이하 '회수력(retrieving force)'이라 함)
- 스텐트 바디의 자체적인 팽창(self expansion)에 따른 방사 방향의 힘(이하 '방사력(radial force)'이라 함)에 의해 발생하는 스텐트 바디와 혈관벽 간의 마찰력이나, 스텐트 바디에 결합된 혈전과 혈관벽 간의 결합력으로 인해 회수력의 반대 방향으로 작용하는 힘
도 1은 종래의 혈전 제거 기기(10)는 초기 전개 상태에서 회수되는 과정 동안 스텐트 바디(11)의 길이가 증가되는 것을 보여주고 있다. 또한, 도 1을 살펴보면, 스텐트 바디(11)의 길이가 증가함에 따라 스텐트 바디(11)의 직경이 감소되는 것을 볼 수 있다.
다시 도 1을 참조하면, 종래의 혈전 제거 기기(10)는 카테터로부터 릴리즈되면 자체 팽창하여 제1 길이(L1)과 제1 직경(D1)을 가지는 초기 전개 상태에 이를 수 있다. 여기서, 제1 직경(D1)은 혈관(D1)의 직경과 유사할 수 있다. 팽창 과정 중에 스텐트 바디(11)는 혈전과 인게이징될 수 있다. 이후 풀 와이어(12)를 통해 체외 방향으로 당기는 힘, 즉 회수력이 혈전 제거 기기(10)에 인가되면, 혈전 제거 기기(10)에는 회수력과 그 반대 방향의 힘이 작용하게 되며 이에 따라 스텐트 바디(11)의 길이가 증가하여 제1 길이(L1)보다 큰 제2 길이(L2)가 될 수 있다. 또한, 스텐트 바디(11)는 전체적으로 유연한 고탄성의 스트럿 구조체로 제공되므로, 길이 증가로 인해 스텐트 바디(11)의 직경은 제1 직경(D1)보다 작은 제2 직경(D2)으로 감소하게 된다. 뿐만 아니라 스텐트 바디(11)의 길이와 직경 변화는 스텐트 바디(11)를 구성하는 스트럿에 의해 형성되는 셀(13)의 형상 역시 변화시키게 된다.
이러한 스텐트 바디의 길이, 직경, 셀 형상의 변화는 스텐트 바디(11)에 결합된 혈전의 이탈이나 파편화의 원인이 될 수 있다. 예를 들어, 스텐트 바디(11)의 직경이 감소하면, 도 1에 도시된 바와 같이 스텐트 바디(11)와 혈관벽 사이에 갭(gap)이 발생할 수 있으며, 이로 인해 혈전이 갭을 통해 스텐트 바디(11)로부터 이탈될 수 있다. 다른 예를 들어, 스텐트 바디(11)의 셀(13)은 대개 혈전 결합(clot engagement)에 최적 형상을 가지도록 설계되는데, 셀(13)의 형상이 변화하면 혈전과 스트럿 간의 결합이 약화되어 혈전이 스텐트 바디(11)로부터 이탈될 수도 있다. 또 다른 예를 들면, 셀(13)의 형상 변화 과정 중에 셀(13)의 구성하는 스트럿이 혈전을 파쇄하여 혈전의 파편화가 발생할 수도 있다.
따라서, 종래의 혈전 제거 기기(10)는 도 1에 도시된 바와 같이 혈전 회수 과정 중에 형상이 변화할 수 있으며, 이로 인해 혈전의 이탈, 파편화가 발생할 수 있으며, 결과적으로 혈류 복원에 실패할 수 있는 것이다.
도 2은 혈전 제거 과정에서 발생하는 종래의 혈전 제거 기기(10)의 형상 변형의 다른 예에 관한 도면이고, 도 3은 종래의 혈전 제거 기기(10)에서 발생하는 혈전 파편화에 관한 도면이고, 도 4는 종래의 혈전 제거 기기(10)에서 발생하는 혈전 이탈에 관한 도면이다.
혈전 제거 기기가 주로 이용되는 뇌 혈관은 통상적으로 급격한 커브 구간을 다수 포함하고 있으며 위치 별로 그 직경은 약 1mm 내지 5mm로 일정치 않은 것이 일반적이다. 따라서, 혈전 제거 기기의 회수 과정 중 혈관벽의 커브나 직경 변화 등으로 인해 스텐트 바디의 특정 부분에 상대적으로 높은 압력이 집중될 수 있으며, 이에 따라 도 2에 도시된 바와 같이 종래의 혈전 제거 기기(10)의 스텐트 바디(11)의 전체적으로 또는 부분적으로 변형이 발생할 수 있다.
예를 들어, 커브 구간을 통과하는 종래의 혈전 제거 기기(10)의 스텐트 바디(11)를 커브 구간을 기준으로, 커브 구간에 걸친 커브 부분, 커브 구간보다 체외 방향 상에 위치하는 근위 부분과 커브 구간보다 체외 방향의 반대 방향 상에 위치하는 원위 부분을 나누어 살펴보면, 커브 구간에서 상대적으로 높은 압력이 작용하므로 원위 부분에는 비교적 작은 횡력이 작용하고 커브 부분과 근위 부분에는 비교적 높은 횡력이 작용하게 될 수 있으며, 이에 따라 각 부분들의 형상이 상이하게 변형될 수 있다.
도 3은 종래의 혈전 제거 기기(10)의 스텐트 바디(11)의 원위 부분에는 비교적 적은 변형이 발생하지만 커브 부분에는 비교적 큰 변형이 발생하고, 이에 따라 스텐트 바디(11)의 혈전을 포획한 부분이 커브 구간을 통과하는 과정에서 높은 압축력을 받아 혈전이 파편화되는 것을 도시하고 있다.
도 4는 종래의 혈전 제거 기기(10)의 스텐트 바디(11)의 원위 부분에는 비교적 적은 변형이 발생하지만 커브 부분에는 비교적 큰 변형이 발생하고, 이에 따라 스텐트 바디(11)의 혈전을 포획한 부분이 커브 구간을 통과하는 과정에서 혈전이 스텐트 바디(11)로부터 이탈되는 것을 도시하고 있다.
상술한 바와 같이 종래의 혈전 제거 기기는 회수 과정 등에서 그 형상이 변화될 수 있으며, 이는 혈전 이탈이나 파편화를 발생시켜 결과적으로 재관류율이 저하되는 요인으로 작용할 수 있는 것이다.
본 명세서의 실시예들에 따른 혈전 제거 기기는 상술한 형상 변형을 방지하는 안티 스트레칭 메커니즘을 포함하여 형상 변형이 억제될 수 있다.
여기서, 안티 스트레칭 메커니즘은 혈전 제거 기기 특히 스텐트 바디의 변형을 억제하는 구성으로, 스텐트 바디의 길이 변형을 방지하거나 제한하는 구조물일 수 있다. 구체적으로 안티 스트레칭 메커니즘은 스텐트 바디에 작용하는 횡력(회수력과 그 반대 방향의 힘에 따라 스텐트 바디의 길이 방향으로 작용하는 힘)에 의한 스텐트 바디의 길이 증가를 방지하거나 제한할 수 있다. 또한 안티 스트레칭 메커니즘은 스텐트 바디의 길이 증가를 억제함으로써 그 직경의 변화나 셀의 변형을 방지하거나 제한할 수 있다.
본 명세서에서 안티 스트레칭 메커니즘은 다양한 형태로 제공될 수 있다. 일 예에 따르면, 안티 스트레칭 메커니즘은 혈전 제거 기기의 두 지점에 고정되는 와이어 형태(이하 '안티 스트레칭 와이어'라 함)로 제공될 수 있다. 다른 예에 따르면, 안티 스트레칭 메커니즘은 스텐트 바디의 셀의 내부를 가로지르는 스트럿 형태(이하 '안티 스트레칭 스트럿'이라 함) 또는 그러한 스트럿을 포함하는 셀 형태(이하 안티 스트레칭 셀'이라 함)로 제공될 수 있다. 이 외에도 안티 스트레칭 메커니즘은 외력에 의한 스텐트 바디의 과도한 변형을 제한하는 다양한 구조 및 형태를 포함하는 것으로 해석되어야 한다.
상술한 바와 같이 본 명세서의 실시예들에 따른 혈전 제거 기기는 혈관의 재관류를 위한 기계적 혈전 제거술에 이용되는 기기로서, 혈전 제거술 동안 과도한 형상 변형이 억제될 수 있다.
본 명세서에 따른 혈전 제거 기기는 스텐트 바디, 풀 와이어 및 상술한 안티 스트레칭 메커니즘을 포함할 수 있다. 여기서, 스텐트 바디는 혈전을 직접적으로 소지하는 구성(element)이고, 풀 와이어는 스텐트 바디에 회수력을 인가하는 구성이고, 안티 스트레칭 메커니즘은 스텐트 바디의 과도한 형상 변형을 억제하는 구성이다.
이하에서는 본 명세서의 실시예들에 따른 혈전 제거 기기의 구성 요소에 관하여 설명한다.
본 명세서의 실시예들에 따른 혈전 제거 기기는 스텐트 바디가 압축 상태에서 카테터에 수용되어 카테터가 시술 지점, 즉 혈관에 혈전이 위치한 지점에 도달한 뒤 카테터로부터 벗어나면(released from) 전개 상태로 팽창하고 팽창 과정 중 또는 팽창 후 혈전을 소지하고, 풀 와이어가 혈전을 소지한 스텐트 바디를 혈전과 함께 체외로 회수하고, 안티 스트레칭 메커니즘이 전개 상태에서의 과도한 변형을 방지함으로써, 과도한 형상 변형을 억제하면서 높은 재관류율로 기계적 혈전 제거술을 수행할 수 있다.
스텐트 바디는 형상 변형이 가능한 고탄성 매쉬 구조체(mesh framework)로 제공될 수 있다.
스텐트 바디는 체외로부터 카테터에 담겨 시술 지점까지 혈관을 통과해 이동한 뒤 카테터로부터 벗어나 혈전과 결합 또는 혈전을 포획하는데, 카테터는 담기기 위한 사이즈와 혈전과 결합 또는 혈전을 포획하기 위한 사이즈가 매우 상이하므로 형상 변형될 필요가 있다. 따라서, 스텐트 바디는 카테터에 담기기 위해 압축된 압축 상태(collapsed configuration)으로부터 카테터에서 벗어나면 자체 팽창(self-expansion)하여 혈전을 소지하기 적절한 전개 상태(deployed configuration)로 변형할 수 있는 고탄성 구조체로 제공된다.
이를 위해 스텐트 바디는 고탄성 소재의 스트럿에 의해 형성되는 매쉬 기반의 구조체로 제공될 수 있다. 여기서, 스트럿은 선상 구조를 가지며, 그 소재로는 주로 니티놀(Nitinol)이나 니티놀 기반의 기억 형상 합금을 비롯한 고탄성의 소재가 이용될 수 있다. 스텐트 바디는 이러한 고탄성 재질의 스트럿을 이용하여 내부가 빈 튜브 형상의 매쉬 구조를 가지도록 제작될 수 있다. 여기서, 스트럿은 매쉬 구조를 구성하는 셀의 테두리를 형성함으로써 스텐트 바디를 형성할 수 있다. 고탄성 소재의 매쉬 기반의 구조체로 제공되는 스텐트 바디는 압축/팽창이 가능하므로, 압축 상태로 카테터에 삽입될 수 있으며, 카테터에서 벗어나면 자체 팽창해 전개 상태에 이를 수 있게 된다.
보다 구체적으로 스텐트 바디를 살펴보면, 스텐트 바디는 니티놀 등의 소재로 제공되는 스트럿으로 전개 상태에서의 형상을 먼저 형성하고 이를 고온 가열하여 전개 상태에서의 형상을 기억시킴으로써 제작될 수 있다. 이처럼 제작된 스텐트 바디는 고탄성 재질로 제작되어 압축이 용이하며 압축된 상태에서 외력이 제거되면 고온에서 기억한 형상으로 복원하고자 하는 성질을 가지며 이에 따라 방사력을 가지고 팽창해 전개 상태에 이를 수 있다.
한편, 본 명세서에서는 스트럿은 스텐트 바디를 구성하는 요소 관점의 용어로 사용하며, 물리적인 가닥수를 의미하지는 않는 것으로 해석되어야 한다. 또한, 스트럿의 물리적인 가닥수에 대해서는 스트랜드(strand)라는 용어를 이용하여 표현하기로 한다. 예시적으로 본 명세서에서 스텐트 바디의 매쉬 구조를 이루는 셀이 4개의 테두리를 갖는 다이아몬드 형태인 경우 해당 셀은 실제로 한 가닥으로 형성되었는지 여러 가닥으로 형성되었는지와 무관하게 4개의 스트럿으로 구성된 것으로 표현될 수 있다. 또 예시적으로 본 명세서에서 스텐트 바디가 복수의 셀을 가지는 매쉬 구조를 가지더라도 그 전체가 한 가닥의 선을 꼬아 만드는 바텀-업(bottom-up)의 제조 기법을 통해 만들어지는 경우에는 스텐트 바디 전체가 하나의 스트랜드(single-strand) 구조라고 표현될 수 있다. 다만, 스트럿과 스트랜드의 구분이 반드시 명확한 것은 아니며 설명의 편의를 위해 당업자에게 자명한 범위 내에서는 혼용될 수도 있음을 미리 밝혀둔다.
또한 스텐트 바디에는 혈전을 그 내부로 끌어들이기 위한 구조, 즉 혈전 초대 구조(clot inviting structure)를 선택적으로 포함될 수 있다.
혈전은 크게 그 경도(hardness)에 따라 임상적으로 연혈전(soft clot)과 경혈전(hard clot)으로 구분되기도 한다. 일반적으로 혈관 폐색이나 혈관 협착은 혈액 내의 색전물(embolus)이 뭉쳐 혈전(clot)을 형성함으로써 발생하는데, 이러한 혈전은 시간이 지나감에 따라 점차 단단해져 연혈전으로부터 경혈전으로 성장하게 된다. 연혈전의 경우에는 스텐트 바디의 자체 팽창 과정에서 스트럿이 혈전 내부로 비교적 용이하게 파고들 수 있어 스텐트 바디와 결합될 가능성이 높은 반면, 경도가 높은 경혈전은 스텐트 바디의 방사력이 부족한 경우 스텐트 바디의 형상을 변형시킬 뿐 스텐트 바디와 결합되지 않을 가능성이 존재하며 이 경우에는 경혈전이 스텐트 바디의 형상을 부분적으로 찌그러뜨릴 수도 있다.
혈전 초대 구조는 상술한 스텐트 바디에 결합이 용이하지 않은 경혈전에 의한 혈관 폐색에 대한 혈관 재관류율을 높이기 위한 구성으로 이해될 수도 있다. 혈전 초대 구조는 다양한 형태로 제공될 수 있는데, 이하에서는 이에 대한 몇몇 예시에 관하여 언급한다.
예를 들어, 스텐트 바디는 스텐트 바디의 길이 방향 상 체외를 향하는 방향(이하 '근위 방향'이라 함) 측에 혈전이 통과할 수 있는 입구(opening)를 가질 수도 있다.
다른 예를 들어, 스텐트 바디의 외면을 구성하는 셀 중 일부 셀은 해당 셀을 통해 혈전이 스텐트 바디 내부로 수용되도록(receiving) 다른 셀보다 크게 제공될 수 있다. 구체적으로 스텐트 바디는 스텐트 바디의 외부에 위치한 혈전이 통째로 스텐트 바디의 내부로 이동할 수 있는 통로 역할을 할 수 있을 정도의 크기로 형성된 셀(이하 '확장 셀(enlarged cell)'이라 함)을 가질 수 있다.
또 다른 예를 들어, 스텐트 바디는 단일 매쉬 구조를 갖는 세그먼트를 복수 개 연결하여 형성되는 멀티 세그먼트(multi-segment) 형태로 제공되고, 세그먼트와 세그먼트의 사이에 형성되는 갭을 가지는 구조로 제공될 수도 있다.
한편 이상에서는 혈전을 경혈전과 연혈전으로 구분하여 설명하였으나, 이는 혈전 초대 구조에 대한 설명의 편의를 위한 것에 불과한 것임을 미리 밝혀둔다. 물리적으로는 혈전이 특정 경도값을 기준으로 연혈전과 경혈전으로 구분되는 것은 아닐 뿐 아니라 후술되는 혈전 결합과 혈전 포획에 대한 설명과 관련해서도 혈전 결합이 반드시 연혈전에 대해서만 이루어지고 혈전 포획이 반드시 경혈전에 대해서만 이루어지는 것은 아니며 연혈전의 경우에도 혈전 초대 구조를 통해 스텐트 바디 내부에 수용될 수 있으며, 경혈전의 경우에도 스텐트 바디와 혈전 결합을 가질 수 있음은 물론이다.
스텐트 바디는 혈전을 소지할 수 있다. 구체적으로 스텐트 바디는 매쉬 구조나 혈전 초대 구조(clot inviting structure) 등을 이용하여 혈전과 결합하거나 혈전을 포획할 수 있으며 이에 따라 혈전 제거 기기가 혈전을 소지할 수 있다.
예를 들어, 스텐트 바디는 시술 지점에서 자체 팽창하는 과정에서 스텐트 바디를 이루는 스트럿이 인근에 위치하는 혈전을 파고드는 것을 통해 혈전과 결합할 수 있다. 다른 예를 들어, 스텐트 바디는 상술한 혈전 초대 구조를 통해 스텐트 바디 외부에 위치한 혈전을 스텐트 바디 내부로 수용(receiving)함으로써 혈전을 포획할 수 있다.
이하에서는 스트럿이 혈전의 내부로 파고들어 혈전이 스텐트 바디에 결합되는 것을 '혈전 결합(clot engagement)'으로, 스텐트 바디의 내부로 혈전이 수용되는 것을 '혈전 포획(clot capturing)'이라고 지칭하기로 한다. 또 스텐트 바디에 의해 혈전 결합이나 혈전 포획이 수행된 상태에 대해 혈전 제거 기기가 혈전을 소지(holding)하는 것으로 표현하기로 한다.
풀 와이어는 스텐트 바디에 횡 방향 힘을 전달할 수 있다.
풀 와이어는 그 일단이 스텐트 바디에 직접 또는 간접적으로 연결되며 그 타단이 혈전 제거술을 수행하는 사용자 또는 로봇 수술 장치에 직접 또는 간접적으로 연결될 수 있다. 풀 와이어는 타단을 통해 사용자나 로봇 수술 장치로부터 당기는 힘 또는 미는 힘을 인가받고, 일단을 통해 스텐트 바디에 힘을 전달할 수 있다.
일반적으로 횡 방향 힘은 주로 회수력일 수 있으나 반드시 그러한 것은 아니다. 예를 들어, 혈전과 스텐트 바디의 결합을 강화하기 위한 기법의 하나인 푸쉬-앤-플러프 기법(push-and-pluff technique) 과정에서는 풀 와이어는 다소 간의 힘을 회수력의 반대 방향으로 스텐트 바디에 전달할 수도 있다.
안티 스트레칭 메커니즘은 스텐트 바디의 과도한 변형을 방지할 수 있다.
여기서, 안티 스트레칭 메커니즘은 스텐트 바디의 회수 과정 등을 비롯하여 스텐트 바디가 이미 전개된 상태에서 풀 와이어를 통한 회수력 등의 외력에 의해 스텐트 바디가 변형되는 것을 방지하는 것이며, 스텐트 바디가 압축 상태에서 전개 상태에 이르기까지 자체 팽창하는 과정에서 발생하는 자체 변형을 방지하기 위한 것은 아님을 미리 밝혀둔다.
한편, 후술되는 안티 스트레칭 메커니즘과 관련된 설명에서는 안티 스트레칭 메커니즘이 스텐트 바디의 변형을 원천적으로 방지할 수도 있으나, 일정한 정도 이상의 변형은 제한하되 그 이하의 변형은 허용하되 수도 있는데, 완전한 변형 방지나 일정 수준 이상에 대한 변형 제한 등에 대해서 포괄적으로 '과도한 변형'을 방지하는 것으로 지칭하기로 한다.
따라서, 과도한 변형(excessive deformation)이란 혈전 제거 기기에서 혈전 이탈이나 혈전 파편화가 발생할 정도로 스텐트 바디의 형상이 변화하는 것을 의미하며, 과도한 변형에 해당하는 구체적인 예시나 수치에 대해서는 별도로 후술하기로 한다.
이하에서는 본 명세서의 실시예들에 따른 혈전 제거 기기에 관하여 설명한다. 이하에서 설명되는 혈전 제거 기기는 안티 스트레칭 와이어 형태의 안티 스트레칭 메커니즘을 이용할 수 있다.
여기서, 안티 스트레칭 와이어는 혈전 제거 기기의 적어도 두 지점에 부착되는 소정의 길이를 갖는 와이어로 제공될 수 있다. 안티 스트레칭 와이어는 혈전 제거 기기의 두 지점 간의 거리를 고정시키거나 두 지점 간의 거리가 일정 이상 증가하는 것을 방지할 수 있으며, 이에 따라 스텐트 바디의 과도한 변형을 방지할 수 있다. 이를 위해 안티 스트레칭 와이어는 비교적 탄성이 낮은 재질(예를 들어, 니켈-티타늄 합금, 스테인레스 스틸 또는 이들과 기계적 특성이 유사한 금속이나 폴리머 등)로 제공되며, 이에 따라 외력에 의한 길이 변형에 강건한 특성을 가질 수 있으나, 반드시 그러한 것은 아니다. 또한, 안티 스트레칭 와이어는 싱글 스트랜드 와이어는 물론, 필요에 따라 멀티 스트랜드 와이어로 제공되는 것도 가능하다.
한편, 안티 스트레칭 와이어가 혈전 제거 기기와 연결되는 두 지점은 주로 스텐트 바디의 길이 방향과 평행한 방향 또는 길이 방향에 가까운 방향으로 배치될 수 있으며, 이에 따라 안티 스트레칭 와이어는 스텐트 바디에 주로 길이 방향으로 장력을 인가함으로써, 스텐트 바디의 길이 변형을 억제(restrain)하고, 길이 변형의 억제를 기반으로 직경 변형과 셀 형태 변형을 억제할 수 있다.
이하에서는 안티 스트레칭 와이어 형태의 안티 스트레칭 메커니즘을 가지는 본 실시예에 따른 혈전 제거 기기의 예시들에 관하여 설명한다.
도 5는 본 명세서의 일 실시예에 따른 혈전 제거 기기의 일 예를 도시한 도면이고, 도 6은 도 5에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도 5을 참조하면, 본 예에 따른 혈전 제거 기기(1000)는 스텐트 바디(1100), 풀 와이어(1300) 및 안티 스트레칭 와이어(1500)를 포함한다.
도 5를 참조하면, 스텐트 바디(1100)는 스트럿에 의해 형성되는 속이 비고 외면에 셀이 배치되는 매쉬 구조체로 제공되며, 매쉬 구조를 통해 혈전과 결합하거나 그 내부에 혈전을 포획함으로써 혈전을 소지할 수 있다.
매쉬 구조는 스트럿(1101)에 의해 형성되는 다수의 셀(1103)을 포함하여 형성될 수 있다. 구체적으로 스트럿은 셀(1103)의 테두리를 형성하고, 셀(1103)은 그 테두리를 구성하는 스트럿(1101)에 의해 형성될 수 있으며, 스트럿(1101)이 다수의 셀(1103)을 형성함으로써 스텐트 바디(1100)의 전체적인 매쉬 구조가 형성될 수 있다. 도 5에서는 셀(1103)이 다이아몬드 형태인 것으로 도시되고 있으나, 셀(1103)의 크기나 형상 등은 혈전과 결합되는 정도, 스텐트 바디(1100)의 방사력, 혈전 제거 기기(1000)의 유연성 등에 영향을 줄 수 있으므로 이러한 요인들을 고려하여 적절히 설계될 수 있다. 또 개별 셀(1103)들 간의 형상이나 크기가 반드시 동일해야만 하는 것도 아니다. 또한, 일부 셀(1103)은 혈전을 초대하기 위한 상술한 확장 셀 형태로 제공될 수도 있다.
상술한 매쉬 구조의 스텐트 바디(1100)는 다양한 제조 방법을 통해 제조될 수 있는데, 제조 방법의 일 예로는 레이져 컷팅(laser cutting), 미세 가공(micro machining), 방전 가공(EDM, electrical discharge machining), 브레이딩(braiding) 등이 있을 수 있으며, 다른 예로는 기계적 물림(mechanical locks), 용접(welding), 솔더링(연납땜, soldering), 브레이징(경납땜, brazing), 접착제(adhesive) 몰딩(moding), 크림핑(criming) 등을 통해 스트럿을 연결하는 방식 등이 있을 수 있다. 여기서, 기계적 물림은 트위스팅(twist), 니팅(knitting), 웨빙(weaving), 메쉬(mesh) 또는 엮기(intertwining)을 포함할 수 있으나, 이들 예시로 제한되는 것은 아니다. 한편, 스텐트 바디(1100)는 최종적으로 스트럿을 이용하는 매쉬 구조체로 완성되므로, 스텐트 바디(1100)를 스트럿 구조체(strut framework)으로 지칭할 수도 있다. 여기서, 스트럿 구조체는 금속 와이어 형태의 스트럿으로부터 제조된 형태의 스텐트 바디(1100)는 물론, 금속 튜브를 깍아 만드는 형태의 스텐트 바디(1100)를 모두 포함하는 포괄적인 용어로 해석되어야 함을 미리 밝혀둔다.
한편, 스텐트 바디(1100)는 혈전 제거 과정 중 혈전 제거 기기(1000)의 시인성을 확보하기 위한 물질을 포함할 수 있다. 통상적으로 기계적 혈전 제거술은 체내에서 진행되므로 사용자가 육안으로 혈전 제거 기기(1000)의 위치나 동작, 형태 등을 확인하는 것이 불가능하며, 엑스레이(X-ray)나 이와 유사한 투시광을 이용하여 시인성을 확보하려는 노력이 시도되고 있다. 본 명세서에서 스텐트 바디(1100)는 백금, 백금 이리듐 합금 또는 형광 투시법 하에서 가시성이 높은 다른 물질을 포함하는 물질로 제조되어 사용자에게 시각적 피드백을 제공할 수 있으며, 이들 가시성 물질이 스텐트 바디(1100)의 표면에 코팅되는 형태, 스트럿(1101)의 내부에 삽입된 형태, 시인성을 제공하는 마커 등의 물체가 스텐트 바디(1101)에 부착되는 형태나 이들의 조합으로 시인성 확보가 이루어질 수 있다.
다시 도 5를 참조하면, 스텐트 바디(1100)는 풀 와이어(1100B) 측에 위치한 근위 말단 및 그와 반대 측에 위치한 원위 말단을 가질 수 있다. 여기서, 스텐트 바디(1100)에서 근위 말단에 가까운 부분은 근위부(proximal portion), 원위 말단 측에 가까운 부분은 원위부(dital portion), 근위부와 원위부의 사이에 위치한 부분은 몸체부(body portion)일 수 있다.
스텐트 바디(1100)의 근위부는 스텐트 바디(1100)를 이루는 스트럿의 진행이 개시되는 부위로, 풀 와이어(1300)로부터 회수력 등의 힘을 전달받는 부위일 수 있다.
보다 구체적으로 스트럿(1101)은 근위 말단에서 일 지점에 모여있을 수 있으며, 근위부에서는 원위 방향, 즉 스텐트 바디(1100)의 길이 방향에 따라 풀 와이어(1300)로부터 멀어지는 방향으로 갈수록 근위 말단에서 한점에 모인 스트럿(1101)들이 퍼져나가면서 스텐트 바디(1100)의 직경이 점차로 증가할 수 있다. 또한 근위 말단 또는 근위부의 일 지점에는 풀 와이어(1300)가 직접적으로 또는 간접적으로 연결되어 있을 수 있으며, 이를 통해 근위부는 스텐트 바디(1100)의 이동이나 조작을 위한 힘을 풀 와이어(1300)로부터 전달받을 수 있다.
스텐트 바디(1100)의 몸체부는 근위부로부터 연장되는 부위로, 실질적으로 혈전을 소지하는 부위일 수 있다.
보다 구체적으로 몸체부는 속이 빈 튜브 형상일 수 있으며, 그 외면에는 스트럿에 의해 형성되는 셀을 포함하는 매쉬 구조일 수 있다. 몸체부는 이러한 매쉬 구조를 통해 혈전과 결합할 수 있으며, 그 내부 공간에 혈전을 포획할 수 있다. 도 5에서는 몸체부를 단순한 중공 실린더 형태(hollow cylinder shape)로 도시하고 있으나, 몸체부는 이외에도 다양한 형태로 구현될 수 있다. 예를 들어, 도 5는 몸체부의 직경이 몸체부 전체에 걸쳐 일정한 것으로 도시하고 있으나, 이와 달리 몸체부의 직경이 길이 방향 상 다른 지점에서 상이한 것도 가능하다. 다른 예를 들어, 도 5는 몸체부를 단일 세그먼트 형태(single segment type)로 도시하고 있으나, 이와 달리 몸체부가 복수의 세그먼트를 가지는 다수 세그먼트 형태(multi-segment type)일 수도 있다. 다수 세그먼트 형태의 스텐트 바디(1100)에 관한 설명은 후술되므로 여기서는 이에 대한 자세한 설명은 생략하기로 한다.
스텐트 바디(1100)의 원위부는 몸체부로부터 연장되는 부위이다. 원위부는 단순히 스텐트 바디의 말단을 이룰 수도 있으나, 스텐트 바디(1100)가 회수되는 과정에서 스텐트 바디(1100)의 최후단에서 최종적으로 혈전의 이탈을 방지하는 역할을 할 수도 있다.
일 예로, 원위부는 도 5에 도시된 바와 같은 닫힌 형태(closed end type)으로 제공될 수 있다. 닫힌 형태의 원위부에서는 스트럿(1101)이 다시 도 5에 도시된 바와 같이 원위 방향으로 진행할수록 모여들어 스텐트 바디(1100)의 직경이 감소할 수 있다. 이때, 스트럿(1101)들은 원위부의 원위 말단에서 일 지점에 모일 수도 있다. 다만, 스트럿(1101)들이 반드시 원위 말단에서 모여야 하는 것은 아니며 또 원위부에서 원위 방향을 향해 직경이 점차 감소해야만 하는 것도 아닐 수 있다.
닫힌 형태의 원위부는 혈전 제거 기기(1000)이 회수되는 과정에서 스텐트 바디(1100)의 최후단에서 혈전 제거 기기(1000)에 의해 소지된 혈전 또는 파편화된 혈전의 이탈이나 유출을 방지하거나 이탈되거나 유출되는 혈전과 재결합(re-engaging)할 수 있다.
다른 예로, 도 5는 원위부를 닫힌 형태로 도시하고 있으나, 이와 달리 원위부는 열린 형태(open end type)일 수도 있다. 관점에 따라 열린 형태의 원위부는 몸체부의 일부로 해석될 수도 있을 것이다. 열린 형태의 원위부는 스텐트 바디(1100)가 혈류의 흐름을 미치는 영향을 최소화하므로 회수 과정의 스텐트 바디(1100)가 빠르게 이동되도록 할 수 있다. 또한, 열린 형태의 원위부를 가지는 스텐트 바디(1100)는 닫힌 형태의 원위부를 가지는 스텐트 바디(1100)에 비해 비교적 형상 변형이 용이하여 혈관의 커브 구간이나 직경이 좁은 구간의 통과에 다소 유리한 점도 있다. 열린 형태의 원위부도 닫힌 형태의 원위부와 같이 직경이 점차 줄어드는 형태로 제공될 수도 있다.
다시 도 5를 참조하면, 풀 와이어(1300)는 사용자나 수술 로봇으로부터 혈전 제거 기기(1000)를 조작하기 위한 힘을 인가받고, 이를 스텐트 바디에 전달할 수 있다. 이를 위해 풀 와이어(1300)는 높은 인장강도를 가지는 물질로 제조되어 체외로부터 전달된 지시(instruction)를 수행할 수 있으며, 풀 와이어(1300)의 소재로는 주로 니켈 티타늄 합금 또는 스테인레스 스틸 등이 이용되나 이에 제한되는 것은 아니다.
풀 와이어(1300)는 그 일단 또는 그 일단에 가까운 부분을 통해 사용자나 수술 로봇 등으로부터 힘을 인가받을 수 있다. 이를 위해 풀 와이어(1300)의 일 부위가 체외까지 연장되어 있는 것이 일반적이나, 풀 와이어(1300)가 반드시 직접적으로 사용자나 수술 로봇과 접촉해야 하는 것은 아니며 필요에 따라 간접적으로 사용자나 수술 로봇의 구동부 등과 연결되는 것도 가능하므로 풀 와이어(1300)의 일부가 반드시 체외까지 연장되어야만 하는 것은 아니다.
또 풀 와이어(1300)는 그 타단 또는 그 타단에 가까운 부분을 통해 스텐트 바디(1100)에 힘을 전달할 수 있다. 이를 위해 풀 와이어(1300)는 일 부위가 스텐트 바디(1100)에 직접적으로 또는 간접적으로 연결될 수 있다.
예를 들어, 풀 와이어(1300)는 도 5에 도시된 바와 같이 스텐트 바디(1100)의 근위 말단과 연결될 수 있다. 다만, 풀 와이어(1300)가 반드시 직접적으로 근위 말단에 부착되어야만 하는 것은 아니며, 중간에 다른 매개물을 통해 스텐트 바디(1100)와 연결되거나 또는 근위 말단 외의 다른 부위를 통해 스텐트 바디(1100)와 연결되는 것도 가능하다.
한편, 도 5는 풀 와이어(1300)가 스텐트 바디(1100)의 단면의 중앙을 따라 스텐트 바디(1100)의 길이 방향으로 연장되는 중심축 상에서 근위 말단과 연결되는 것으로 도시하고 있으나, 이는 스텐트 바디(1100)의 근위부의 형태에 따라 적절히 변형될 수 있음은 자명하다. 스텐트 바디(1100)와 풀 와이어(1300)의 연결 관계에 대한 다양한 변형들은 본 명세서에 첨부된 여러 도면을 통해 설명되는 예시들로 당업자에게 충분히 이해될 수 있으므로 이에 대한 구체적인 설명은 생략하기로 한다.
사용자나 수술로봇 등은 풀 와이어(1300)를 통해 혈전 제거 기기를 조작할 수 있게 된다.
예를 들어, 풀 와이어(1300)의 조작에 따라 스텐트 바디(1100)가 혈관 내에서 이동될 수 있다. 구체적으로 풀 와이어(1300)를 당김으로써, 스텐트 바디(1100)에 회수력이 인가되고, 이를 통해 혈전을 소지한 혈전 제거 기기(1000)를 체외로 회수할 수 있다. 이외에도 상술한 푸쉬-앤-플러프 기법 역시 풀 와이어의 조작을 통해 수행될 수 있을 것이다.
안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 과도한 변형을 방지할 수 있다. 구체적으로 안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)의 적어도 두 지점에 부착되고, 두 지점 간의 거리를 일정 길이 이하로 제한함으로써 혈전 제거 기기(1000)의 길이 변형을 억제할 수 있다. 혈전 제거 기기(1000)의 길이 변형이 억제되면 혈전 제거 기기(1000)의 직경 변형이나 셀(1103)의 변형 역시 억제될 수 있으므로, 결과적으로 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1000)의 과도한 변형을 억제할 수 있다.
도 5를 참조하면, 안티 스트레칭 와이어(1500)는 그 양단이 각각 스텐트 바디(1100)의 중심축 상에 배치되는 스텐트 바디(1100)의 근위 말단과 원위 말단에 고정될 수 있으며, 외력이 없는 무부하 조건 하의 전개 상태인 스텐트 바디(1100)의 전체 길이와 동일한 길이를 가질 수 있다.
상술한 도 5에 도시된 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 스텐트 바디의 길이 증가를 방지할 수 있다.
구체적으로 도 6을 참조하면, 예를 들어, 스텐트 바디(1100)가 혈관 내에서 전개된 후 풀 와이어(1300)를 통해 혈전 제거 기기를 회수하는 등의 과정에서 스텐트 바디(1100)에 인가되는 횡력은 스텐트 바디(1100)의 길이 증가를 유도할 수 있다. 이때 변형에 강건한 안티 스트레칭 와이어(1500)는 그 양단이 스텐트 바디(1100)의 근위 말단과 원위 말단에 고정된 상태에서 스텐트 바디(1100)의 양 말단의 거리가 안티 스트레칭 와이어(1500)의 길이, 즉 무부하 조건 하의 전개 상태에서 스텐트 바디(1100)가 갖는 길이 이상으로 증가하는 것에 대항할 수 있다. 따라서, 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 길이 변화를 방지할 수 있는 것이다.
이상에서는 도 5의 형태로 제공되는 스텐트 바디(1100)의 양 말단을 통해 스텐트 바디(1100)와 결합되고, 무부하 조건 하에서의 스텐트 바디(1100)의 전개 상태에서의 전체 길이와 동일한 길이를 갖음으로써, 스텐트 바디(1100)의 전체 길이가 안티 스트레칭 와이어(1500)의 전체 길이 이상의 증가하는 것을 방지하는 안티 스트레칭 와이어(1500)에 관하여 설명하였다.
그러나, 도 5를 참조하여 설명한 안티 스트레칭 와이어(1500)는 본 명세서에서 개시되는 안티 스트레칭 와이어(1500)의 가장 기본적인 형태의 하나에 불과하며, 본 명세서에서 개시되는 안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)에 외력이 작용할 때 스텐트 바디(1100)의 과도한 변형을 막기 위한 다양한 예시를 모두 포괄할 수 있으며, 이는 다양한 설계 변경을 통해 구현될 수 있다.
이하에서는 안티 스트레칭 와이어의 설계와 관련된 몇몇 측면(aspect)에 관하여 설명하도록 한다.
안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)와 연결되는 연결부(connection portion, 1502) 및 연결부 사이에서 연장되는 연장부(extending portion, 1504)를 포함할 수 있다.
연결부(1502)는 주로 도 5에 도시된 예와 같이 안티 스트레칭 와이어(1500)의 단부일 수 있으나, 반드시 그러해야 하는 것은 아니며, 안티 스트레칭 와이어(1500)의 임의의 지점이어도 무방하다. 이하에서는 서로 인접한 두 개의 연결부(1502) 중 혈전 제거 기기의 상대적으로 근위 방향 상에 위치하는 연결부(1502)는 전위 연결부(frontal connection portion)으로, 상대적으로 원위 방향 상에 위치하는 연결부는 후위 연결부(rear connection portion)으로 지칭하기로 한다.
또 연결부(1502)가 혈전 제거 기기와 연결되는 형태가 반드시 점 접촉 형태여야만 하는 것도 아니다. 예를 들어, 안티 스트레칭 와이어는 스텐트 바디(1100)의 스트럿(1101)의 일정 구간과 선 접촉을 통해 연결될 수도 있다.
또 안티 스트레칭 와이어에는 연결부(1502)가 적어도 둘 이상일 수 있다. 도 5에 도시된 예에서는 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)와 두 지점에서 연결되는 것으로 도시하고 있으나 연결부(1502)의 수가 그 이상인 것도 무방하다. 예를 들어, 안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)가 3부위나 4부위 또는 그 이상의 부위에서 연결될 수 있다. 복수의 부위에서 혈전 제거 기기(1000)와 연결되는 안티 스트레칭 와이어(1500)는 서로 인접한 두 개의 연결부(1502) 사이에서 혈전 제거 기기(1000)의 길이 변화를 방지할 수 있다. 이처럼 안티 스트레칭 와이어(1500)가 3 이상의 연결부(1502)를 포함하는 경우, 특정 연결부(1502)는 해당 연결부보다 근위 방향 상에 위치하는 연결부에 대해서는 후위 연결부인 동시에 해당 연결부보다 원위 방향 상에 위치하는 연결부에 대해서는 전위 연결부일 수 있다.
또 안티 스트레칭 와이어의 연결부(1502)가 반드시 스텐트 바디(1100)의 말단을 통해서 혈전 제거 기기(1000)와 연결되어야 하는 것도 아니다. 먼저, 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 임의의 두 지점 상에서 스텐트 바디(1100)와 연결될 수도 있다. 또, 안티 스트레칭 와이어(1500)는 스텐트 바디(1100) 외의 혈전 제거 기기(1000)의 다른 구성에서 혈전 제거 기기(1000)와 연결되는 것도 가능하다. 예를 들어, 안티 스트레칭 와이어(1500)의 연결부(1502)의 일부는 풀 와이어(1300)에 연결되고, 다른 일부는 스텐트 바디(1100)에 연결되는 것도 가능할 수 있다. 여기서, 안티 스트레칭 와이어(1500)와 연결되는 혈전 제거 기기(1000)의 부위는 결합부(coupling portion)로 지칭될 수 있다. 결합부와 관련하여 이하에서는 전위 연결부와 연결된 결합부는 전위 결합부(frontal coupling portion)로, 후위 연결부와 연결된 결합부는 후위 결합부(rear coupling portion)으로 지칭하기로 한다. 한편, 이하에서는 필요에 따라 설명의 편의를 위하여 결합부에 대해 결합 지점(coupling point), 정션(junction) 또는 조인트(joint) 등의 용어를 혼용할 수 있으며, 이는 포괄적으로 결합부를 지칭하는 것으로 이해되어야 한다.
또 안티 스트레칭 와이어(1500)의 길이가 무부하 조건 하의 스텐트 바디(1100)의 전개 상태에서의 전체 길이와 동일해야만 하는 것도 아니다. 예를 들어, 결합부가 스텐트 바디(1100)의 양 말단이 아닌 경우에는 안티 스트레칭 와이어(1500)의 길이가 전체 길이보다 작을 수 있다. 다른 예를 들어, 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 양 말단에서 스텐트 바디(1100)와 결합되더라도 스텐트 바디(1100)의 길이 변형을 어느 정도 허용하기 위해 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 전체 길이보다 길게 제공되는 것도 가능하다.
상술한 안티 스트레칭 와이어(1500)의 설계와 관련된 몇몇 측면(aspect) 중 결합부의 위치와 안티 스트레칭 와이어(1500)의 길이는, 도 5 및 도 6을 참조한 설명에서 언급한 바와 같이 안티 스트레칭 와이어(1500)에 의한 스텐트 바디(1100)의 변형 방지가 안티 스트레칭 와이어(1500)의 자체 길이가 결합부 간의 거리를 제한하는 형태로 수행되므로, 안티 스트레칭 와이어(1500)의 안티 스트레칭 효과에 직접적으로 영향을 주는 요인일 수 있으며, 이하에서는 이에 대하여 보다 상세하게 설명하기로 한다.
안티 스트레칭 와이어(1500)가 혈전 제거 기기와 연결되는 결합부의 위치는 커버링 비율(covering ratio)을 고려하여 결정될 수 있다. 여기서, 커버링 비율이란 스텐트 바디(1100) 전체 영역 중 안티 스트레칭 와이어(1500)에 의한 안티 스트레칭 효과가 미치는 영역(이하 '커버링 영역(covering region)'이라 함)의 비를 의미할 수 있다. 다시 도 5 및 6과 관련하여 언급한 바와 같이 안티 스트레칭 효과는 안티 스트레칭 와이어(1500)와 혈전 제거 기기(1000)가 연결된 지점 사이에서 발생하므로, 커버링 영역은 스텐트 바디(1100) 중 결합부와 결합부 사이에 위치하는 영역일 수 있다. 따라서, 커버링 비율은 구체적으로 스텐트 바디(1100)의 전체 길이에 대한 결합부 사이에 위치하는 스텐트 바디(1100)의 길이로 정의될 수 있다. 또 커버링 영역은 스텐트 바디(1100)의 전체 길이에 대한 결합부와 결합부를 연결하는 직선의 스텐트 바디(1100)의 길이 방향 성분 중 스텐트 바디(1100) 내에 위치하는 부분으로 정의될 수 있다.
예를 들어, 다시 도 5에 도시된 바와 같이 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 근위 말단과 원위 말단에 연결된 형태에서는 커버링 영역은 스텐트 바디(1100)의 전체 영역과 일치할 수 있으며, 따라서, 커버링 비율은 100%일 수 있다. 이는 안티 스레칭 와이어(1500)에 의한 안티 스트레칭 효과가 스텐트 바디(1100) 전체에 발생하는 것을 의미할 수 있다.
다른 예를 들어, 결합부가 스텐트 바디(1100)의 근위 말단으로부터 스텐트 바디(1100)의 전체 길이의 10%만큼 원위 방향 상에 위치한 지점과 스텐트 바디(1100)의 원위 말단으로부터 스텐트 바디(1100)의 전체 길이의 10%만큼 근위 방향 상에 위치한 지점에 위치하는 경우에는 커버링 비율은 80%일 수 있다. 이때에는 스텐트 바디(1100)의 전방 10%로부터 후방 10%까지의 영역은 안티 스트레칭 와이어(1500)에 의해 길이 변형이 제한되지만, 나머지 영역에서는 외력에 의한 길이 변형이 제한없이 발생할 수 있다. 직경이 점차 증가하는 근위부, 직경이 일정한 몸체부, 직경이 감소하는 원위부로 구성되는 스텐트 바디(1100)의 경우에는 몸체부의 양 단(근위부와 연결되는 부위 및 원위부와 연결되는 부위)에 결합부가 배치되고, 이에 따라 안티 스트레칭 와이어(1500)는 몸체부의 변형은 제한하되 스텐트 바디(1100)의 다른 부위의 변형은 허용할 수 있다. 상술한 형태의 근위부와 원위부는 기계적 혈전제거술의 시술 시 필요에 따라 그 형태 변형이 요청되는 경우가 있을 수 있으므로, 결합부를 몸체부 양단에 배치하면 이러한 요청을 만족시킬 수 있다.
또 다른 예를 들어, 전위 결합부가 스텐트 바디(1100)의 근위 말단보다 근위 방향 상(예시적으로 풀 와이어의 일 지점)에 위치될 수도 있다. 전위 결합부가 풀 와이어(1300)의 일 지점에 위치하면, 스텐트 바디(1100)의 근위 말단에 위치하는 경우와 커버링 비율은 동일하지만, 혈전 제거 기기(1000)와 안티 스트레칭 와이어(1500) 간의 결합 용이성이 향상될 수 있다.
한편, 커버링 비율이 증가할수록 스텐트 바디(1100)에서 안티 스트레칭 효과를 받는 영역이 증가하며 반대로 커버링 비율이 감소할수록 스텐트 바디(1100)에서 안티 스트레칭 효과를 받는 영역이 감소하므로 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 과도한 변형을 방지하기 위해서는 커버링 비율이 일정한 값 이상으로 유지될 필요가 있다. 본 명세서에서 커버링 비율은 바람직하게는 1/2 이상, 보다 바람직하게는 2/3 이상일 수 있다.
한편, 동일한 커버링 비율을 가지는 안티 스트레칭 와이어(1500)에 있어서, 안티 스트레칭 와이어(1500)의 커버링 영역의 위치에 따라 스트레칭 방지 효과가 달라질 수 있다. 예를 들어, 커버링 영역이 스텐트 바디(1100)의 원위 말단보다 근위 말단과 가까울수록 스트레칭 방지 효과는 클 수 있다. 이는 풀 와이어(1300)에 의해 스텐트 바디(1100)에 인가되는 회수력이 스텐트 바디(1100)의 원위부보다 근위부에 더 크게 작용할 수 있기 때문이다. 또한, 안티 스트레칭 와이어(1500)의 전단이 연결되는 전위 커플링 포인트가 스텐트 바디(1100)의 근위 말단으로부터 너무 멀어지는 경우에는 근위 말단과 전위 커플링 포인트 사이에 안티 스트레칭 와이어(1500)에 의해 커버되지 못하는 구간에서 길이 변형이 과도하게 발생할 수 있다. 이러한 사항을 고려할 때, 바람직하게는, 전위 결합부와 근위 말단 간의 거리가 후위 결합부와 원위 말단 간의 거리보다 작을 수 있다.
또 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1000)와 연결되는 결합부의 위치는 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향에 대해 이루는 각도를 고려하여 결정될 수 있다.
다시 도 5를 살펴보면, 결합부들은 스텐트 바디(1100)의 길이 방향을 따라 배치될 수 있다. 즉, 결합부를 연결하는 가상의 직선은 스텐트 바디(1100)의 길이 방향과 평행할 수 있다. 이는 안티 스트레칭 와이어(1500)에 작용하는 장력이 주로 스텐트 바디(1100)의 길이 방향으로 작용해 스텐트 바디(1100)의 길이 변형을 초래하는 횡력에 대항하도록 하기 위함이다. 다만, 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향에 대해 미리 정해진 각도 이하로 배치되더라도 안티 스트레칭 와이어(1500)의 장력에 의해 스텐트 바디(1100)의 과도한 길이 변형이 억제될 수 있으므로 결합부들이 반드시 스텐트 바디(1100)의 길이 방향을 따라 일렬로 배치되어야만 하는 것은 아니다.
다만, 결합부가 결합부 간을 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향에 대해 너무 큰 각도를 가지도록 배치되면, 안티 스트레칭 와이어(1500)에 작용하는 장력 중 스텐트 바디(1100)의 길이 방향으로 작용하는 힘에 대한 스텐트 바디(1100)의 방사 방향으로 작용하는 힘의 비율이 증가하여 안티 스트레칭 효율이 저하됨과 동시에 스텐트 바디(1100)에 편심 등이 인가되어 스텐트 바디(1100)에 원치않는 거동이 발생하거나 원치않는 형상 변형이 발생할 수 있다. 따라서, 예시적으로 본 명세서에서 결합부는 결합부 간을 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향에 대해 바람직하게는 30도, 보다 바람직하게는 15도 이하를 이루도록 배치될 수 있다.
또 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1000)와 연결되는 결합부의 위치는 중심축 또는 매쉬 구조체의 표면을 따라 연장되는 가상의 면을 따라 배치될 수 있다.
다시 도 5를 살펴보면, 결합부들은 스텐트 바디(1100)의 중심축을 따라 배치될 수 있다. 그러나, 이와 달리 결합부들 중 적어도 일부는 스텐트 바디(1100)를 이루는 매쉬 구조체의 표면을 따라 배치되는 것도 가능하다. 또는 결합부 들 중 적어도 일부는 풀 와이어(1300)에 위치할 수도 있다.
결합부들이 스텐트 바디(1100)의 중심축을 따라 배치되는 경우에는 안티 스트레칭 와이어(1500)의 장력이 스텐트 바디(1100)에 균형적으로 작용하므로 스텐트 바디(1100)의 길이 변형을 안정적으로 방지할 수 있는 장점이 있다.
반대로 결합부들이 스텐트 바디(1100)의 표면에 따라 연장된 면 상에 배치되는 경우에는 안티 스트레칭 와이어(1500)가 매쉬 구조체의 내부가 아닌 표면 상에 위치하게 되므로 스텐트 바디(1100)의 내부 공간으로 혈전을 초대하거나 내부 공간에 혈전을 포획하기 유리한 장점이 있다.
한편, 결합부들이 스텐트 바디(1100)의 표면에 따라 배치되는 경우 중, 풀 와이어와 스텐트 바디(1100)가 스텐트 바디(1100)의 중심축이 아닌 스텐트 바디(1100)의 표면에 따라 연장되는 면 상에서 서로 연결되는 경우에는 풀 와이어(1300)에 의해 스텐트 바디(1100)에 인가되는 회수력과 장력이 동일한 선상에서 작용하도록 하기 위해 결합부는 바람직하게는 스텐트 바디(1100)의 표면에 따라 연장되는 면 중 풀 와이어의 연장 방향 상에 배치될 수도 있다.
안티 스트레칭 와이어(1500)는 비탄성 재질로 제공되며, 실질적으로 탄성 변형하지 않는 고정 길이를 가질 수 있으며, 이러한 특성을 이용하여 스텐트 바디(1100)의 과도한 변형을 방지할 수 있다
안티 스트레칭 와이어(1500)의 길이는 결합부 간의 자연 거리(natural distance)를 고려하여 결정될 수 있다.
여기서, 자연 거리란 외력이 없는 조건 하에서 전개된 상태의 스텐트 바디(1100) 상의 임의의 두 지점 상의 거리를 의미할 수 있다. 여기서, 외력이 없는 조건이란 반드시 완벽하게 외력이 없는 상태만을 지칭하는 것은 아니며, 스텐트 바디(1100)의 길이 변형을 유도하는 회수력 등이 없는 상태, 무부하(no-load) 상태, 또는 카테터 등에 의해 구속되지 않은(unrestrained) 상태 등을 포함하는 포괄적인 용어로 이해되어야 한다. 이러한 관점에서 자연 길이는 무변형 길이('undeformed length')라고 지칭될 수도 있음을 밝혀둔다. 또 유사한 관점에서 스텐트 바디(1100)의 자연 길이(natural length)는 외력이 없는 조건 하에서 전개된 상태의 스텐트 바디(1100)의 전체 길이를 의미할 수 있다.
일 예에 따르면, 안티 스트레칭 와이어(1500)의 길이는 결합부 간의 자연 거리와 실질적으로 동일할 수 있다. 결합부 간의 자연 거리와 동일한 길이를 갖는 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 커버링 영역에서의 길이 변형을 방지할 수 있다. 다시 말해, 안티 스트레칭 와이어(1500)는 커버링 영역의 길이를 안티 스트레칭 와이어(1500)의 연결부 간의 거리 중 스텐트 바디(1100)의 길이 방향 성분값으로 고정시킬 수 있다. 구체적으로 도 5에 도시된 바와 같이 안티 스트레칭 와이어는 커버링 영역에서 스텐트 바디의 길이 변형을 방지할 수 있다.
다른 예에 따르면, 안티 스트레칭 와이어(1500)의 길이는 결합부 간의 자연 거리보다 클 수 있다. 결합부 간의 자연 거리보다 큰 길이를 갖는 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 커버링 영역에서의 길이 변형을 일정한 수준까지는 허용하되 그 이상의 길이 변형은 방지할 수 있다. 구체적으로 안티 스트레칭 와이어(1500)는, 결합부 간의 거리가 안티 스트레칭 와이어(1500)의 길이보다 작은 상태로부터 결합부 간의 거리가 안티 스트레칭 와이어(1500)의 길이와 동일해지는 상태까지는 스텐트 바디(1100)의 길이 변형을 허용하고, 결합부 간의 거리가 안티 스트레칭 와이어(1500)의 길이와 동일해지면 그 이상으로 스텐트 바디(1100)의 길이가 증가하는 것을 방지할 수 있다. 예를 들어, 스텐트 바디(1100)의 변형을 일정 수준까지 허용하는 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)가 혈관의 커브 구간을 통과하는 경우에 필요한 스텐트 바디(1100)의 변형에 유리한 점이 있을 수 있다. 다른 예를 들어, 스텐트 바디(1100)가 카테터에 삽입되기 위해 압축 상태로 변형될 때, 안티 스트레칭 와이어(1500)가 일정 수준까지 스텐트 바디(1100)의 길이 변형을 허용하는 것이 압축 상태에서의 스텐트 바디(1100)의 직경을 최소화하는데 유리할 수 있다.
또 다른 예를 따르면, 안티 스트레칭 와이어(1500)의 길이는 결합부 간의 자연 거리보다 작을 수 있다. 이때에는 스텐트 바디(1100)가 자연 길이보다 다소 간 작은 상태로 유지되므로 스텐트 바디(1100)의 방사력이나 탄성력 등에 유리한 점이 있을 수 있다.
이상에서 언급한 바와 같이 안티 스트레칭 와이어(1500)의 길이는 결합부 간의 자연 거리(natural distance)를 고려하여 자연 거리와 동일하게, 자연 거리보다 크게, 또는 자연 거리보다 작게 결정될 수 있으나, 지나치게 작은 경우에는 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 회전 구간 통과 시나 압축 시 필요한 스텐트 바디(1100)의 변형을 저해할 수 있고, 지나치게 큰 경우에는 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 과도한 변형을 허용할 수 있으므로, 적절한 수치 범위 내에서 안티 스트레칭 와이어(1500)의 길이가 설계되는 것이 필요할 수 있다. 따라서, 안티 스트레칭 와이어(1500)의 길이는 바람직하게는 결합부 간의 자연 거리의 90%~150%, 보다 바람직하게는 100%~120% 사이일 수 있다.
이상에서는 도 5를 참조하여 안티 스트레칭 와이어(1500)를 갖는 혈전 제거 기기의 예시를 설명한 뒤 안티 스트레칭 와이어(1500)의 설계와 관련된 몇몇 측면(aspect)에 관하여 설명하였다.
이하에서는 상술한 개시를 바탕으로 다양한 형태의 안티 스트레칭 와이어(1500)를 갖는 혈전 제거 기기(1000)의 예시들에 대하여 도 7 내지 도 35를 참조하여 설명하기로 한다. 다만, 후술되는 안티 스트레칭 와이어(1500)를 갖는 혈전 제거 기기(1000)의 예시들과 관련하여 도 5를 참조하여 개시한 혈전 제거 기기(1000)에 대한 설명으로부터 당업자에게 충분히 이해 가능한 사항에 대한 자세한 설명은 생략하기로 한다.
도7은 본 명세서의 일 실시예에 따른 혈전 제거 기기의 다른 예를 도시한 도면이고, 도 8는 도 7에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도 7을 참조하면, 본 예에 따른 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 스텐트 바디의 중심축을 따라 배치되는 스텐트 바디(1100)의 근위 말단과 원위 말단에 연결되는 하나의 스트랜드로 제공되며, 그 길이는 결합부 간의 자연 거리보다 클 수 있다.
도 8을 참조하면, 혈전 제거 기기(1000)는 카테터로부터 해제된 후 자체 팽창을 통해 전개 상태에 도달할 수 있다. 이때, 안티 스트레칭 와이어(1500)는 느슨한 상태로 결합부 간에 걸려있을 수 있다. 이후 풀 와이어(1300)를 통해 회수력이 인가되면 안티 스트레칭 와이어(1500)가 느슨한 상태이므로 안티 스트레칭 와이어(1500)에 장력이 발생하지 않고, 이에 따라 스텐트 바디(1100)의 길이의 증가할 수 있다. 이후 스텐트 바디(1100)의 길이 증가에 따라 결합부 간의 거리가 안티 스트레칭 와이어(1500)의 길이에 도달하면 안티 스트레칭 와이어(1500)가 팽팽한 상태가 되고, 이에 따라 안티 스트레칭 와이어(1500)의 장력으로 인해 스텐트 바디(1100)의 길이 증가가 종료되고, 스텐트 바디(1100)의 길이가 일정하게 유지될 수 있다.
이에 따라 도 7에 도시된 것과 같이 결합부 간의 거리보다 긴 길이를 갖는 안티 스트레칭 와이어(1500)는 일정한 수준까지는 스텐트 바디(1100)의 길이 증가를 허용하되, 그 이상의 길이 증가는 방지하고, 결과적으로 스텐트 바디(1100)의 과도한 변형을 방지할 수 있다.
도9는 본 명세서의 일 실시예에 따른 혈전 제거 기기의 또 다른 예를 도시한 도면이고, 도 10은 도 9에 따른 혈전 제거 기기의 동작을 도시한 도면이다.
도 9을 참조하면, 본 예에 따른 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 스텐트 바디의 메쉬 구조체의 표면 상에 길이 방향에 따라 일렬로 위치하는 결합부를 연결하는 하나의 스트랜드로 제공될 수 있다. 이때, 결합부 중 전위 결합부는 스텐트 바디(1100)의 몸체부의 근위 말단, 후위 결합부는 스텐트 바디(1100)의 원위 말단에 위치할 수 있으며, 결합부에서 스텐트 바디와 연결되는 두 개의 연결부 사이에서 연장되는 연장부는 그 길이가 두 결합부 간의 자연 거리보다 클 수 있다.
연장부는 스텐트 바디의 내측, 외측 또는 이들의 조합에 따라 배치될 수 있다. 여기서, 연장부는 도 9에 도시된 바와 같이 스텐트 바디(1100)의 내측으로 배치될 수 있다. 연장부가 내측에 위치하면, 안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)의 회수 과정에서 발생하는 스텐트 바디(1100)와 혈관벽과의 마찰로부터 비교적 자유로울 수 있다.
한편, 도 9에 도시된 바와 달리 연장부는 스텐트 바디(1100)의 외측으로 배치될 수 있다. 이 경우 연장부가 스텐트 바디(1100)의 내측에 위치하는 것보다 그 설계가 용이할 수 있다. 또, 이와 달리 안티 스트레칭 와이어(1500)가 두 결합부 사이에서 스텐트 바디(1100)의 셀(1103)을 안팍으로 통과함으로써 연장부가 스텐트 바디(1100)의 내부 및 외부에 교대로 위치하는 것도 가능하다.
도 10을 참조하면, 풀 와이어(1300)로부터 회수력에 의해 초기 전개 상태에서 느슨한 상태인 안티 스트레칭 와이어(1500)는 팽팽한 상태가 될 수 있고, 이 때, 안티 스트레칭 와이어(1500)의 연장부는 스텐트 바디(1100)의 단면상 스텐트 바디(1100)의 원주면에 가깝게 배치될 수 있다. 이처럼 연장부가 스텐트 바디(1100)의 내부 공간에 위치하지 않음으로써, 안티 스트레칭 와이어(1150)는 스텐트 바디(1100)의 내부 공간으로 들어오는 혈전의 유입을 방해하지 않을 수 있고, 스텐트 바디(1100)는 그 내부 공간에 혈전을 소지하기 쉬울 수 있다.
도 11은 본 명세서의 일 실시예에 따른 혈전 제거 기기(1000)의 다시 또 다른 예를 도시한 도면이고, 도 12는 도 11에 따른 혈전 제거 기기(1000)의 동작을 도시한 도면이다.
이상의 설명에서는 혈전 제거 기기(1000)에 대해 그 중심축 상에서 풀 와이어(1300)가 연결되는 형태의 스텐트 바디(1100)를 기준으로 설명하였으나, 혈전 제거 기기(1000)의 스텐트 바디(1100)는 스텐트 바디(1100)의 메쉬 구조체의 표면 측에서 풀 와이어(1300)와 연결될 수도 있다.
도 11을 참조하면, 본 예에 따른 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 스텐트 바디의 메쉬 구조체의 표면으로부터 연장되는 가상의 면 중 풀 와이어(1300)로부터 연장되는 가상 직선 상에 위치한 두 결합부를 연결하는 하나의 스트랜드로 제공될 수 있고, 그 길이는 두 결합부 간의 자연 거리보다 클 수 있다. 이 때, 두 결합부는 각각 스텐트 바디(1100)의 근위 말단(또는 풀 와이어(1300)에 위치할 수 있음) 및 원위 말단에 위치할 수 있다.
도 12 를 참조하면, 풀 와이어(1300)가 스텐트 바디(1100)에 연결되는 지점과 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1100)에 연결되는 두 결합부가 실질적으로 동일 직선상에 위치함으로써, 스텐트 바디(1100)에 작용하는 회수력과 그에 따른 안티 스트레칭 와이어(1500)의 장력이 동일한 선상에서 작용할 수 있고, 안티 스트레칭 와이어(1500)에 의한 효과는 장력과 회수력이 동일 선상에서 작용하지 않는 경우보다 향상될 수 있다.
이상에서 혈전 제거 기기의 스텐트 바디의 원위부는 닫힌 형태나 열린 형태로 제공될 수 있다. 이 중 특히 열린 형태의 원위부를 갖는 스텐트 바디(1100)를 이용하는 경우에는 혈전 제거 기기(1000)에 소지된 혈전이 열린 원위 단말을 통해 혈전 제거 기기(1000)로부터 이탈할 수 있다. 또한, 닫힌 형태의 원위부를 이용하는 경우라도 원위 말단의 스트럿 배치 형태에 따라 혈전 이탈이 발생할 수도 있다. 이러한 혈전 이탈을 방지하기 위해 스텐트 바디(1100)의 원위부 측에는 바스켓(1900)이 선택적으로 제공될 수 있다.
바스켓(1900)은 스텐트 바디(1100)의 원위 말단에 연결되고, 스텐트 바디(1100)의 원위 말단으로부터 멀어질수록 직경이 줄어드는 프로파일을 가질 수 있다. 이를 통해 바스켓(1900)은 스텐트 바디(1100)의 내부에 들어온 혈전이 빠져나가는 것을 방지하거나 혈전이 스텐트 바디(1100)의 길이방향을 따라 이탈하는 것을 방지할 수 있다.
바스켓(1900)은 니티놀이나 니티놀 기반의 기억 형상 합금과 같은 고탄성의 소재를 이용하여 제조될 수 있고 필요에 따라 형광 투시법 하에서 가시성이 높은 물질을 포함할 수도 있다. 바스켓(1900)은 브레이딩(braiding) 등의 방식을 통해 별도로 제작된 후 스텐트 바디(1100)에 연결될 수 있으며, 스텐트 바디(1100)와 일체로 제작될 수도 있다.
한편, 바스켓(1900) 중 넓은 직경을 가지는 근위 말단이 스텐트 바디(1100)의 원위 말단과 연결되는 것이 일반적이나, 반드시 그러한 것은 아니며, 바스켓(1900)의 근위 말단 외에 바스켓(1900)의 일 위치에서 스텐트 바디(1100)와 연결될 수도 있고, 이를 통해 바스켓(1900)의 근위 말단은 스텐트 바디(1100)의 직경보다 넓은 직경을 가질 수 있으며, 스텐트 바디(1100)가 혈관벽에 완전히 밀착되지 않을 때도 혈관벽과 접촉할 수 있다.
한편, 본 명세서를 통해 상술한 예 또는 후술될 예의 혈전 제거 기기(1100)는 바스켓(1900)을 포함할 수 있으며, 혈전 제거 기기(1100)가 바스켓(1900)을 포함하는 경우, 안티 스트레칭 와이어(1100)과 연결되는 결합부가 바스켓(1900)상에 위치할 수 있음은 자명하다.
도 13은 본 명세서의 일 실시예에 따른 혈전 제거 기기의 일 구현예(one implementation)를 도시한 도면이고, 도 14는 본 명세서의 일 실시예에 따른 혈전 제거 기기의 일 구현예를 도시한 도면이다.
본 예에 따른 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 스텐트 바디의 메쉬 구조체의 표면으로부터 연장되는 가상의 면 중 풀 와이어(1300)로부터 연장되는 가상 직선 상에 위치한 두 결합부를 연결하는 하나의 스트랜드로 제공될 수 있고, 그 길이는 두 결합부 간의 자연 거리와 실질적으로 동일할 수 있다. 이 때, 결합부 중 전위 결합부는 풀 와이어(1300), 후위 결합부는 바스켓(1900)에 위치할 수 있고, 스텐트 바디(1100)의 근위 말단이 일직선을 따라 길게 연장됨으로써 후위 결합부와 연결되는 안티 스트레칭 와이어(1500)의 연결부는 스텐트 바디(1100)의 긴 근위 말단을 따라 연장되어 넓게 형성될 수 있다. 이 때, 스텐트 바디(1100)에 대한 안티 스트레칭 와이어(1500)의 커버링 비율은 100%일 수 있다.
본 예의 안티 스트레칭 와이어(1500)는 100%의 커버링 비율을 가지고, 전위 결합부 및 후위 결합부 사이의 거리와 실질적으로 동일한 길이로 제공되므로 스텐트 바디(1100)의 길이는 외력에 의해 늘어나지 않고 그 자연 길이와 실질적으로 동일하게 유지될 수 있다.
또한, 풀 와이어(1300)가 스텐트 바디(1100)에 연결되는 지점과 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1100)에 연결되는 전위 및 후위 결합부가 실질적으로 동일 직선상에 위치함으로써 스텐트 바디(1100)에 작용하는 회수력과 그에 따른 안티 스트레칭 와이어(1500)의 장력이 동일한 선상에서 작용할 수 있다.
이상의 설명에서는 혈전 제거 기기(1000)가 하나의 안티 스트레칭 와이어(1500)를 포함하는 것으로 설명하였으나, 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 복수일 수도 있다. 혈전 제거 기기(1000)가 하나의 안티 스트레칭 와이어(1500)만 갖는 경우보다 복수의 안티 스트레칭 와이어(1500)를 갖는 경우에 보다 안정적으로 스텐트 바디(1100)의 길이 증가를 제한하는 것이 가능할 수 있으며, 대칭적으로 배치되는 복수의안티 스트레칭 와이어(1500)를 이용하면 도 9 또는 도 11에 도시된 것과 같이 메쉬 구조체의 표면에 결합부가 위치하는 경우에 발생하는 장력의 불균형을 해결할 수 있게 된다.
복수의 안티 스트레칭 와이어(1500)의 배치는 다양할 수 있다. 복수의 안티 스트레칭 와이어(1500)는 혈전 제거 기기(1000)의 스텐트 바디(1100)의 길이 방향 상의 위치나 단면 상의 방향에 의해 정의되는 다양한 조합에 의해 배치될 수 있다.
일 예로, 복수의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 종단면에서 볼 때, 스텐트 바디(1100)의 중심으로부터 서로 다른 방사 방향 상에 배치될 수 있다. 또 복수의 안티 스트레칭 와이어(1500)가 서로 다른 방사 방향 상에 배치될 때에는 이들의 배치가 서로 대칭적일 수 있다. 예를 들어, 2개의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심축을 중심으로 서로 마주보도록 배치될 수 있다. 다른 예를 들어, 3개의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심축으로부터 서로 120도의 각도를 이루는 형태로 배치될 수 있다. 또 다른 예를 들어, 4개의 안티 스트레칭 와이어(1500) 중 한 쌍은 스텐트 바디(1100)의 중심축으로부터 동일한 방향 상에 배치되고 다른 한 쌍은 상기 한 쌍과 스텐트 바디(1100)의 중심축 상 반대 방향 상에 배치되는 것도 가능하다.
다른 예로, 복수의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 측면에서 볼 때, 스텐트 바디(1100)의 길이 방향 상 서로 다른 위치에 배치될 수 있다. 여기서, 길이 방향 상 서로 다른 위치란 각각의 안티 스트레칭 와이어(1500)의 결합부의 위치 중 적어도 일부가 다른 것으로 이해될 수 있으며, 다시 말해, 각각의 안티 스트레칭 와이어(1500)의 커버링 영역이 서로 다른 것을 의미할 수 있다. 예를 들어, 복수의 안티 스트레칭 와이어(1500)는 커버링 영역이 일부 또는 전부가 겹치는 형태, 인접한 안티 스트레칭 와이어(1500)의 커버링 영역의 시작과 끝이 일치하는 형태, 인접한 안티 스트레칭 와이어(1500)의 커버링 영역이 서로 이격되는 형태, 또는 이들이 조합된 형태로 배치될 수 있다. 인접한 커버링 영역이 겹치는 경우에는 단일 안티 스트레칭 와이어(1500)를 이용하는 경우보다 길이 변형에 저항하는 효과가 강해질 수 있다. 또 인접한 커버링 영역의 시작과 끝이 일치하는 형태는 길이 변형에 대한 저항력은 단일 안티 스트레칭 와이어(1500)를 이용하는 경우가 유사할 수 있으나 스텐트 바디(1100)의 커버링 영역 전체에 걸쳐 비교적 균등한 저항력이 발생하는 장점이 있을 수 있다. 또 인접한 커버링 영역이 서로 이격되는 경우에는 커버링 영역 사이에서 길이 변형이 허용됨에 따라 스텐트 바디(1100)의 유연성과 탄성이 증가하는 효과가 있을 수 있다.
한편, 상술한 예시들에 따른 복수의 안티 스트레칭 와이어(1500)의 배치는 조합되는 것도 가능하다. 예를 들어, 스텐트 바디(1100)의 길이 방향 상 서로 다른 지점에 배치되는 안티 스트레칭 와이어(1500)들이 단면 상에서도 중심축으로부터 서로 다른 방향 상에 배치될 수 있을 것이다.
이러한 복수의 안티 스트레칭 와이어(1500)의 배치와 관련된 몇몇 예시들에 대해서는 도 15 및 도 16을 참조하여 설명하기로 한다. 다만, 안티 스트레칭 와이어(1500)의 배치가 후술되는 예시들로 한정되는 것은 아님을 미리 밝혀둔다.
도 15는 본 명세서의 다른 실시예에 따른 혈전 제거 기기의 일 예를 도시한 도면이다.
본 예에 따르면, 혈전 제거 기기(1000)는 서로 커버링 영역이 겹치는 2개의 안티 스트레칭 와이어(1500)를 포함할 수 있고, 각각의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심으로부터 서로 다른 방사 방향 상에 배치될 수 있다. 이 때, 2 개의 안티 스트레칭 와이어(1500) 중 하나는 스텐트 바디(1100)의 근위 말단 및 원위 말단에 위치한 두 결합부 사이를 연결하는 하나의 스트랜드로 제공될 수 있고, 다른 하나는 몸체부의 근위 말단 및 스텐트 바디(1100)의 원위 말단에 위치한 두 결합부 사이를 연결하는 하나의 스트랜드로 제공될 수 있으며, 각 안티 스트레칭 와이어(1500)의 길이는 각각의 두 결합부 사이의 자연 거리보다 클 수 있다.
도 15에 도시된 바와 같이, 풀 와이어(1300)로부터 회수력이 인가되면 2개의 안티 스트레칭 와이어(1500)는 팽팽한 상태가 될 수 있고, 스텐트 바디(1100)의 커버링 영역 내에 장력을 발생시킴으로써 커버링 영역의 길이증가를 방지할 수 있다. 이 때, 2개의 안티 스트레칭 와이어(1500)가 동일한 커버링 영역에 중복해서 작용함으로써 단일 안티 스트레칭 와이어(1500)가 작용하는 경우보다 그 효과가 증가할 수 있으며, 2 개의 안티스트레칭 와이어(1500)가 대칭되게 배치됨으로써, 비대칭하게 배치되는 경우보다 그 효과가 균등할 수 있다. 여기서, 스트레칭 방지 효과가 균등하게 발생한다는 것은 스텐트 바디(1100)의 종단면을 기준으로 그 중심으로부터 각기 다른 방사방향에 미치는 효과가 비교적 균등하다는 것으로 해석될 수 있다.
도 16은 본 명세서의 다른 실시예에 따른 혈전 제거 기기의 다른 예를 도시한 도면이다.
본 예에 따르면, 혈전 제거 기기(1000)는 각 커버링 영역의 시작과 끝이 일치하는 3개의 안티 스트레칭 와이어(1500)를 포함할 수 있고, 각각의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심으로부터 서로 다른 방사 방향 상에 배치될 수 있으며, 각각의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심축으로부터 서로 120도의 각을 이룰 수 있다.
이 때, 인접한 두 안티 스트레칭 와이어(1500)의 커버링 영역의 시작과 끝은 일치하더라도, 비교적 근위에 위치한 안티 스트레칭 와이어(1500)의 후위 결합부와 비교적 원위에 위치한 안티 스트레칭 와이어(1500)의 전위 결합부는 일치하지 않을 수 있고, 각각의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)상에 위치한 전위 결합부 및 후위 결합부 사이에서 연장되는 하나의 스트랜드로 제공되며, 그 길이는 각각의 전위 결합부 및 후위 결합부 사이의 자연거리보다 클 수 있다.
또 이 때, 3 개의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 근위 말단에 가깝게 위치한 것, 원위 말단에 가깝게 위치한 것 및 그 사이에 위치한 것으로 구분되며, 3 개의 안티 스트레칭 와이어(1500)를 통해 스텐트 바디(1100)의 전체 길이에 대한 과도한 변형이 방지될 수 있다. 이처럼, 혈전 제거 기기(1000)에 제공되는 안티 스트레칭 와이어(1500)가 복수인 경우에는, 그 커버링 영역은 통합하여 고려될 수 있으며 도 14의 경우와 같이 복수의 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 전체 길이를 커버하는 경우에는 커버링 비율을 100%로 산출할 수 있다.
도 16에 도시된 것과 같이, 풀 와이어(1300)로부터 스텐트 바디(1100)에 회수력이 인가되면 각 커버링 영역은 안티 스트레칭 와이어(1500)가 팽팽해질 때까지 그 길이 증가가 허용되며, 각기 다른 방사방향에 위치한 안티 스트레칭 와이어(1500)가 팽팽한 상태가 됨으로써 그로 인해 발생한 장력이 스텐트 바디(1100)에 스텐트 바디(1100) 전체에 대해 고르게 작용할 수 있다.
이상의 설명에서는 혈전 제거 기기의 스텐트 바디가 싱글 세그먼트 형태인 것으로 설명하였으나, 스텐트 바디는 멀티 세그먼트 형태일 수도 있다.
여기서, 세그먼트란 스텐트 바디를 형성하는 메쉬 구조체를 지칭하는 단위로 이해될 수 있으며, 따라서, 싱글 세그먼트 형태의 스텐트 바디는 단일한 메쉬 구조체로 형성되는 스텐트 바디를 의미하고, 멀티 세그먼트 형태의 스텐트 바디는 복수의 메쉬 구조체를 포함하는 스텐트 바디를 의미할 수 있다. 즉, 멀티 세그먼트란 스텐트 바디가 서로 이격된 복수의 메쉬 구조체를 가지는 형태일 수 있다.
멀티 세그먼트 형태의 스텐트 바디는 서로 복수의 메쉬 구조체와 메쉬 구조체를 연결하는 브릿지를 가질 수 있다. 여기서, 브릿지는 인접한 두 개의 메쉬 구조체에 그 양단이 각각 연결되는 직선형 와이어 또는 스트럿일 수 있다.
브릿지의 개수는 필요에 따라 적절히 변경될 수 있다. 후술되는 도 17에는 세그먼트가 두 개의 브릿지로 연결되는 것을 도시하고 있으나, 브릿지가 하나이거나 셋 이상인 것도 가능하다. 브릿지는 연결하는 두 개의 세그먼트가 서로 비틀어지는 것을 방지하기 위해 스텐트 바디(11)의 종단면에서 볼 ?? 대칭적으로 배치되는 것이 유리할 수 있다.
또 브릿지는 인접한 두 개의 세그먼트에 각각 연결되는데, 이때 브릿지는 세그먼트의 단부릍 통해 세그먼트와 연결될 수 있음은 물론 그 외의 지점에서 세그먼트와 연결되는 것도 가능하다. 예를 들어, 도 17을 살펴보면, 브릿지는 두 인접한 세그먼트 중 근위 방향에 배치된 세그먼트의 후단과 원위 방향에 배치된 세그먼트의 전단을 통해 두 세그먼트를 연결하고 있으나, 반드시 해당 지점을 통해 세그먼트를 연결해야 하는 것은 아닌 것이다.
상술한 멀티 세그먼트 형태의 스텐트 바디는 싱글 세그먼트 형태의 스텐트 바디와 비교하여 혈전 초대 면에서 유리한 점을 가진다.
멀티 세그먼트 형태의 스텐트 바디에는 인접한 메쉬 구조체들을 연결하는 브릿지가 포함되는데, 이러한 브릿지는 스텐트 바디에 마우스 구조를 형성할 수 있다.
여기서, 마우스 구조란 비교적 촘촘한 개구를 갖는 메쉬 구조체의 셀과 달리 브릿지에 의해 형성되는 비교적 큰 사이즈의 개구를 형성하는 구조를 의미할 수 있다. 마우스 구조에 의해 형성되는 개구는 일반적으로 혈전의 크기보다 큰 사이즈를 가져 혈전이 개구를 통해 스텐트 바디의 내측 공간으로 유입되는 입구 역혈을 할 수 있다. 다시 말해, 본 명세서의 마우스 구조란 세그먼트와 세그먼트 사이에 브릿지가 위치한 영역을 지칭하는 것일 수 있으며, 브릿지 사이에는 혈전이 스텐트 바디(11)의 내부로 들어오기 충분한 공간이 형성될 수 있다.
상술한 마우스 구조를 갖는 스텐트 바디는 혈전 초대를 수행할 수 있다. 특히, 마우스 구조는 후술되는 도 17에서 도시된 것과 같이 스텐트 바디가 파고들기 어려운 경혈전을 스텐트 바디 내부로 끌어들이는데 유리한 장점을 가진다. 다만, 본 명세서에서 마우스 구조의 기능에서 연혈전을 초대하는 것이 제외되는 것은 아니다.
한편, 메쉬 구조체의 셀 중 일부를 혈전보다 큰 사이즈를 갖는 확장 셀(enlarged cell)로 형성하는 것도 가능하며, 이러한 확장 셀과 마우스 구조는 기구적인 측면에서 차이점이 있으나, 기능적인 면에서는 유사점을 가진다. 따라서, 본 명세서에서 마우스 구조는 기구적 관점에서는 확장 셀을 포함하는 것으로 이해되어서는 아니하나, 문맥에 따라 기능적 관점에서는 확장 셀을 포함하는 포괄적 용어로 이해되어야 한다.
또, 브릿지 사이의 공간은 스텐트 바디의 다른 셀보다 큰 확장 셀, 또는 입구(lnlet)로 지칭될 수 있으며, 입구의 크기는 브릿지의 길이 및 세그먼트의 직경에 의해 결정될 수 있다. 또한, 혈전 제거 기기의 회수 과정에서 그 횡력에 의해 스텐트 바디가 변형되면 세그먼트의 직경이 줄어듬으로써 입구의 크기 및 형상이 변형될 수 있다.
이하에서는 멀티 세그먼트 형태의 스텐트 바디를 갖는 혈전 제거 기기의 안티 스트레칭 와이어에 관하여, 스텐트 바디가 두 개의 세그먼트를 갖는 혈전 제거 기기와 스텐트 바디가 세 개의 세그먼트를 갖는 혈전 제거 기기를 예시로 들어 설명하기로 한다. 다만, 멀티 세그먼트의 형태가 듀얼 세그먼트 형태(dual segment type)나 트리플 세그먼트 형태(triple segment type)로 제한되는 것은 아니며, 후술되는 예시들로 스텐트 바디의 세그먼트의 개수가 언급된 예시와 다른 경우에 대해서도 당업자에게 충분히 이해될 수 있을 것이다.
도 17은 본 명세서의 또 다른 실시예에 따른 혈전 제거 기기의 일 예를 도시한 도면이고, 도 18은 도 17에 따른 혈전 제거 기기의 형상 변형의 일 예에 관한 도면이고, 도 19는 도 17에 따른 혈전 제거 기기의 형상 변형의 다른 예에 관한 도면이다.
도 17을 참조하면, 본 예에 따른 혈전 제거 기기(1000)의 스텐트 바디(1100)는 두 개의 세그먼트(1110, 1130), 두 개의 세그먼트(1110, 1130)를 연결하는 브릿지(1123) -도 20 이하에서는 제1 브릿지로 지칭됨- 및 두 개의 세그먼트(1110, 1130) 사이에 형성되는 마우스 구조(1120) - 도 20 이하에서는 제1 마우스로 지칭됨 -를 포함할 수 있다. 세그먼트(1110, 1130)는 스트럿에 의한 매쉬 구조체로 제공될 수 있다. 또 브릿지(1123)는 그 양단이 근위 방향 측의 메쉬 구조체의 원위부와 원위 방향 측의 메쉬 구조체의 근위부에 연결되고 양단 사이에서 연장되는 와이어 형태로 제공될 수 있으며, 스텐트 바디(1100)의 중심축으로부터 서로 다른 방사 방향 상에 배치될 수 있다. 이러한 브릿지(1123)는 두 세그먼트의 사이에 마우스 구조(1120)를 형성할 수 있다.
도 18을 참조하면, 상술한 혈전 제거 기기(1000)는 시술 지점에 배치되어 전개될 수 있다. 시술 지점 부근의 혈전은 전개 과정 또는 전개된 후 풀 와이어(1300)를 통한 스텐트 바디(1100)의 회수 과정에서 마우스 구조(1120)를 통해 스텐트 바디(1100) 내부로 초대될 수 있다. 여기서, 풀 와이어(1300)를 통해 스텐트 바디(1100)에 회수력이 인가되면 본 예에 따른 혈전 제거 기기(1000)의 스텐트 바디(1100)의 각각의 세그먼트(1110, 1130)는 그 길이 증가에 따라 형상이 변형될 수 있으며, 이에 따라 마우스 구조(1120)의 입구의 크기가 변형되고, 혈전 초대가 원활히 이루어지지 않게 될 수 있다. 한편, 도 17에 도시된 혈전 제거 기기(1000)에서 단일의 세그먼트(1110)에만 안티 스트레칭 와이어(1500)가 설치되는 경우에도 도 19와 같이 안티 스트레칭 와이어(1500)가 설치되지 않은 세그먼트(1110, 1130)에 형성 변형이 유발되어 역시 마우스 구조(1120)의 입구의 크기가 변형될 수 있다. 또 도 18 및 도 19에 도시된 바와 같이 마우스 구조(1120)의 입구의 변형 이외에도 전체적인 직경 변화가 발생하여 혈전 제거가 원활히 수행되지 않을 수 있다.
따라서, 멀티 세그먼트 형태의 스텐트 바디를 이용하는 혈전 제거 기기에는 스텐트 바디를 구성하는 세그먼트들에 전반적으로 안티 스트레칭 효과가 인가되는 것이 바람직할 수 있다.
멀티 세그먼트 형태의 스텐트 바디를 갖는 혈전 제거 기기에는 각각의 세그먼트에 커버링 영역이 배치되도록 안티 스트레칭 와이어가 제공될 수 있다.
일 예에 따르면, 혈전 제거 기기에 단일의 안티 스트레칭 와이어가 포함되고, 혈전 제거 기기는 단일의 안티 스트레칭 와이어를 이용하여 스텐트 바디의 길이 증가를 억제할 수 있다. 여기서, 단일의 안티 스테리칭 와이어에 관련된 결합부가 복수의 세그먼트 중 가장 근위 방향에 배치되는 세그먼트의 일 지점(예를 들어, 근위 측 세그먼트의 근위부의 일 지점)과 가장 원위 방향에 배치되는 세그먼트의 일 지점(예를 들어, 원위 측 세그먼트의 원위부의 일 지점)에 위치할 수 있다. 이에 따라 스텐트 바디의 세그먼트 별로 커버링 영역이 형성되고, 단일의 안티 스트레칭 와이어가 모든 세그먼트들의 길이 증가를 억제할 수 있다.
다른 예에 따르면, 혈전 제거 기기에 복수의 안티 스트레칭 와이어가 포함되고, 혈전 제거 기기는 복수의 안티 스테리칭 와이어를 이용하여 스텐트 바디의 길이 증가를 억제할 수 있다. 여기서, 복수의 안티 스트레칭 와이어는 각각 세그먼트 별로 설치될 수 있다. 이에 따라 스텐트 바디의 세그먼트 별로 커버링 영역이 각각 형성되고, 복수의 안티 스트레칭 와이어가 모든 세그먼트들의 길이 증가를 억제할 수 있다.
또 다른 예에 따르면, 혈전 제거 기기에 복수의 안티 스트레칭 와이어가 포함되되, 복수의 안티 스트레칭 와이어 중 적어도 일부와 관련된 결합부는 복수의 세그먼트에 형성될 수 있다. 예를 들어, 3개의 세그먼트를 가지는 스텐트 바디에 두 개의 안티 스트레칭 와이어가 설치되며, 하나의 안티 스트레칭 와이어는 최근위 측의 세그먼트와 중간에 위치한 세그먼트에 연결되고, 다른 하나의 안티 스트레칭 와이어는 중간에 위치한 세그먼트와 최원위 측의 세그먼트에 연결될 수 있다. 여기서, 복수의 안티 스트레칭 와이어의 커버링 영역은 중첩되거나, 이격되거나 또는 하나의 커버링 영역의 종료 지점과 다른 하나의 커버링 영역의 시작 지점이 일치되도록 형성되는 것이 가능하다.
한편, 멀티 세그먼트의 형태의 스텐트 바디에 제공되는 안티 스트레칭 와이어의 커버링 비율은 마우스 구조 부위를 제외하고 산출될 수 있다. 구체적으로 멀티 세그먼트 형태의 스텐트 바디에서 커버링 영역은 안티 스트레칭 와이어에 의해 안티 스트레칭 효과가 발생하는 메쉬 구조체 영역일 수 있으며, 커버링 비율은, 마우스 구조를 제외한 매쉬 구조체들의 전체 길이에 대한 전체 커버링 영역의 길이의 비로 정의될 수 있다.
또 멀티 세그먼트 형태의 스텐트 바디를 갖는 혈전 제거 기기에는 브릿지의 위치를 고려하여 안티 스트레칭 와이어가 제공될 수 있다.
멀티 세그먼트 형태의 스텐트 바디에 안티 스트레칭 와이어가 적어도 두 개의 세그먼트에 걸쳐 연결되는 경우, 상술한 바와 같이 인접한 세그먼트를 연결하는 브릿지에 의해 인접한 세그먼트의 사이에 형성되는 마우스 구조의 개구의 사이즈는 안티 스트레칭 와이어에 의해 정해질 수 있다.
일 예로, 인접하는 두 개의 세그먼트 간에 연결되는 안티 스트레칭 와이어는 브릿지와 동일 선상에 위치될 수 있다. 이와 같이 배치되는 안티 스트레칭 와이어는 브릿지에 의해 형성되는 개구를 가로지르지 않으므로, 브릿지의 개구를 통한 혈전 초대를 저해하지 않을 수 있다. 이는 안티 스트레칭 와이어에 의해 마우스 구조의 개구의 사이즈가 감소하지 않는 것으로 해석될 수도 있다. 보다 구체적인 예로, 인접한 두 개의 세그먼트가 중심축으로부터 방사 방향 상 서로 마주보고 배치되는 2개의 브릿지로 연결되는 스텐트 바디의 경우, 인접하는 두 개의 세그먼트 간에 연결되는 안티 스트레칭 와이어는 브릿지와 동일 선상에 위치될 수 있다.
다른 예로, 인접하는 두 개의 세그먼트 간에 연결되는 안티 스트레칭 와이어는 브릿지와 상이한 선상에 위치될 수 있다. 이와 같이 배치되는 안티 스트레칭 와이어는 브릿지에 의해 형성되는 개구를 가로지르므로, 브릿지의 개구를 통한 혈전 이탈을 방지할 수 있다. 이는 안티 스트레칭 와이어에 의해 마우스 구조의 개구의 사이즈가 감소되는 것으로 해석될 수도 있다. 보다 구체적인 예로, 인접한 두 개의 세그먼트가 중심축으로부터 방사 방향 상 서로 마주보고 배치되는 2개의 브릿지로 연결되는 스텐트 바디의 경우, 인접하는 두 개의 세그먼트 간에 연결되는 두 개의 안티 스트레칭 와이어가 종단면에서 볼 때 각각 브릿지와 직각을 이루도록 배치되어 마우스 구조에 4개의 개구가 형성되도록 할 수 있다.
한편, 적어도 두 개의 세그먼트에 걸쳐 연결되는 안티 스트레칭 와이어는, 브릿지의 기능을 수행할 수도 있다. 예를 들어, 인접한 세그먼트 사이를 연결하는 두 개의 안티 스트레칭 와이어가 두 개의 브릿지가 될 수도 있다. 다른 예를 들어, 인접한 세그먼트 사이에 하나의 브릿지가 있고, 인접한 세그먼트 사이를 연결하는 안티 스트레칭 와이어가 브릿지와 대칭되게 위치하여, 실질적으로 두 세그먼트가 두 개의 브릿지로 연결되는 것과 동일한 효과를 가질 수 있다.
이하에서는 멀티 세그먼트 형태의 스텐트 바디를 갖는 혈전 제거 기기의 안티 스트레칭 와이어에 관한 예시들을 도 20 내지 도 24를 참조하여 살펴보기로 한다.
도 20을 참조하면, 본 예에 따르면 안티 스트레칭 와이어(1500)는 2개(도면 상에서1510, 1520으로 지칭됨)로 제공되어, 각각의 세그먼트의 길이 증가를 방지하는 형태로 제공될 수 있다.
각각의 안티 스트레칭 와이어(1500)가 연결되는 결합부는 각각 하나의 세그먼트에 위치하며, 결합부와 연결된 안티 스트레칭 와이어(1500)의 연결부 사이에서 연장되는 연장부는 두 결합부 사이의 자연 길이보다 길 수 있다. 이 때, 연장부는 세그먼트의 셀(1103)의 내부 영역을 가로지를 수 있으나, 마우스 구조의 입구는 가로지르지는 않도록 배치될 수 있다.
한편, 도 20에서는 2개의 안티 스트레칭 와이어(1500)가 스텐트 바디(1100)의 중심으로부터 각기 다른 방사방향에 위치하는 것으로 도시되었으나, 반드시 그러한 것은 아니며, 동일한 방사방향에 위치할 수도 있고, 서로 대칭으로 배치될 수도 있다.
풀 와이어(1300)의 조작에 따라 스텐트 바디(1100)가 당겨지면, 제1 세그먼트(1110) 및 제2 세그먼트(1130)의 길이 증가는 제1 와이어(1510) 및 제2 와이어(1520)를 통해 일정 범위 내로 제한될 수 있다. 이에 따라 제1 세그먼트(1110) 및 제2 세그먼트(1130)의 직경 크기가 일정 범위내로 유지됨으로써 제1 마우스(1120)의 크기는 과도하게 축소되지 않고 제1 마우스(1120)의 형상은 과도하게 찌그러지지 않을 수 있다. 이를 통해 제1 마우스(1120)의 입구는 혈전이 들어오기에 충분한 크기를 가질 수 있다.
도 21을 참조하면, 본 예에 따르면 안티 스트레칭 와이어(1500)는 하나로 제공되어, 인접한 2개의 세그먼트의 길이증가를 방지하는 형태로 제공될 수 있다. 안티 스트레칭 와이어(1500)가 연결되는 두 결합부는 서로 다른 세그먼트에 위치하며, 결합부와 연결된 안티 스트레칭 와이어(1500)의 연결부 사이에서 연장되는 연장부는 두 결합부 사이의 자연길이보다 길게 제공되므로 초기 전개 상태에서 느슨한 형태를 가질 수 있다.
또, 안티 스트레칭 와이어(1500)의 두 결합부는 2 개의 제1 브릿지(1123) 중 어느 하나를 따라 연장되는 가상 직선 상에 위치할 수 있으며, 이를 통해 안티 스트레칭 와이어(1500)는 제1 브릿지(1123)를 따라 나란히 배치되어 마우스 구조의 입구를 가리지 않는 형태로 제공될 수 있다.
풀 와이어(1300)의 조작에 따라 스텐트 바디(1100)가 당겨지면, 제1 세그먼트(1110) 및 제2 세그먼트(1130)의 직경 크기가 일정 범위내로 유지됨으로써 제1 마우스(1120)의 크기는 과도하게 축소되거나 찌그러지지 않을 수 있다. 제1 브릿지(1123)가 굴곡을 포함하는 경우에도, 브릿지형 안티 스트레칭 와이어(1520)를 통해 제1 브릿지(1123)의 길이 변형은 제한될 수 있다. 이처럼 제1 마우스(1120)는 혈전과 결합하기에 충분한 크기를 가질 수 있다.
도 22를 참조하면, 본 예에 따른 혈전 제거 기기(1000)의 스텐트 바디(1100)는 세 개의 세그먼트를 가질 수 있으며, 세그먼트들의 사이에 두 개의 마우스 구조가 형성될 수 있다. 이때 각각의 마우스 구조를 형성하는 브릿지들은 마우스 구조 별로 엇갈려 배치될 수 있다. 마우스 구조가 엇갈려 배치되면, 마우스 구조에 의한 개구의 유입 방향이 상이하게 형성될 수 있어 혈전 제거 기기의 외부에 위치하는 혈전의 유입 방향이 다변화되는 장점이 있을 수 있다.
다시 도 22를 참조하면, 본 예에 따른 안티 스트레칭 와이어(1500)는 3개일 수 있으며(도면 상에서1510, 1520, 1530으로 지칭됨), 상술한 도 20과 같이 각각의 세그먼트의 길이 증가를 방지하는 형태로 제공될 수 있다.
여기서, 3개의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심에 대해 대칭으로, 즉 스텐트 바디(1100)의 중심축으로부터 서로 120도의 각도를 이루는 형태로 배치될 수 있으나, 반드시 그러한 것은 아니고, 스트레칭 방지 효과 및 설계상의 이점을 고려?I여 적절하게 배치될 수 있다.
또 여기서, 각각의 안티 스트레칭 와이어(1500)가 연결되는 결합부는 각각 하나의 세그먼트에 위치하며, 결합부와 연결된 안티 스트레칭 와이어(1500)의 연결부 사이에서 연장되는 연장부는 두 결합부 사이의 자연 길이보다 길게 제공될 수 있다. 이를 통해, 스텐트 바디(1100)에 횡력이 가해지면 각 세그먼트의 길이는 연장부의 길이 내로 증가할 수 있다.
자세하게는, 풀 와이어(1300)의 조작에 따라 스텐트 바디(1100)가 당겨지면, 제1 세그먼트(1110), 제2 세그먼트(1130) 및 제3 세그먼트(1150)의 길이 증가는 3개의 안티 스트레칭 와이어(1500)를 통해 일정 범위 내로 제한될 수 있으며, 이처럼 각 세그먼트의 직경 변화가 방지됨으로써 제1 마우스(1120) 및 제2 마우스(1140)의 크기 및 형상은 혈전이 통과하기 용이한 수준으로 유지될 수 있다.
도 23을 참조하면, 본 예의 혈전 제거 기기(1000)의 스텐트 바디(1100)는 세 개의 세그먼트 및 두 개의 마우스 구조를 가질 수 있고, 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 도 22에 도시된 것과 상이하게 배치될 수 있다.
다시 말해, 본 예의 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 2 개일 수 있으며(도면 상에서1510, 1520으로 지칭됨), 도 21에 도시된 것과 같이 각 안티 스트레칭 와이어(1500)가 인접한 2개의 세그먼트의 길이증가를 방지하는 형태로 제공될 수 있다.
여기서, 각각의 안티 스트레칭 와이어(1500)의 두 결합부는 서로 다른 세그먼트에 위치할 수 있으며, 상대적으로 근위에 위치한 안티 스트레칭 와이어(1510)의 후위 결합부와 상대적으로 원위에 위치한 안티 스트레칭 와이어(1520)의 전위 결합부가 위치하는 제2 세그먼트(1130)는 2개의 안티 스트레칭 와이어(1500)의 영향을 받을 수 있고, 상술한 후위 결합부와 전위 결합부 사이의 위치관계에 따라 그 스트레칭 방지 효과가 조절될 수 있다.
또 여기서, 하나의 안티 스트레칭 와이어(1500)가 연결되는 두 결합부는 하나의 브릿지를 사이에 두고 그 브릿지를 따라 연장되는 가상 직선과 근접하게 위치할 수 있다. 다시 말해, 상대적으로 근위에 위치한 안티 스트레칭 와이어(1510)의 두 연결부와 연결되는 두 결합부는 제1 브릿지(1123)와 동일 선상에 위치하고, 상대적으로 원위에 위치한 안티 스트레칭 와이어(1520)의 두 연결부와 연결되는 두 결합부는 제2 브릿지(1143)와 동일 선상에 위치함으로서 각 두 연결부 사이에서 연장되는 연장부는 제1 브릿지(1123) 및 제2 브릿지(1143)를 따라 배치될 수 있다. 이를 통해 혈전 제거 기기(1000)에 제공된 복수의 안티 스트레칭 와이어(1500)의 방사상 위치는 두 브릿지(1123, 1143)의 방사상 위치와 실질적으로 유사하게 설계될 수 있다.
이때, 연장부의 길이는 두 결합부 사이의 자연 길이보다 길게 제공될 수 있으며, 이를 통해 초기 전개시 슬랙을 가지는 안티 스트레칭 와이어(1500)는 각 세그먼트의 길이 증가에 따라 팽팽한 상태가 되고, 안티 스트레칭 와이어(1500)는 제1 브릿지(1123) 및 제2 브릿지(1143)에 나란히 배치될 수 있다.
다시 도 23을 참조하면, 본 예의 풀 와이어(1300)는 스텐트 바디(1100)의 메쉬 구조체의 표면 측에서 연결될 수 있으며, 풀 와이어(1300)가 스텐트 바디(1100)에 연결되는 지점과 안티 스트레칭 와이어(1500) 중 하나가 연결되는 두 결합부가 실질적으로 동일 직선상에 위치할 수 있다. 이를 통해 스텐트 바디(1100)에 작용하는 회수력과 장력이 동일 선상에서 작용할 수 있는 장점이 있으며, 특히 복수의 안티 스트레칭 와이어(1500) 중 상대적으로 근위에 배치된 안티 스트레칭 와이어(1500)를 풀 와이어(1300)와 일치시킴으로써 다른 영역에 비해 그 길이 증가가 쉽게 발생할 수 있는 스텐트 바디(1100)의 근위부, 또는 제1 세그먼트(1110)의 형상 변형이 효과적으로 방지될 수 있다.
혈전 제거 기기(1000)의 회수 과정에서 풀 와이어(1300)의 조작에 따라 스텐트 바디(1100)에 횡력이 인가되면, 제1 세그먼트(1110), 제2 세그먼트(1130) 및 제3 세그먼트(1150)의 길이 증가는 2 개의 안티 스트레칭 와이어(1500)를 통해 일정 범위 내로 제한될 수 있으며, 이를 통해 제1 마우스(1120) 및 제2 마우스(1140)의 크기 및 형상은 혈전이 통과하기 용이한 수준으로 유지될 수 있다.
도 24를 참조하면, 본 예의 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)는 2개일 수 있고, 그 중 하나(1520)는 도 20의 안티 스트레칭 와이어(1500)의 형태, 다른 하나(1510)는 도 21의 안티 스트레칭 와이어(1500)의 형태로 제공될 수 있다. 동일 선상에 위치할 수 있다.
상술한 것과 같이, 풀 와이어(1300)가 스텐트 바디(1100)에 연결되는 지점과 안티 스트레칭 와이어(1500)가 혈전 제거 기기(1000)에 연결되는 결합부가 실질적으로 동일 직선상에 위치하면, 안티 스트레칭 와이어(1500)에 의한 스트레칭 방지 효과가 스텐트 바디(1100)에 작용하는데 이점이 있을 수 있다. 따라서, 혈전 제거 기기(1000)에 제공되는 안티 스트레칭 와이어(1500)를 모두 풀 와이어(1300)와 동일 선상에 배치하기 위해 안티 스트레칭 와이어(1500) 중 일부는 도 20, 다른 일부는 도 21의 형태로 제공될 수 있으며, 안티 스트레칭 와이어(1500)가 상술한 설명에서 언급되지 않은 다른 형태로 구현되는 것도 가능하다.
한편, 초기 전개시 느슨한 상태를 가지는 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)에 인가된 회수력에 의해 스텐트 바디(1100)의 길이가 변화함에 따라 팽팽한 상태가 될 수 있고, 팽팽한 상태를 가지는 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)에 회수력과 반대 방향의 장력을 인가하여 스텐트 바디(1100)의 추가적인 길이 증가를 제한할 수 있으며, 이 때 각각의 안티 스트레칭 와이어(1500)는 풀 와이어(1300)가 연결되는 스텐트 바디(1100)의 일 지점과 실질적으로 동일 선상에 위치하게 됨으로써 그 효과가 제대로 발휘될 수 있다.
이상의 설명에서는 싱글 세그먼트 또는 멀티 세그먼트의 단일의 스텐트 바디를 갖는 혈전 제거 기기에 관하여 설명하였으나, 혈전 제거 기기는 복수의 스텐트 바디를 포함할 수 있다.
독립적인 스텐트 바디란 일체(unibody)를 이루는 단일의 메쉬 구조체 또는 메쉬 구조체의 집합을 의미할 수 있다. 달리 말해, 독립된 스텐트 바디란 다른 메쉬 구조체에 연결되지 않은 메쉬 구조체 또는 그 집합(a mesh structure or a group thereof)을 의미할 수 있다. 예를 들어, 복수의 메쉬 구조체가 브릿지 등을 통해 서로 연결된 경우에는 비록 복수의 메쉬 구조체라하더라도 이는 단일의 스텐트 바디로 해석될 수 있다. 그러나, 복수의 메쉬 구조체가 서로 연결되지 않는 경우에는 복수의 메쉬 구조체가 복수의 스텐트 바디인 것으로 해석되어야 할 것이다.
여기서, 서로 연결되지 않은 메쉬 구조체란 어느 하나의 메쉬 구조체를 이동시키기 위해 인가되는 회수력 등이 다른 메쉬 구조체로 전달되지 않음을 의미할 수 있다. 따라서, 일반적으로 복수의 스텐트 바디들은 서로 간에 힘의 전달이 어려워, 복수의 스텐트 바디에는 각각 개별의 풀 와이어가 연결될 수 있다. 다시 말해 서로 다른 풀 와이어에 연결되는 메쉬 구조체는 서로 다른 스텐트 바디로 이해될 수 있다.
또한, 서로 연결되지 않은 메쉬 구조체란 서로 독립적인 동작이 가능한 메쉬 구조체를 의미할 수도 있다. 예를 들어, 각각의 메쉬 구조체가 서로 다른 풀 와이어에 연결되어 복수의 풀 와이어의 조작에 따라 메쉬 구조체 간의 상대적인 움직임이 가능하면 이를 서로 연결되지 않은 메쉬 구조체로 이해할 수 있을 것이다. 물론, 복수의 풀 와이어를 동시에 동일하게 조작하여 메쉬 구조체를 함께 움직일 수 있다하더라도 이는 여전히 서로 독립적인 메쉬 구조체로 이해되어야 할 것이다.
한편, 풀 와이어 등을 통한 회수력에 의해 실질적으로 일체로 동작하지 않는 메쉬 구조체들은 비록 회수력 등의 전달이 어려운 단순한 스트럿, 스트링이나 와이어 등으로 연결되어 있더라도 이는 별도의 스텐트 바디로 이해될 수 있을 것이다. 마찬가지로 복수의 풀 와이어가 서로 체결되는 등의 형태로 단일한 사용자의 조작으로 복수의 풀 와이어가 동일하게 조작되어 복수의 메쉬 구조체가 일체로 이동하더라도 이는 역시 별도의 스텐트 바디로 이해될 수 있을 것이다.
이하에서는 멀티 바디 타입의 혈전 제거 기기에 관하여 두 개의 스텐트 바디를 포함하는 혈전 제거 기기(듀얼 바디 타입의 혈전 제거 기기)를 기준으로 설명한다. 그러나, 멀티 바디 타입의 혈전 제거 기기의 스텐트 바디의 개수가 반드시 두 개여야만 하는 것은 아님을 미리 밝혀둔다.
도 25는 본 명세서의 다시 또 다른 실시예에 따른 혈전 제거 기기의 일 예에 관한 분해 사시도이고, 도 26 및 도 27은 도 25에 따른 혈전 제거 기기의 서로 다른 상태에 관한 도면이고, 도 28은 도 25에 따른 혈전 제거 기기의 동작에 관한 측면도이고, 도 29는 도 25에 따른 혈전 제거 기기의 동작에 관한 분해도이다.
도 25 를 참조하면, 본 예에 따른 혈전 제거 기기(1000)는 두 개의 스텐트 바디(1100A, 1100B) -이하에서는 (1100)으로 표기함-를 포함할 수 있다. 각각의 스텐트 바디(1000)는 세그먼트와 마우스 구조를 포함할 수 있다. 각각의 스텐트 바디(1100)가 풀 와이어(1300)와 연결되어 독립적으로 조작됨으로써 두 개의 스텐트 바디(1100) 사이의 위치관계는 변할 수 있다. 이를 통해, 혈전 제거 기기(1000)는 연혈전을 포획하기에 적합한 형태 또는 경혈전을 포획하기에 적합한 형태로 변형될 수 있다.
혈전 제거 기기(1000)는 제1 상태와 제2 상태 사이에서 변형될 수 있다.
여기서, 제1 상태는 혈전과 결합(engaging)하기에 적합한 형태일 수 있다. 따라서, 혈전 제거 기기(1000)가 제1 상태인 것에 대해 혈전 제거 기기(1000)가 혈전 결합 모드(clot engaging mode)로 동작하는 것으로 지칭할 수 있다. 또 스텐트 바디(1100)와 혈전의 결합은 주로 연혈전에 관한 것이므로, 이를 연혈전 모드(soft-clot mode)로 지칭할 수도 있다. 또 후술하겠지만, 혈전 제거 기기(1000)의 혈전 결합 모드는 두 개의 스텐트 바디(1100)가 마우스 구조와 메쉬 구조체가 서로 엇갈려(staggered) 배열됨으로써 하나의 스텐트 바디(1100)의 마우스 구조가 다른 스텐트 바디(1100)의 메쉬 구조체로 인해 닫히는 것에 의해 구현될 수 있으므로, 혈전 게거 기기(1000)가 제1 상태인 것에 대해 혈전 제거 기기(1000)가 폐쇄 배열(closed configuration)을 갖는다고 지칭할 수도 있다.
또 여기서, 제2 상태는 혈전을 초대(inviting)하고, 포획(capturing)하기에 적합한 형태일 수 있다. 따라서, 혈전 제거 기기(1000)가 제2 상태인 것에 대해 혈전 제거 기기(1000)가 혈전 초대 모드(clot inviting mode) 또는 혈전 포획 모드(clot capturing)로 동작하는 것으로 지칭할 수 있다. 또 스텐트 바디(1100)와 혈전의 초대 및 수용은 주로 경혈전에 관한 것이므로, 이를 경혈전 모드(hard-clot mode)로 지칭할 수도 있다. 또 후술하겠지만, 혈전 제거 기기(1000)의 혈전 초대 모드나 혈전 포획 모드는 두 개의 스텐트 바디(1100)가 마우스 구조와 메쉬 구조체의 배치가 서로 일치하게(correspoing to each other) 배열됨으로써 하나의 스텐트 바디(1100)의 마우스 구조와 다른 스텐트 바디(1100)의 마우스 구조가 서로 겹쳐(overlapped) 마우스 구조의 개구가 열리는 것에 의해 구현될 수 있으므로, 혈전 게거 기기(1000)가 제2 상태인 것에 대해 혈전 제거 기기(1000)가 개방 배열(open configuration)을 갖는다고 지칭할 수도 있다.
한편, 상술한 바와 같이 연혈전 모드라는 용어가 경혈전의 결합을 배제하거나, 반대로 경혈전 모드라는 용어가 연혈전의 결합을 배제하는 것은 아님을 미리 밝혀둔다, 마찬가지로, 혈전 결합 모드라는 용어가 혈전의 초대를 배제하거나, 반대로 혈전 포획 모드가 혈전의 결합을 배제하는 것은 아님을 미리 밝혀둔다.
보다 구체적으로, 도 25를 참조하면, 두 개의 스텐트 바디(1000)는 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)를 포함할 수 있다.
제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 모두 상술한 멀티 세그먼트 형태의 스텐트 바디(1000)일 수 있다.
제1 스텐트 바디는 도 25에 도시된 바와 같이 세 개의 세그먼트와 두 개의 마우스 구조를 포함할 수 있다. 여기서, 세 개의 세그먼트는 근위로부터 가까운 순서로 배열되는 제1 세그먼트(1110A), 제2 세그먼트(1130A) 및 제3 세그먼트(1150A)를 포함할 수 있다. 또 여기서, 두 개의 마우스 구조는 제1 세그먼트(1110A)와 제2 세그먼트(1130A)에 위치하는 제1 마우스(1120A) 및 제 2 세그먼트(1130A)와 제3 세그먼트 (1150A) 사이에 위치하는 제2 마우스(1140A)를 포함할 수 있다.
제2 스텐트 바디(1100B)는 도 25에 도시된 바와 같이 두 개의 세그먼트와 하나의 마우스 구조를 포함할 수 있다. 여기서, 두 개의 세그먼트는 근위로부터 가까운 순서로 배열되는 제5 세그먼트(1110B) 및 제6 세그먼트(1130B)를 포함할 수 있다. 또 여기서, 마우스 구조는 제5 세그먼트(1110B)와 제6 세그먼트(1130B) 사이에 위치하는 제5 마우스(1120B)를 포함할 수 있다.
한편, 도 25를 참조한 설명에서는, 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)가 모두 멀티 세그먼트 형태인 것으로 설명하였으나, 반드시 두 스텐트 바디(1100)가 모두 멀티 세그먼트 형태여야만 하는 것은 아니다. 다시 말해, 본 명세서에서 듀얼 바디 타입의 혈전 제거 기기(1000)는 두 스텐트 바디(1100)의 위치 관계에 따라 마우스 구조의 개구가 개폐(open/close)되는 기능을 수행하기 위해 적절한 형태의 스텐트 바디(1100)를 가질 수 있으며, 이는 다양한 형태로 구현될 수 있다.
구체적으로 두 개의 스텐트 바디(1100) 중 어느 하나의 스텐트 바디(1100)는 멀티 세그먼트 형태로 제공될 수 있으며, 이에 따라 적어도 하나의 마우스 구조를 포함할 수 있다. 또 두 개의 스텐트 바디(1100) 중 다른 하나의 스텐트 바디(1100)는 어느 하나의 스텐트 바디의 마우스 구조의 개수와 동일하거나 많은 세그먼트를 가질 수 있다.
예를 들어, 상술한 도 25를 참조해 설명한 혈전 제거 기기(1000)를 다시 살펴보면, 제1 스텐트 바디(1100A)는 두 개의 마우스 구조를 가지는 트리플 세그먼트 형태의 스텐트 바디로 제공되며, 제2 스텐트 바디(1100B)는 제1 스텐트 바디(1100A)의 마우스 구조의 개수와 동일한 두 개의 세그먼트를 갖는 더블 세그먼트 형태의 스텐트 바디(1100)로 제공되고 있다.
다른 예를 들어, 어느 하나의 스텐트 바디(1100)가 쿼드러플 세그먼트 형태로 제공되면, 다른 하나의 스텐트 바디(1100)는 트리플 세그먼트 형태로 제공될 수 있다. 또 다른 예를 들어, 어느 하나의 스텐트 바디(1100)가 더블 세그먼트 형태로 제공되면, 다른 하나의 스텐트 바디(1100)는 싱글 세그먼트 형태로 제공될 수 있다. 다시 또 다른 예를 들어, 두 개의 스텐트 바디(1100)가 모두 더블 세그먼트 형태 또는 트리플 세그먼트 형태로 제공될 수 있다.
즉, 본 명세서의 듀얼 바디 형태의 혈전 제거 기기(1000)는 멀티 세그먼트 형태로 제공되는 하나의 스텐트 바디(1100)와 멀티 세그먼트 형태 또는 싱글 세그먼트 형태로 제공되는 다른 하나의 스텐트 바디(1100)를 포함할 수 있으며, 다른 하나의 스텐트 바디(1100)의 세그먼트의 개수는 어느 하나의 스텐트 바디(1100)의 마우스 구조의 개수와 동일하거나 많아야 한다. 일반적으로 마우스 구조의 개수는 세그먼트의 개수보다 1개 작으므로, 본 명세서의 듀얼 바디 형태의 혈전 제거 기기(1000)는 두 스텐트 바디(1100)의 세그먼트의 개수와 동일하거나 1개 차이일 수 있다.
한편, 상술한 바와 같이 두 개의 스텐트 바디(1100)의 위치 관계에 따라 마우스 구조의 개구의 개폐(open/close)를 수행하기 위해 두 스텐트 바디의 서로 대응되는 마우스와 세그먼트의 길이는 실질적으로 동일한 것이 바람직할 수 있다.
다시 도 25를 참조하면, 두 개의 스텐트 바디(1100) 중 어느 하나는 다른 하나의 내측에 위치할 수 있다. 예를 들어, 제1 스텐트 바디(1100A)의 내측에 제2 스텐트 바디(1100B)가 위치하거나 반대로 제1 스텐트 바디(1100A)가 제2 스텐트 바디(1100B)의 내측에 위치할 수 있다. 다시 말해, 제2 스텐트 바디(1100B)가 제1 스텐트 바디(1100A)에 삽입되거나 제2 스텐트 바디(1100B)에 제1 스텐트 바디(1100A)가 삽입될 수 있다. 다만, 이하에서는 설명의 편의를 위하여 제1 스텐트 바디(1100A)의 내측에 제2 스텐트 바디(1100B)가 위치하는 것을 기준으로 설명하기로 한다.
본 예에서는 어느 하나의 스텐트 바디(1100)가 다른 하나의 스텐트 바디에 삽입되지만, 후술되는 제1 상태에서는 제1 스텐트 바디(1100A)의 메쉬 구조체와 제2 스텐트 바디(1100B)의 메쉬 구조체가 단일한 메쉬 구조체와 유사한 형태를 형성하기 위해 두 개의 스텐트 바디(1100)의 직경은 실질적으로 동일하거나 내부로 삽입되는 스텐트 바디(1100)의 직경이 외부에 배치되는 스텐트 바디(1100)의 직경보다는 작지만 거의 비슷한 수치일 수 있다.
이에 따라 제1 스텐트 바디(1100A)의 원주면과 제2 스텐트 바디(1100B)의 원주면은 실질적으로 동일한 면 상에서 연장될 수 있으며, 두 스텐트 바디(1100)의 메쉬 구조체가 서로 엇갈려 배열(제1 상태)되면 마치 하나의 메쉬 구조체처럼 거동할 수 있다.
한편, 본 예의 혈전 제거 기기(1000)에는 바스켓(1900)이 선택적으로 포함될 수 있으며, 바스켓은 두 스텐트 바디(1100) 중 적어도 하나의 스텐트 바디(1100)의 원위 말단에 배치될 수 있다. 여기서, 바스켓(1900)은 바람직하게는 두 스텐트 바디(1100) 중 외측에 배치되는 스텐트 바디(1100)에 배치되는 것이 유리할 수 있다.
다시 도 25를 참조하면, 본 예에 따른 혈전 제거 기기(1000)에는 두 개의 풀 와이어(1300A, 1300B) -이하에서는 (1300)으로 표기함-가 포함될 수 있다. 구체적으로 두 개의 풀 와이어 중 제1 풀 와이어(1300A)는 제1 스텐트 바디(1100A)와 연결되고, 제2 풀 와이어(1300B)는 제2 스텐트 바디(1100B)와 연결될 수 있다. 이에 따라 각각의 스텐트 바디(1100)에 힘을 전달할 수 있다.
또, 두 개의 풀 와이어(1300)는 선택적으로 결합될 수 있다. 두 풀 와이어(1300) 간의 결합이 해제된 상태에서는 각각의 풀 와이어(1300)는 독립적으로 조작될 수 있다. 또 둘 풀 와이어(1300)가 서로 결합된 상태에서는 두 풀 와이어(1300)가 일체로 조작될 수 있다. 이에 따라 두 풀 와이어(1300)의 결합이 해제된 상태에서는 사용자는 두 개의 스텐트 바디(1100)를 독립적으로 조작할 수 있으며, 두 풀 와이어(1300)가 결합된 상태에서는 사용자는 두 개의 스텐트 바디(1100)를 일체로 조작할 수 있다. 예를 들어, 후술될 혈전 제거 기기(1000)의 제1 상태와 제2 상태 간의 변화를 위해 사용자는 서로 간의 결합이 해제된 상태의 풀 와이어(1300)를 이용해 두 스텐트 바디(1100)의 상대적 위치를 조절할 수 있다. 다른 예를 들어, 후술될 혈전 제거 기기(1000)의 상태를 제1 상태 또는 제2 상태로 고정한 채로 혈전 제거 기기(1000)를 이동시키기 위해 사용자는 서로 간에 결합된 상태의 풀 와이어(1300)를 이용해 두 스텐트 바디(1100)를 일체로 이동시킬 수 있다. 물론, 두 스텐트 바디(1100)를 일체로 움직이기 위해 반드시 두 개의 풀 와이어(1300)를 결합해야만 하는 것은 아니며, 예를 들어, 두 풀 와이어(1300)에 동시에 동일한 조작을 별도로 가하더라도 풀 와이어(1300)가 결합된 상태에서 조작하는 것과 동일한 효과를 얻을 수 있다. 다만, 물리적으로 풀 와이어(1300)가 결합된 것에 비해 결합되지 않은 두 개의 풀 와이어(1300)에 동일한 조작을 입력하는 것에는 사용자에 의해 오차가 발생할 수 있으므로, 두 개의 풀 와이어(1300)를 물리적으로 결합하는 것이 두 스텐트 바디(1100)를 일체로 움직이는데 유리할 수 있다.
예시적으로 두 풀 와이어(1300)의 결합은 물리적으로 이루어질 수 있으며, 예를 들어, 잠금 구조(locking mechanism) 등의 형태로 구현될 수 있다.
일 예에 따르면, 두 풀 와이어(1300) 중 어느 하나는 중공형 와이어로 제공되고, 다른 하나가 어느 하나의 내부로 삽입될 수 있다. 이때 잠금 구조는 외부로부터 중공형 와이어에 압력을 인가하여 두 풀 와이어(1300) 간에 마찰력에 의해 두 와이어를 결합시키거나 압력을 해제하여 두 풀 와이어(1300) 간의 결합을 해제할 수 있다. 잠금 장치는 사용자 또는 로봇에 의해 조작될 수 있다
다른 예에 따르면, 두 풀 와이어(1300)가 서로의 길이 방향의 측면을 따라 인접 배치되고, 두 풀 와이어(1300)의 길이 방향 상 두 풀 와이어(1300)가 중첩되는 일 지점에 두 풀 와이어(1300)를 체결하거나 체결을 해제하는 형태로 잠금 구조가 구현되는 것도 가능하다.
또 여기서, 혈전 제거 기기(1000)에는 선택적으로 회전 방지 구조(anti-rotating mechanism)이 더 포함될 수 있다. 회전 방지 구조는 두 스텐트 바디(1100) 간의 상대적인 회전을 방지할 수 있다.
두 스텐트 바디(1100) 가 상대적으로 회전하면, 두 스텐트 바디(1100) 에 각각 포함되는 마우스 구조의 브릿지 간의 배치 관계가 변경될 수 있으며, 이에 따라 마우스 구조의 개구의 사이즈가 변경될 수 있다. 회전 방지 구조는 두 스텐트 바디(1100) 의 상대 회전을 방지함으로써 두 스텐트 바디(1100) 의 브릿지들 간의 상대적 위치 관계를 일정하게 유지함으로써 마우스 구조의 개구의 사이즈를 일정하게 유지할 수 있다.
여기서, 회전 방지 구조는 두 풀 와이어(1300) 간의 회전을 방지하는 것을 통해 간접적으로 두 스텐트 바디(1100) 간의 상대 회전을 방지할 수도 있다.
예를 들어, 두 풀 와이어(1300) 간의 회전을 방지하는 회전 방지 구조는, 중공형으로 제공되는 풀 와이어(1300) 의 내경면과 그 내부에 삽입되는 풀 와이어(1300)의 외경면에 형성되는 서로 상보적이고, 상대 회전을 억제하는 패턴으로 제공될 수 있다. 구체적으로, 회전 방지 구조는 외측 풀 와이어(1300)의 내경면과 내측 풀 와이어(1300)의 외경면에 형성되는 사각형이나 십자가형의 단면 패턴으로 제공될 수 있다.
상술한 바와 같이 본 예에 따른 혈전 제거 기기(1000)는 두 스텐트 바디(1100)의 상대적인 위치 관계에 따라 제1 상태 또는 제2 상태가 될 수 있다.
혈전 제거 기기(1000)가 제1 상태일 때, 두 개의 스텐트 바디(1100)는 어느 하나의 스텐트 바디(1100)의 마우스 구조의 개구를 다른 하나의 스텐트 바디(1100)의 세그먼트가 폐쇄하도록 배치될 수 있다. 구체적으로 두 개의 스텐트 바디(1100)의 세그먼트(또는 마우스 구조)가 서로 엇갈려 배열됨에 따라 혈전 제거 기기(1000)가 제1 상태를 가질 수 있다.
구체적으로 도 26을 참조하면, 제2 스텐트 바디(1100B)의 세그먼트 중 적어도 하나가 제1 스텐트 바디(1100A)의 마우스 구조 중 적어도 하나와 대응되게 배치됨으로써 마우스 구조가 세그먼트에 의해 폐쇄될 수 있다. 다시 말해, 제1 스텐트 바디(1100A)의 마우스 구조는 제2 스텐트 바디(1100B)의 세그먼트에 의해 가려질(cover) 수 있고, 제2 스텐트 바디(1100B)의 마우스 구조는 제1 스텐트 바디(1100A)의 세그먼트에 의해 가려질 수 있다. 이에 따라 마우스 구조들의 개구가 폐쇄되며, 외관 상 두 개의 스텐트 바디(1100)가 하나의 메쉬 구조체를 이루는 것과 유사한 형태를 가질 수 있다. 이처럼 스텐트 바디(1100)들이 전체적으로 하나의 튜브 형태의 단일한 메쉬 구조체와 유사한 형태를 가지게 되면, 두 스텐트 바디(1100)의 최근위 지점으로부터 최원위 지점까지 셀 구조나 메쉬 구조를 통해 혈전과 결합할 수 있게 되어 혈전 결합이 용이할 수 있다.
혈전 제거 기기(1000)가 제2 상태일 때, 두 개의 스텐트 바디(1100)는 서로 마우스 구조가 겹치도록 배치될 수 있다. 구체적으로 두 개의 스텐트 바디(1100)의 세그먼트(또는 마우스 구조)가 서로 대응하는 위치에 배열됨에 따라 혈전 제거 기기가 제2 상태를 가질 수 있다.
구체적으로 도 27을 참조하면, 제2 스텐트 바디(1100B)의 세그먼트 중 적어도 하나가 제1 스텐트 바디(1100A)의 세그먼트 중 적어도 하나와 대응되게 배치됨으로써 마우스 구조가 개방될 수 있다. 다시 말해, 제1 스텐트 바디(1100A)의 마우스 구조는 제2 스텐트 바디(1100B)의 마우스 구조에 의해 개방될 수 있고, 제2 스텐트 바디(1100B)의 마우스 구조는 제1 스텐트 바디(1100A)의 마우스 구조에 의해 개방될 수 있다. 이에 따라 마우스 구조들의 개구가 개방되며, 혈전 제거 기기(1000)는 외관 상 마우스 구조를 갖는 멀티 세그먼트 형태의 단일한 스텐트 바디(1100)와 유사한 형태를 가질 수 있다. 이처럼 스텐트 바디(1100)들에 의해 마우스 구조가 형성되면, 마우스 구조를 통해 혈전 초대가 용이할 수 있다.
본 예에 따른 혈전 제거 기기(1000)는 두 스텐트 바디의 상대적인 움직임에 따라 제1 상태 또는 제2 상태 간의 상태 변형을 수행할 수 있다.
구체적으로 두 풀 와이어(1300) 간의 결합이 해제된 상태에서, 어느 하나의 풀 와이어(1300)를 조작하여 두 스텐트 바디(1100) 중 어느 하나를 이동시킴으로써 제1 상태 및 제2 상태 간의 상태 변형이 수행될 수 있다.
도 28 및 도 29를 참조하면, 혈전 제거 기기(1000)는 초기에 제1 상태를 가지고 있을 수 있다. 구체적으로 혈전 제거 기기(1000)는, 제1 스텐트 바디(1100A)의 마우스 구조의 오프닝 영역이 제2 스텐트 바디(1100B)의 세그먼트에 의해 가려지는 것에 의해 제1 상태를 가질 수 있다. 즉, 제1 마우스(1120A)는 제5 세그먼트(1110B)와, 제2 마우스(1140A)는 제 6 세그먼트(1130B)와 대응되게 배치되고, 제2 스텐트 바디(1100B)의 제5 마우스(1120B)는 제1 스텐트 바디(1100A)의 제2 세그먼트(1130A)와 대응되게 배치됨에 따라 혈전 제거 기기는 제1 상태를 가질 수 있다.
이때, 제1 풀 와이어(1300A)와 제2 풀 와이어(1300B)의 결합이 해제된 상태에서, 제1 스텐트 바디(1100A)에는 조작을 가하지 않고, 제2 풀 와이어(1300B)만을 조작하여 제2 스텐트 바디(1100B)를 스텐트 바디의 길이 방향 상 근위 방향으로 이동시킬 수 있다. 이??, 두 스텐트 바디(1100)의 마우스가 서로 겹칠 ??까지 제2 풀 와이어(1300B)를 통해 제2 스텐트 바디(1100B)를 이동시키면, 혈전 제거 기기(1000)는 제2 상태를 가질 수 있다.
물론, 상술한 바와 달리, 제1 스텐트 바디(1100A)를 이동시켜 상태 변형을 하거나 근위 방향이 아닌 원위 방향으로 이동시켜 혈전 제거 기기(1000)의 상태를 바꾸는 것도 가능하다. 또, 혈전 제거 기기(1000)의 상태를 제1 상태로부터 제2 상태로 변경하는 것과 반대로 제2 상태에서 제1 상태로 변경하는 것도 가능함은 물론이다.
한편, 제1 스텐트 바디(1100A)의 세그먼트와 제2 스텐트 바디(1100B)의 세그먼트는 서로 겹쳐짐으로써 혈전 제거 기기가 제2 상태에 도달하면, 스트럿(1101)사이의 간격이 조절될 수도 있다. 예를 들어, 제1 세그먼트(1110)의 셀(1103)과 제5 세그먼트(1110B)의 셀(1103)이 서로 부분적으로 중첩되면, 혈전 제거 기기(1000)에서 혈전과 접촉하는 스트럿(1101)은 조밀하게 위치할 수 있다. 이를 통해 혈전 제거 기기(1000)의 스트럿(1101)은 혈전과 결합이 용이해질 수 있다.
이상에서 설명한 복수의 스텐트 바디(1100)를 포함하고, 스텐트 바디(1100)들 간의 위치 관계에 따라 제1 상태 및 제2 상태 간의 변형이 가능한 혈전 제거 기기(1000)의 경우에는, 하나의 스텐트 바디(1100)를 갖는 혈전 제거 기기(1000)와 달리 회수 과정뿐만 아니라 상태 변형을 위해 스텐트 바디(1100)를 상대적으로 이동시키는 과정에서도 길이 변형이 발생할 수 있다.
또한, 상술한 혈전 제거 기기(1000)는 실질적으로 동일한 길이를 가지는 마우스 구조와 세그먼트를 이용해 어느 하나의 스텐트 바디(1100)의 세그먼트가 다른 하나의 스텐트 바디(1100)의 마우스를 폐쇄하거나 개방하므로, 세그먼트와 마우스 구조 간의 길이 비가 일정하게 유지되는 것이 중요할 수 있다. 구체적으로 와이어 형태로 제공되어 횡력에 의한 길이 변형이 거의 없는 브릿지에 의해 형성되는 마우스 구조는 회수력 등과 같이 길이 방향의 힘을 인가받더라도 실질적으로 일정한 길이를 유지하지만, 메쉬 구조체에 의해 형성되는 세그먼트는 길이 방향의 힘에 의해 길이 변형이 쉽게 일어나므로, 회수 과정이나 두 스텐트 바디(1100) 간의 상대적인 이동 중에 세그먼트의 길이가 마우스 구조의 길이보다 커져 마우스와 세그먼트가 대응되는 위치에 배치되더라도 마우스 구조의 일부가 세그먼트에 의해 가려질 가능성이 있다.
도 30은 도 25에 따른 혈전 제거 기기의 형상 변형의 일 예에 관한 도면이다.
도 30을 참조하면, 복수의 스텐트 바디(1100)를 포함하는 혈전 제거 기기(1000)에 상태 변형을 위한 횡력이 어느 하나의 스텐트 바디(1100)에만 인가되면, 해당 스텐트 바디(1100)의 세그먼트들의 길이 증가가 발생하고, 이로 인해 마우스 구조의 길이보다 보다 세그먼트의 길이가 커지고, 이로 인해 마우스 구조의 입구가 부분적으로만 개방되거나 개방될 수 없어, 혈전 제거 기기(1000)가 제2 상태에 도달하는 것이 불가능할 수 있다.
따라서, 복수의 스텐트 바디(1100)를 포함하고, 스텐트 바디(1100)들 간의 위치 관계에 따라 제1 상태 및 제2 상태 간의 변형이 가능한 혈전 제거 기기(1000)에 안티 스트레칭 와이어(1500)가 포함될 수 있다. 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)에 각각 제공될 수 있다.
이하에서는 복수의 스텐트 바디(1100)를 갖는 혈전 제거 기기(1000)의 안티 스트레칭 와이어(1500)에 관한 예시들을 도 31 내지 도 35를 참조하여 설명하기로 한다.
도 31 내지 도 35는 본 명세서의 다시 또 다른 실시예에 따른 혈전 제거 기기의 예시들에 관한 도면이다.
도 31 내지 도 34를 참조하면, 본 예들에 따른 혈전 제거 기기(1000)의 스텐트 바디(1100)는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)를 포함한다.
여기서, 단일 세그먼트 형태로 제공되는 도 35를 제외하고, 도 31 내지 도 34의 스텐트 바디(1100)는 멀티 세그먼트 형태로 제공되어, 제1 스텐트 바디(1100A)는 3개의 세그먼트 및 2 개의 마우스 구조를, 제2 스텐트 바디(1100B)는 2개의 세그먼트 및 1개의 마우스 구조를 포함한다.
또한 각각의 스텐트 바디(1100)들과 연결되는 제1 풀와이어(1300A) 및 제2 풀와이어(1300B)는 각 스텐트 바디(1100)의 표면 측에 배치되고, 두 풀와이어(1300)는 동일 선상에 배치되어 독립적으로 조작되거나 결합에 의해 일체로써 조작될 수 있다.
도 31을 참조하면, 본 예에 따른 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A)의 길이증가를 방지하는 제1 안티 스트레칭 와이어(1500A) 및 제2 스텐트 바디(1100B)의 길이증가를 방지하는 제2 안티 스트레칭 와이어(1500B)를 포함한다. 여기서, 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)는 도 20 및 도 22와 같이 각각의 세그먼트의 길이 증가를 방지하는 형태로 제공될 수 있다.
자세하게는, 3개의 세그먼트를 가지는 제1 스텐트 바디(1100A)에 제공된 제1 안티 스트레칭 와이어(1500A)는 3개(1510A, 1520A, 1530A)일 수 있으며, 각각의 제1 안티 스트레칭 와이어(1500A)가 연결되는 두 결합부는 하나의 세그먼트 상에 위치할 수 있다. 또, 2개의 세그먼트를 가지는 제2 스텐트 바디(1100B)에 제공된 제2 안티 스트레칭 와이어(1500B)는 2개(1510B, 1520B)일 수 있으며, 각각의 제2 안티 스트레칭 와이어(1500B)가 연결되는 두 결합부는 하나의 세그먼트 상에 위치할 수 있다.
여기서, 설계에 따라 하나의 스텐트 바디(1100)의 세그먼트 중 최근위 세그먼트에 연결된 안티 스트레칭 와이어(1510A, 1510B)를 위한 전위 결합부는 풀 와이어(1300) 상에 위치할 수 있으며, 최원위 세그먼트에 연결된 안티 스트레칭 와이어(1530A, 1520B)를 위한 후위 결합부는 바스켓(1900) 상에 위치할 수 있다.
도 31을 다시 참조하면, 하나의 스텐트 바디(1100)에 제공된 복수의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)의 중심으로부터 동일한 방향상에 위치하는 것으로 도시되었으며, 이는 안티 스트레칭 와이어(1500)가 연결되는 결합부가 풀와이어(1300)와 스텐트 바디(1100) 사이의 연결 지점과 동일한 선상에 위치하도록 설계된 것일 수 있고, 이에 따른 이점은 상술한 내용을 참조하여 설명될 수 있다.
한편, 스텐트 바디(1100)의 상대적인 위치관계에 따라 그 형태가 변형되는 혈전 제거 기기(1000)에 있어서, 두 스텐트 바디(1100) 사이의 길이 또는 직경 차이 값은 초기 전개 상태와 유사하게 유지되는 것이 이로울 수 있다. 따라서, 두 스텐트 바디(1100)의 길이 변형을 억제하기 위해 각각의 안티 스트레칭 와이어(1500)의 길이는 두 결합부 사이의 자연 거리와 동일하게 제공될 수 있으나, 반드시 그러한 것은 아니며, 두 스텐트 바디(1100)의 길이 증가를 허용하는 범위를 고려하려 더 길게 제공될 수도 있다.
또 한편, 제1 상태 또는 제2 상태로 그 형태가 변화하는 혈전 제거 기기(1000)에 있어서, 위치관계가 변화하는 스텐트 바디(1100) 사이의 간섭은 최소화되는 것이 바람직할 수 있으며, 안티 스트레칭 와이어(1500)의 배치는 이를 고려하여 결정될 수 있을 것이다.
또, 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)의 일부가 겹쳐지는 제 2 상태의 혈전 제거 기기에 있어서, 제 2상태에서 서로 겹쳐지는 혈전 제거 기기(1000)의 일부는 동일한 형상을 가지는 것이 이로울 수 있으며, 이를 위해 두 스텐트 바디(1100)에 제공되는 안티 스트레칭 와이어(1500)의 방사상 위치가 결정될 수도 있을 것이다. 예를 들어, 도 31과 같이 제1 안티 스트레칭 와이어(1500A)와 제2 안티 스트레칭 와이어(1500B)는 스텐트 바디(1100)의 중심 축으로부터 동일한 방사방향에 위치할 수 있다.
결합이 해제된 두 풀 와이어(1300)의 조작에 따라 두 스텐트 바디(1100) 중 어느 하나가 이동하거나, 결합된 두 풀와이어(1300)의 조작에 따라 두 스텐트 바디(1100)가 동시에 이동하는 과정에서 두 스텐트 바디(1100)에 외력이 가해지면, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이 증가는 제 1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)를 통해 제한될 수 있다. 이에 따라 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이 비율은 풀와이어(1300) 조작 전 후에 걸쳐 유사하게 유지될 수 있으며, 혈전 제거 기기(1000)는 제1 상태 또는 제2 상태로 그 형태가 변형되어 마우스 구조를 개폐할 수 있다.
도 32을 참조하면, 본 예에 따른 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A)의 길이증가를 방지하는 제1 안티 스트레칭 와이어(1500A) 및 제2 스텐트 바디(1100B)의 길이증가를 방지하는 제2 안티 스트레칭 와이어(1500B)를 포함한다. 여기서, 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)는 도 21 및 도 23과 같이 인접한 2개의 세그먼트의 길이 증가를 방지하는 형태로 제공될 수 있다.
자세하게는, 2개의 세그먼트를 가지는 제1 스텐트 바디(1100A)에 제공된 제1 안티 스트레칭 와이어(1500A)는 2개(1510A, 1520A)일 수 있으며, 각각의 결합부는 서로 다른 세그먼트에 위치할 수 있다. 또, 2개의 세그먼트를 가지는 제2 스텐트 바디(1100B)에 제공된 제2 안티 스트레칭 와이어(1500B)는 1개(1500B)일 수 있으며, 그의 결합부는 제2 스텐트 바디(1100B)의 두 세그먼트 상에 각각 위치할 수 있다. 상술한 것과 같이, 각 안티 스트레칭 와이어(1500)의 전위 결합부 또는 후위 결합부는 풀와이어(1300) 또는 바스켓(1900) 상에 위치할 수도 있다.
여기서, 각각의 안티 스트레칭 와이어(1500)가 연결되는 혈전 제거 기기(1000) 상의 두 결합부는 하나의 브릿지(1123, 1143)를 따라 연장되는 가상 직선 상에 배치될 수 있으며, 각각의 안티 스트레칭 와이어(1500)의 방사상 위치는 두 결합부 사이의 브릿지(1123, 1143)의 위치에 따라 결정될 수 있다.
도 32를 다시 참조하면, 복수의 안티 스트레칭 와이어(1500) 중 일부는 스텐트 바디(1100)와 풀 와이어(1300) 사이의 연결 지점과 동일한 선상에 위치하도록 설계될 수 있고, 각각의 길이는 두 결합부 사이의 자연거리와 동일하게 제공될 수 있다. 이에 따른 효과는 상술한 내용을 참조하여 설명될 수 있다.
혈전 제거 기기(1000)의 형상 변형 또는 회수 과정에서 스텐트 바디(1100)에 외력이 가해지면, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이 증가는 제 1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)를 통해 제한될 수 있으며, 각각의 길이 비율이 외력이 인가되기 전과 후에 걸쳐 유사하게 유지됨으로써 혈전 제거 기기(1000)는 제1 상태 또는 제2 상태로 그 형태가 변형되어 마우스 구조를 개폐할 수 있다.
도 33을 참조하면, 본 예에 따른 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A)의 길이증가를 방지하는 제1 안티 스트레칭 와이어(1500A) 및 제2 스텐트 바디(1100B)의 길이증가를 방지하는 제2 안티 스트레칭 와이어(1500B)를 포함한다. 여기서, 제1 안티 스트레칭 와이어(1500A)는 도 24의 형태로, 제2 안티 스트레칭 와이어(1500B)는 도 21의 형태로 제공될 수 있다.
제1 안티 스트레칭 와이어(1500A)는 도 24의 내용을 참조하여 설명될 수 있고, 제2 안티 스트레칭 와이어(1500B)는 도 21의 내용을 참조하여 설명될 수 있다. 이처럼 각 스텐트 바디(1100)에 제공되는 안티 스트레칭 와이어(1500)는 두 결합부가 하나의 세그먼트에 위치하는 형태와 두 결합부가 각기 다른 세그먼트에 위치하는 형태를 모두 포함할 수 있으며, 이에 따라 각각의 안티 스트레칭 와이어(1500)는 스텐트 바디(1100)와 풀와이어(1300)의 연결 지점과 동일 선상에 배치될 수 있다.
한편, 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)는 스텐트 바디(1100)의 중심축으로부터 동일한 방사방향에 위치하고, 그 길이는 두 결합부 사이의 자연 길이와 동일하게 제공될 수 있으며, 이에 따른 효과는 상술한 내용을 참조하여 설명될 수 있다.
혈전 제거 기기(1000)의 형상 변형 또는 회수 과정에서 스텐트 바디(1100)에 외력이 가해지면, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이 증가는 제 1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)를 통해 제한될 수 있으며, 각각의 길이 비율이 외력이 인가되기 전과 후에 걸쳐 유사하게 유지됨으로써 혈전 제거 기기(1000)는 제1 상태 또는 제2 상태로 그 형태가 변형되어 마우스 구조를 개폐할 수 있다.
도 34을 참조하면, 본 예에 따른 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이를 연결하는 하나의 스트랜드로 제공될 수 있다. 자세하게는 안티 스트레칭 와이어(1500)가 연결되는 전위 결합부는 제2 스텐트 바디(1100B)에 위치하고, 후위 결합부는 제1 스텐트 바디(1100A)에 위치할 수 있다. 이를 통해 안티 스트레칭 와이어(1500)는 제2 스텐트 바디(1100B)의 외측에 위치함으로써, 제2 스텐트 바디(1100B)의 내부 영역을 가로지르지 않을 수 있다.
제1 상태인 혈전 제거 기기(1000)가 혈관에 전개되면, 안티 스트레칭 와이어(1500)는 느슨한 상태이거나 꼬인 상태일 수 있다. 느슨한 상태인 안티 스트레칭 와이어(1500)는 제2 스텐트 바디(1100B)의 이동에 따라 팽팽해질 수 있다. 제2 스텐트 바디(1100B)는 안티 스트레칭 와이어(1500)가 팽팽해질 때까지 이동함으로써, 혈전 제거 기기(1000)의 형태를 제2 상태의 형태로 변형시킬 수 있다. 따라서 본 예의 안티 스트레칭 와이어(1500)는 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이의 위치관계를 조절하는 기능을 수행할 수 있다. 제1 상태와 제2 상태 사이에서의 혈전 제거 기기(1000)의 변형은 안티 스트레칭 와이어(1500)의 길이에 따라 일정 범위 내로 제한될 수 있다.
도 35를 참조하면, 본 예의 혈전 제거 기기(1000)의 스텐트 바디(1100)는 단일 세그먼트 형태로 제공되고, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 길이방향을 따라 거리를 두고 위치할 수 있다.
제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 각각 제1 풀와이어(1300A) 및 제2 풀와이어(1300B)에 연결되며, 두 풀와이어(1300) 서로 독립적으로 조작됨으로써 두 스텐트 바디(1100) 사이의 거리를 변화시킬 수 있다.
예를 들어, 제2 풀와이어(1300B)를 당김으로써 제2 스텐트 바디(1100B)가 이동하하고 두 스텐트 바디(1100) 사이의 거리가 좁혀짐에 따라 표적혈전은 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 끼워질 수 있다. 여기서, 제2 풀 와이어(1300B)를 근위로 더 당기거나 두 풀와이어(1300)를 결합함으로써, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 일체로서 이동할 수 있고, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)와 결합된 혈전을 체외로 회수할 수 있다.
이하에서는 본 예의 혈전 제거 기기(1000)의 동작에 대해 구체적으로 설명한다.
혈전 제거 기기(1000)가 혈관에 전개되면, 표적혈전은 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 위치할 수 있다. 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)는 거리를 두고 위치할 수 있다. 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)는 거리는 혈전의 크기보다 클 수 있다. 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)는 거리는 상술한 일 실시예의 마우스 구조의 길이와 유사할 수 있다. 이 때, 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)는 늘어진 상태일 수 있다.
제2 풀 와이어(1300B)의 조작에 따라 제2 스텐트 바디(1100B)는 제1 스텐트 바디(1100A)를 향해 이동할 수 있다. 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B)사이의 거리는 가까워질 수 있다. 이를 통해 혈전은 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 고정될 수 있다. 이 때, 제2 스텐트 바디(1100B)에 제공된 제2 안티 스트레칭 와이어(1500B)는 풀 와이어(1100B)의 조작에 따라 팽팽해질 수 있다. 팽팽해진 제2 안티 스트레칭 와이어(1500B)는 제2 스텐트 바디(1100B)의 길이 증가를 방지하여 제2 스텐트 바디(1100B)의 직경변화를 일정 범위 내로 제한할 수 있다. 이를 통해 혈전이 제2 스텐트 바디(1100B)를 이탈하는 것은 방지될 수 있다.
혈관으로부터 혈전 제거 기기(1000)를 회수하는 과정에서, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 동시에 이동될 수 있다. 이는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)가 가까워진 상태에서 제2 풀 와이어(1300B)를 더 당기거나, 제1 풀 와이어(1300) 및 제2 풀 와이어(1300B)를 결합함으로써 가능할 수 있다. 혈전 제거 기기(1000)가 회수될 때, 제1 스텐트 바디(1100A)에 제공된 제1 안티 스트레칭 와이어(1500A) 및 제2 스텐트 바디(1100B)에 제공된 제2 안티 스트레칭 와이어(1500B)는 풀 와이어(1300B)의 조작에 따라 팽팽해질 수 있다. 팽팽해진 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B)는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 변형을 일정 범위내로 제한함으로써 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 위치한 혈전이 혈전 제거 기기(1000)로부터 이탈하는 것을 방지할 수 있다.
이상에서는 본 명세서의 실시예들에 따른 안티 스트레칭 와이어 형태의 안티 스트레칭 메커니즘을 포함하는 혈전 제거 기기에 관하여 설명하였다.
안티 스트레칭 메커니즘은 상술한 바와 같이 안티 스트레칭 와이어 형태로만 제공되어야 하는 것은 아니며, 그 외의 다양한 형태로 제공될 수 있다.
이하에서는 본 명세서의 실시예들에 따른 안티 스트레칭 스트럿 또는 안티 스트레칭 스트럿에 의해 형성되는 안티 스트레칭 셀 형태의 안티 스트레칭 메커니즘을 포함하는 혈전 제거 기기에 관하여 설명한다.
여기서, 안티 스트레칭 스트럿(1700)은 셀(1103)의 내부에 형성되는 소정의 길이를 가지는 스트럿으로 제공될 수 있다. 이때 안티 스트레칭 스트럿(1700)은 셀(1103)의 테두리를 형성하는 스트럿과 동일하거나 상이한 것일 수 있다.
안티 스트레칭 스트럿(1700)은 셀의 테두리의 적어도 두 지점에 부착되는 소정의 길이를 갖는 스트럿으로 제공될 수 있다. 안티 스트레칭 스트럿(1700)은 셀(1103)의 두 지점 간의 거리를 고정시키거나 두 지점 간의 거리가 일정 이상 증가하는 것을 방지할 수 있으며, 이에 따라 셀(1103)의 변형을 억제할 수 있다. 이처럼 내부에 안티 스트레칭 스트럿(1700)을 포함하여 변형이 억제되는 셀(1103)이 안티 스트레칭 셀(1703)일 수 있으며, 안티 스트레칭 스트럿(1700)이 부착되는 셀 구조는 안티 스트레칭 셀 구조(anti-stretching cell structure)일 수 있다. 안티 스트레칭 스트럿(1700) 또는 안티 스트레칭 셀 구조에 의해 안티 스트레칭 셀(1703)의 길이 증가가 억제되면, 결과적으로 셀들(1103)로 형성되는 메쉬 구조체인 스텐트 바디(1100)의 길이 변형이 억제되고 스텐트 바디(1100)의 직경의 감소나 셀(1103)의 형상 변형을 제어될 수 있다.
도 36은 본 명세서의 또 다시 또 다른 실시예(yet still another embodiment)에 따른 혈전 제거 기기의 일 예에 관한 도면이고, 도 37은 도 36에 따른 혈전 제거 기기의 전개도이고, 도 38은 도 36에 따른 혈전 제거 기기의 안티 스트레칭 셀의 일 예에 관한 도면이다.
도 36 및 도 37을 참조하면, 혈전 제거 기기(1000)의 스텐트 바디(1100)는 복수의 셀(1103)을 포함하는 스트럿에 의해 형성되는 메쉬 구조체로 제공될 수 있다. 여기서, 메쉬 구조체에 포함되는 셀(1103) 중 적어도 일부의 셀(1103)의 테두리의 적어도 두 지점에 연결되는 안티 스트레칭 스트럿(1700)이 연결될 수 있다. 도 36 및 도 37에는 각각 메쉬 구조체의 전체 셀 중 안티 스트레칭 셀이 각각 3개와 4개인 것으로 도시되어 있으나, 안티 스트레칭 셀의 개수는 이와 상이할 수 있다.
안티 스트레칭 스트럿(1700)은 메쉬 구조체를 형성하는 스트럿과 동일한 것일 수 있다. 물론, 안티 스트레칭 스트럿(1700)이 메쉬 구조체를 형성하는 스트럿과 그 재질이나 직경 등이 상이한 것도 가능하다. 예를 들어, 안티 스트레칭 스트럿(1700)은 니켈 티타늄 합금(nickel titanium alloy) 또는 가열 시 고온에서 기억시킨 형상으로 복원하는 재질일 수 있다. 또, 안티 스트레칭 스트럿(1700)에는 혈전 제거 과정 중 혈전 제거 기기(1000)의 시인성을 제공하는 재질이 포함될 수도 있다.
안티 스트레칭 스트럿(1700)은 셀(1103)의 테두리의 적어도 두 지점에 연결될 수 있다. 셀(1103)과 안티 스트레칭 스트럿(1700) 간의 연결은 다양한 방법을 통해 수행될 수 있다.
일 예로, 안티 스트레칭 스트럿(1700)은 스텐트 바디(1100)가 성형되는 과정에서 스텐트 바디(1100)와 일체로 성형될 수 있다. 예를 들어, 스텐트 바디(1100)가 튜브 형태의 금속을 컷팅하여 제조될 때, 안티 스트레칭 스트럿(1700)이 스텐트 바디(1100)의 일부로써 함께 제조될 수 있다.
다른 예로, 안티 스트레칭 스트럿(1700)은 스텐트 바디(1100)에 별도로 연결될 수 있다. 예를 들어, 안티 스트레칭 스트럿(1700)은 완성된 3차원 매쉬 구조체인 스텐트 바디(1100)의 셀의 테두리에 기계적 물림(mechanical locks), 용접(welding), 솔더링(연납땜, soldering), 브레이징(경납땜, brazing), 접착제(adhesive), 몰딩(moding) 또는 크림핑(criming) 등을 통해 연결될 수 있다. 기계적 물림(mechanical locks)은 트위스팅(twist), 니팅(knitting), 웨빙(weaving), 메쉬(mesh) 또는 엮기(intertwining) 등의 기법을 통해 연결될 수 있다. 다른 예를 들어, 안티 스트레칭 스트럿(1700)은 3차원 메쉬 구조체로 완성되기 전 단계의 2차원 메쉬 구조체인 스텐트 바디(1100)의 셀의 테두리에 상술한 기법을 통해 연결될 수 있다.
안티 스트레칭 스트럿(1700)에 의한 셀의 길이 변형의 제어는 다음과 같이 수행될 수 있다.
도 38을 참조하면, 안티 스트레칭 스트럿(1700)은 셀(1103)의 테두리(boundary) 중 두 지점에 각각 연결되는 두 개의 연결부 및 두 개의 연결부에서 연장되는 연장부를 포함할 수 있다. 셀(1103)의 테두리 중 안티 스트레칭 스트럿(1700)의 두 개의 연결부와 연결되는 지점은 결합부로 지칭될 수 있다.
안티 스트레칭 와이어와 관련된 설명에서는 연결부는 안티 스트레칭 와이어의 혈전 제거 기기와 연결되는 부위를 지칭하는 용어로, 결합부는 혈전 제거 기기의 안티 스트레칭 와이어와 연결되는 부위를 지칭하는 용어로 사용하였으나, 안티 스트레칭 와이어와 안티 스트레칭 스트럿에 대해 동일한 결합부 및 연결부라는 용어를 사용하더라도 본 명세서 내에서 문맥 상 명백히 구분될 수 있을 뿐 아니라 연결부란 안티 스트레칭 메커니즘 측의 혈전 제거 기기, 스텐트 바디, 메쉬 구조체나 셀과 연결되는 부위로, 결합부란 안티 스트레칭 매커니즘과 연결되는 혈전 제거 기기 측의 안티 스트레칭 메커니즘 과 연결되는 부위로 포괄적으로 이해될 수 있으므로, 이하의 안티 스트레칭 스트럿과 관련된 설명에서는 연결부는 안티 스트레칭 스트럿의 셀과 연결되는 부위를 지칭하는 용어로, 결합부는 셀의 안티 스트레칭 스트럿과 연결되는 부위를 지칭하는 용어로 사용하기로 한다
또 여기서, 두 결합부 중 혈전 제거 기기(1000)의 근위 말단에 가까운 결합부는 전위 결합부로, 원위 말단에 가까운 결합부는 결합부로 지칭될 수 있고, 두 안티 스트레칭 스트럿(1700)의 연결부 중 전위 결합부에 대응하는 연결부는 전위 연결부로, 후위 결합부에 대응하는 연결부는 후위 연결부로 지칭하기로 한다. 또한 혈전 제거 기기(1000)가 무부하 또는 구속되지 않은 조건 하에서 전개된 상태일 ??, 두 결합부 간의 거리를 두 결합부 간의 자연 거리로 지칭하기로 한다.
스텐트 바디(1100)에 외력이 가해지면, 스텐트 바디(1100) 전체에 걸쳐 길이 방향의 횡력이 작용하고, 이에 따라 셀(1103)에도 길이 방향에 따른 인장력이 작용할 수 있다. 이 때, 안티 스트레칭 스트럿(1700)은 인장력에 저항해 연결부와 연결된 두 결합부 간의 간격을 유지할 수 있다. 이에 따라 셀(1103)의 길이 변형이 방지될 수 있다.
예시적으로 도 38에 도시된 바와 같이 스텐트 바디(1100)에 회수력 등이 작용함에 따라 셀(1103)에 길이 방향의 인장력이 인가되면, 안티 스트레칭 스트럿(1700)이 없는 셀(1103)은 길이가 증가하고, 폭이 감소하는 형태의 변형을 하게 된다. 이는 결과적으로 스텐트 바디(1100) 전체의 길이 증가와 직경 감소를 유발할 수 있다.
이때 예시적으로 도 38에 도시된 바와 같이 무부하 상태의 전개 상태의 셀(1103)의 길이와 동일한 길이를 가지는 안티 스트레칭 스트럿(1700)이 셀(1103)의 길이 방향 상의 양 코너부에 연결되면, 셀(1103)에 인장력이 작용하더라도 안티 스트레칭 스트럿(1700)가 셀의 형상을 유지할 수 있다. 셀의 형상이 유지되면 전체적으로 스텐트 바디(1100)의 변형이 제어될 수 있다.
한편, 상술한 셀(1103)의 코너(corner)란, 셀(1103)의 테두리 중에서 다른 인접 셀(1103)과 연결되는 지점 부근의 소정의 영역을 지칭하는 것일 수 있으며, 이 때, 코너와 코너 사이에서 연장되는 셀(1103)의 테두리는 모서리(edge)로 지칭될 수 있다. 또, '코너'를 통해 연결되는 두 인접 셀(1103)이란 하나의 셀(1103)과 그로부터 스텐트 바디의 열 또는 행을 따라 인접한 셀(1103)을 지칭하는 것으로서, 도 37을 참조할 때, 하나의 셀(1103)로부터 스텐트 바디(1100)의 길이방향을 따라 배치되는 셀(1103) 또는 그와 수직방향으로 배치되는 셀(1103)은 코너를 통해 연결되는 인접한 셀(1103)일 수 있다.
여기서, 메쉬 구조체를 형성하는 모든 셀(1103)이 안티 스트레칭 셀(1703)로 제공되면, 스텐트 바디(1100)의 길이 증가가 완전히 방지될 수 있으며, 일부 셀(1103)만 안티 스트레칭 셀(1703)로 제공되는 경우에는 안티 스트레칭 셀(1703)이 아닌 다른 셀(1103)들에서 발생하는 길이 변형으로 인해 스텐트 바디(1100)는 길이 변형은 일정 수준까지만 허용되고, 그 이상의 길이 변형은 억제될 수 있다.
한편, 상술한 안티 스트레칭 와이어와는 달리 안티 스트레칭 스트럿으로 제공되는 안티 스트레칭 메커니즘은 길이 증가뿐만 아니라 길이 감소도 억제할 수 있다. 다시 도 38에 도시된 바와 같이 무부하 상태의 전개 상태의 셀(1103)의 길이와 동일한 길이를 가지는 안티 스트레칭 스트럿(1700)이 셀(1103)의 길이 방향 상의 양 코너부에 연결되면, 셀(1103)에 길이 방향에 따른 압축력이 작용하더라도 안티 스트레칭 스트럿(1700)이 양 코너부의 길이를 유지함으로써, 셀의 길이 감소가 억제될 수 있다.
도 38을 참조한 설명에서는, 안티 스트레칭 스트럿(1700)이 다이아몬드 형태의 셀(1103)의 길이 방향에 따른 양 코너부를 통해 셀(1103)에 설치되고, 스텐트 바디(1100)가 무부하 조건 하의 전개 상태일 때 셀(1103)의 양 코너부 간의 거리와 동일한 길이를 갖는 것으로 설명하였으나, 이는 예시적인 것에 불과하며, 안티 스트레칭 스트럿(1700)과 셀(1103) 간의 연결 지점이나 안티 스트레칭 스트럿(1700)의 길이는 다양하게 변경될 수 있다.
도 39는 도 36에 따른 혈전 제거 기기의 안티 스트레칭 셀의 다른 예시들에 관한 도면이다.
안티 스트레칭 스트럿(1700)과 연결되는 셀(1103)의 테두리 상의 결합부의 위치는 다양할 수 있으며, 도 39에는 그 예시들이 도시되고 있다.
여기서, 안티 스트레칭 스트럿(1700)은 두 결합부 간의 간격을 유지하려는 특성을 가지며, 스텐트 바디(1100)의 변형은 주로 회수 과정에서 횡 방향의 인장력에 의해 발생하므로, 두 결합부는 셀(1103)의 테두리 중 스텐트 바디(1100)의 길이 방향 상 일정 거리 이상 이격된 위치에 배치되는 바람직할 수 있다. 예를 들어, 결합부는 도 39에 도시된 바와 같이 다이아몬드 형태의 셀(1103)에 대해서는 결합부 간의 거리가 최대가 되는 길이 방향 상의 양 코너에 배치될 수 있다.
또 여기서, 안티 스트레칭 스트럿(1700)가 횡 방향의 인장력이나 압축력에 저항하기 위해서는, 안티 스트레칭 스트럿(1700)에 작용하는 저항력 중 스텐트 바디(1100)의 길이 방향에 따른 성분의 비율이 높은 편이 유리하므로 두 결합부 간의 위치 관계는, 두 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향과 일정 각도 이하를 이루는 것이 바람직할 수 있다. 예를 들어, 결합부는 도 39에 도시된 바와 같이 두 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향과 동일할 수 있다. 다른 예를 들어, 결합부는 두 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향과 적어도 45도 이하의 각도를 이루는 것이 바람직할 수 있다.
다만, 안티 스트레칭 스트럿(1700)을 통해 스텐트 바디(1100)의 길이 변형이 아닌 스텐트 바디(1100)의 직경 변형을 방지하고자 하는 경우라면, 오히려 두 결합부를 연결하는 가상의 직선이 스텐트 바디(1100)의 길이 방향과 적어도 45도 이상의 각도를 이루는 것이 바람직할 수 있다.
한편, 안티 스트레칭 스트럿(1700)에 의한 저항력이 셀(1103) 내에 비대칭적으로 작용해 셀(1103) 형상이 뒤틀리는 것을 방지하기 위해 안티 스트레칭 스트럿(1700)의 두 결합부가 셀(1103)의 모서리 중 셀(1103)의 중심을 기준으로 점대칭되는 위치 또는 선대칭되는 위치에 배치되는 것이 바람직할 수 있다.
또 안티 스트레칭 스트럿(1700)이 반드시 다이아몬드 형태의 셀에만 적용되는 것은 아니며, 다양한 형태의 셀에 모두 적용될 수 있음은 자명하다.
안티 스트레칭 스트럿(1700)의 길이 역시 다양하게 결정될 수 있으며, 도 39에는 그 예시들이 도시되고 있다.
일 예에 따르면, 안티 스트레칭 스트럿(1700)의 길이는 결합부 간의 자연 거리와 실질적으로 동일할 수 있다. 결합부 간의 자연 거리와 동일한 길이를 갖는 안티 스트레칭 스트럿(1700)은 셀(1103)의 길이 변형을 방지할 수 있다.
다른 예에 따르면, 안티 스트레칭 스트럿(1700)의 길이는 결합부 간의 자연 거리보다 클 수 있다. 결합부 간의 자연 거리보다 큰 길이를 갖는 안티 스트레칭 스트럿(1700)은 셀(1103)의 길이 변형을 일정한 수준까지는 허용하되 그 이상의 길이 변형은 방지할 수 있다. 구체적으로 안티 스트레칭 스트럿(1700)은, 결합부 간의 거리가 안티 스트레칭 스트럿(1700)의 길이보다 작은 상태로부터 결합부 간의 거리가 안티 스트레칭 스트럿(1700)의 길이와 동일해지는 상태까지는 셀(1103)의 길이 변형을 허용하고, 결합부 간의 거리가 안티 스트레칭 스트럿(1700)의 길이와 동일해지면 그 이상으로 길이가 증가하는 것을 방지할 수 있다.
한편, 이상에서는 안티 스트레칭 셀 내에 하나의 안티 스트레칭 스트럿이 위치하는 것으로 설명하였으나, 안티 스트레칭 스트럿의 개수는 필요에 따라 복수 개일 수도 있다. 복수의 안티 스트레칭 스트럿은 서로 결합부가 동일 또는 상이할 수 있고, 서로 길이 역시 동일 또는 상이할 수 있다.
상술한 안티 스트레칭 스트럿(1700)에 의해 형성되는 안티 스트레칭 셀(1703)은 스텐트 바디(1100)에 적어도 하나 이상 포함될 수 있다. 안티 스트레칭 셀(1703)의 개수가 많을수록 스텐트 바디(1100)의 길이 변형 및 그에 따른 직경 변형, 형상 변형이 억제될 수 있고, 스텐트 바디(1100)의 유연성은 감소할 수 있으므로, 안티 스트레칭 셀의 개수는 적절히 설계될 필요가 있다.
도 37과 같이 메쉬 구조체에 복수의 안티 스트레칭 셀이 포함될 때에는 안티 스트레칭 셀의 배치는 다양할 수 있다.
일 예로, 안티 스트레칭 셀은 커버링 비율을 고려하여 배치될 수 있다. 여기서, 커버링 비율이란, 스텐트 바디(1100) 전체 영역 중 안티 스트레칭 셀(1703)에 의한 안티 스트레칭 효과가 미치는 영역(즉, 커버링 영역)의 비를 의미할 수 있다. 바람직하게는, 안티 스트레칭 셀(1703)은 안티 스트레칭 셀(1703)에 의한 커버링 비율이 30%~100% 수치가 되도록 배치될 수 있다. 예를 들어, 메쉬 구조물의 전체 셀(1103) 중 스텐트 바디(1100)의 근위 말단으로부터 원위 말단까지 길이 방향으로 연속되는 일렬의 셀(1103)들, 동일한 하나의 행에 속하는 모든 셀(1103) 또는 모든 열 별로 각각 하나의 셀들이 모두 안티 스트레칭 셀(1703)로 제공될 수 있으며, 이때 커버링 비율은 100%일 수 있다. 다른 예를 들어, 안티 스트레칭 셀(1703)이 속하는 열과 일반 셀(안티 스트레칭 셀이 아닌 셀)만 가지는 열이 교대로 배치되고, 이때의 커버링 비율은 50%일 수 있다. 또는 2개의 연속되는 열에는 일반 셀만 배치되고, 그 다음의 열에는 안티 스트레칭 셀(1703)이 배치되는 패턴을 반복하는 형태로 스텐트 바디(1100)에 안티 스트레칭 셀(1703)이 배치될 수 있으며, 이때에는 전체 열의 개수에 대한 안티 스트레칭 셀(1703)을 가지는 열의 개수의 비율이 커버링 비율이 될 수 있다. 다만, 스텐트 바디(1100)의 길이 증가를 억제하는 동시에 스텐트 바디(1100)의 압축성 및 유연성 확보를 위해 커버링 비율은 바람직하게는 50~80%로 결정될 수 있다.
이상의 설명에서 '행(row)'란 스텐트 바디(1100)를 2차원 전개도로 볼 때 스텐트 바디(1100)의 길이 방향으로 연속되는 셀들이 속하는 위치를 의미하며, 3차원 메쉬 구조체에서도 역시 길이 방향으로 연속되는 셀들이 속하는 위치를 의미할 수 있다. 또 유사하게 '열(column)'이란 스텐트 바디(1100)를 2차원 전개도로 볼 때 스텐트 바디(1100)의 길이 방향의 수직 방향으로 연속되는 셀들이 속하는 위치를 의미하며, 3차원 메쉬 구조체 상에서는 원주 방향과 일치할 수 있다. 여기서, 연속되는 셀을 연결한 직선이 스텐트 바디(1100)의 길이방향과 각을 이루는 경우, 셀을 연결한 직선의 길이 방향의 성분보다 수직 방향의 성분이 크면, 해당되는 셀은 열을 따라 위치하는 것으로 고려될 수 있다.
한편, 안티 스트레칭 효과가 스텐트 바디(1100)의 길이 방향 상 균등하게 발생하도록 안티 스트레칭 셀(1703)은 길이 방향 상 안티 스트레칭 셀(1703) 간의 간격이 최대한 이격되도록 또는 안티 스트레칭 셀(1703) 간의 간격이 일정하도록 배치될 수 있다. 다시 말해, 안티 스트레칭 셀(1703)은 안티 스트레칭 셀(1703)이 속하는 열 간의 간격이 비교적 균등하도록 배치될 수 있다. 예를 들어, 12개의 열을 갖는 스텐트 바디(1100)에 6개의 안티 스트레칭 셀(1703)을 배열하고자 할 때, 안티 스트레칭 셀(1703)은 12개의 열 중 홀수 번?? 혹은 짝수 번째 열에 배치될 수 있다.
또 안티 스트레칭 효과가 스텐트 바디(1100)의 방사 방향 상 균등하게 발생하도록 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 종단면 상 서로 이루는 각도가 최대한 이격되도록 또는 서로 이루는 각도가 일정하도록 배치될 수 있다. 다시 말해, 안티 스트레칭 셀(1703)은 안티 스트레칭 셀이 속하는 행 간의 간격이 비교적 균등하도록 배치될 수 있다. 예를 들어, 스텐트 바디(1100)에 3개의 안티 스트레칭 셀(1703)을 배열하고자 할 때, 안티 스트레칭 셀(1703) 간이 서로 최대한 이격되도록 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 중심축을 기준으로 서로 120도의 각도를 이루도록 배치될 수 있다. 다른 예를 들어, 스텐트 바디(1100)에 12개의 안티 스트레칭 셀(1703)을 배열하고자 할 때, 안티 스트레칭 셀(1703) 간이 간격이 서로 일정하도록 임의의 3개의 안티 스트레칭 셀(1703)이 방사 방향 상 배치된 특정 방향을 기준으로, 다른 3개의 안티 스트레칭 셀(1703)은 특정 방향에 대해 90도 각도로 배치되고, 또 다른 3개의 안티 스트레칭 셀(1703)은 특정 방향에 대해 180도를 이루도록 배치되고, 다시 또 다른 3개의 안티 스트레칭 셀(1703)은 특정 방향에 대해 270도를 이루도록 배치될 수 있다.
한편, 상술한 것과 같이 복수의 안티 스트레칭 셀(1703) 중 적어도 둘 이상의 안티 스트레칭 셀(1703)이 방사 방향 상 동일한 방향에 배치될 ??, 방사 방향 상 동일한 방향에 배치된 안티 스트레칭 셀(1703)은 그들 사이의 간격이 최대가 되도록 배치되는 것이 바람직할 수 있다. 구체적으로 다시 12개의 안티 스트레칭 셀(1703)이 서로 90도를 이루도록 배치된 상술한 예를 기준으로 설명하면, 12개의 안티 스트레칭 셀(1703)은 길이 방향 상 전체 길이의 1/12 간격으로 배치될 수 있으며, 이때 길이 방향 상 가장 앞쪽의 1번 셀은 방사 방향 상 특정 방향으로, 2번 셀은 특정 방향에 대해 90도 각도로, 3번 셀은 방사 방향 상 특정 방향에 대해 180도로, 4번 셀은 방사 방향 상 특정 방향에 대해 270도로 배치되고, 5번 셀부터 12번 셀까지의 위의 패턴을 반복하여 배치될 수 있다. 이처럼, 길이 방향 상의 간격과 방사 방향 상의 간격을 고려하여 안티 스트레칭 셀(1703)을 배치함으로써 스텐트 바디(1100) 전체에 안티 스트레칭 셀(1703)에 의한 안티 스트레칭 효과가 분산되어 균등하게 작용할 수 있다.
이하에서는 안티 스트레칭 스트럿 형태의 안티 스트레칭 메커니즘을 가지는 본 실시예에 따른 혈전 제거 기기의 예시들에 관하여 설명한다.
한편, 혈전 제거 기기의 예시를 설명하기에 앞서, 도 40 및 도 44에 따른 혈전 제거 기기의 스텐트 바디는 적어도 한가지 형태의 셀을 포함하고, 스텐트 바디의 열별로 적어도 하나의 안티 스트레칭 셀이 제공됨으로써 커버링 비율이 100%인 것을 도시하고 있으나, 안티 스트레칭 셀에 의한 커버링 비율은 다양한 값을 가질 수 있으며, 커버링 비율이 100% 이하인 경우, 안티 스트레칭 셀(1703)이 배치되지 않은 스텐트 바디(1100)의 길이 구간은 외력에 의한 변형이 허용될 수 있음을 미리 밝혀둔다.
또, 도 40 내지 도 44에서 도시된 것과 달리 안티 스트레칭 셀(1703) 내의 안티 스트레칭 스트럿(1700)의 형태는 다양하게 설계될 수 있으며, 그 배치 형태 또는 길이등에 따라서 안티 스트레칭 셀의 스트레칭 방지 효과는 증가하거나 감소할 수 있다.
또, 한편, 도 40 내지 도 44의 안티 스트레칭 스트럿(1700)의 두께는 스텐트 바디(1100)의 스트럿(1101)의 두께 보다 얇은 것으로 도시되었으나 이는 안티 스트레칭 스트럿(1700)의 배치를 강조하기 위한 것으로, 안티 스트레칭 스트럿(1700)의 두께는 도시된 것과 달리 스트럿(1101)의 두께와 유사하게 제공될 수도 있고, 그보다 두껍게 제공될 수도 있을 것이다.
도 40은 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다른 예에 관한 도면이고, 도 41은 도 40에 따른 혈전 제거 기기의 전개도이다.
도 40 및 41을 참조하면, 본 예에 따른 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 각 열에 하나씩 제공됨으로써 스텐트 바디(1100)의 길이방향을 따라 연속적으로 위치하며, 스텐트 바디(1100)의 행을 따라 배치됨으로써 스텐트 바디(1100)의 중심축으로부터 모두 동일한 방향상에 위치할 수 있다.
여기서, 각각의 안티 스트레칭 셀(1703)에 제공된 안티 스트레칭 스트럿(1700)은 셀(1103)의 길이 방향상 양 코너부에 연결될 수 있고, 스텐트 바디(1100)의 길이방향과 평행하게 형성될 수 있으며, 안티 스트레칭 스트럿(1700)의 길이는 안티 스트레칭 스트럿(1700)이 연결되는 두 결합부 사이의 거리와 동일하게 제공될 수 있다.
이 때, 인접한 안티 스트레칭 스트럿(1700) 중 상대적으로 근위에 위치한 안티 스트레칭 스트럿(1700)의 후위 연결부는 상대적으로 원위에 위치한 안티 스트레칭 스트럿(1700)의 전위 연결부와 인접하게 위치할 수 있고, 복수의 안티 스트레칭 스트럿(1700)은 동일 직선상에 위치할 수 있다.
도 40 및 도 41과 같은 형태로 안티 스트레칭 셀(1703)이 배치되면 스텐트 바디(1100)의 전체에 대해 그 길이의 증가/감소가 억제될 수 있으며, 자세하게는 스텐트 바디(1100)에 횡력이 인가될 때 각각의 안티 스트레칭 셀(1703)의 형상 변형이 억제됨으로써 그 안티 스트레칭 셀(1703)이 위치한 스텐트 바디(1100)의 각 열의 길이 변형이 제한될 수 있고, 이를 통해 횡력이 인가된 후의 스텐트 바디(1100)의 길이가 횡력이 인가되기 전의 길이와 유사하게 유지될 수 있다.
도 42는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 또 다른 예에 관한 도면이고, 도 43은 도 42에 따른 혈전 제거 기기의 전개도이다.
도 42 및 43을 참조하면, 본 예에 따른 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 각 열에 하나씩 제공되나, 스텐트 바디(1100)의 중심축에 대해 90도 각도로 이격되어 위치함으로써 방사상 상이하게 배치될 수 있다.
여기서, 각각의 안티 스트레칭 셀(1703)에 제공된 안티 스트레칭 스트럿(1700)의 형태는 도 40 및 도 41에서 도시된 것과 동일하며, 각 안티 스트레칭 셀(1703)이 스텐트 바디(1100)의 중심축으로부터 서로 다른 방사방향에 배치됨으로써 인접한 안티 스트레칭 스트럿(1700) 중 상대적으로 근위에 위치한 안티 스트레칭 스트럿(1700)의 후위 연결부는 상대적으로 원위에 위치한 안티 스트레칭 스트럿(1700)의 전위 연결부와 이격되어 위치할 수 있다.
스텐트 바디(1100)의 각 열에 제공된 안티 스트레칭 셀(1703)은 그 형상변형이 억제됨으로써 스텐트 바디(1100)의 길이 증가를 방지할 수 있고, 도 42 및 도 43과 같이 안티 스트레칭 셀(1703)이 스텐트 바디(1100)의 중심축에 대해 일정한 각을 이루도록 배치되면, 안티 스트레칭 셀(1703)에 의한 안티 스트레칭 효과가 스텐트 바디(1100)의 방사 방향상 균등하게 발생할 수 있다.
도 44는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다시 또 다른 예에 관한 도면이다.
도 44를 참조하면, 본 예에 따른 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 각 열에 2개씩 제공됨으로써 스텐트 바디(1100)의 길이방향을 따라 연속적으로 위치하며, 각 열에 제공된 2개의 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 두 행을 따라 배치되고 스텐트 바디(1100)의 중심축에 대해 대칭적으로 위치할 수 있다.
스텐트 바디(1100)의 각 열에 두 개의 안티 스트레칭 셀(1703)이 배치되면, 하나의 안티 스트레칭 셀(1703)이 배치되는 경우보다 길이 변형에 저항하는 효과가 강해질 수 있고, 두 안티 스트레칭 셀(1703)이 스텐트 바디(1100)의 중심축에 대해 대칭하게 배치됨으로써 그 스트레칭 방지효과가 균등하게 발생할 수 있다.
이상에서는 혈전 제거 기기가 하나의 셀의 형상만을 갖는 예시를 설명하였으나, 스텐트 바디의 셀의 형태가 단일 형상이어야만 하는 것은 아니다.
도 45는 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 또 다시 또 다른 예에 관한 도면이고, 도 46은 도 45에 따른 혈전 제거 기기의 전개도의 일 예고, 도 47은 도 45에 따른 혈전 제거 기기의 전개도의 다른 예이고, 도 48은 도 47에 따른 혈전 제거 기기에 관한 도면이고, 도 49는 도 45에 따른 혈전 제거 기기의 전개도의 또 다른 예이다.
도 45를 참조하면, 스텐트 바디(1100)는 두 가지 형태의 셀(1103)을 포함할 수 있다. 두 가지 형태의 셀은 제1 셀(1104) 및 제2 셀(1105)를 포함할 수 있다. 스텐트 바디(1100)는 두 가지 형태의 셀을 포함함으로써, 외력에 의한 스텐트 바디(1100)의 변형의 정도를 조절할 수 있다.
도 45에 도시된 것과 같이, 스텐트 바디(1100)는 제1 셀(1104)이 배치된 행과 제2 셀(1105)이 배치된 행을 교대로 포함할 수 있고, 이를 통해 제1 셀(1104) 및 제 2셀(1105)은 스텐트 바디(1100)의 원주둘레를 따라 연장되는 나선을 따라 배치될 수 있다. 또, 나선을 따라 배치된 제1 셀(1104)을 연결한 가상 직선이 스텐트 바디(1100)의 중심축에 대해 이루는 각은 90도보다 작을 수 있다.
외력에 의한 스텐트 바디(1100)의 변형 정도는 셀(1103)의 크기, 형상 또는 배치에 따라 상이하게 나타날 수 있으므로, 도 45와 같이 스텐트 바디(1100)가 두가지 형태의 셀(1103)을 포함하면 혈전 제거 기기(1000)의 회수과정에서 스텐트 바디(1100)의 길이가 증가되는 양상이 달라질 수 있다.
도 46을 참조하면, 안티 스트레칭 스트럿(1700)은 제1 셀(1104)에 제공될 수 있고, 예시적으로 도 46에 도시된 바와 같이 안티 스트레칭 셀(1703)의 배치는 도 41과 유사한 형태로 제공될 수 있다. 다시 말해서, 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 길이방향과 평행한 직선상에 배치될 수 있다.
도 46에 도시된 것과 같이 제 1셀(1104)은 스텐트 바디(1100)의 길이방향을 따라 연속적으로 배치되어 스텐트 바디(1100)의 행을 구성하고, 각 행에 배치된 제1 셀(1104)은 스텐트 바디(1100)의 원주둘레를 따라 연장되는 나선 상에 위치할 수 있다. 이 때, 전개된 스텐트 바디(1100)에서, 나선 상에 배치된 제1 셀(1104)을 연결한 가상 직선이 스텐트 바디(1100)의 길이방향과 이루는 각은 90도보다 작을 수 있으며, 이에 따라 각 안티 스트레칭 셀(1703)에 의해 길이 변화가 억제되는 구간은 각 안티 스트레칭 셀(1703)의 근위말단으로부터 원위말단에 이르는 거리 구간일 수 있다.
또 도 47을 참조하면, 상술한 바와 달리 안티 스트레칭 스트럿(1700)은 제1 셀(1104)에 제공될 수 있고, 안티 스트레칭 셀(1703)의 배치는 도 42의 형태로 제공될 수 있다. 다시 말해서, 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 길이방향을 따라 연속적으로 위치하며, 각 행의 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 중심축에 대해 서로 90도의 각을 이루도록 배치될 수 있다.
도 47에 도시된 것과 같이 제 1셀(1104)이 배치된 행은 제2 셀(1105)이 배치된 행과 교대로 위치할 수 있고, 이에 따라 제 1셀(1104)이 위치한 각 행은 소정의 거리만큼 이격되어 위치할 수 있다. 서로 다른 행에 배치된 제1 셀(1104)의 위치가 길이방향상 이격됨으로써 각각 다른 행에 제공된 안티 스트레칭 셀(1703)은 길이방향상 소정의 거리를 두고 배치될 수 있다.
상술한 도 46에 따른 안티 스트레칭 셀(1703)과 비교할 때, 도 47에 따른 안티 스트레칭 셀(1703)은 그 개수는 동일하나, 스텐트 바디의 길이방향상 이격되어 위치함으로써 그 스트레칭 방지효과가 길이방향상 균등하게 발생할 수 있다. 또, 도 47의 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 중심축으로부터 각기 다른 방항에 배치됨으로써 그 스트레칭 방지효과가 방사방향상 균등하게 발생할 수 있다.
도 49를 참조하면, 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 행 또는 열에 두 개씩 배치될 수 있다. 도 49에 따른 복수의 안티 스트레칭 셀(1703)은 길이 방향 상의 간격과 방사 방향 상의 간격이 일정하게 배치되며, 이를 통해 안티 스트레칭 셀(1703)에 의한 스트레칭 방지 효과가 스텐트 바디(1100)에 균등하게 작용할 수 있다.
한편, 도 49의 혈전 제거 기기(1000)에 제공되는 안티 스트레칭 셀(1703)의 개수는 상술한 도 47의 안티 스트레칭 셀(1703)의 개수의 2배일 수 있고, 그에 따라 스텐트 바디(1100)에 발생하는 스트레칭 방지효과는 도 47과 비교하여 증가할 수 있다. 또, 스텐트 바디(1100)의 특정 길이 구간에서는 2개의 안티 스트레칭 셀(1703)이 작용하므로, 특정 길이 구간에 대해서는 스트레칭 방지효과가 더 강하게 나타날 수도 있을 것이다.
이상에서는 싱글-세그먼트 형태의 싱글-스텐트 바디를 갖는 혈전 제거 기기를 기준으로 안티 스트레칭 셀에 관하여 설명하였으나, 안티 스트레칭 셀은 멀티-세그먼트 형태의 스텐트 바디 또는 복수의 스텐트 바디를 갖는 혈전 제거 기기에도 이용될 수 있다.
도 50 내지 도 58은 본 명세서의 또 다시 또 다른 실시예에 따른 혈전 제거 기기의 다양한 예시들에 관한 도면이다.
도 50 및 도 51을 참조하면, 혈전 제거 기기(1000) 스텐트 바디(1100)는 세그먼트와 마우스 구조를 포함함으로써 랜덤하게 위치한 연혈전 또는 경혈전을 포획할 수 있다. 여기서, 일 실시예에 따른 혈전 제거 기기(1000)의 안티 스트레칭 메커니즘은 스트럿 형태의 안티 스트레칭 스트럿(1700)으로 제공될 수 있다.
이때, 혈전 제거 기기(1000)는 안티 스트레칭 스트럿(1700)을 통해 스텐트 바디(1100)의 직경 크기가 과도하게 줄어드는 것을 방지함으로써 스텐트 바디(1100)가 혈전과 인게이징하여 혈전을 포획하게 할 수 있다. 또한 본 실시예의 혈전 제거 기기(1000)는 안티 스트레칭 스트럿(1700)을 통해 하나의 세그먼트에 대한 다른 세그먼트의 길이 비율을 혈전 제거 과정 중에 일정범위 내로 유지할 수 있고, 스텐트 바디(1100)의 마우스 구조의 크기 및 형상은 무부하 상태의 마우스 구조의 크기 및 형상과 유사하게 유지될 수 있다.
다시 도 50 및 도 51을 참조하면, 안티 스트레칭 스트럿(1700)은 스텐트 바디(1100)의 각 세그먼트의 셀(1103)에 제공될 수 있다. 안티 스트레칭 셀(1703)은 스텐트 바디(1100)의 길이방향의 중심축에 대해 다양한 방사방향에 위치하고, 길이방향을 따라 순차적으로 배치될 수 있다. 이를 통해 스텐트 바디(1100)의 각 세그먼트의 길이 변화는 억제될 수 있으며, 스텐트 바디(1100)의 중심으로부터 다양한 방향에 위치한 셀(1103)의 변형은 방지될 수 있다.
여기서, 혈전 제거 기기(1000)의 스텐트 바디(1100)는 세그먼트 및 마우스 구조를 추가로 포함할 수 있다. 이 때, 안티 스트레칭 셀(1703)은 세그먼트의 변형을 방지하기 위하여 각각의 세그먼트에 제공될 수 있다.
세그먼트에 제공되는 안티 스트레칭 스트럿(1700)의 형태 및 안티 스트레칭 셀(1703)의 배치는 상술한 예를 참고할 수 있으나, 상술한 하나의 예로 한정하여서는 안되며, 언급하지 않은 다양한 예를 포함할 수 있다.
도 52 및 도 53을 참조하면, 혈전 제거 기기(1000)는 안티 스트레칭 셀(1703)을 통해 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 직경 크기가 과도하게 줄어드는 것을 방지함으로써 혈전의 이탈 및 혈전의 유출을 방지할 수 있다. 또한 본 실시예의 혈전 제거 기기(1000)는 안티 스트레칭 스트럿(1700)을 통해 제1 스텐트 바디(1100A)에 대한 제2 스텐트 바디(1100B)의 길이 비율을 혈전 제거 과정 중에 일정범위 내로 유지할 수 있다. 이를 통해, 혈전 제거 기기(1000)는 제1 상태의 형태 또는 제2 상태의 형태 사이에서 변형될 수 있다.
안티 스트레칭 스트럿(1700)은 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 각 세그먼트의 셀(1103)에 제공될 수 있다. 안티 스트레칭 셀(1703)은 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이방향의 중심축에 대해 다양한 방사방향에 위치하고, 길이방향을 따라 순차적으로 배치될 수 있다. 이에 대한 자세한 내용은 전술한 내용을 참조하여 설명될 수 있다.
한편, 두 스텐트 바디(1100)의 상대적인 위치관계에 따라 제1 상태 또는 제 2 상태로 그 형태가 변형되는 혈전 제거 기기(1000)에 있어서, 두 스텐트 바디(1100) 사이의 간섭을 방지하거나 제 2상태에서 서로 겹쳐지는 두 스텐트 바디(1100)의 세그먼트가 동일한 형상을 가지도록 스텐트 바디(1100)에 제공되는 안티 스트레칭 셀(1703)의 방사상 위치가 결정될 수 있으며, 이는 상술한 내용을 참조하여 설명될 수 있다.
또 한편, 안티 스트레칭 셀(1703)은 도시된 것과 다른 형태로 배치될 수 있으며, 안티 스트레칭 스트럿(1700)의 형태 및 안티 스트레칭 셀(1703)의 배치는 상술한 예를 참고할 수 있으나, 상술한 하나의 예로 한정하여서는 안되며, 언급하지 않은 다양한 예를 포함할 수 있다.
도 54 내지 도 56을 참조하면, 혈전 제거 기기(1000)는 도 52 내지 도 53의 혈전 제거 기기(1000)와 전체적으로 유사하나, 부분적으로 상이한 형상을 가진다.
일 예로, 도 52 및 도 53의 혈전 제거 기기(1000)의 스텐트 바디(1100)에서 마우스 구조의 브릿지는 인접한 두 세그먼트 중 상대적으로 원위에 위치한 세그먼트의 근위말단과 연결되었으나, 도 54 내지 도 56의 혈전 제거 기기(1000)의 스텐트 바디(1100)에서는 마우스 구조의 브릿지가 인접한 두 세그먼트 중 원위에 위치한 세그먼트의 근위말단 보다 원위에 위치한 소정에 위치에 연결된다.
다른 예로, 혈전 제거 기기(1000)가 제 1상태와 제2 상태를 오가는 과정에서, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)는 서로에 대한 위치가 변경될 수 있고, 이 때 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 기계적인 간섭이 발생할 수 있다. 예를 들어, 혈전 제거 기기(1000)가 제 1상태에서 제2 상태로 그 형태가 변형되는 과정에서, 제1 스텐트 바디(1100A)의 제1 세그먼트(1110) 및 제2 세그먼트(1130)의 원위말단은 제2 스텐트 바디(1100B)의 제5 세그먼트(1110B) 및 제6 세그먼트(1130B)의 근위말단과 간섭이 발생할 수 있다. 간섭으로 인해 혈전 제거 기기(1000)의 변형이 제한되는 경우를 방지하기 위하여, 제1 스텐트 바디(1100A)의 제1 세그먼트(1110) 및 제2 세그먼트(1130)의 원위말단은 돌출된 형태로 제공되지 않을 수 있고, 제2 스텐트 바디(1100B)의 제5 세그먼트(1110B) 및 제6 세그먼트(1130B)의 근위말단 또한 돌출된 형태로 제공되지 않을 수 있다. 이처럼 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100B) 사이에 기계적 간섭을 방지하기 위한 형상은 간섭 감소 메커니즘(interference reduction mechanism)으로 지칭될 수 있다.
한편, 도 54 내지 도56의 안티 스트레칭 스트럿(1700)은 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 각 세그먼트의 셀(1103)에 제공될 수 있다. 도 56 및 도58의 안티 스트레칭 셀(1703)은 도 46의 형태로 제공될 수 있다. 안티 스트레칭 셀(1703)은 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 길이방향의 중심축에 대해 다양한 방사방향에 위치하고, 길이방향을 따라 순차적으로 배치될 수 있으나, 반드시 그러한 것은 아니며, 상술한 예 또는 언급되지 않은 다양한 예로 제공될 수 있음은 자명하다.
도 57 및 도 58을 참조하면, 혈전 제거 기기의 기기의 안티 스트레칭 메커니즘은 레일(rail)의 형태의 안티 스트레칭 레일(1790)로 제공될 수 있다.
여기서, 안티 스트레칭 레일(1790)은 혈전 제거 기기(1000)의 스텐트 바디(1100)의 원주면에 형성된 스트럿으로서, 스텐트 바디(1100)의 길이 방향의 변형을 제한할 수 있다. 이를 통해 스텐트 바디(1100)가 길이 방향으로 늘어나는 것이 방지/저하되며, 이에 따라 스텐트 바디(1100)의 직경의 크기 감소나 셀(1103)의 형상 변형이 방지/감소될 수 있다.
안티 스트레칭 레일(1790)은 스텐트 바디(1100)의 원주면 상에 일방향을 따라 연장됨으로써, 상기 일 방향을 따라 배치된 적어도 두 개의 셀(1103)을 연결할 수 있고, 이를 통해 하나의 셀(1103) 및 그와 인접한 셀(1103)은 스텐트 바디(1100)의 길이 방향을 따라 서로 이격되어 위치할 수 있다. 이처럼 안티 스트레칭 레일(1790)은 하나의 셀(1103)과 다른 하나의 셀(1103)을 연결함으로써 셀(1103)사이의 거리가 일정 범위를 넘어 멀어지거나 가까워지는 것을 방지할 수 있고, 스텐트 바디(1100)가 길이방향으로 변형되는 것을 제한할 수 있다.
여기서, 인접한 두 셀(1103)이 서로의 근위말단 또는 원위말단을 통해 연결되지 않으므로, 인접한 두 셀(1103)은 스텐트 바디(1100)의 길이 방향을 따라 서로 이격되어 위치하며 각 셀(1103)의 근위말단 또는 원위말단은 스텐트 바디(1100)의 방사방향의 변형으로부터 자유로울 수 있다. 인접한 두 셀(1103)의 원위말단 또는 근위말단은 스텐트 바디(1100)의 길이방향의 중심축으로부터 방사방향으로 변형되는 것이 자유로울 수 있고, 스텐트 바디(1100)의 내측 또는 외측을 향해 구부러질 수 있다.
안티 스트레칭 레일(1790)은 스텐트 바디(1100)의 제조 방법에 따라 달리 형성될 수 있다. 일 예로, 안티 스트레칭 레일(1790)은 스텐트 바디(1100)의 일부로써 함께 제조될 수 있다. 다른 예로, 안티 스트레칭 레일(1790)은 독립적으로 제조된 스텐트 바디(1100)에 추가적으로 연결될 수 있다. 또 다른 예로, 안티 스트레칭 레일(1790)은 독립적으로 제작된 셀(1103)을 연결함으로써 스텐트 바디(1103)를 형성할 수 있다.
여기서, 셀(1103)은 비대칭적인 형태로 제공될 수 있고, 셀(1103)의 양 말단부분은 곡률이 다른 곡선 형태를 가질 수 있다. 셀(1103)의 단축을 기준으로 셀(1103)의 원위 말단을 포함하는 제1 영역 및 근위 말단을 포함하는 제2 영역을 정의할 때, 제1 영역의 곡률은 제2 영역의 곡률보다 클 수 있고, 제1 영역은 제2 영역보다 길쭉한 형상을 가질 수 있다.
이 때, 셀(1103)의 제 1 영역은 열 성형을 통해 스텐트 바디(1100)의 중심축으로부터 방사상 외부 방향으로 플레어링될 수 있으며, 이를 통해 스텐트 바디(1100)에 외력이 인가되어 그 직경이 축소된 경우에도 플레어링된 셀(1103)은 혈관 벽과 접촉을 유지할 수 있다.
이하에서는 본 명세서의 실시예에 따른 혈전 제거 방법의 예시들에 관하여 설명한다.
본 명세서의 실시예에 따른 혈전 제거 방법의 일 예는, 상술한 혈전 제거 기기의 예시 중 단일한 스텐트 바디를 갖는 혈전 제거 기기를 이용하는 혈전 제거 방법일 수 있다. 본 예에 관해서는 도 59를 참조하여 설명한다.
도 59는 본 명세서의 실시예에 따른 혈전 제거 방법의 일 예의 순서도이다.
도 59를 참조하면, 본 명세서의 실시예에 따른 혈전을 제거하는 방법(S1000)은 다음과 같다.
일 실시예에 따른 혈전을 제거하는 방법은 압축된 상태의 혈전 제거 기기를 혈관 내에 삽입하는 단계(S1100); 압축된 상태의 혈전 제거 기기가 혈관 내에서 팽창하는 단계(S1200); 혈전 제거 기기가 혈관 내에 전개되는 단계(S1300); 혈전 제거 기기가 외력을 인가 받는 단계(S1400); 및 안티 스트레칭 메커니즘이 혈전 제거 기기의 길이 변형을 방지하는 단계(S1500);를 포함한다.
이하에서는 각 단계에 대해 보다 구체적으로 설명한다.
혈전 제거 기기(1000)는 혈관 내로 삽입될 수 있다(S1100).
환자의 혈관 내에 혈류의 흐름을 방해하는 혈전의 위치가 검출되면 해당 위치까지 가이드 와이어가 이동되고, 이 후 가이드 와이어를 따라 카테터가 혈관 내에 삽입될 수 있다. 삽입된 카테터가 혈전 근처의 시술 지점에 도달하면, 가이드 와이어가 제거된 후 카테터의 중공을 통해 혈전 제거 기기(1000)가 이동(delivery)될 수 있다. 이 때 혈전 제거 기기(1000)는 카테터에 의해 압축된 상태이며, 카테터를 통해 표적혈전에 근접하게 배치될 수 있다.
혈전 제거 기기(1000)는 혈관 내에서 팽창할 수 있다(S1100).
압축된 상태의 혈전 제거 기기(1000)가 표적혈전에 근접하게 배치된 후 카테터를 회수하면, 카테터에 의한 외력이 제거됨에 따라 탄성체인 혈전 제거 장치(1000)의 스텐트 바디(1100)는 탄성체의 복원력에 의해 자체적으로 팽창할 수 있다. 스텐트 바디(1100)는 그 직경이 혈관의 직경 크기와 유사할 때까지 팽창할 수 있으며, 팽창되는 과정에서 혈전 제거 기기(1000)의 스텐트 바디(1100)는 혈전과 결합할 수 있다.
혈전 제거 기기(1000)는 혈관 내에 전개될 수 있다(S1300).
혈관 내에 전개된 혈전 제거 기기(1000)의 스텐트 바디(1100)는 속이 빈 형상을 가질 수 있다. 스텐트 바디(1000)는 스트럿(1101)의 사이, 셀(1103)의 내부 또는 마우스 구조 등을 통과하여 스텐트 바디(1100)의 내부로 들어온 혈전을 수용할 수 있고, 스텐트 바디(1100)가 그 내부 공간에 혈전을 수용함으로써 혈전 제거 기기(1000)는 혈전을 포획할 수 있다. 이처럼 전개된 혈전 제거 기기(1000)는 스텐트 바디(1100)와 결합된 혈전 또는 스텐트 바디(1100)의 내부에 포획된 혈전을 소지할 수 있다.
혈전 제거 기기(1000)는 외력을 인가 받을 수 있다(S1400).
혈전을 소지한 혈전 제거 기기(1000)를 체외로 회수함으로써 혈전을 제거하기 위해 혈전 제거 기기(1000)에 외력이 인가될 수 있으며, 구체적으로는 풀와이어(1300)의 조작을 통해 스텐트 바디(1100)에 외력이 인가될 수 있다.
예를 들어, 혈전 제거 기기(1000)를 회수하는 과정에서 풀 와이어(1300)를 조작하면, 스텐트 바디(1100)에는 풀 와이어(1300)에 의해 근위 방향으로 작용하는 회수력과 스텐트 바디(1100)와 혈관 사이의 밀착력, 혈전의 무게 등에 의해 원위 방향으로 작용하는 저항력이 작용할 수 있다. 다른 예를 들어, 혈전 제거 기기(1000)를 회수하는 과정에서 스텐트 바디(1100)는 혈관의 커브 구간을 통과할 수 있고, 스텐트 바디(1100)의 일부에 외력이 가해짐으로써 스텐트 바디(1100)의 일부가 과도하게 변형될 수 있다.
안티 스트레칭 메커니즘은 혈전 제거 기기의 길이 변형을 방지할 수 있다(S1500).
안티 스트레칭 메커니즘은 혈전 제거 기기(1000)의 스텐트 바디(1100)에 외력이 인가되어 스텐트 바디(1100)의 길이가 과도하게 변형되는 것을 방지할 수 있다.
일 예로, 안티 스트레칭 메커니즘은 안티 스트레칭 와이어(1500)로 제공될 수 있다. 안티 스트레칭 와이어(1500)는 안티 스트레칭 와이어(1500)가 연결된 혈전 제거 기기(1000)의 두 결합부 사이의 거리를 안티 스트레칭 와이어(1500)의 길이내로 제한함으로써 스텐트 바디(1100)의 길이변형을 방지할 수 있다. 예를 들어, 안티 스트레칭 와이어(1500)의 길이가 두 결합부 사이의 거리와 동일하면, 두 결합부 사이의 거리는 자연 거리와 실질적으로 동일하게 유지될 수 있다.
다른 예로, 안티 스트레칭 와이어(1500)의 길이가 두 결합부 사이의 거리보다 큰 값을 가지면, 두 결합부 사이의 거리는 느슨한 안티 스트레칭 와이어(1500)가 팽팽해질 때까지 증가하며, 그 길이 증가는 안티 스트레칭 와이어(1500)의 길이 내로 한정될 수 있다. 안티 스트레칭 와이어(1500)의 동작은 언급한 내용에 한정되지 않으며, 상술한 다양한 예시를 포함하여 해석되어야 한다.
또, 안티 스트레칭 메커니즘은 안티 스트레칭 스트럿(1700)으로 제공될 수 있다. 안티 스트레칭 스트럿(1700)은 셀(1103)의 형상변형을 억제함으로써 셀(1103)의 길이가 그 자연 길이보다 과도하게 늘어나거나 과도하게 줄어드는 것을 방지할 수 있다. 예를 들어, 스텐트 바디(1100)에 외력이 가해지면, 안티 스트레칭 셀(1703)이 위치한 스텐트 바디(1100)의 길이 구간은 안티 스트레칭 셀(1703)의 형상이 초기 전개시와 유사하게 유지됨에 따라 그 길이변형이 제한될 수 있고, 이에 따라 전체적인 스텐트 바디(1100)의 변형은 제한될 수 있다. 안티 스트레칭 스트럿(1700)의 동작은 언급한 내용에 한정되지 않으며, 상술한 다양한 예시를 포함하여 해석되어야 한다.
한편, 본 명세서의 실시예에서는 안티 스트레칭 와이어(1500) 또는 안티 스트레칭 스트럿(1700)의 형태를 가지는 안티 스트레칭 메커니즘을 중심으로 설명하였으나, 안티 스트레칭 메커니즘은 상술한 예에 한정되지 않으며, 언급되지 않은 다양한 형태로 구현될 수 있다.
혈전 제거 기기(1000)에 안티 스트레칭 메커니즘이 제공됨으로써 혈전 제거 기기(1000)는 혈전과 결합하거나 혈전을 포획하기 쉬울 수 있고, 혈전 제거 기기(1000)가 체외로 회수될 때까지 소지한 혈전을 놓치지 않고 보유할 수 있다. 자세하게는, 안티 스트레칭 메커니즘이 스텐트 바디(1100)의 길이증가를 억제하여 직경 크기를 일정범위내로 유지하고, 셀의 형상변형을 제한함으로써 혈전 제거 기기(1000)의 기능이 온전히 발휘될 수 있으며, 포획된 혈전의 파편화가 방지되고, 스텐트 바디(1100)의 외부로 혈전이 유출되는 것이 방지될 수 있다. 또한 혈전 제거 기기(1000)가 멀티 세그먼트 헝태의 스텐트 바디(1000)를 포함하는 경우, 안티 스트레칭 메커니즘은 각 세그먼트의 직경 축소를 방지함으로써 마우스 구조의 크기 및 형상이 무부하 조건하에서 마우스 구조의 크기 및 형상과 유사하게 유지되도록 할 수 있고, 이를 통해 혈전 제거 기기(1000)의 혈전 포획 성공률이 향상될 수 있다.
본 명세서의 실시예에 따른 혈전 제거 방법의 다른 예는, 상술한 혈전 제거 기기의 예시 중 듀얼 스텐트 바디를 갖는 혈전 제거 기기를 이용하는 혈전 제거 방법일 수 있다. 본 예에 관해서는 도 60를 참조하여 설명한다.
도 60은 본 명세서의 실시예에 따른 혈전 제거 방법의 다른 예의 순서도이다.
도 60을 참조하면, 혈전을 제거하는 방법의 일 예는 압축된 상태의 혈전 제거 기기를 혈관 내에 삽입하는 단계(S2100); 압축된 상태의 혈전 제거 기기가 혈관 내에서 전개된 상태로 팽창하는 단계(S2200); 혈전 제거 기기가 제1 상태인 단계(S2300); 제1 상태인 혈전 제거 기기가 제2 상태인 혈전 제거 기기로 그 형태가 변형되는 단계(S2400); 혈전 제거 기기가 제2 상태인 단계(S2500); 혈전 제거 기기가 외력을 인가 받는 단계(S2600); 및 안티 스트레칭 메커니즘이 혈전 제거 기기의 길이 변형을 방지하는 단계(S2700);를 포함한다.
이하에서는 각 단계에 대해 보다 구체적으로 설명한다.
압축된 상태의 혈전 제거 기기를 혈관 내에 삽입하는 단계(S2100) 및 압축된 상태의 혈전 제거 기기가 혈관 내에서 전개된 상태로 팽창하는 단계(S2200)는 전술한 S1100 및 S1200를 참조하여 설명될 수 있다.
혈전 제거 기기(1000)는 제1 상태일 수 있다(S2300). 혈전 제거 기기(1000)가 제1 상태일 때, 제2 스텐트 바디(1100B)의 세그먼트는 제1 스텐트 바디(1100A)의 마우스 구조와 대응될 수 있다. 제1 스텐트 바디(1100A)의 세그먼트와 제2 스텐트 바디(1100B)의 세그먼트는 혈전 제거 기기(1000)의 길이방향을 따라 교대로 위치하여 혈관벽과 접촉할 수 있다. 혈전 제거 기기(1000)는 제1 스텐트 바디(1100A)의 세그먼트와 제2 스텐트 바디(1100B)의 세그먼트를 통해 혈관 내 혈전과 결합할 수 있다. 혈전 제거 기기(1000)는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 내부에 혈전을 수용할 수 있다.
혈전 제거 기기(1000)는 제1 풀 와이어(1300A) 또는 제2 풀 와이어(1300B)의 조작에 의해 제1 상태에서 제2 상태로 형태가 변형될 수 있다(S2400). 예를 들어, 제2 풀 와이어(1300B)를 조작함으로써 제2 스텐트 바디(1100B)가 이동하고, 제2 스텐트 바디(1100B)가 이동함에 따라 제2 스텐트 바디(1100B)의 세그먼트는 제1 스텐트 바디(1100A)의 마우스 구조와 이격될 수 있다.
한편, 혈전 제거 기기(1000)가 제1 상태에서 제2 상태로 그 형태가 변형되는 과정에서, 혈전 제거 기기(1000)는 외력을 인가받을 수 있다. 이에 따라, 제1 스텐트 바디(1100A)에 대한 제2 스텐트 바디(1100B)의 길이 비율이 달라질 수 있다. 예를 들어, 제2 풀 와이어(1300B) 조작에 따라 제2 스텐트 바디(1100B)가 과도하게 변형되면, 제1 스텐트 바디(1100A)의 마우스 구조와 제2 스텐트 바디(1100B)의 세그먼트가 대응되거나, 이격되지 않을 수 있다. 이에 따라 혈전 제거 기기(1000)의 형태는 미리 설정된 제1 상태 또는 제2 상태로 형태가 변화되지 않을수 있다.
안티 스트레칭 메커니즘은 제1 스텐트 바디(1100A)와 제2 스텐트 바디(1100)의 길이 변형을 제한할 수 있다. 이를 통해 제1 스텐트 바디(1100A)에 대한 제2 스텐트 바디(1100B)의 길이 비율은 외력이 인가되기 전과 후에 걸쳐 일정 범위 내로 유지될 수 있다. 이를 통해, 혈전 제거 기기(1000)는 미리 설정된 제1 상태의 형태 또는 미리 설정된 제 2상태의 형태를 가지도록 변형될 수 있다.
여기서, 안티 스트레칭 메커니즘은 제1 안티 스트레칭 와이어(1500A) 및 제2 안티 스트레칭 와이어(1500B) 또는 안티 스트레칭 스트럿(1700)의 형태로 제공될 수 있으며, 언급되지 않은 다른 형태로 제공될 수 있다.
혈전 제거 기기는 제2 상태일 수 있다(S2500). 혈전 제거 기기(1000)가 제2 상태일 때, 제2 스텐트 바디(1100B)의 세그먼트는 제1 스텐트 바디(1100A)의 세그먼트와 대응될 수 있다. 제1 스텐트 바디(1100A)의 세그먼트와 제2 스텐트 바디(1100B)의 세그먼트는 겹쳐질 수 있고, 제2 스텐트 바디(1100B)의 외경에 위치한 제1 스텐트 바디(1100A)의 세그먼트는 혈관벽과 접촉할 수 있다. 제1 스텐트 바디(1100A)이 마우스 구조는 제2 스텐트 바디(1100B)의 세그먼트에 의해 가려지지 않을 수 있다. 제1 스텐트 바디(1100A)의 마우스 구조와 제2 스텐트 바디(1100B)의 마우스 구조는 겹쳐질 수 있고, 마우스 구조의 오프닝 영역은 개방될 수 있다. 혈전 제거 기기(1000)는 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 세그먼트를 통해 혈전과 인게이징하고, 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 마우스 구조를 통해 혈전을 인바이팅할 수 있다. 이를 통해 혈전 제거 기기(1000)는 혈전과 결합하고, 혈전을 제1 스텐트 바디(1100A) 및 제2 스텐트 바디(1100B)의 내부에 수용함으로써 혈전을 포획할 수 있다.
혈전 제거 기기가 외력을 인가 받는 단계(S2600) 및 안티 스트레칭 메커니즘이 혈전 제거 기기의 길이 변형을 방지하는 단계(S2700)는 상술한 S1400 및 S1500를 참조하여 설명될 수 있다.
이상에서 설명한 본 명세서의 실시예에 따른 방법들은 단독으로 또는 서로 조합되어 이용될 수 있다. 또 각 방법에서 설명된 각 단계들은 모두 필수적인 것은 아니므로 각 방법은 그 단계들을 전부 포함하는 것은 물론 일부만 포함하여 수행되는 것도 가능하다. 또 각 단계들이 설명된 순서는 설명의 편의를 위한 것에 불과하므로, 상술한 방법에서 각 단계들이 반드시 설명된 순서대로 진행되어야 하는 것은 아니다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 명세서의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 스트럿에 의해 정의되며, 하나의 근위말단, 하나의 원위말단 및 두 개의 원주말단을 가는 복수의 셀들을 포함하는 혈전 제거 기기에 있어서,
    제1 열에 배치되는 제1 복수의 셀들 및 상기 제1 열에 이웃한 제2 열에 배치된 제2 복수의 셀들을 포함하는 스트럿 구조체; 및
    상기 스트럿 구조체와 동작가능하게 연결된(operatively coupled) 풀 와이어(pull wire);
    를 포함하며,
    상기 제1 복수의 셀들 중 하나의 셀에 구비된 하나의 원주말단은 상기 제1 복수의 셀들 중 다른 하나의 셀에 구비된 하나의 원주말단과 연결되어 있고,
    상기 제2 복수의 셀들 중 하나의 셀에 구비된 하나의 원주말단은 상기 제2 복수의 셀들 중 다른 하나의 셀에 구비된 하나의 원주말단과 연결되어 있으며,
    상기 제2 복수의 셀 각각의 근위말단은 상기 제1 복수의 셀 각각의 원위말단과 연결되어 있고,
    상기 복수의 셀들은 복수의 노말 셀들 및 복수의 안티스트레칭 셀을 가지되, 상기 안티스트레칭 셀은 상기 노말 셀에 비하여 상기 안티스트레칭 셀의 길이 변화를 제한하는 안티스트레칭 스트럿을 더 가지며,
    상기 제1 복수의 셀들은 적어도 하나의 제1 안티스트레칭 셀 및 복수의 제1 노말 셀들을 포함하고,
    상기 제2 복수의 셀들은 적어도 하나의 제2 안티스트레칭 셀 및 복수의 제2 노말 셀들을 포함하며,
    상기 적어도 하나의 제1 안티스트레칭 셀의 원위말단은 상기 복수의 제2 노말 셀들 중 하나의 근위말단에 연결되며,
    상기 적어도 하나의 제2 안티스트레칭 셀의 근위말단은 상기 복수의 제1 노말 셀들 중 하나의 원위말단에 연결되는
    혈전 제거 기기.
  2. 제1 항에 있어서,
    상기 제1 열에 이웃한 제3 열에 배치된 제3 복수의 셀들을 더 포함하되,
    상기 제3 복수의 셀 각가은 하나의 근위말단, 하나의 원위말단 및 두 개의 원주말단을 가지며,
    상기 제3 복수의 셀들 중 하나의 셀에 구비된 하나의 원주말단은 상기 제3 복수의 셀들 중 다른 하나의 셀에 구비된 하나의 원주말단과 연결되어 있고,
    상기 제3 복수의 셀 각각의 원위말단은 상기 제1 복수의 셀 각각의 근위말단과 연결되어 있으며,
    상기 제3 복수의 셀들은 적어도 하나의 제3 안티스트레칭 셀 및 복수의 제3 노말 셀들을 포함하는
    혈전 제거 기기.
  3. 제2 항에 있어서,
    상기 적어도 하나의 제3 안티스트레칭 셀의 원위말단은 상기 복수의 제1 노말 셀들 중 하나의 근위말단에 연결되는
    혈전 제거 기기.
  4. 제1 항에 있어서,
    상기 안티스트레칭 셀에 구비된 상기 안티스트레칭 스트럿은 상기 안티스트레칭 셀의 근위말단에서 상기 안티스트레칭 셀의 원위말단으로 연장되어 있는
    혈전 제거 기기.
  5. 제1 항에 있어서,
    상기 안티스트레칭 셀에 구비된 상기 안티스트레칭 스트럿은 상기 안티스트레칭 셀을 정의하는 스트럿 상의 제1 지점에서 상기 안티스트레칭 셀을 정의하는 스트럿 상의 제2 지점으로 연장되며,
    상기 제2 지점은 상기 제1 지점과 다른
    혈전 제거 기기.
  6. 제5 항에 있어서,
    상기 제1 지점은 상기 제2 지점에 비하여 상기 안티스트레칭 셀의 근위말단에 더 가까이 있고,
    상기 제2 지점은 상기 제1 지점에 비하여 상기 안티스트레칭 셀의 원위말단에 더 가까이 있는
    혈전 제거 기기.
  7. 제1 항에 있어서,
    상기 셀의 원위말단은 상기 셀의 근위말단에 비하여 상기 풀 와이어에 보다 더 가까운
    혈전 제거 기기.
KR1020210036603A 2019-07-29 2021-03-22 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법 KR102452816B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962880008P 2019-07-29 2019-07-29
US62/880,008 2019-07-29
US201962897654P 2019-09-09 2019-09-09
US62/897,654 2019-09-09
US201962924335P 2019-10-22 2019-10-22
US62/924,335 2019-10-22
KR1020200085611A KR102232948B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200085611A Division KR102232948B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법

Publications (2)

Publication Number Publication Date
KR20210036889A true KR20210036889A (ko) 2021-04-05
KR102452816B1 KR102452816B1 (ko) 2022-10-11

Family

ID=74229718

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020200085609A KR102232947B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085610A KR102445619B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085611A KR102232948B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085612A KR102232949B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기
KR1020210036604A KR102578717B1 (ko) 2019-07-29 2021-03-22 혈전 제거 기기
KR1020210036603A KR102452816B1 (ko) 2019-07-29 2021-03-22 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020200085609A KR102232947B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085610A KR102445619B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085611A KR102232948B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
KR1020200085612A KR102232949B1 (ko) 2019-07-29 2020-07-10 혈전 제거 기기
KR1020210036604A KR102578717B1 (ko) 2019-07-29 2021-03-22 혈전 제거 기기

Country Status (2)

Country Link
KR (6) KR102232947B1 (ko)
WO (3) WO2021020767A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4285916A1 (en) 2021-02-01 2023-12-06 MD Healthcare Inc. Composition including lactobacillus paracasei-derived vesicles for preventing, treating, or alleviating viral infectious diseases or respiratory diseases
US20230062684A1 (en) * 2021-08-28 2023-03-02 Sheri Albers Intravascular thrombectomy device and process for treating acute ischemic stroke
CN114869407A (zh) * 2022-06-17 2022-08-09 惠州市顺美医疗科技有限公司 一种取栓装置
WO2024050511A1 (en) * 2022-09-02 2024-03-07 Merit Medical Systems, Inc. Embolization devices including braided wires, methods of making and using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120490A2 (en) * 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US20140243882A1 (en) * 2013-02-22 2014-08-28 Jianlu Ma Design and methods for a device with blood flow restriction feature for embolus removal in human vasculature
KR20140140077A (ko) * 2012-03-16 2014-12-08 마이크로벤션, 인코포레이티드 스텐트 및 스텐트 전달 장치
KR20180075643A (ko) * 2015-10-31 2018-07-04 뉴로바스크 테크놀로지스, 아이엔씨. 혈액 흐름 제한을 갖는 색전 제거 장치 및 관련 방법
KR20180087320A (ko) * 2015-11-25 2018-08-01 뉴라비 리미티드 혈관으로부터 폐색 혈전을 제거하기 위한 혈전 회수 장치
KR20190042582A (ko) * 2016-09-07 2019-04-24 뉴로바스크 테크놀로지스, 아이엔씨. 뇌경색 치료를 위한 응혈 제거 장치
KR20190051008A (ko) * 2016-09-06 2019-05-14 뉴라비 리미티드 혈관으로부터 폐색 혈전을 제거하기 위한 혈전 회수 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286312A (ja) * 1997-04-11 1998-10-27 Ube Ind Ltd ステント
EP1158929A1 (en) * 1999-03-08 2001-12-05 Microvena Corporation Minimally invasive medical device deployment and retrieval system
US7306618B2 (en) * 1999-07-30 2007-12-11 Incept Llc Vascular device for emboli and thrombi removal and methods of use
JP4510125B1 (ja) * 2009-02-20 2010-07-21 株式会社ウィルファイン 血管内の血栓捕獲器
KR101021615B1 (ko) * 2010-10-29 2011-03-17 메디소스플러스(주) 스텐트 제조방법
EP3398539B1 (en) * 2011-05-23 2020-08-26 Covidien LP Retrieval systems
US11026708B2 (en) * 2011-07-26 2021-06-08 Thrombx Medical, Inc. Intravascular thromboembolectomy device and method using the same
US20150265299A1 (en) * 2012-10-03 2015-09-24 Christopher J. Cooper Minimally Invasive Thrombectomy
ES2960917T3 (es) * 2013-03-14 2024-03-07 Neuravi Ltd Dispositivo de recuperación de coágulos para eliminar coágulos oclusivos de un vaso sanguíneo
US9724112B2 (en) * 2013-03-15 2017-08-08 Cook Medical Technologies Llc Shape memory metal emboli trap
JP6045036B2 (ja) * 2014-01-28 2016-12-14 日本ライフライン株式会社 ステント
KR101613279B1 (ko) * 2015-07-20 2016-04-18 (주)시지바이오 더블 스텐트
ES2716926T3 (es) * 2015-09-21 2019-06-18 Stryker Corp Dispositivos de embolectomía
US10828142B2 (en) * 2015-11-04 2020-11-10 Rapid Medical Ltd. Intraluminal device
US10517708B2 (en) * 2016-10-26 2019-12-31 DePuy Synthes Products, Inc. Multi-basket clot capturing device
EP3554422A4 (en) * 2016-12-18 2020-07-08 Rapid Medical Ltd. CONTROLLABLE RECOVERY DEVICE HAVING DISTAL CAILLOT ANCHOR
US10653426B2 (en) * 2017-01-06 2020-05-19 Incept, Llc Thromboresistant coatings for aneurysm treatment devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120490A2 (en) * 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
KR20140140077A (ko) * 2012-03-16 2014-12-08 마이크로벤션, 인코포레이티드 스텐트 및 스텐트 전달 장치
US20140243882A1 (en) * 2013-02-22 2014-08-28 Jianlu Ma Design and methods for a device with blood flow restriction feature for embolus removal in human vasculature
KR20180075643A (ko) * 2015-10-31 2018-07-04 뉴로바스크 테크놀로지스, 아이엔씨. 혈액 흐름 제한을 갖는 색전 제거 장치 및 관련 방법
KR20180087320A (ko) * 2015-11-25 2018-08-01 뉴라비 리미티드 혈관으로부터 폐색 혈전을 제거하기 위한 혈전 회수 장치
KR20190051008A (ko) * 2016-09-06 2019-05-14 뉴라비 리미티드 혈관으로부터 폐색 혈전을 제거하기 위한 혈전 회수 장치
KR20190042582A (ko) * 2016-09-07 2019-04-24 뉴로바스크 테크놀로지스, 아이엔씨. 뇌경색 치료를 위한 응혈 제거 장치

Also Published As

Publication number Publication date
KR20210036890A (ko) 2021-04-05
WO2021020765A1 (ko) 2021-02-04
KR20210014070A (ko) 2021-02-08
KR102232947B1 (ko) 2021-03-26
WO2021020767A1 (ko) 2021-02-04
KR102578717B1 (ko) 2023-09-14
KR102232948B1 (ko) 2021-03-26
KR20210014072A (ko) 2021-02-08
KR102232949B1 (ko) 2021-03-26
KR102452816B1 (ko) 2022-10-11
KR20210014071A (ko) 2021-02-08
KR20210014069A (ko) 2021-02-08
WO2021020766A1 (ko) 2021-02-04
KR102445619B1 (ko) 2022-09-21

Similar Documents

Publication Publication Date Title
KR102232948B1 (ko) 혈전 제거 기기 및 이를 이용하는 혈전 제거 방법
US11399927B2 (en) Multi-access intraprocedural embolic protection device
US20220000504A1 (en) Clot retrieval device for removing occlusive clot from a blood vessel
JP6049845B2 (ja) ステントレス支持構造
EP2884946B1 (de) Implantierbare einrichtung zur verwendung im menschlichen und/oder tierischen körper zum ersatz einer organklappe
JP6232000B2 (ja) 遠位保護フィルタ
JP5622790B2 (ja) 脈管内係蹄の形成方法
CN109303626B (zh) 主动脉瓣闭锁不全修复设备及方法
JP5111365B2 (ja) 脈管内カフ
EP2658476B1 (en) Intravascular blood filter
US20160106448A1 (en) Clot retrieval device for removing clot from a blood vessel
KR20190042582A (ko) 뇌경색 치료를 위한 응혈 제거 장치
US20120095500A1 (en) Concentric wire embolism protection device
US20050137702A1 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
JP2017527348A (ja) 動脈瘤治療デバイスおよび治療方法
JP2018531771A (ja) カテーテルベースの装置及び方法
WO2002094111A2 (en) Vascular device for emboli and thrombi removal
JP2020116412A (ja) 解放可能捕捉特徴を有するivcフィルタ回収システム
EP2329794B1 (en) A perfusion device
WO2014133828A1 (en) Embolic protection device
EP3446661A1 (en) Braided stent crown geometry and flare
US11197684B1 (en) Thrombectomy device and method
CN109688947A (zh) 血栓取出装置
JP6023041B2 (ja) 塞栓捕捉装置
KR102484532B1 (ko) 혈전 제거 기기

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant