KR20210024484A - 풀리 공유를 통합한 의료 시스템 - Google Patents

풀리 공유를 통합한 의료 시스템 Download PDF

Info

Publication number
KR20210024484A
KR20210024484A KR1020207037168A KR20207037168A KR20210024484A KR 20210024484 A KR20210024484 A KR 20210024484A KR 1020207037168 A KR1020207037168 A KR 1020207037168A KR 20207037168 A KR20207037168 A KR 20207037168A KR 20210024484 A KR20210024484 A KR 20210024484A
Authority
KR
South Korea
Prior art keywords
surgical
pulley
instrument
pulleys
effector
Prior art date
Application number
KR1020207037168A
Other languages
English (en)
Inventor
트래비스 미첼 슈허
브루스 알. 우들레이
Original Assignee
아우리스 헬스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아우리스 헬스, 인코포레이티드 filed Critical 아우리스 헬스, 인코포레이티드
Publication of KR20210024484A publication Critical patent/KR20210024484A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/309Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using white LEDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

N의 이동 자유도를 허용하는 리스트를 가진 수술 기구를 포함하는 로봇 시스템이 제공된다. N의 자유도는 N+1개의 케이블 세그먼트에 의해 제어될 수 있다. 리스트는 제1 축을 중심으로 회전하도록 구성되는 풀리들의 제1 세트 및 제2 축을 중심으로 회전하도록 구성되는 풀리들의 제2 세트를 포함할 수 있다. 리스트는 케이블 세그먼트들 중 2개와 맞물리도록 구성되는 하나 이상의 풀리를 추가로 포함할 수 있고, 여기에서 풀리들 중 적어도 하나는 제1 케이블 세그먼트 및 제2 케이블 세그먼트에 의해 공유된다. 풀리를 공유하는 제1 케이블 세그먼트와 제2 케이블 세그먼트는 서로 독립적일 수 있다. 일부 상황에서, 수술 기구는 N+1개의 케이블 세그먼트들 중 적어도 2개를 전진시키거나 후퇴시킴으로써 N+1의 이동도로 작동될 수 있다.

Description

풀리 공유를 통합한 의료 시스템
관련 출원의 상호 참조
본 출원은 전체적으로 본 명세서에 참고로 포함되는, 2018년 6월 28일자로 출원된 미국 가출원 제62/691374호의 이익을 주장한다.
기술분야
본 명세서에 개시된 시스템 및 방법은 로봇 의료 시스템(robotic medical system)에 관한 것으로, 특히 개선된 리스트(wrist) 구성을 가진 로봇 의료 시스템에 관한 것이다.
복강경술과 같은 의료 절차는 환자의 내부 영역에 접근하고 시각화하는 것을 수반할 수 있다. 복강경술 절차에서, 의료 기구가 복강경 접근 포트를 통해 내부 영역 내로 삽입될 수 있다.
소정 절차에서, 로봇식(robotically-enabled) 의료 시스템이 의료 기구 및 엔드 이펙터(end effector)의 삽입 및/또는 조작을 제어하는 데 사용될 수 있다. 로봇식 의료 시스템은 로봇 아암(robotic arm) 또는 임의의 다른 기구 위치설정 장치(instrument positioning device)를 포함할 수 있다. 로봇식 의료 시스템은 또한 절차 동안 기구의 위치설정을 제어하는 데 사용되는 제어기를 포함할 수 있다.
제1 태양에서, 수술 기구가 다중 이동도들(multiple degrees of movement)을 갖는 수술용 이펙터(surgical effector), 수술용 이펙터에 결합되는 리스트로서, 적어도 제1 풀리(pulley)를 포함하는, 리스트, 및 수술용 이펙터를 다중 이동도들로 작동시키기 위해 리스트를 통해 수술용 이펙터로 연장되는 적어도 2개의 케이블 세그먼트(cable segment)들로서, 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는, 적어도 2개의 케이블 세그먼트들을 포함한다. 적어도 2개의 케이블 세그먼트들은 서로 독립적이다.
수술 기구는 임의의 조합으로 하기 특징들 중 하나 이상을 추가로 포함할 수 있다: (a) 수술용 이펙터의 다중 이동도들은 피치 축(pitch axis)을 중심으로 하는 회전을 포함하고, 제1 풀리는 또한 피치 축을 중심으로 회전함; (b) 수술용 이펙터는 리스트를 통해 수술용 이펙터로 연장되는 N+1개의 케이블 세그먼트들에 의해 제어되는 적어도 N의 이동 자유도들(degrees of freedom of movement)을 가짐; (c) 수술용 이펙터는 적어도 3의 이동도들을 갖고, 수술 시스템은 적어도 4개의 케이블 세그먼트들을 포함함; (d) 3 이동도들은 수술용 이펙터의 제1 요 각도(yaw angle), 제2 요 각도 및 피치 각도를 포함함; (e) 리스트는 수술용 이펙터의 피치 축을 따라 정렬되는 적어도 2개의 풀리들을 포함함; (f) 적어도 2개의 풀리들은 서로 인접하게 위치됨; (g) 적어도 2개의 풀리들은 서로 이격되고 리스트의 중심 축으로부터 오프셋됨(offset); (h) 적어도 2개의 풀리들만이 피치 축과 정렬되는 리스트 내의 풀리들임; (i) 제1 풀리는 풀리들의 근위 세트(proximal set)의 일부임; (j) 수술 기구는 풀리들의 근위 세트에 대해 풀리들의 원위 세트(distal set)를 추가로 포함함; (k) 하나 이상의 방향전환 표면(redirect surface)들이 풀리들의 근위 세트와 풀리들의 원위 세트 사이에 형성됨; (l) 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 적어도 2개의 케이블 세그먼트들은 동일한 케이블의 일부가 아님; (m) 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 적어도 2개의 케이블 세그먼트들은 서로 독립적으로 이동가능함; (n) 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 적어도 2개의 케이블 세그먼트들은 서로 독립적으로 작동가능함; 및/또는 (o) 하나 이상의 방향전환 표면들은 고정형임(stationary).
다른 태양에서, 수술 기구가 피치 축을 중심으로 회전하는 제1 풀리를 포함하는 리스트, 적어도 2의 이동 자유도들을 가진 수술용 이펙터로서, 이동도들 중 하나는 피치 축을 중심으로 하는 회전을 포함하는, 수술용 이펙터, 및 수술용 이펙터를 적어도 2의 이동 자유도들로 작동시키기 위한 리스트를 통해 연장되는 적어도 제1 및 제2 케이블 세그먼트로서, 둘 모두가 제1 풀리와 맞물리는, 적어도 제1 및 제2 케이블 세그먼트를 포함한다. 제1 케이블과 제2 케이블은 서로 독립적이다.
다른 태양에서, 수술 기구가 하나 이상의 풀리들을 포함하는 리스트, 및 N의 이동도들을 가진 수술용 이펙터로서, N의 이동도들 중 적어도 하나는 리스트를 통해 연장되는 피치 축을 중심으로 하는 회전을 포함하는, 수술용 이펙터를 포함하고, 적어도 N+1개의 케이블 세그먼트들이 수술용 이펙터를 N의 이동도들로 작동시키기 위해 리스트를 통해 연장되고, N+1개의 케이블 세그먼트들 중 적어도 2개는 리스트 내의 풀리들 중 하나를 공유한다.
수술 기구는 임의의 조합으로 하기 특징들 중 하나 이상을 추가로 포함할 수 있다: (a) 리스트는 원위 클레비스(clevis) 및 근위 클레비스를 포함함; (b) 하나 이상의 풀리들은 풀리들의 제1 세트의 일부이고, 리스트는 풀리들의 제1 세트의 원위에 위치되는 풀리들의 제2 세트를 포함함; (c) 리스트의 원위 클레비스는 풀리들의 제1 세트와 풀리들의 제2 세트 사이에 방향전환 표면들을 포함함; 및/또는 (d) 방향전환 표면들은 고정형 표면들임.
다른 태양에서, 수술 시스템이 로봇 아암, 로봇 아암에 결합되는 수술용 이펙터로서, 다중 이동도들을 갖는, 수술용 이펙터, 수술용 이펙터와 로봇 아암 사이에 위치되는 리스트로서, 적어도 제1 풀리를 포함하는, 리스트, 및 수술용 이펙터를 다중 이동도들로 작동시키기 위해 리스트를 통해 수술용 이펙터로 연장되는 적어도 2개의 케이블 세그먼트들로서, 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는, 적어도 2개의 케이블 세그먼트들을 포함한다. 적어도 2개의 케이블 세그먼트들은 서로 독립적이다.
다른 태양에서, 수술 시스템이 수술 기구를 포함하고, 수술 기구는 수술용 이펙터, 수술용 이펙터에 결합되는 리스트로서, 리스트는 근위 클레비스 및 원위 클레비스를 포함하고, 원위 클레비스는 하나 이상의 고정형 방향전환 표면들을 포함하는, 리스트, 및 수술용 이펙터를 작동시키기 위해 리스트를 통해 수술용 이펙터로 연장되는 적어도 2개의 케이블 세그먼트들을 포함하고, 적어도 2개의 케이블 세그먼트들은 원위 클레비스 내의 하나 이상의 고정형 방향전환 표면들과 맞물린다.
수술 시스템은 임의의 조합으로 하기 특징들 중 하나 이상을 추가로 포함할 수 있다: (a) 수술 기구는 근위 클레비스 내의 하나 이상의 풀리들 및 원위 클레비스 내의 하나 이상의 풀리들을 추가로 포함함; (b) 고정형 방향전환 표면들은 근위 클레비스 내의 하나 이상의 풀리들과 원위 클레비스 내의 하나 이상의 풀리들 사이에 위치됨; (c) 원위 클레비스 내의 하나 이상의 방향전환 고정형 표면들은 슬롯(slot)의 주연부를 형성하는 하나 이상의 표면들의 일부임; 및/또는 (d) 수술 기구는 근위 클레비스 내의 하나 이상의 고정형 방향전환 표면들을 추가로 포함함.
다른 태양에서, 수술용 이펙터를 다중 이동도들로 작동시키는 방법으로서, 방법은 (i) 수술용 이펙터를 제1 이동도로 작동시키기 위해 수술용 이펙터에 결합되는 리스트 내의 제1 풀리의 제1 측부 둘레로 연장되는 제1 케이블 세그먼트를 전진시키거나 후퇴시키는 단계, 및 (ii) 수술용 이펙터를 제2 이동도로 작동시키기 위해 제1 풀리의 제2 측부 둘레로 연장되는 제2 케이블 세그먼트를 전진시키거나 후퇴시키는 단계를 포함한다.
방법은 제1 케이블 세그먼트를 전진시키거나 후퇴시킴으로써 그리고 제2 풀리 세그먼트를 전진시키거나 후퇴시킴으로써 제1 풀리의 축을 통해 연장되는 피치 축을 중심으로 수술용 이펙터를 회전시키는 단계를 추가로 포함할 수 있다.
개시된 태양은, 개시된 태양을 제한하지 않고 예시하기 위해 제공되는 첨부 도면과 함께 본 명세서에 후술될 것이며, 여기에서 유사한 명칭은 유사한 요소를 나타낸다.
도 1은 진단 및/또는 치료 기관지경술 절차(들)를 위해 배열된 카트(cart)-기반 로봇 시스템의 일 실시예를 예시한 도면.
도 2는 도 1의 로봇 시스템의 추가의 태양을 도시한 도면.
도 3은 요관경술을 위해 배열된 도 1의 로봇 시스템의 일 실시예를 예시한 도면.
도 4는 혈관 절차를 위해 배열된 도 1의 로봇 시스템의 일 실시예를 예시한 도면.
도 5는 기관지경술 절차를 위해 배열된 테이블(table)-기반 로봇 시스템의 일 실시예를 예시한 도면.
도 6은 도 5의 로봇 시스템의 대안적인 도면을 제공한 도면.
도 7은 로봇 아암(들)을 적재하도록(stow) 구성된 예시적인 시스템을 예시한 도면.
도 8은 요관경술 절차를 위해 구성된 테이블-기반 로봇 시스템의 일 실시예를 예시한 도면.
도 9는 복강경술 절차를 위해 구성된 테이블-기반 로봇 시스템의 일 실시예를 예시한 도면.
도 10은 피치 또는 틸트(tilt) 조절을 갖는 도 5 내지 도 9의 테이블-기반 로봇 시스템의 일 실시예를 예시한 도면.
도 11은 도 5 내지 도 10의 테이블-기반 로봇 시스템의 테이블과 칼럼(column) 사이의 인터페이스(interface)의 상세한 예시를 제공한 도면.
도 12는 테이블-기반 로봇 시스템의 대안적인 실시예를 예시한 도면.
도 13은 도 12의 테이블-기반 로봇 시스템의 단부도를 예시한 도면.
도 14는 로봇 아암이 그에 부착된 테이블-기반 로봇 시스템의 단부도를 예시한 도면.
도 15는 예시적인 기구 드라이버(instrument driver)를 예시한 도면.
도 16은 페어링된(paired) 기구 드라이버를 갖는 예시적인 의료 기구를 예시한 도면.
도 17은 구동 유닛의 축이 기구의 세장형 샤프트의 축에 평행한 기구 드라이버 및 기구에 대한 대안적인 설계를 예시한 도면.
도 18은 기구-기반 삽입 아키텍처(insertion architecture)를 갖는 기구를 예시한 도면.
도 19는 예시적인 제어기를 예시한 도면.
도 20은 예시적인 실시예에 따른, 도 16 내지 도 18의 기구의 위치와 같은, 도 1 내지 도 10의 로봇 시스템의 하나 이상의 요소의 위치를 추정하는 위치결정 시스템(localization system)을 예시한 블록도를 도시한 도면.
도 21은 수술 기구의 측면도를 예시한 도면.
도 22는 수술 기구의 일 실시예의 사시도를 예시한 도면.
도 23a는 도 22에 도시된 수술 기구의 수술용 리스트(surgical wrist)의 케이블의 사시도를 예시한 도면.
도 23b는 도 22에 도시된 수술 기구의 수술용 리스트의 다른 사시도를 예시한 도면.
도 23c는 요 축을 중심으로 하는 2개의 겸자 반부의 회전을 도시한, 도 22의 수술 기구의 사시도를 예시한 도면.
도 23d는 피치 축을 중심으로 하는 수술용 이펙터의 회전을 도시한, 도 22의 수술 기구의 사시도를 예시한 도면.
도 24a는 케이블 세그먼트와 근위 및 원위 풀리 사이의 상호작용을 도시한, 풀리 공유 N+1 리스트의 일 실시예의 측면도를 예시한 도면.
도 24b는 케이블 세그먼트와 근위 및 원위 클레비스 사이의 상호작용을 도시한, 풀리 공유 N+1 리스트의 일 실시예의 측면도를 예시한 도면.
도 25a는 풀리 공유 N+1 리스트의 원위 클레비스의 상부 사시도를 예시한 도면.
도 25b는 복수의 케이블 세그먼트가 통과하여 연장되는, 도 25a의 원위 클레비스의 평면도를 예시한 도면.
도 25c는 복수의 케이블 세그먼트가 통과하여 연장되는, 도 25a의 원위 클레비스의 상부 사시도를 예시한 도면.
도 26a는 풀리 공유 N+1 리스트의 근위 클레비스의 평면도를 예시한 도면.
도 26b는 복수의 케이블 세그먼트가 근위 클레비스를 통해 연장되는, 도 26a의 근위 클레비스의 평면도를 예시한 도면.
도 26c는 도 26a의 근위 클레비스의 측면도 및 풀리 공유 N+1 리스트의 일 실시예의 측면도를 예시한 도면.
1. 개요.
본 개시의 태양은 복강경술과 같은 최소 침습 절차 및 내시경술과 같은 비-침습 절차 둘 모두를 비롯하여 다양한 의료 절차를 수행할 수 있는 로봇식 의료 시스템 내에 통합될 수 있다. 내시경술 절차 중에서, 시스템은 기관지경술, 요관경술, 위내시경술(gastroscopy) 등을 수행하는 것이 가능할 수 있다.
광범위한 절차를 수행하는 것에 더하여, 시스템은 의사를 보조하기 위한 향상된 이미징 및 안내와 같은 추가의 이점을 제공할 수 있다. 추가적으로, 시스템은 다루기 어려운 아암 운동 및 위치에 대한 필요 없이 인체공학적 위치로부터 절차를 수행하는 능력을 의사에게 제공할 수 있다. 더욱이, 시스템은, 시스템의 기구들 중 하나 이상이 단일 사용자에 의해 제어될 수 있도록, 개선된 사용 용이성을 갖고서 절차를 수행하는 능력을 의사에게 제공할 수 있다.
다양한 실시예가 예시의 목적으로 도면과 함께 후술될 것이다. 개시된 개념의 많은 다른 구현예가 가능하고, 개시된 구현예로 다양한 이점이 달성될 수 있다는 것이 인식되어야 한다. 참조를 위해 그리고 다양한 섹션을 찾는 데 도움을 주기 위해 표제가 본 명세서에 포함된다. 이들 표제는 그와 관련하여 기술되는 개념의 범주를 제한하도록 의도되지 않는다. 그러한 개념은 전체 명세서 전반에 걸쳐 적용될 수 있다.
A. 로봇 시스템 - 카트.
로봇식 의료 시스템은 특정 절차에 따라 다양한 방식으로 구성될 수 있다. 도 1은 진단 및/또는 치료 기관지경술 절차를 위해 배열된 카트-기반 로봇식 시스템(10)의 일 실시예를 예시한다. 기관지경술 동안, 시스템(10)은 기관지경술을 위한 절차-특정적 기관지경일 수 있는, 조향가능 내시경(13)과 같은 의료 기구를 진단 및/또는 치료 도구를 전달하기 위한 자연 구멍 접근 지점(즉, 본 예에서 테이블 상에 위치된 환자의 입)으로 전달하기 위한 하나 이상의 로봇 아암(12)을 갖는 카트(11)를 포함할 수 있다. 도시된 바와 같이, 카트(11)는 접근 지점에 대한 접근을 제공하기 위해 환자의 상체에 근접하게 위치될 수 있다. 유사하게, 로봇 아암(12)은 접근 지점에 대해 기관지경을 위치시키도록 작동될 수 있다. 도 1의 배열은 또한, 위장(gastro-intestinal, GI) 절차를 위한 전문화된 내시경인 위내시경으로 GI 절차를 수행할 때 이용될 수 있다. 도 2는 카트의 예시적인 실시예를 더 상세히 도시한다.
계속해서 도 1을 참조하면, 일단 카트(11)가 적절하게 위치되면, 로봇 아암(12)은 조향가능 내시경(13)을 로봇으로, 수동으로, 또는 이들의 조합으로 환자 내로 삽입할 수 있다. 도시된 바와 같이, 조향가능 내시경(13)은 적어도 2개의 삽통 부품(telescoping part), 예컨대 내부 리더(leader) 부분 및 외부 시스(sheath) 부분을 포함할 수 있으며, 각각의 부분은 기구 드라이버들(28)의 세트로부터의 별개의 기구 드라이버에 결합되고, 각각의 기구 드라이버는 개별 로봇 아암의 원위 단부에 결합된다. 리더 부분을 시스 부분과 동축으로 정렬시키는 것을 용이하게 하는, 기구 드라이버(28)의 이러한 선형 배열은 하나 이상의 로봇 아암(12)을 상이한 각도 및/또는 위치로 조작함으로써 공간에서 재위치될 수 있는 "가상 레일(virtual rail)"(29)을 생성한다. 본 명세서에 기술되는 가상 레일은 파선을 사용하여 도면에 도시되어 있으며, 따라서 파선은 시스템의 임의의 물리적 구조를 도시하지 않는다. 가상 레일(29)을 따른 기구 드라이버(28)의 병진은 외부 시스 부분에 대해 내부 리더 부분을 삽통식으로 이동시키거나, 환자로부터 내시경(13)을 전진 또는 후퇴시킨다. 가상 레일(29)의 각도는 임상 적용 또는 의사 선호도에 기초하여 조절, 병진, 및 피봇될(pivoted) 수 있다. 예를 들어, 기관지경술에서, 도시된 바와 같은 가상 레일(29)의 각도 및 위치는 내시경(13)을 환자의 입 안으로 구부림으로써 발생하는 마찰을 최소화하면서 내시경(13)에 대한 의사 접근을 제공하는 것 사이의 절충을 나타낸다.
내시경(13)은 표적 목적지 또는 수술 부위에 도달할 때까지 로봇 시스템으로부터의 정확한 명령을 사용하여 삽입 후 환자의 기관 및 폐를 따라 지향될 수 있다. 환자의 폐 네트워크(lung network)를 통한 내비게이션(navigation)을 향상시키고/시키거나 원하는 표적에 도달하기 위해, 내시경(13)은 향상된 관절운동 및 더 큰 굽힘 반경을 얻기 위해 외부 시스 부분으로부터 내부 리더 부분을 삽통식으로 연장시키도록 조작될 수 있다. 별개의 기구 드라이버(28)의 사용은 또한 리더 부분과 시스 부분이 서로 독립적으로 구동되도록 허용한다.
예를 들어, 내시경(13)은, 예를 들어 환자의 폐 내의 병변 또는 결절과 같은 표적에 생검 바늘을 전달하도록 지향될 수 있다. 바늘은 병리학자에 의해 분석될 조직 샘플을 얻기 위해 내시경의 길이를 따라 연장되는 작업 채널을 따라 전개될 수 있다. 병리학 결과에 따라, 추가의 도구가 추가의 생검을 위해 내시경의 작업 채널을 따라 전개될 수 있다. 결절을 악성으로 확인한 후에, 내시경(13)은 잠재적인 암 조직을 절제하기 위한 도구를 내시경으로 전달할 수 있다. 일부 경우에, 진단 및 치료 처치제(treatment)가 별개의 절차로 전달될 수 있다. 그들 상황에서, 내시경(13)은 또한 표적 결절의 위치를 "표시"하기 위한 기준점을 전달하는 데에도 사용될 수 있다. 다른 경우에서, 진단 및 치료 처치제는 동일한 절차 동안 전달될 수 있다.
시스템(10)은 또한 이동가능 타워(tower)(30)를 포함할 수 있으며, 이는 카트(11)에 지지 케이블을 통해 연결되어 카트(11)에 제어부, 전자장치, 유체장치, 광학계, 센서, 및/또는 전력에 대한 지원을 제공할 수 있다. 그러한 기능을 타워(30) 내에 두는 것은 수술 의사 및 그/그녀의 스태프에 의해 더 용이하게 조절 및/또는 재위치될 수 있는 더 작은 형태 인자(form factor)의 카트(11)를 허용한다. 추가적으로, 카트/테이블과 지원 타워(30) 사이의 기능의 분할은 수술실의 어수선함을 감소시키고, 임상 작업흐름의 개선을 용이하게 한다. 카트(11)는 환자 가까이에 위치될 수 있지만, 타워(30)는 절차 동안 방해가 되지 않도록 원격 위치에 적재될 수 있다.
전술된 로봇 시스템을 지원하기 위해, 타워(30)는, 예를 들어 영구 자기 저장 드라이브(persistent magnetic storage drive), 솔리드 스테이트 드라이브(solid state drive) 등과 같은 비-일시적 컴퓨터-판독가능 저장 매체 내에 컴퓨터 프로그램 명령어를 저장하는 컴퓨터-기반 제어 시스템의 구성요소(들)를 포함할 수 있다. 그들 명령어의 실행은, 실행이 타워(30)에서 이루어지든 또는 카트(11)에서 이루어지든 간에, 전체 시스템 또는 그의 서브-시스템(들)을 제어할 수 있다. 예를 들어, 컴퓨터 시스템의 프로세서에 의해 실행될 때, 명령어는 로봇 시스템의 구성요소로 하여금 관련 캐리지(carriage) 및 아암 마운트(arm mount)를 작동시키고, 로봇 아암을 작동시키고, 의료 기구를 제어하게 할 수 있다. 예를 들어, 제어 신호를 수신하는 것에 응답하여, 로봇 아암의 조인트(joint) 내의 모터는 아암을 소정 자세로 위치시킬 수 있다.
타워(30)는 또한, 내시경(13)을 통해 전개될 수 있는 시스템에 제어된 관주 및 흡인 능력을 제공하기 위해 펌프, 유량계, 밸브 제어부, 및/또는 유체 접근부(fluid access)를 포함할 수 있다. 이들 구성요소는 또한 타워(30)의 컴퓨터 시스템을 사용하여 제어될 수 있다. 일부 실시예에서, 관주 및 흡인 능력은 별개의 케이블(들)을 통해 내시경(13)으로 직접 전달될 수 있다.
타워(30)는 카트(11)에 필터링되고 보호된 전력을 제공하도록 설계되는 전압 및 서지(surge) 보호기를 포함하여, 그에 의해 카트(11) 내에 전력 변압기 및 다른 보조 전력 구성요소를 배치하는 것을 회피하여, 더 작고 더 이동가능한 카트(11)를 생성할 수 있다.
타워(30)는 또한 로봇 시스템(10) 전체에 걸쳐 전개된 센서에 대한 지원 장비를 포함할 수 있다. 예를 들어, 타워(30)는 로봇 시스템(10) 전체에 걸쳐 광학 센서 또는 카메라로부터 수신된 데이터를 검출, 수신, 및 처리하기 위한 광-전자 장비를 포함할 수 있다. 제어 시스템과 조합하여, 그러한 광-전자 장비는 타워(30) 내를 비롯하여, 시스템 전체에 걸쳐 전개된 임의의 수의 콘솔(console)에 디스플레이하기 위한 실시간 이미지를 생성하는 데 사용될 수 있다. 유사하게, 타워(30)는 또한 전개된 전자기(electromagnetic, EM) 센서로부터 수신되는 신호를 수신하고 처리하기 위한 전자 서브시스템을 포함할 수 있다. 타워(30)는 또한 의료 기구 내의 또는 그 상의 EM 센서에 의한 검출을 위한 EM 필드 발생기(field generator)를 수용하고 위치시키는 데 사용될 수 있다.
타워(30)는 또한 시스템의 나머지 부분에서 이용가능한 다른 콘솔, 예컨대 카트의 상부에 장착된 콘솔에 더하여 콘솔(31)을 포함할 수 있다. 콘솔(31)은 의사 조작자를 위한 사용자 인터페이스 및 디스플레이 스크린, 예컨대 터치스크린을 포함할 수 있다. 시스템(10) 내의 콘솔은 일반적으로 로봇 제어뿐만 아니라 절차의 수술전 및 실시간 정보, 예컨대 내시경(13)의 내비게이션 및 위치결정 정보 둘 모두를 제공하도록 설계된다. 콘솔(31)이 의사가 이용가능한 유일한 콘솔이 아닐 때, 그것은 간호사와 같은 제2 조작자에 의해, 환자의 건강 또는 바이탈(vital) 및 시스템의 작동을 모니터링할 뿐만 아니라, 내비게이션 및 위치결정 정보와 같은 절차-특정적 데이터를 제공하는 데 사용될 수 있다. 다른 실시예에서, 콘솔(30)은 타워(30)와 별개인 본체 내에 수용된다.
타워(30)는 하나 이상의 케이블 또는 연결부(도시되지 않음)를 통해 카트(11) 및 내시경(13)에 결합될 수 있다. 일부 실시예에서, 타워(30)로부터의 지원 기능은 단일 케이블을 통해 카트(11)에 제공되어, 수술실을 간소화하고 정리할 수 있다. 다른 실시예에서, 특정 기능은 별개의 케이블류(cabling) 및 연결부로 결합될 수 있다. 예를 들어, 전력은 단일 전력 케이블을 통해 카트에 제공될 수 있지만, 제어부, 광학계, 유체장치, 및/또는 내비게이션에 대한 지원은 별개의 케이블을 통해 제공될 수 있다.
도 2는 도 1에 도시된 카트-기반 로봇식 시스템으로부터의 카트의 일 실시예의 상세한 예시를 제공한다. 카트(11)는 일반적으로 세장형 지지 구조물(14)(흔히 "칼럼"으로 지칭됨), 카트 기부(15), 및 칼럼(14)의 상부에 있는 콘솔(16)을 포함한다. 칼럼(14)은 하나 이상의 로봇 아암(12)(3개가 도 2에 도시됨)의 전개를 지원하기 위한 캐리지(17)(대안적으로 "아암 지지부")와 같은 하나 이상의 캐리지를 포함할 수 있다. 캐리지(17)는 환자에 대한 더 양호한 위치설정을 위해 로봇 아암(12)의 기부를 조절하도록 수직 축을 따라 회전하는 개별적으로 구성가능한 아암 마운트를 포함할 수 있다. 캐리지(17)는 또한 캐리지(17)가 칼럼(14)을 따라 수직으로 병진하도록 허용하는 캐리지 인터페이스(19)를 포함한다.
캐리지 인터페이스(19)는 캐리지(17)의 수직 병진을 안내하기 위해 칼럼(14)의 서로 반대편에 있는 측부들 상에 위치되는, 슬롯(20)과 같은 슬롯을 통해 칼럼(14)에 연결된다. 슬롯(20)은 캐리지를 카트 기부(15)에 대해 다양한 수직 높이에 위치시키고 유지시키기 위한 수직 병진 인터페이스를 포함한다. 캐리지(17)의 수직 병진은 카트(11)가 로봇 아암(12)의 도달범위를 조절하여 다양한 테이블 높이, 환자 크기, 및 의사 선호도를 충족시키도록 허용한다. 유사하게, 캐리지(17) 상의 개별적으로 구성가능한 아암 마운트는 로봇 아암(12)의 로봇 아암 기부(21)가 다양한 구성으로 경사지도록 허용한다.
일부 실시예에서, 슬롯(20)은 캐리지(17)가 수직으로 병진함에 따라 수직 병진 인터페이스 및 칼럼(14)의 내부 챔버 내로 먼지 및 유체가 유입되는 것을 방지하기 위해 슬롯 표면과 동일 평면상에 있고 그에 평행한 슬롯 커버로 보완될 수 있다. 슬롯 커버는 슬롯(20)의 수직 상부 및 저부 부근에 위치된 스프링 스풀(spring spool)들의 쌍을 통해 전개될 수 있다. 커버는 캐리지(17)가 상하로 수직으로 병진함에 따라 그들의 코일링된(coiled) 상태로부터 연장 및 후퇴되도록 전개될 때까지 스풀 내에 코일링된다. 스풀의 스프링-로딩(spring-loading)은 캐리지(17)가 스풀을 향해 병진할 때 커버를 스풀 내로 후퇴시키는 힘을 제공함과 동시에, 또한 캐리지(17)가 스풀로부터 멀어지게 병진할 때 밀폐 시일(tight seal)을 유지시킨다. 커버는 캐리지(17)가 병진함에 따라 커버의 적절한 연장 및 후퇴를 보장하기 위해, 예를 들어 캐리지 인터페이스(19) 내의 브래킷(bracket)을 사용하여 캐리지(17)에 연결될 수 있다.
칼럼(14)은 내부적으로, 사용자 입력, 예컨대 콘솔(16)로부터의 입력에 응답하여 생성된 제어 신호에 응답하여 기계화된 방식으로 캐리지(17)를 병진시키기 위해 수직으로 정렬된 리드 스크류(lead screw)를 사용하도록 설계되는, 기어 및 모터와 같은 메커니즘을 포함할 수 있다.
로봇 아암(12)은 일반적으로, 일련의 조인트(24)에 의해 연결되는 일련의 링크장치(linkage)(23)에 의해 분리되는 로봇 아암 기부(21) 및 엔드 이펙터(22)를 포함할 수 있으며, 각각의 조인트는 독립적인 액추에이터(actuator)를 포함하고, 각각의 액추에이터는 독립적으로 제어가능한 모터를 포함한다. 각각의 독립적으로 제어가능한 조인트는 로봇 아암이 이용가능한 독립적인 자유도를 나타낸다. 아암들(12) 각각은 7개의 조인트를 가지며, 따라서 7 자유도를 제공한다. 다수의 조인트는 다수의 자유도를 생성하여, "여분의(redundant)" 자유도를 허용한다. 여분의 자유도는 로봇 아암(12)이 상이한 링크장치 위치 및 조인트 각도를 사용하여 공간에서 특정 위치, 배향, 및 궤적으로 그들 각각의 엔드 이펙터(22)를 위치시키도록 허용한다. 이는 시스템이 의료 기구를 공간에서 원하는 지점으로부터 위치시키고 지향시키도록 허용함과 동시에, 의사가 아암 충돌을 회피하면서 더 우수한 접근을 생성하기 위해 아암 조인트를 환자로부터 떨어진 임상적으로 유리한 위치로 이동시키도록 허용한다.
카트 기부(15)는 바닥 위에서 칼럼(14), 캐리지(17), 및 아암(12)의 중량의 균형을 잡는다. 따라서, 카트 기부(15)는 전자장치, 모터, 전력 공급부와 같은 더 무거운 구성요소뿐만 아니라, 이동을 가능하게 하고/하거나 카트를 움직이지 못하게 하는 구성요소를 수용한다. 예를 들어, 카트 기부(15)는 절차 전에 카트가 수술실을 용이하게 돌아다니도록 허용하는 롤링가능 휠(rollable wheel)-형상의 캐스터(caster)(25)를 포함한다. 적절한 위치에 도달한 후에, 캐스터(25)는 절차 동안 카트(11)를 제위치로 유지시키기 위해 휠 로크(wheel lock)를 사용하여 움직이지 못하게 될 수 있다.
칼럼(14)의 수직 단부에 위치되어, 콘솔(16)은 사용자 입력을 수신하기 위한 사용자 인터페이스, 및 수술전 데이터 및 수술중 데이터 둘 모두를 의사 사용자에게 제공하기 위한 디스플레이 스크린 둘 모두(또는 예를 들어 터치스크린(26)과 같은 이중-목적 장치)를 허용한다. 터치스크린(26) 상의 잠재적인 수술전 데이터는 수술전 계획, 수술전 컴퓨터 단층촬영(computerized tomography, CT) 스캔으로부터 도출된 내비게이션 및 매핑 데이터(mapping data), 및/또는 수술전 환자 인터뷰로부터의 기록을 포함할 수 있다. 디스플레이 상의 수술중 데이터는 도구로부터 제공되는 광학 정보, 센서로부터의 센서 및 좌표 정보뿐만 아니라, 호흡, 심박수, 및/또는 맥박과 같은 바이탈 환자 통계치를 포함할 수 있다. 콘솔(16)은 의사가 캐리지(17) 반대편에 있는 칼럼(14)의 측부로부터 콘솔에 접근하게 허용하도록 위치되고 틸팅될 수 있다. 이러한 위치로부터, 의사는 카트(11) 뒤로부터 콘솔(16)을 작동시키면서 콘솔(16), 로봇 아암(12), 및 환자를 관찰할 수 있다. 도시된 바와 같이, 콘솔(16)은 또한 카트(11)를 조작하고 안정시키는 것을 보조하기 위한 손잡이(27)를 포함한다.
도 3은 요관경술을 위해 배열된 로봇식 시스템(10)의 일 실시예를 예시한다. 요관경술 절차에서, 카트(11)는 환자의 요도 및 요관을 가로지르도록 설계된 절차-특정적 내시경인 요관경(32)을 환자의 하복부 영역으로 전달하도록 위치될 수 있다. 요관경술에서, 요관경(32)이 환자의 요도와 직접 정렬되어 그러한 영역 내의 민감한 해부학적 구조에 대한 마찰과 힘을 감소시키는 것이 바람직할 수 있다. 도시된 바와 같이, 카트(11)는 로봇 아암(12)이 환자의 요도에 대한 직접적인 선형 접근을 위해 요관경(32)을 위치시키게 허용하도록 테이블의 풋(foot)에 정렬될 수 있다. 테이블의 풋으로부터, 로봇 아암(12)은 요관경(32)을 가상 레일(33)을 따라 요도를 통해 환자의 하복부 내로 직접 삽입할 수 있다.
요도 내로의 삽입 후에, 기관지경술에서와 유사한 제어 기법을 사용하여, 요관경(32)은 진단 및/또는 치료 응용을 위해 방광, 요관, 및/또는 신장 내로 내비게이션될 수 있다. 예를 들어, 요관경(32)은 요관경(32)의 작업 채널을 따라 전개된 레이저 또는 초음파 쇄석술 장치를 사용하여 신장 결석 축적물을 부수기 위해 요관 및 신장 내로 지향될 수 있다. 쇄석술이 완료된 후에, 생성된 결석 파편은 요관경(32)을 따라 전개된 바스켓(basket)을 사용하여 제거될 수 있다.
도 4는 혈관 절차를 위해 유사하게 배열된 로봇식 시스템의 일 실시예를 예시한다. 혈관 절차에서, 시스템(10)은 카트(11)가 조향가능 카테터(steerable catheter)와 같은 의료 기구(34)를 환자의 다리 내의 대퇴 동맥 내의 접근 지점으로 전달할 수 있도록 구성될 수 있다. 대퇴 동맥은 내비게이션을 위한 더 큰 직경뿐만 아니라 환자의 심장으로의 상대적으로 덜 우회하고 사행형인 경로 둘 모두를 나타내며, 이는 내비게이션을 단순화한다. 요관경술 절차에서와 같이, 카트(11)는 로봇 아암(12)이 환자의 대퇴부/둔부 영역 내의 대퇴 동맥 접근 지점에 대한 직접적인 선형 접근을 갖는 가상 레일(35)을 제공하게 허용하도록 환자의 다리 및 하복부를 향해 위치될 수 있다. 동맥 내로의 삽입 후에, 의료 기구(34)는 기구 드라이버(28)를 병진시킴으로써 지향되고 삽입될 수 있다. 대안적으로, 카트는, 예를 들어 어깨 및 손목 부근의 경동맥 및 상완 동맥과 같은 대안적인 혈관 접근 지점에 도달하기 위해 환자의 상복부 주위에 위치될 수 있다.
B. 로봇 시스템 ― 테이블.
로봇식 의료 시스템의 실시예는 또한 환자의 테이블을 통합할 수 있다. 테이블의 통합은 카트를 제거함으로써 수술실 내의 자본 장비의 양을 감소시키며, 이는 환자에 대한 더 우수한 접근을 허용한다. 도 5는 기관지경술 절차를 위해 배열된 그러한 로봇식 시스템의 일 실시예를 예시한다. 시스템(36)은 바닥 위에서 플랫폼(platform)(38)("테이블" 또는 "베드(bed)"로 도시됨)을 지지하기 위한 지지 구조물 또는 칼럼(37)을 포함한다. 카트-기반 시스템에서와 매우 유사하게, 시스템(36)의 로봇 아암(39)의 엔드 이펙터는 기구 드라이버(42)를 포함하며, 이는 도 5의 기관지경(40)과 같은 세장형 의료 기구를 기구 드라이버(42)의 선형 정렬로부터 형성된 가상 레일(41)을 통해 또는 그를 따라 조작하도록 설계된다. 실제로, 형광투시 이미징(fluoroscopic imaging)을 제공하기 위한 C-아암이 방출기(emitter) 및 검출기(detector)를 테이블(38) 주위에 배치함으로써 환자의 상복부 영역 위에 위치될 수 있다.
도 6은 논의 목적을 위해 환자 및 의료 기구가 없는 시스템(36)의 대안적인 도면을 제공한다. 도시된 바와 같이, 칼럼(37)은 시스템(36) 내에 링(ring)-형상으로 도시된 하나 이상의 캐리지(43)를 포함할 수 있으며, 하나 이상의 로봇 아암(39)이 그로부터 기초할 수 있다. 캐리지(43)는 로봇 아암(39)이 그로부터 환자에게 도달하도록 위치될 수 있는 상이한 유리한 지점을 제공하기 위해 칼럼(37)의 길이를 따라 연장되는 수직 칼럼 인터페이스(44)를 따라 병진할 수 있다. 캐리지(들)(43)는, 로봇 아암(39)이 예를 들어 환자의 양쪽 측부와 같은 테이블(38)의 다수의 측부에 접근할 수 있도록 허용하기 위해, 칼럼(37) 내에 위치된 기계식 모터를 사용하여 칼럼(37)을 중심으로 회전할 수 있다. 다수의 캐리지를 갖는 실시예에서, 캐리지는 칼럼 상에 개별적으로 위치될 수 있고, 다른 캐리지와 독립적으로 병진 및/또는 회전할 수 있다. 캐리지(43)가 칼럼(37)을 둘러싸거나 심지어 원형일 필요는 없지만, 도시된 바와 같은 링-형상은 구조적 균형을 유지시키면서 칼럼(37)을 중심으로 하는 캐리지(43)의 회전을 용이하게 한다. 캐리지(43)의 회전 및 병진은 시스템이 내시경 및 복강경과 같은 의료 기구를 환자 상의 상이한 접근 지점으로 정렬시키도록 허용한다. (도시되지 않은) 다른 실시예에서, 시스템(36)은 그 옆으로 연장되는 바아(bar) 또는 레일 형태의 조절가능 아암 지지부를 갖는 환자 테이블 또는 베드를 포함할 수 있다. 하나 이상의 로봇 아암(39)은 (예컨대, 엘보우 조인트(elbow joint)를 갖는 쇼울더(shoulder)를 통해) 조절가능 아암 지지부에 부착될 수 있고, 이는 수직으로 조절될 수 있다. 수직 조절을 제공함으로써, 로봇 아암(39)은 유리하게는 환자 테이블 또는 베드 아래에 콤팩트하게 적재되고, 후속하여 절차 동안 상승될 수 있다.
아암(39)은 로봇 아암(39)에 추가의 구성가능성(configurability)을 제공하기 위해 개별적으로 회전하고/하거나 삽통식으로 연장될 수 있는 일련의 조인트를 포함하는 아암 마운트들(45)의 세트를 통해 캐리지 상에 장착될 수 있다. 추가적으로, 아암 마운트(45)는, 캐리지(43)가 적절하게 회전될 때, 아암 마운트(45)가 (도 6에 도시된 바와 같이) 테이블(38)의 동일한 측부 상에, (도 9에 도시된 바와 같이) 테이블(38)의 서로 반대편에 있는 측부들 상에, 또는 테이블(38)의 인접한 측부들 상에(도시되지 않음) 위치될 수 있도록 캐리지(43) 상에 위치될 수 있다.
칼럼(37)은 테이블(38)에 대한 지지, 및 캐리지의 수직 병진을 위한 경로를 구조적으로 제공한다. 내부적으로, 칼럼(37)은 캐리지의 수직 병진을 안내하기 위한 리드 스크류, 및 리드 스크류에 기초하여 상기 캐리지의 병진을 기계화하기 위한 모터를 구비할 수 있다. 칼럼(37)은 또한 캐리지(43) 및 그 상에 장착된 로봇 아암(39)에 전력 및 제어 신호를 전달할 수 있다.
테이블 기부(46)는 도 2에 도시된 카트(11) 내의 카트 기부(15)와 유사한 기능을 하여, 테이블/베드(38), 칼럼(37), 캐리지(43), 및 로봇 아암(39)의 균형을 잡기 위해 더 무거운 구성요소를 수용한다. 테이블 기부(46)는 또한 절차 동안 안정성을 제공하기 위해 강성 캐스터를 통합할 수 있다. 테이블 기부(46)의 저부로부터 전개되어, 캐스터는 기부(46)의 양쪽 측부 상에서 반대 방향들로 연장될 수 있고, 시스템(36)이 이동될 필요가 있을 때 후퇴될 수 있다.
계속해서 도 6을 참조하면, 시스템(36)은 또한 타워(도시되지 않음)를 포함할 수 있으며, 이는 테이블의 형태 인자 및 부피(bulk)를 감소시키기 위해 시스템(36)의 기능을 테이블과 타워 사이에서 분할한다. 이전에 개시된 실시예에서와 같이, 타워는 처리, 컴퓨팅, 및 제어 능력, 전력, 유체장치, 및/또는 광학 및 센서 처리와 같은 다양한 지원 기능을 테이블에 제공할 수 있다. 타워는 또한, 의사 접근을 개선하고 수술실을 정리하기 위해 환자로부터 멀리 위치되도록 이동가능할 수 있다. 추가적으로, 타워 내에 구성요소를 배치하는 것은 로봇 아암의 잠재적인 적재를 위한, 테이블 기부 내의 더 많은 보관 공간을 허용한다. 타워는 또한, 키보드 및/또는 펜던트(pendant)와 같은, 사용자 입력을 위한 사용자 인터페이스뿐만 아니라, 실시간 이미징, 내비게이션, 및 추적 정보와 같은 수술전 및 수술중 정보를 위한 디스플레이 스크린(또는 터치스크린) 둘 모두를 제공하는 마스터 제어기 또는 콘솔을 포함할 수 있다. 일부 실시예에서, 타워는 또한 흡입법(insufflation)을 위해 사용될 가스 탱크를 위한 홀더를 포함할 수 있다.
일부 실시예에서, 테이블 기부는 사용하지 않을 때 로봇 아암을 적재 및 보관할 수 있다. 도 7은 테이블-기반 시스템의 일 실시예에서 로봇 아암을 적재하는 시스템(47)을 예시한다. 시스템(47)에서, 캐리지(48)는 로봇 아암(50), 아암 마운트(51), 및 캐리지(48)를 기부(49) 내에 적재하기 위해 기부(49) 내로 수직으로 병진될 수 있다. 기부 커버(52)는 병진 및 후퇴되어 개방되어 캐리지(48), 아암 마운트(51), 및 아암(50)을 칼럼(53) 주위로 전개시킬 수 있고, 사용하지 않을 때 그들을 적재하여 보호하기 위해 폐쇄될 수 있다. 기부 커버(52)는 그의 개구의 에지를 따라 멤브레인(membrane)(54)으로 밀봉되어, 폐쇄될 때 먼지 및 유체 유입을 방지할 수 있다.
도 8은 요관경술 절차를 위해 구성된 로봇식 테이블-기반 시스템의 일 실시예를 예시한다. 요관경술에서, 테이블(38)은 환자를 칼럼(37) 및 테이블 기부(46)로부터 벗어난 각도로 위치시키기 위한 스위블 부분(swivel portion)(55)을 포함할 수 있다. 스위블 부분(55)은 스위블 부분(55)의 저부 부분을 칼럼(37)으로부터 멀리 위치시키기 위해 피봇 지점(예컨대, 환자의 머리 아래에 위치됨)을 중심으로 회전 또는 피봇할 수 있다. 예를 들어, 스위블 부분(55)의 피봇팅(pivoting)은 C-아암(도시되지 않음)이 테이블(38) 아래의 칼럼(도시되지 않음)과 공간을 경합함이 없이 환자의 하복부 위에 위치되도록 허용한다. 캐리지(35)(도시되지 않음)를 칼럼(37)을 중심으로 회전시킴으로써, 로봇 아암(39)은 요관경(56)을 가상 레일(57)을 따라 환자의 서혜부 영역 내로 직접 삽입하여 요도에 도달하게 할 수 있다. 요관경술에서, 스터럽(stirrup)(58)이 또한 테이블(38)의 스위블 부분(55)에 고정되어, 절차 동안 환자의 다리의 위치를 지지하고 환자의 서혜부 영역에 대한 명확한 접근을 허용할 수 있다.
복강경술 절차에서, 환자의 복벽 내의 작은 절개부(들)를 통해, 최소 침습 기구가 환자의 해부학적 구조 내로 삽입될 수 있다. 일부 실시예에서, 최소 침습 기구는 환자 내의 해부학적 구조에 접근하는 데 사용되는, 샤프트와 같은 세장형 강성 부재를 포함한다. 환자의 복강의 팽창 후에, 기구는 파지, 절단, 절제, 봉합 등과 같은 수술 또는 의료 작업을 수행하도록 지향될 수 있다. 일부 실시예에서, 기구는 복강경과 같은 스코프(scope)를 포함할 수 있다. 도 9는 복강경술 절차를 위해 구성된 로봇식 테이블-기반 시스템의 일 실시예를 예시한다. 도 9에 도시된 바와 같이, 시스템(36)의 캐리지(43)는 로봇 아암들(39)의 쌍을 테이블(38)의 서로 반대편에 있는 측부들 상에 위치시키도록 회전되고 수직으로 조절될 수 있어서, 기구(59)가 환자의 양쪽 측부 상의 최소 절개부로 통과되어 그/그녀의 복강에 도달하도록 아암 마운트(45)를 사용하여 위치될 수 있게 한다.
복강경술 절차를 수용하기 위해, 로봇식 테이블 시스템은 또한 플랫폼을 원하는 각도로 틸팅되게 할 수 있다. 도 10은 피치 또는 틸트 조절을 갖는 로봇식 의료 시스템의 일 실시예를 예시한다. 도 10에 도시된 바와 같이, 시스템(36)은 테이블(38)의 틸트를 수용하여, 테이블의 하나의 부분을 다른 부분보다 바닥으로부터 더 큰 거리를 두고 위치시킬 수 있다. 추가적으로, 아암 마운트(45)는 틸트와 일치하도록 회전할 수 있어서, 아암(39)이 테이블(38)과 동일한 평면 관계를 유지시키게 한다. 더 급격한 각도를 수용하기 위해, 칼럼(37)은 또한, 칼럼(37)의 수직 연장이 테이블(38)이 바닥에 닿거나 기부(46)와 충돌하지 않게 하도록 허용하는 삽통 부분(60)을 포함할 수 있다.
도 11은 테이블(38)과 칼럼(37) 사이의 인터페이스의 상세한 예시를 제공한다. 피치 회전 메커니즘(61)은 다중 자유도로 칼럼(37)에 대한 테이블(38)의 피치 각도를 변경하도록 구성될 수 있다. 피치 회전 메커니즘(61)은 칼럼-테이블 인터페이스에서의 직교 축(1, 2)의 위치설정에 의해 가능해질 수 있으며, 각각의 축은 전기 피치 각도 명령에 응답하여 별개의 모터(3, 4)에 의해 작동된다. 하나의 스크류(5)를 따른 회전은 하나의 축(1)에서의 틸트 조절을 가능하게 할 것인 한편, 다른 하나의 스크류(6)를 따른 회전은 다른 하나의 축(2)을 따른 틸트 조절을 가능하게 할 것이다. 일부 실시예에서, 볼 조인트(ball joint)가 다중 자유도로 칼럼(37)에 대한 테이블(38)의 피치 각도를 변경하도록 사용될 수 있다.
예를 들어, 피치 조절은, 하복부 수술을 위해, 테이블을 트렌델렌부르크 자세(Trendelenburg position)로 위치시키려고 할 때, 즉 환자의 하복부를 환자의 하복부보다 바닥으로부터 더 높은 위치에 위치시키려고 할 때 특히 유용하다. 트렌델렌부르크 자세는 환자의 내부 장기가 중력을 통해 그/그녀의 상복부를 향해 미끄러지게 하여, 최소 침습 도구가 들어가서 복강경 전립선절제술과 같은 하복부 수술 또는 의료 절차를 수행할 복강을 비운다.
도 12 및 도 13은 테이블-기반 수술 로봇 시스템(100)의 다른 실시예의 등각도 및 단부도를 예시한다. 수술 로봇 시스템(100)은 테이블(101)에 대해 하나 이상의 로봇 아암(예를 들어, 도 14 참조)을 지지하도록 구성될 수 있는 하나 이상의 조절가능 아암 지지부(105)를 포함한다. 예시된 실시예에서, 단일 조절가능 아암 지지부(105)가 도시되어 있지만, 추가 아암 지지부가 테이블(101)의 반대편 측부 상에 제공될 수 있다. 조절가능 아암 지지부(105)는 그것이 테이블(101)에 대한 조절가능 아암 지지부(105) 및/또는 그에 장착된 임의의 로봇 아암의 위치를 조절 및/또는 변경하기 위해 테이블(101)에 대해 이동할 수 있도록 구성될 수 있다. 예를 들어, 조절가능 아암 지지부(105)는 1 이상의 자유도로 테이블(101)에 대해 조절될 수 있다. 조절가능 아암 지지부(105)는, 하나 이상의 조절가능 아암 지지부(105) 및 그에 부착된 임의의 로봇 아암을 테이블(101) 아래에 용이하게 적재하는 능력을 포함하는, 시스템(100)에 대한 높은 다용도성을 제공한다. 조절가능 아암 지지부(105)는 적재된 위치로부터 테이블(101)의 상부 표면 아래의 위치로 상승될 수 있다. 다른 실시예에서, 조절가능 아암 지지부(105)는 적재된 위치로부터 테이블(101)의 상부 표면 위의 위치로 상승될 수 있다.
조절가능 아암 지지부(105)는 리프트(lift), 측방향 병진, 틸트 등을 포함하는 여러 자유도를 제공할 수 있다. 도 12 및 도 13의 예시된 실시예에서, 아암 지지부(105)는 도 12에 화살표로 예시된 4 자유도로 구성된다. 제1 자유도는 z-방향으로의 조절가능 아암 지지부(105)의 조절("Z-리프트")을 허용한다. 예를 들어, 조절가능 아암 지지부(105)는 테이블(101)을 지지하는 칼럼(102)을 따라 또는 그에 대해 위 또는 아래로 이동하도록 구성되는 캐리지(109)를 포함할 수 있다. 제2 자유도는 조절가능 아암 지지부(105)가 틸팅하도록 허용할 수 있다. 예를 들어, 조절가능 아암 지지부(105)는 조절가능 아암 지지부(105)가 트렌델렌부르크 자세에서 베드와 정렬되도록 허용할 수 있는 회전 조인트를 포함할 수 있다. 제3 자유도는 조절가능 아암 지지부(105)가 "상향 피봇(pivot up)"하도록 허용할 수 있으며, 이는 테이블(101)의 측부와 조절가능 아암 지지부(105) 사이의 거리를 조절하는 데 사용될 수 있다. 제4 자유도는 테이블의 길이방향 길이를 따른 조절가능 아암 지지부(105)의 병진을 허용할 수 있다.
도 12 및 도 13의 수술 로봇 시스템(100)은 기부(103)에 장착된 칼럼(102)에 의해 지지되는 테이블을 포함할 수 있다. 기부(103) 및 칼럼(102)은 지지 표면에 대해 테이블(101)을 지지한다. 바닥 축(131) 및 지지 축(133)이 도 13에 도시되어 있다.
조절가능 아암 지지부(105)는 칼럼(102)에 장착될 수 있다. 다른 실시예에서, 아암 지지부(105)는 테이블(101) 또는 기부(103)에 장착될 수 있다. 조절가능 아암 지지부(105)는 캐리지(109), 바아 또는 레일 커넥터(111), 및 바아 또는 레일(107)을 포함할 수 있다. 일부 실시예에서, 레일(107)에 장착된 하나 이상의 로봇 아암은 서로에 대해 병진 및 이동할 수 있다.
캐리지(109)는 제1 조인트(113)에 의해 칼럼(102)에 부착될 수 있으며, 이는 캐리지(109)가 (예컨대, 제1 또는 수직 축(123)의 상하로와 같이) 칼럼(102)에 대해 이동하도록 허용한다. 제1 조인트(113)는 조절가능 아암 지지부(105)에 제1 자유도("Z-리프트")를 제공할 수 있다. 조절가능 아암 지지부(105)는 조절가능 아암 지지부(105)에 대한 제2 자유도(틸트)를 제공하는 제2 조인트(115)를 포함할 수 있다. 조절가능 아암 지지부(105)는 조절가능 아암 지지부(105)에 대한 제3 자유도("상향 피봇")를 제공할 수 있는 제3 조인트(117)를 포함할 수 있다. 레일 커넥터(111)가 제3 축(127)을 중심으로 회전됨에 따라 레일(107)의 배향을 유지시키기 위해 제3 조인트(117)를 기계적으로 구속하는 (도 13에 도시된) 추가 조인트(119)가 제공될 수 있다. 조절가능 아암 지지부(105)는 제4 축(129)을 따라 조절가능 아암 지지부(105)에 대한 제4 자유도(병진)를 제공할 수 있는 제4 조인트(121)를 포함할 수 있다.
도 14는 테이블(101)의 서로 반대편에 있는 측부들 상에 장착된 2개의 조절가능 아암 지지부(105A, 105B)를 갖는 수술 로봇 시스템(140A)의 단부도를 예시한다. 제1 로봇 아암(142A)이 제1 조절가능 아암 지지부(105B)의 바아 또는 레일(107A)에 부착된다. 제1 로봇 아암(142A)은 레일(107A)에 부착되는 기부(144A)를 포함한다. 제1 로봇 아암(142A)의 원위 단부는 하나 이상의 로봇 의료 기구 또는 도구에 부착될 수 있는 기구 구동 메커니즘(146A)을 포함한다. 유사하게, 제2 로봇 아암(142B)은 레일(107B)에 부착되는 기부(144B)를 포함한다. 제2 로봇 아암(142B)의 원위 단부는 기구 구동 메커니즘(146B)을 포함한다. 기구 구동 메커니즘(146B)은 하나 이상의 로봇 의료 기구 또는 도구에 부착되도록 구성될 수 있다.
일부 실시예에서, 로봇 아암들(142A, 142B) 중 하나 이상은 7 이상의 자유도를 갖는 아암을 포함한다. 일부 실시예에서, 로봇 아암들(142A, 142B) 중 하나 이상은, 삽입 축(삽입을 포함하는 1-자유도), 리스트(리스트 피치, 요 및 롤(roll)을 포함하는 3-자유도), 엘보우(엘보우 피치를 포함하는 1-자유도), 쇼울더(쇼울더 피치 및 요를 포함하는 2-자유도), 및 기부(144A, 144B)(병진을 포함하는 1-자유도)를 포함하는, 8 자유도를 포함할 수 있다. 일부 실시예에서, 삽입 자유도는 로봇 아암(142A, 142B)에 의해 제공될 수 있는 한편, 다른 실시예에서는, 기구 자체가 기구-기반 삽입 아키텍처를 통한 삽입을 제공한다.
C. 기구 드라이버 및 인터페이스.
시스템의 로봇 아암의 엔드 이펙터는 (i) 의료 기구를 작동시키기 위한 전기-기계 수단을 통합하는 기구 드라이버(대안적으로 "기구 구동 메커니즘" 또는 "기구 장치 조작기"로 지칭됨), 및 (ii) 모터와 같은 임의의 전기-기계 구성요소가 없을 수 있는 제거가능 또는 탈착가능 의료 기구를 포함한다. 이러한 이분법은 의료 절차에 사용되는 의료 기구를 멸균할 필요성, 및 그들의 복잡한 기계 조립체 및 민감한 전자장치로 인해 고가의 자본 장비를 적절하게 멸균할 수 없음에 의해 주도될 수 있다. 따라서, 의료 기구는 의사 또는 의사의 스태프에 의한 개별적인 멸균 또는 폐기를 위해 기구 드라이버(및 그에 따라 시스템)로부터 탈착, 제거, 및 교환되도록 설계될 수 있다. 대조적으로, 기구 드라이버는 변경 또는 멸균될 필요가 없고, 보호를 위해 드레이핑될(draped) 수 있다.
도 15는 예시적인 기구 드라이버를 예시한다. 로봇 아암의 원위 단부에 위치되어, 기구 드라이버(62)는 구동 샤프트(64)를 통해 의료 기구에 제어된 토크를 제공하기 위해 평행 축으로 배열되는 하나 이상의 구동 유닛(63)으로 구성된다. 각각의 구동 유닛(63)은 기구와 상호작용하기 위한 개별 구동 샤프트(64), 모터 샤프트 회전을 원하는 토크로 변환시키기 위한 기어 헤드(65), 구동 토크를 생성하기 위한 모터(66), 모터 샤프트의 속도를 측정하고 제어 회로부에 피드백을 제공하기 위한 인코더(encoder)(67), 및 제어 신호를 수신하고 구동 유닛을 작동시키기 위한 제어 회로부(68)를 포함한다. 각각의 구동 유닛(63)이 독립적으로 제어되고 동력화되기 때문에, 기구 드라이버(62)는 의료 기구에 다수의(도 15에 도시된 바와 같이 4개의) 독립적인 구동 출력부를 제공할 수 있다. 작동 시에, 제어 회로부(68)는 제어 신호를 수신할 것이고, 모터(66)에 모터 신호를 전송할 것이며, 인코더(67)에 의해 측정된 바와 같은 생성된 모터 속도를 원하는 속도와 비교할 것이고, 모터 신호를 변조하여 원하는 토크를 생성할 것이다.
멸균 환경을 필요로 하는 절차의 경우, 로봇 시스템은 기구 드라이버와 의료 기구 사이에 있는, 멸균 드레이프(sterile drape)에 연결된 멸균 어댑터(sterile adapter)와 같은 구동 인터페이스를 통합할 수 있다. 멸균 어댑터의 주된 목적은 기구 드라이버의 구동 샤프트로부터 기구의 구동 입력부로 각도 운동을, 구동 샤프트와 구동 입력부 사이의 물리적 분리, 및 그에 따라 멸균을 유지시키면서, 전달하는 것이다. 따라서, 예시적인 멸균 어댑터는 기구 드라이버의 구동 샤프트 및 기구 상의 구동 입력부와 정합되도록 의도되는 일련의 회전 입력부 및 출력부로 구성될 수 있다. 멸균 어댑터에 연결되어, 투명 또는 반투명 플라스틱과 같은 얇은 가요성 재료로 구성된 멸균 드레이프는 기구 드라이버, 로봇 아암, (카트-기반 시스템 내의) 카트 또는 (테이블-기반 시스템 내의) 테이블과 같은 자본 장비를 덮도록 설계된다. 드레이프의 사용은 자본 장비가 멸균을 필요로 하지 않는 영역(즉, 비-멸균 영역) 내에 여전히 위치되면서 환자에게 근접하게 위치되도록 허용할 것이다. 멸균 드레이프의 다른 하나의 측부 상에서, 의료 기구는 멸균을 필요로 하는 영역(즉, 멸균 영역)에서 환자와 인터페이스할 수 있다.
D. 의료 기구.
도 16은 페어링된 기구 드라이버를 갖는 예시적인 의료 기구를 예시한다. 로봇 시스템과 함께 사용하도록 설계된 다른 기구와 마찬가지로, 의료 기구(70)는 세장형 샤프트(71)(또는 세장형 본체) 및 기구 기부(72)를 포함한다. 의사에 의한 수동 상호작용을 위한 그의 의도된 설계로 인해 "기구 손잡이"로 또한 지칭되는 기구 기부(72)는 일반적으로, 로봇 아암(76)의 원위 단부에서 기구 드라이버(75) 상의 구동 인터페이스를 통해 연장되는 구동 출력부(74)와 정합되도록 설계되는 회전가능 구동 입력부(73), 예컨대 리셉터클(receptacle), 풀리 또는 스풀을 포함할 수 있다. 물리적으로 연결, 래칭(latched), 및/또는 결합될 때, 기구 기부(72)의 정합된 구동 입력부(73)는 기구 드라이버(75) 내의 구동 출력부(74)와 회전 축을 공유하여, 구동 출력부(74)로부터 구동 입력부(73)로의 토크의 전달을 허용할 수 있다. 일부 실시예에서, 구동 출력부(74)는 구동 입력부(73) 상의 리셉터클과 정합하도록 설계되는 스플라인(spline)을 포함할 수 있다.
세장형 샤프트(71)는, 예컨대 내시경술에서와 같이, 해부학적 개구 또는 내강, 또는 예컨대 복강경술에서와 같이, 최소 침습 절개부를 통해 전달되도록 설계된다. 세장형 샤프트(71)는 가요성(예컨대, 내시경과 유사한 특성을 가짐) 또는 강성(예컨대, 복강경과 유사한 특성을 가짐)이거나 가요성 부분 및 강성 부분 둘 모두의 맞춤형 조합을 포함할 수 있다. 복강경술을 위해 설계될 때, 강성의 세장형 샤프트의 원위 단부는, 적어도 1의 자유도를 갖는 클레비스로부터 형성되는 조인트식 리스트(jointed wrist)로부터 연장되는 엔드 이펙터, 및 구동 입력부가 기구 드라이버(75)의 구동 출력부(74)로부터 수신된 토크에 응답하여 회전함에 따라 텐돈(tendon)으로부터의 힘에 기초하여 작동될 수 있는, 예를 들어 파지기 또는 가위와 같은 수술 도구 또는 의료 기구에 연결될 수 있다. 내시경술을 위해 설계될 때, 가요성의 세장형 샤프트의 원위 단부는 기구 드라이버(75)의 구동 출력부(74)로부터 수신된 토크에 기초하여 관절운동되고 구부러질 수 있는 조향가능 또는 제어가능 굽힘 섹션을 포함할 수 있다.
기구 드라이버(75)로부터의 토크는 샤프트(71)를 따른 텐돈을 사용하여 세장형 샤프트(71)를 따라 전달된다. 풀 와이어(pull wire)와 같은 이들 개별 텐돈은 기구 손잡이(72) 내의 개별 구동 입력부(73)에 개별적으로 고정될 수 있다. 손잡이(72)로부터, 텐돈은 세장형 샤프트(71)를 따른 하나 이상의 풀 루멘(pull lumen)을 따라 지향되고, 세장형 샤프트(71)의 원위 부분에, 또는 세장형 샤프트의 원위 부분에 있는 리스트 내에 고정된다. 복강경술, 내시경술 또는 하이브리드 절차와 같은 수술 절차 동안, 이들 텐돈은 리스트, 파지기, 또는 가위와 같은 원위에 장착된 엔드 이펙터에 결합될 수 있다. 그러한 배열 하에서, 구동 입력부(73)에 가해진 토크는 텐돈에 장력을 전달하여, 그에 의해 엔드 이펙터가 일정 방식으로 작동하게 할 것이다. 일부 실시예에서, 수술 절차 동안, 텐돈은 조인트가 축을 중심으로 회전하게 하여, 그에 의해 엔드 이펙터가 하나의 방향 또는 다른 방향으로 이동하게 할 수 있다. 대안적으로, 텐돈은 세장형 샤프트(71)의 원위 단부에서 파지기의 하나 이상의 조오(jaw)에 연결될 수 있으며, 여기에서 텐돈으로부터의 장력은 파지기가 폐쇄되게 한다.
내시경술에서, 텐돈은 접착제, 제어 링, 또는 다른 기계적 고정을 통해 (예컨대, 원위 단부에서) 세장형 샤프트(71)를 따라 위치된 굽힘 또는 관절운동 섹션에 결합될 수 있다. 굽힘 섹션의 원위 단부에 고정식으로 부착될 때, 구동 입력부(73)에 가해진 토크는 텐돈을 따라 전달되어, 더 연질인 굽힘 섹션(때때로 관절운동가능 섹션 또는 영역으로 지칭됨)이 구부러지거나 관절운동하게 할 것이다. 비-굽힘 섹션을 따라, 내시경 샤프트의 벽을 따라(또는 그 내측에서) 개별 텐돈을 지향시키는 개별 풀 루멘을 나선형화 또는 나선화하여, 풀 와이어의 장력으로부터 발생하는 반경방향 힘의 균형을 잡는 것이 유리할 수 있다. 나선(spiraling)의 각도 및/또는 그들 사이의 간격은 특정 목적을 위해 변경 또는 조작될 수 있으며, 여기에서 더 조밀한 나선은 하중 힘 하에서의 더 작은 샤프트 압축을 나타내는 한편, 더 적은 양의 나선은 하중 힘 하에서의 더 큰 샤프트 압축을 가져오지만, 또한 한계 굽힘을 나타낸다. 스펙트럼의 다른 단부 상에서, 풀 루멘은 원하는 굽힘 또는 관절운동가능 섹션에서의 제어된 관절운동을 허용하기 위해 세장형 샤프트(71)의 길이방향 축에 평행하게 지향될 수 있다.
내시경술에서, 세장형 샤프트(71)는 로봇 절차를 보조하기 위한 다수의 구성요소를 수용한다. 샤프트는 샤프트(71)의 원위 단부에서 수술 영역에 수술 도구(또는 의료 기구), 관주, 및/또는 흡인을 전개시키기 위한 작업 채널로 구성될 수 있다. 샤프트(71)는 또한, 광학 카메라를 포함할 수 있는, 원위 팁(distal tip)에 있는 광학 조립체로/그로부터 신호를 전달하기 위한 와이어 및/또는 광섬유를 수용할 수 있다. 샤프트(71)는 또한, 발광 다이오드와 같은 근위에 위치된 광원으로부터 샤프트의 원위 단부로 광을 전달하기 위한 광섬유를 수용할 수 있다.
기구(70)의 원위 단부에서, 원위 팁은 또한, 진단 및/또는 치료, 관주, 및 흡인을 위한 도구를 수술 부위로 전달하기 위한 작업 채널의 개구를 포함할 수 있다. 원위 팁은 또한, 내부 해부학적 공간의 이미지를 캡처하기 위한, 섬유경 또는 디지털 카메라와 같은 카메라를 위한 포트를 포함할 수 있다. 이와 관련하여, 원위 팁은 또한, 카메라를 사용할 때 해부학적 공간을 조명하기 위한 광원을 위한 포트를 포함할 수 있다.
도 16의 예에서, 구동 샤프트 축, 및 그에 따라 구동 입력부 축은 세장형 샤프트의 축에 직교한다. 그러나, 이러한 배열은 세장형 샤프트(71)에 대한 롤 능력을 복잡하게 한다. 구동 입력부(73)를 정적으로 유지시키면서 세장형 샤프트(71)를 그의 축을 따라 롤링시키는 것은 텐돈이 구동 입력부(73)로부터 연장되고 세장형 샤프트(71) 내의 풀 루멘에 들어감에 따라 텐돈의 바람직하지 않은 엉킴을 야기한다. 그러한 텐돈의 결과적인 엉킴은 내시경술 절차 동안 가요성의 세장형 샤프트의 이동을 예측하도록 의도된 임의의 제어 알고리즘을 방해할 수 있다.
도 17은 구동 유닛의 축이 기구의 세장형 샤프트의 축에 평행한 기구 드라이버 및 기구에 대한 대안적인 설계를 예시한다. 도시된 바와 같이, 원형 기구 드라이버(80)는 그들의 구동 출력부(81)가 로봇 아암(82)의 단부에서 평행하게 정렬되는 4개의 구동 유닛을 포함한다. 구동 유닛, 및 그들 각각의 구동 출력부(81)는 기구 드라이버(80)의 회전 조립체(83) 내에 수용되며, 이는 조립체(83) 내의 구동 유닛들 중 하나에 의해 구동된다. 회전 구동 유닛에 의해 제공되는 토크에 응답하여, 회전 조립체(83)는 회전 조립체(83)를 기구 드라이버의 비-회전 부분(84)에 연결하는 원형 베어링을 따라 회전한다. 전력 및 제어 신호가 기구 드라이버(80)의 비-회전 부분(84)으로부터, 브러시형 슬립 링 연결부(brushed slip ring connection)(도시되지 않음)에 의해 회전을 통해 유지될 수 있는 전기 접촉부를 통해 회전 조립체(83)로 전달될 수 있다. 다른 실시예에서, 회전 조립체(83)는, 비-회전가능 부분(84) 내에 통합되어, 그에 따라 다른 구동 유닛에 평행하지 않은 별개의 구동 유닛에 응답할 수 있다. 회전 메커니즘(83)은 기구 드라이버(80)가 구동 유닛, 및 그들 각각의 구동 출력부(81)를 단일 유닛으로서 기구 드라이버 축(85)을 중심으로 회전시키도록 허용한다.
이전에 개시된 실시예와 마찬가지로, 기구(86)는 세장형 샤프트 부분(88), 및 기구 드라이버(80) 내의 구동 출력부(81)를 수용하도록 구성되는 (리셉터클, 풀리, 및 스풀과 같은) 복수의 구동 입력부(89)를 포함하는 기구 기부(87)(논의 목적을 위해 투명 외부 스킨으로 도시됨)를 포함할 수 있다. 이전에 개시된 실시예와 달리, 기구 샤프트(88)는 축이 도 16의 설계에서와 같이 직교하기보다는 구동 입력부(89)의 축에 실질적으로 평행한 상태로 기구 기부(87)의 중심으로부터 연장된다.
기구 드라이버(80)의 회전 조립체(83)에 결합될 때, 기구 기부(87) 및 기구 샤프트(88)를 포함하는 의료 기구(86)는 회전 조립체(83)와 조합하여 기구 드라이버 축(85)을 중심으로 회전한다. 기구 샤프트(88)가 기구 기부(87)의 중심에 위치되기 때문에, 기구 샤프트(88)는 부착될 때 기구 드라이버 축(85)과 동축이다. 따라서, 회전 조립체(83)의 회전은 기구 샤프트(88)가 그 자체의 길이방향 축을 중심으로 회전하게 한다. 더욱이, 기구 기부(87)가 기구 샤프트(88)와 함께 회전함에 따라, 기구 기부(87) 내의 구동 입력부(89)에 연결된 임의의 텐돈은 회전 동안 엉키지 않는다. 따라서, 구동 출력부(81), 구동 입력부(89), 및 기구 샤프트(88)의 축의 평행성은 임의의 제어 텐돈을 엉키게 하지 않고서 샤프트 회전을 허용한다.
도 18은 일부 실시예에 따른, 기구 기반 삽입 아키텍처를 갖는 기구를 예시한다. 기구(150)는 위에서 논의된 기구 드라이버들 중 임의의 것에 결합될 수 있다. 기구(150)는 세장형 샤프트(152), 샤프트(152)에 연결되는 엔드 이펙터(162), 및 샤프트(152)에 결합되는 손잡이(170)를 포함한다. 세장형 샤프트(152)는 근위 부분(154) 및 원위 부분(156)을 갖는 튜브형 부재를 포함한다. 세장형 샤프트(152)는 그의 외부 표면을 따라 하나 이상의 채널 또는 홈(158)을 포함한다. 홈(158)은 그를 통해 하나 이상의 와이어 또는 케이블(180)을 수용하도록 구성된다. 따라서, 하나 이상의 케이블(180)이 세장형 샤프트(152)의 외부 표면을 따라 이어진다. 다른 실시예에서, 케이블(180)은 또한 세장형 샤프트(152)를 통해 이어질 수 있다. (예컨대, 기구 드라이버를 통한) 하나 이상의 케이블(180)의 조작이 엔드 이펙터(162)의 작동을 유발한다.
기구 기부로 또한 지칭될 수 있는 기구 손잡이(170)는 일반적으로, 기구 드라이버의 부착 표면 상의 하나 이상의 토크 커플러(torque coupler)와 상호 정합되도록 설계되는 하나 이상의 기계적 입력부(174), 예컨대 리셉터클, 풀리 또는 스풀을 갖는 부착 인터페이스(172)를 포함할 수 있다.
일부 실시예에서, 기구(150)는 세장형 샤프트(152)가 손잡이(170)에 대해 병진하는 것을 가능하게 하는 일련의 풀리 또는 케이블을 포함한다. 다시 말하면, 기구(150) 자체가 기구의 삽입을 수용하는 기구-기반 삽입 아키텍처를 포함하여, 그에 의해 기구(150)의 삽입을 제공하기 위한 로봇 아암에 대한 의존성을 최소화한다. 다른 실시예에서, 로봇 아암이 기구 삽입을 주로 담당할 수 있다.
E. 제어기.
본 명세서에 기술된 로봇 시스템들 중 임의의 것은 로봇 아암에 부착된 기구를 조작하기 위한 입력 장치 또는 제어기를 포함할 수 있다. 일부 실시예에서, 제어기는 제어기의 조작이 예컨대 마스터 슬레이브 제어(master slave control)를 통해 기구의 대응하는 조작을 유발하도록 기구와 (예컨대, 통신가능하게, 전자적으로, 전기적으로, 무선으로, 그리고/또는 기계적으로) 결합될 수 있다.
도 19는 제어기(182)의 일 실시예의 사시도이다. 본 실시예에서, 제어기(182)는 임피던스 및 어드미턴스 제어(impedance and admittance control) 둘 모두를 가질 수 있는 하이브리드 제어기를 포함한다. 다른 실시예에서, 제어기(182)는 단지 임피던스 또는 수동 제어(passive control)를 이용할 수 있다. 다른 실시예에서, 제어기(182)는 단지 어드미턴스 제어를 이용할 수 있다. 하이브리드 제어기임으로 인해, 제어기(182)는 유리하게는 사용 중인 동안 더 낮은 인지 관성(perceived inertia)을 가질 수 있다.
예시된 실시예에서, 제어기(182)는 2개의 의료 기구의 조작을 허용하도록 구성되고, 2개의 손잡이(184)를 포함한다. 손잡이들(184) 각각은 짐벌(gimbal)(186)에 연결된다. 각각의 짐벌(186)은 위치설정 플랫폼(188)에 연결된다.
도 19에 도시된 바와 같이, 각각의 위치설정 플랫폼(188)은 직선형 조인트(prismatic joint)(196)에 의해 칼럼(194)에 결합되는 SCARA 아암(선택적 순응형 조립 로봇 아암(selective compliance assembly robot arm))(198)을 포함한다. 직선형 조인트(196)는 손잡이들(184) 각각이 z-방향으로 병진되는 것을 허용하여 제1 자유도를 제공하기 위해 칼럼(194)을 따라(예컨대, 레일(197)을 따라) 병진하도록 구성된다. SCARA 아암(198)은 x-y 평면 내에서의 손잡이(184)의 운동을 허용하여, 2의 추가 자유도를 제공하도록 구성된다.
일부 실시예에서, 하나 이상의 로드 셀(load cell)이 제어기 내에 위치된다. 예를 들어, 일부 실시예에서, 로드 셀(도시되지 않음)이 짐벌들(186) 각각의 본체에 위치된다. 로드 셀을 제공함으로써, 제어기(182)의 부분들은 어드미턴스 제어 하에서 작동할 수 있어서, 그에 의해 유리하게는 사용 중인 동안 제어기의 인지 관성을 감소시킨다. 일부 실시예에서, 위치설정 플랫폼(188)은 어드미턴스 제어를 위해 구성되는 한편, 짐벌(186)은 임피던스 제어를 위해 구성된다. 다른 실시예에서, 짐벌(186)은 어드미턴스 제어를 위해 구성되는 한편, 위치설정 플랫폼(188)은 임피던스 제어를 위해 구성된다. 따라서, 일부 실시예의 경우, 위치설정 플랫폼(188)의 병진 또는 위치 자유도는 어드미턴스 제어에 의존할 수 있는 한편, 짐벌(186)의 회전 자유도는 임피던스 제어에 의존할 수 있다.
F. 내비게이션 및 제어.
전통적인 내시경술은 (예컨대, C-아암을 통해 전달될 수 있는 바와 같은) 형광투시법 및 다른 형태의 방사선-기반 이미징 기법의 사용을 수반하여, 조작자 의사에게 관내 안내를 제공할 수 있다. 대조적으로, 본 개시에 의해 고려되는 로봇 시스템은 비-방사선-기반 내비게이션 및 위치결정 수단을 제공하여, 방사선에 대한 의사의 노출을 감소시키고 수술실 내의 장비의 양을 감소시킬 수 있다. 본 명세서에 사용되는 바와 같이, 용어 "위치결정"은 기준 좌표계에서 물체의 위치를 결정 및/또는 모니터링하는 것을 지칭할 수 있다. 수술전 매핑, 컴퓨터 비전(computer vision), 실시간 EM 추적, 및 로봇 명령 데이터와 같은 기법은 방사선이 없는 수술 환경을 달성하기 위해 개별적으로 또는 조합으로 사용될 수 있다. 방사선-기반 이미징 기법이 여전히 사용되는 다른 경우에, 수술전 매핑, 컴퓨터 비전, 실시간 EM 추적, 및 로봇 명령 데이터는 방사선-기반 이미징 기법만을 통해 획득된 정보를 개선하기 위해 개별적으로 또는 조합으로 사용될 수 있다.
도 20은 예시적인 실시예에 따른, 기구의 위치와 같은, 로봇 시스템의 하나 이상의 요소의 위치를 추정하는 위치결정 시스템(90)을 예시한 블록도이다. 위치결정 시스템(90)은 하나 이상의 명령어를 실행하도록 구성되는 하나 이상의 컴퓨터 장치들의 세트일 수 있다. 컴퓨터 장치는 위에서 논의된 하나 이상의 구성요소 내의 프로세서(또는 프로세서들) 및 컴퓨터-판독가능 메모리에 의해 구현될 수 있다. 제한이 아닌 예로서, 컴퓨터 장치는 도 1에 도시된 타워(30), 도 1 내지 도 4에 도시된 카트, 도 5 내지 도 14에 도시된 베드 등 내에 있을 수 있다.
도 20에 도시된 바와 같이, 위치결정 시스템(90)은 의료 기구의 원위 팁에 대한 위치 데이터(96)를 생성하도록 입력 데이터(91 내지 94)를 처리하는 위치결정 모듈(95)을 포함할 수 있다. 위치 데이터(96)는 기준 프레임(frame of reference)에 대한 기구의 원위 단부의 위치 및/또는 배향을 나타내는 데이터 또는 논리일 수 있다. 기준 프레임은 환자의 해부학적 구조 또는 알려진 물체, 예컨대 EM 필드 발생기(EM 필드 발생기에 대해서는 아래의 논의 참조)에 대한 기준 프레임일 수 있다.
이제, 다양한 입력 데이터(91 내지 94)가 더 상세히 기술된다. 수술전 매핑은 저 선량 CT 스캔의 집합의 사용을 통해 달성될 수 있다. 수술전 CT 스캔은 3차원 이미지로 재구성되며, 이는, 예컨대 환자의 내부 해부학적 구조의 절결도의 "슬라이스(slice)"로서 시각화된다. 전체적으로 분석될 때, 환자 폐 네트워크와 같은 환자의 해부학적 구조의 해부학적 공동, 공간 및 구조에 대한 이미지-기반 모델이 생성될 수 있다. 중심선 기하학(center-line geometry)과 같은 기법이 CT 이미지로부터 결정되고 근사화되어, 모델 데이터(91)로 지칭되는(수술전 CT 스캔만을 사용하여 생성될 때 "수술전 모델 데이터"로 또한 지칭됨), 환자의 해부학적 구조의 3차원 볼륨(three-dimensional volume)을 개발할 수 있다. 중심선 기하학의 사용은 그 내용이 전체적으로 본 명세서에 포함되는 미국 특허 출원 제14/523,760호에서 논의된다. 네트워크 위상 모델(network topological model)이 또한 CT-이미지로부터 도출될 수 있으며, 기관지경술에 특히 적절하다.
일부 실시예에서, 기구는 비전 데이터(92)를 제공하기 위한 카메라를 구비할 수 있다. 위치결정 모듈(95)은 하나 이상의 비전-기반 위치 추적을 가능하게 하도록 비전 데이터를 처리할 수 있다. 예를 들어, 수술전 모델 데이터는 비전 데이터(92)와 함께 사용되어 의료 기구의 컴퓨터 비전-기반 추적을 가능하게 할 수 있다(예컨대, 내시경 전진 또는 내시경의 작업 채널을 통한 기구 전진). 예를 들어, 수술전 모델 데이터(91)를 사용하여, 로봇 시스템은 내시경의 예상 이동 경로에 기초하여 모델로부터 예상 내시경 이미지의 라이브러리(library)를 생성할 수 있으며, 각각의 이미지는 모델 내의 일정 위치에 링크된다. 수술중에, 이러한 라이브러리는, 카메라(예컨대, 내시경의 원위 단부에 있는 카메라)에서 캡처된 실시간 이미지를 이미지 라이브러리 내의 이미지와 비교하여 위치결정을 보조하기 위해 로봇 시스템에 의해 참조될 수 있다.
다른 컴퓨터 비전-기반 추적 기법은 특징부 추적(feature tracking)을 사용하여 카메라, 및 그에 따라 내시경의 운동을 결정한다. 위치결정 모듈(95)의 일부 특징부는 해부학적 내강에 대응하는 수술전 모델 데이터(91) 내의 원형 기하학적 구조를 식별하고 그들 기하학적 구조의 변화를 추적하여, 어느 해부학적 내강이 선택되었는지뿐만 아니라 카메라의 상대 회전 및/또는 병진 운동을 결정할 수 있다. 위상 맵(topological map)의 사용은 비전-기반 알고리즘 또는 기법을 추가로 향상시킬 수 있다.
다른 컴퓨터 비전-기반 기법인 광학 흐름(optical flow)은 비전 데이터(92) 내의 비디오 시퀀스에서 이미지 픽셀의 변위 및 병진을 분석하여 카메라 이동을 추론할 수 있다. 광학 흐름 기법의 예는 모션 검출(motion detection), 객체 분할 계산(object segmentation calculation), 휘도(luminance), 모션 보상 인코딩(motion compensated encoding), 스테레오 디스패리티 측정(stereo disparity measurement) 등을 포함할 수 있다. 다수의 반복에 걸친 다수의 프레임의 비교를 통해, 카메라(및 그에 따라 내시경)의 이동 및 위치가 결정될 수 있다.
위치결정 모듈(95)은 수술전 모델에 의해 표현되는 환자의 해부학적 구조에 정합될 수 있는 전역 좌표계에서 내시경의 실시간 위치를 생성하기 위해 실시간 EM 추적을 사용할 수 있다. EM 추적에서, 의료 기구(예컨대, 내시경 도구) 내에 하나 이상의 위치 및 배향으로 내장된 하나 이상의 센서 코일로 구성되는 EM 센서(또는 추적기)가 알려진 위치에 위치된 하나 이상의 정적 EM 필드 발생기에 의해 생성되는 EM 필드의 변화를 측정한다. EM 센서에 의해 검출된 위치 정보는 EM 데이터(93)로서 저장된다. EM 필드 발생기(또는 전송기)는 내장된 센서가 검출할 수 있는 저 강도 자기장을 생성하기 위해 환자 가까이에 배치될 수 있다. 자기장은 EM 센서의 센서 코일에 소전류(small current)를 유도하며, 이는 EM 센서와 EM 필드 발생기 사이의 거리 및 각도를 결정하기 위해 분석될 수 있다. 이들 거리 및 배향은 좌표계 내의 단일 위치를 환자의 해부학적 구조의 수술전 모델 내의 위치와 정렬시키는 기하학적 변환을 결정하기 위해 수술중에 환자 해부학적 구조(예컨대, 수술전 모델)에 "정합될" 수 있다. 일단 정합되면, 의료 기구의 하나 이상의 위치(예컨대, 내시경의 원위 팁)에 있는 내장된 EM 추적기는 환자의 해부학적 구조를 통한 의료 기구의 진행의 실시간 표시를 제공할 수 있다.
로봇 명령 및 운동학(kinematics) 데이터(94)가 또한 위치결정 모듈(95)에 의해 사용되어, 로봇 시스템에 대한 위치결정 데이터(96)를 제공할 수 있다. 관절운동 명령으로부터 발생하는 장치 피치 및 요는 수술전 보정 동안 결정될 수 있다. 수술중에, 이들 보정 측정치는 알려진 삽입 깊이 정보와 조합하여 사용되어 기구의 위치를 추정할 수 있다. 대안적으로, 이들 계산치는 EM, 비전, 및/또는 위상 모델링과 조합하여 분석되어 네트워크 내의 의료 기구의 위치를 추정할 수 있다.
도 17이 도시하는 바와 같이, 다수의 다른 입력 데이터가 위치결정 모듈(95)에 의해 사용될 수 있다. 예를 들어, 도 17에 도시되어 있지 않지만, 형상-감지 섬유를 이용하는 기구가, 위치결정 모듈(95)이 기구의 위치 및 형상을 결정하는 데 사용할 수 있는 형상 데이터를 제공할 수 있다.
위치결정 모듈(95)은 입력 데이터(91 내지 94)를 조합(들)으로 사용할 수 있다. 일부 경우에, 그러한 조합은 위치결정 모듈(95)이 입력 데이터(91 내지 94) 각각으로부터 결정된 위치에 신뢰 가중치(confidence weight)를 할당하는 확률적 접근법(probabilistic approach)을 사용할 수 있다. 따라서, (EM 간섭이 있는 경우 그러할 수 있는 바와 같이) EM 데이터가 신뢰가능하지 않을 수 있는 경우, EM 데이터(93)에 의해 결정된 위치의 신뢰도가 감소될 수 있고, 위치결정 모듈(95)은 비전 데이터(92) 및/또는 로봇 명령 및 운동학 데이터(94)에 더 많이 의존할 수 있다.
위에서 논의된 바와 같이, 본 명세서에서 논의되는 로봇 시스템은 위의 기법들 중 하나 이상의 조합을 통합하도록 설계될 수 있다. 타워, 베드 및/또는 카트에 기반한 로봇 시스템의 컴퓨터-기반 제어 시스템은 예를 들어 영구 자기 저장 드라이브, 솔리드 스테이트 드라이브 등과 같은 비-일시적 컴퓨터-판독가능 저장 매체 내에 컴퓨터 프로그램 명령어를 저장할 수 있으며, 이는, 실행 시에, 시스템으로 하여금 센서 데이터 및 사용자 명령을 수신 및 분석하고, 시스템 전체에 걸쳐 제어 신호를 생성하고, 전역 좌표계, 해부학적 맵 등 내에서의 기구의 위치와 같은 내비게이션 및 위치결정 데이터를 디스플레이하게 한다.
2. 풀리 공유 리스트에 대한 도입.
도 21은 수술 기구(200)의 일 실시예의 측면도를 예시한다. 수술 기구(200)는 세장형 샤프트(202), 손잡이(204), 리스트(206), 및 수술용 이펙터(208)를 포함할 수 있다. 도 22는 소정 구성요소가 투명하게 도시된, 도 21의 수술 기구(200)와 같은 수술 기구의 예시적인 수술용 이펙터의 확대도를 예시한다.
기존 수술 기구는 기구의 리스트 내에 하나 이상의 풀리를 포함하였으며, 여기에서 풀리들 각각은 단일 케이블 세그먼트에 의해 맞물린다. 전체적으로 본 명세서에 참고로 포함되는, 미국 특허 제9,962,228호는, 하나 이상의 풀리를 갖는 리스트를 구비하고 각각의 풀리가 단일 케이블 세그먼트에 의해 맞물리는 그러한 수술 기구를 개시한다.
대조적으로, 본 개시의 하기 실시예는 적어도 2개의 케이블 세그먼트에 의해 공유되는 하나 이상의 풀리를 포함하는 신규한 수술 기구에 관한 것이다. 풀리 상에서 적어도 2개의 케이블 세그먼트를 공유함으로써, 수술 기구의 크기는 수술 기구 상의 풀리의 수를 줄임으로써 감소될 수 있다. 예를 들어, 소정 실시예에서, 수술 기구의 외경은 6 mm 미만, 예컨대 5 mm 내지 6 mm로 감소될 수 있다. 다른 실시예에서, 수술 기구 상의 풀리의 수를 줄임으로써, 기구의 직경을 증가시키지 않고서 추가 구성요소가 수술 기구에 추가될 수 있다. 예를 들어, 본 명세서에 기술된 풀리 공유 구성의 결과로서 제거된 풀리에 의해 이전에 점유된 공간에서 작업 루멘이 수술 기구에 추가될 수 있다. 소정 상황에서, 케이블 세그먼트가 풀리를 공유하는 것은 마찰을 증가시킬 수 있다. 그러나, 본 명세서에 기술된 실시예의 로딩 상황에서, 최대 장력 하에 있는 케이블 세그먼트들은 별개의 풀리들 상에 있는 것으로 밝혀졌고; 따라서, 증가된 마찰은 전술된 크기 감소의 이점을 달성하면서 관리될 수 있다. 풀리의 수의 감소와 함께, 본 명세서에 기술된 수술 기구는 또한 케이블 세그먼트를 수술 기구를 통해 지향시키기 위한 방향전환 표면을 포함할 수 있다. 이들 방향전환 표면은 풀리 대신에 사용될 수 있고, 이는 수술 기구의 크기를 추가로 감소시킬 수 있다. 일부 실시예에서, 방향전환 표면은 고정형일 수 있다. 일부 실시예에서, 방향전환 표면은 기구의 원위 클레비스 내에서 발견될 수 있고, 이는 또한 후술되는 바와 같이 신규한 것이다.
도 22에 도시된 바와 같이, 수술 기구(200)는 리스트(206) 및 수술용 이펙터(208), 세장형 샤프트(202), 근위 클레비스(250), 원위 클레비스(260), 근위 풀리(220) 및 원위 풀리(222)를 포함할 수 있다. 리스트(206)는 수술용 이펙터(208)에 기계적으로 결합될 수 있다. 원위 클레비스(260)는 근위 클레비스(250)에 관하여 원위에 위치될 수 있다. 마찬가지로, 원위 풀리(222)는 근위 풀리(220)에 관하여 원위에 위치될 수 있다. 수술용 이펙터(208)는 로봇 아암에 결합될 수 있고, 다중 이동도로 작동할 수 있다. 예시된 실시예에서, 수술용 이펙터(208)는 더 상세히 후술될 바와 같이 피치 축(290) 및 요 축(292)을 중심으로 하는 이동도를 갖는다. 일부 실시예에서, 수술용 이펙터(208)는 N+1개의 케이블 세그먼트 및 N의 이동 자유도를 가질 수 있다. 예를 들어, 수술용 이펙터(208)는 피치 축(290) 및 요 축(292)을 중심으로 피봇가능한, 2 자유도 리스트일 수 있다. 일부 실시예에서, 도 22에 도시된 바와 같이, 수술용 이펙터(208)는 예를 들어 피치, 요 및 그립(grip)과 같은 적어도 3의 자유도를 제어하기 위해 적어도 4개의 케이블 세그먼트를 포함할 수 있다. 일부 실시예에서, 서로 독립적인 적어도 2개의 케이블 세그먼트는 근위 풀리(220) 또는 원위 풀리(222) 중 적어도 하나의 풀리의 서로 반대편에 있는 측부들과 맞물릴 수 있다.
도 23a 및 도 23b는 하우징이 제거된 수술용 리스트(206)의 예시를 도시한다. 도 23a에 더 상세히 도시된 바와 같이, 리스트(206)는 제1 케이블 세그먼트(230), 제2 케이블 세그먼트(232), 제3 케이블 세그먼트(234) 및 제4 케이블 세그먼트(236)를 포함하는 4개의 케이블 세그먼트를 포함할 수 있다. 일부 실시예에서, 케이블 세그먼트는 동일한 케이블의 부분들일 수 있다. 예를 들어, 제1 케이블 세그먼트(230)와 제2 케이블 세그먼트(232)는 동일한 케이블의 부분들일 수 있다. 마찬가지로, 일부 실시예에서, 제3 케이블 세그먼트(234)와 제4 케이블 세그먼트(236)는 동일한 케이블의 부분들일 수 있다. 일부 실시예에서, 제1 케이블 세그먼트(230)와 제2 케이블 세그먼트(232)는 내측 크림프(medial crimp)에 의해 분리될 수 있다. 마찬가지로, 일부 실시예에서, 제3 케이블 세그먼트(234)와 제4 케이블 세그먼트(236)는 내측 크림프에 의해 분리될 수 있다. 케이블 세그먼트는 세장형 샤프트(202)를 통해 연장될 수 있고 근위 클레비스(250)를 통해 연장될 수 있다. 케이블 세그먼트는 이어서 근위 풀리(220)의 적어도 일부분과 맞물릴 수 있고 원위 클레비스(260)를 향해 연장될 수 있다. 케이블 세그먼트는 이어서 원위 풀리(222)의 적어도 일부분과 맞물릴 수 있다. 케이블 세그먼트들(230, 232, 234, 236) 각각은 도 24b에 도시된 바와 같이 근위 방향전환 표면(252) 및 원위 방향전환 표면(262)과, 그리고 도 24a에 도시된 바와 같이 근위 풀리(220) 및 원위 풀리(222)와 맞물릴 수 있다. 도 23b에 도시된 바와 같이, 근위 풀리(220)는 2개의 케이블 세그먼트에 의해 각각 공유되는 2개의 풀리(220a, 220b)를 포함할 수 있다.
도 22에 도시된 바와 같이, 근위 클레비스(250)는 세장형 샤프트(202)의 원위 단부에 기계적으로 부착될 수 있다. 근위 클레비스(250)는 케이블 세그먼트를 근위 풀리(220)를 향해 방향전환시키는, 도 26a에 도시된 바와 같은 근위 방향전환 표면(252)을 포함할 수 있다. 근위 클레비스(250)의 근위 방향전환 표면(252)은 케이블 세그먼트(230, 232, 234, 236)의 엉킴 또는 전단을 감소시키거나, 일부 경우에 방지할 수 있다. 근위 방향전환 표면(252)은 케이블 세그먼트와 근위 클레비스(250) 사이의 마찰의 양을 감소시킬 수 있다. 원위 클레비스(260)는 근위 풀리(220)와 원위 풀리(222) 사이에 부분적으로 배치될 수 있다. 일부 실시예에서, 원위 클레비스(260)는 근위 풀리(220) 및 원위 풀리(222) 둘 모두에 기계적으로 결합될 수 있다.
도 24a는 케이블 세그먼트(230, 232, 234, 236)와 근위 풀리(220)와 원위 풀리(222) 사이의 상호작용을 추가로 상세히 보여주는, 리스트(206)의 측면도를 도시한다. 도 24b는 케이블 세그먼트(230, 232, 234, 236)와 근위 클레비스(250)와 원위 클레비스(260) 사이의 상호작용을 추가로 상세히 보여주는, 리스트(206)의 다른 측면도를 도시한다. 본 실시예에서, 근위 풀리(220) 및 원위 풀리(222)는 각각 2개의 풀리를 포함할 수 있다. 다른 실시예에서, 근위 풀리(220) 및 원위 풀리(222)는 각각 2개 이상의 풀리(예컨대, 3개, 4개, 5개 또는 6개)를 포함한다. 일부 실시예에서, 근위 풀리(220)의 2개의 풀리(220a, 220b)는 서로 인접하고 피치 축(290)을 따라 정렬될 수 있다. 일부 실시예에서, 근위 풀리(220)의 2개의 풀리들(220a, 220b) 각각은 작업 루멘이 풀리들 사이에 위치되도록 리스트(206)의 중심 축(294)으로부터 오프셋될 수 있다. 작업 루멘은 예를 들어 하나 이상의 전기 케이블, 흡입 관주 튜브, 또는 다른 튜브형 부재를 수용할 수 있다. 일부 실시예에서, 작업 루멘은.5 내지 4.5 mm일 수 있다. 일부 실시예에서, 원위 풀리(222)의 2개의 풀리(222a, 222b)는 서로 인접하고 요 축(292)을 따라 정렬될 수 있다. 일부 실시예에서, 원위 풀리(222)의 2개의 풀리들(222a, 222b) 각각은 작업 루멘이 풀리들 사이에 위치되도록 리스트(206)의 중심 축(294)으로부터 오프셋될 수 있다.
도 23b 및 도 24a에 도시된 바와 같이, 근위 풀리들(220)의 각각의 풀리는 2개의 케이블 세그먼트에 의해 공유될 수 있다. 예를 들어, 도 23a에 도시된 바와 같이, 제1 케이블 세그먼트(230) 및 제2 케이블 세그먼트(232)는 근위 풀리(220)의 제1 측부 상으로 경로설정될 수 있는 한편, 제3 케이블 세그먼트(234) 및 제4 케이블 세그먼트(236)는 근위 풀리(220)의 제2 측부 상으로 경로설정될 수 있다. 그러한 구성에서, 제1 케이블 세그먼트(230) 및 제3 케이블 세그먼트(234)는 유리하게는 근위 풀리(220)의 제1 풀리(220a)와 맞물리는 한편, 제2 케이블 세그먼트(232) 및 제4 케이블 세그먼트(236)는 유리하게는 근위 풀리(220)의 제2 풀리(220b)와 맞물린다. 다시 말하면, 제1 풀리(220a)는 제1 케이블 세그먼트(230) 및 제3 케이블 세그먼트(234)(이들은 동일한 케이블의 일부로서 고려되지 않을 것임)에 의해 공유되는 한편, 제2 풀리(220b)는 제2 케이블 세그먼트(232) 및 제4 케이블 세그먼트(236)(이들은 동일한 케이블의 일부로서 고려되지 않을 것임)에 의해 공유된다. 제1 케이블 세그먼트(230)와 제3 케이블 세그먼트(234)가 동일한 케이블의 일부로서 고려되지 않을 것이고, 제2 케이블 세그먼트(232)와 제4 케이블 세그먼트(236)가 동일한 케이블의 일부로서 고려되지 않을 것이기 때문에, 본 명세서에 기술된 소정 실시예의 신규성의 태양이 제2 케이블 세그먼트 또는 케이블과 별개인, 독립적인, 그리고/또는 독립적으로 작동되는 제1 케이블 세그먼트 또는 케이블에 의해 공유되는 풀리를 수반한다는 것에 유의한다. 일부 실시예에서, 용어 "독립적으로 작동되는"은 케이블 세그먼트들(예컨대, 제1 케이블 세그먼트(230)와 제3 케이블 세그먼트(234))이 독립적으로 그리고/또는 서로 상이한 속도로 이동할 수 있음을 의미할 수 있다. 일부 실시예에서, 독립적인 케이블 세그먼트들은 원위 풀리 및/또는 근위 풀리 주위에서 동일하지만 서로 반대편에 있는 마운트들 내에서 이동한다. 일부 실시예에서, 근위 풀리 둘레로 공유되는 케이블들 또는 케이블 세그먼트들 중 어느 것도 서로 맞물리거나 교차하지 않는다. 일부 실시예에서, 근위 풀리 둘레로 공유되는 케이블들 또는 케이블 세그먼트들 중 어느 것도 예컨대 크림프를 통해 서로 직접 연결되지 않는다. 그러한 풀리 공유 구성은 리스트(206)가 동일한 이동 자유도에 대해 더 적은 풀리를 갖도록 허용하며, 이는 리스트(206) 및 세장형 샤프트(202)가 더 작은 외경(예컨대, 소정 실시예에서 6 mm 미만 및 소정 실시예에서 6 mm 내지 5 mm)을 갖도록, 그리고/또는 예를 들어 원위 풀리들(222a, 222b) 및/또는 근위 풀리들(220a, 220b) 사이에서 연장될 수 있는 작업 루멘과 같은 추가 구성요소가 제거된 풀리 대신에 수술 기구에 추가되도록 허용할 수 있다.
케이블 세그먼트는 케이블 세그먼트를 후퇴시키거나 전진시키는 것이 수술용 이펙터(208)를 제1 이동도로 이동하게 작동시킬 수 있도록 추가로 구성될 수 있다. 일 실시예에서, 도 23a, 도 23b, 도 23c 및 도 23d에 도시된 바와 같이, 수술용 이펙터(208)는 각각 피치 축(290) 및 요 축(292)을 중심으로 하는 근위 풀리(220) 및 원위 풀리(222)의 회전에 의해 생성되는 3 이동도를 가질 수 있다. 예시된 실시예의 수술용 이펙터(208)는 각각 원위 풀리(222)의 제1 풀리(222a) 및 제2 풀리(222b)에 작동가능하게 연결되는 제1 겸자 반부(208a) 및 제2 겸자 반부(208b)를 포함한다. 따라서, 요 축(292)을 중심으로 하는 원위 풀리(222)의 제1 풀리(222a)의 회전은 요 축(292)을 중심으로 하는 제1 겸자 반부(208a)의 회전을 유발할 수 있다. 유사하게, 요 축(292)을 중심으로 하는 원위 풀리(222)의 제2 풀리(222b)의 회전은 요 축(292)을 중심으로 하는 제2 겸자 반부(208b)의 회전을 유발할 수 있다. 일부 실시예에서, 수술용 이펙터(208)의 피치 운동은 케이블 세그먼트(230, 232)의 균일한 단축(shortening)과 일치되는 케이블 세그먼트(234, 236)의 균일한 신장(lengthening)과 같은, 케이블 세그먼트 작동의 조합에 의해 작동될 수 있으며, 이는 원위 클레비스가 피치 축(290)을 중심으로 회전하게 할 수 있다. 다른 실시예에서, 수술용 이펙터(208)는 근위 풀리(220)가 피치 축(290)을 중심으로 회전될 때 피치 축(290)을 중심으로 작동될 수 있다.
도 23a, 도 23b, 도 23c, 및 도 23d에 도시된 실시예에서, 근위 풀리(220) 및 원위 풀리(222)의 회전은 케이블 세그먼트(230, 232, 234, 236)를 후퇴시키거나 전진시킴으로써 유발된다. 소정 실시예에서, 입력 제어기는 4개의 케이블 세그먼트들(230, 232, 234, 236) 각각에 결합될 수 있다. 그러한 배열에서, 제1 입력 제어기는 제1 케이블 세그먼트(230)를 전진/후퇴시킬 수 있고; 제2 입력 제어기는 제2 케이블 세그먼트(232)를 전진/후퇴시킬 수 있고; 제3 입력 제어기는 제3 케이블 세그먼트(234)를 전진/후퇴시킬 수 있고; 제4 입력 제어기는 제4 케이블 세그먼트(236)를 전진/후퇴시킬 수 있다. 제1 케이블 세그먼트(230)와 제3 케이블 세그먼트(234)는 근위 풀리(220)의 제1 풀리(220a)를 공유할 수 있는 한편, 제2 케이블 세그먼트(232)와 제4 케이블 세그먼트(236)는 근위 풀리(220)의 제2 풀리(220b)를 공유할 수 있다. 이러한 구성에 의해, 앞서 언급된 바와 같이, 수술용 이펙터(208) 및 수술용 리스트(206)의 외경은 감소될 수 있고, 소정 실시예에서 6 mm 미만, 예컨대 5 내지 6 mm인 직경으로 감소될 수 있다.
도 23a 및 도 23b는 예시적인 "중립(neutral)" 상태로, 즉 제1 요 각도(272), 제2 요 각도(274), 및 피치 각도(270)가 중심 축(294)으로부터 오프셋되지 않고, 케이블 세그먼트가 전진 또는 후퇴되지 않은 상태로, 수술용 이펙터(208)를 예시한다. 제1 요 각도(272)는 제1 케이블 세그먼트(230)를 전진/후퇴시키고 제2 케이블 세그먼트(232)를 후퇴/전진시킴으로써 조작될 수 있다.
도 23c는 요 축(292)을 중심으로 제1 요 각도(272) 및 제2 요 각도(274)로 회전된 수술용 이펙터(208)의 2개의 겸자 반부(208a, 208b)를 예시한다. 도 23c 및 도 23d는 일부 실시예에 따른 수술용 이펙터(208)의 잠재적인 요 및 피치 이동을 보여준다. 도 23c에 도시된 바와 같이, 제1 케이블(230)을 전진시키고/시키거나 제2 케이블(232)을 후퇴시키는 것은 제1 요 각도(272)가 증가하도록 원위 풀리(220)의 제1 풀리(220a) 및 제1 겸자 반부(208a)가 요 축(292)을 중심으로 회전하게 한다. 반면에, 제1 케이블 세그먼트(230)를 후퇴시키고/시키거나 제2 케이블 세그먼트(232)를 전진시키는 것은 제1 요 각도(272)가 감소하도록 원위 풀리(220)의 제1 풀리(220a) 및 제1 겸자 반부(208a)가 요 축(292)을 중심으로 회전하게 한다. 유사하게, 제2 요 각도(274)는 제3 케이블(234)을 전진/후퇴시키고 제4 케이블(236)을 후퇴/전진시킴으로써 조작될 수 있다. 제3 케이블(234)을 전진시키고/시키거나 제4 케이블(236)을 후퇴시키는 것은 제2 요 각도(274)가 증가하도록 원위 풀리(220)의 제2 풀리(220b) 및 제2 겸자 반부(208b)가 요 축(292)을 중심으로 회전하게 한다. 반면에, 제3 케이블(234)을 후퇴시키고/시키거나 제4 케이블(236)을 전진시키는 것은 제2 요 각도(274)가 감소하도록 원위 풀리(220)의 제2 풀리(220b) 및 제2 겸자 반부(208b)가 요 축(292)을 중심으로 회전하게 한다.
도 23d는 피치 축(290)을 중심으로 피치 각도(270)로 회전된 수술용 이펙터(208)를 예시한다. 도 23d에 도시된 바와 같이, 수술용 이펙터(208)의 피치 각도(270)는 제1 케이블 세그먼트(230) 및 제2 케이블 세그먼트(232)를 후퇴/전진시키고 제3 케이블 세그먼트(234) 및 제4 케이블 세그먼트(236)를 전진/후퇴시킴으로써 조작될 수 있다. 반면에, 제1 케이블 세그먼트(230) 및 제2 케이블 세그먼트(232) 둘 모두를 전진시키고 제3 케이블 세그먼트(234) 및 제4 케이블 세그먼트(236) 둘 모두를 후퇴시키는 것은 피치 각도(270)가 감소하도록 근위 풀리(220)가 요 축을 중심으로 회전하게 할 수 있다.
위의 설명은, 각각의 이동이 비동기적이고 독립적으로 제어될 수 있는 자유도를 제어하는 구성이다. 그러나, 소정 로봇 수술 작동에서, 자유도는 동시에 변경될 수 있다. 당업자는 3의 제어가능 자유도에 대한 동시 운동이 4개의 케이블 세그먼트(230, 232, 234, 236)를 전진 및 후퇴시키기 위한 더 복잡한 제어 방식에 의해 달성될 수 있다는 것에 주목할 것이다. 일부 실시예에서, 4개의 케이블 세그먼트(230, 232, 234, 236)는 금속으로 형성되는 한편, 다른 실시예에서, 4개의 케이블 세그먼트는 비-금속으로 형성된다. 일 실시예에서, 이러한 제어 방식은 사용자의 운동을 수술 부위에서의 수술용 이펙터(208)의 대응하는 동작으로 해석하도록 구성되는 마스터 장치의 컴퓨터 프로그램 명령어를 저장하는 컴퓨터-기반 제어 시스템을 수반한다. 컴퓨터 프로그램은 케이블 세그먼트의 길이 및/또는 이동을 계산하기 위해 입력 제어기를 회전시키는 데 요구되는 전기 부하를 측정하도록 구성될 수 있다. 컴퓨터 프로그램은, 예컨대 케이블이 중합체인 경우, 케이블 세그먼트의 길이를 변경하기 위해 입력 제어기에 필요한 회전의 양을 증가/감소시킴으로써 케이블 세그먼트 탄성의 변화를 보상하도록 추가로 구성될 수 있다. 장력은 모든 입력 제어기의 회전을 공동으로 증가 또는 감소시킴으로써 조절될 수 있다. 장력은 회전을 동시에 증가시킴으로써 증가될 수 있고, 장력은 회전을 동시에 감소시킴으로써 감소될 수 있다. 컴퓨터 프로그램은 케이블의 최소 장력 수준을 유지시키도록 추가로 구성될 수 있다. 케이블들 중 임의의 것의 장력이 하한 최소 장력 임계치 미만으로 하락하는 것으로 감지되면, 컴퓨터 프로그램은 모든 케이블의 케이블 장력이 하한 최소 장력 임계치를 초과할 때까지 모든 입력 제어기의 회전을 공동으로 증가시킬 수 있다. 모든 케이블의 장력이 상한 최소 장력 임계치 초과로 상승하는 것으로 감지되면, 컴퓨터 프로그램은 케이블들 중 임의의 것의 케이블 장력이 상한 최소 장력 임계치 미만일 때까지 모든 입력 제어기의 회전을 공동으로 감소시킬 수 있다. 컴퓨터 프로그램은, 특히 작업 부재들이 물체 상에서 유지되고 있거나 함께 가압되는 상황에서, 케이블 세그먼트에 결합된 입력 제어기를 작동시키는 모터의 부하에 기초하여 조작자의 그립 강도를 인식하도록 추가로 구성될 수 있다. 더 일반적으로, 컴퓨터 프로그램은, 소정 실시예에서 도 16을 참조하여 전술된 바와 같은 구동 출력부(74)를 갖는 기구 드라이버(75)를 포함할 수 있는, 로봇 아암을 통한 수술 기구의 병진 및 회전을 추가로 제어하도록 추가로 구성될 수 있다. 기구 드라이버(75)의 구동 출력부(74)로부터 수신된 토크는 케이블 세그먼트들(230, 232, 234, 236)을 개별적으로 그리고/또는 독립적으로 작동시키기 위해 사용될 수 있다. 소정 실시예에서, 구동 출력부들(74) 각각은 단일 케이블 세그먼트를 작동시키는 데 사용될 수 있다.
도 25a는 원위 클레비스(260)의 일 실시예의 상부 사시도를 도시한다. 원위 클레비스(260)는 2개의 아암(264) 및 원위 방향전환 표면(262)을 포함할 수 있다. 원위 클레비스(260) 및 원위 방향전환 표면(262)은 도 24a 및 도 24b에 도시된 바와 같이 근위 풀리(220)와 원위 풀리(222) 사이에 형성되도록 구성될 수 있다. 선택적으로, 원위 클레비스(260)의 원위 방향전환 표면(262)은 풀리들의 제1 세트(예를 들어, 근위 풀리들(220))와 풀리들의 제2 세트(예를 들어, 원위 풀리들(222)) 사이에 위치될 수 있다. 2개의 아암(264)은 원위 클레비스(260)의 측부 부분으로부터 수술용 이펙터(208)(도시되지 않음)를 향해 원위로 연장될 수 있다. 2개의 아암들(264) 각각은 2개의 아암(264)의 폭을 통해 연장되는 개구(266)를 포함하도록 구성될 수 있다. 개구(266)는, 도 23b 및 도 24b에 도시된 바와 같이, 세장형 로드(282)가 개구(266) 및 원위 풀리(222) 내로 삽입될 수 있도록 위치되고 구성될 수 있다. 세장형 로드(282) 및 개구(266)는 원위 풀리(222)를 위한 회전 축을 한정하도록 구성될 수 있다. 일부 실시예에서, 원위 클레비스(260) 및 원위 풀리(222)와 연관된 회전 축은 도 22에 도시된 바와 같이 요 축(292)일 수 있다.
원위 방향전환 표면(262)은 도 25a에 도시된 바와 같이, 원위 클레비스(260)의 저부 부분을 통해 연장되는 슬롯, 리세스(recess) 또는 개구(268) 주위로 또는 둘레로 연장되는 하나 이상의 표면을 포함할 수 있다. 일부 실시예에서, 원위 방향전환 표면(262)은 원위 클레비스(260)의 하나 이상의 개구(268)의 주연부를 형성하는 하나 이상의 표면의 일부이다. 원위 방향전환 표면(262)은 케이블 세그먼트가 전술된 바와 같이 수술용 이펙터(208)를 작동시키도록 후퇴되거나 전진될 때 그들이 케이블 세그먼트(230, 232, 234, 236)와 원위 클레비스(260) 사이의 마찰을 감소시킬 수 있도록 경사지거나 만곡되거나 기울어질 수 있다. 일부 실시예에서, 원위 방향전환 표면은 곡률 반경을 최대화함으로써 케이블 수명을 증가시키도록 구성된다. 원위 방향전환 표면(262)은 또한 케이블 세그먼트(230, 232, 234, 236)가 엉키거나 비틀리는 것을 방지하도록 구성될 수 있다. 일부 실시예에서, 원위 방향전환 표면(262)은 고정형일 수 있다. 일부 실시예에서, 원위 방향전환 표면(262)은 비-고정형일 수 있다. 일부 실시예에서, 원위 방향전환 표면(262)은 케이블 세그먼트(230, 232, 234, 236)와 맞물리도록 구성되는 회전가능 볼 또는 표면과 같은 적어도 하나의 이동가능 구성요소로 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트는 원위 방향전환 표면(262)의 적어도 일부분과 맞물리도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트는 원위 방향전환 표면(262)의 전체 부분과 맞물리도록 구성될 수 있다. 일부 실시예에서, 원위 클레비스(260)의 원위 방향전환 표면(262)은 원위 방향전환 표면(254)과 케이블 세그먼트 사이의 마찰을 감소시키기 위한 재료로 코팅될 수 있다.
도 25b에 도시된 바와 같이, 케이블 세그먼트(230, 232, 234, 236)는 원위 클레비스(260)를 통해 원위 풀리(222)(도시되지 않음)를 향해 연장된다. 도 26c는 원위 클레비스(260) 및 원위 방향전환 표면(262)을 통해 연장된 후의 케이블 세그먼트(230, 232, 234, 236)의 구성의 일 실시예를 예시한다. 원위 방향전환 표면(262)을 통해 연장된 후에, 케이블 세그먼트는 원위 풀리(222) 둘레로 연장된다. 일부 실시예에서, 도 23b에 도시된 바와 같이, 케이블 세그먼트(230, 232, 234, 236)는 원위 풀리(222)(도시되지 않음)의 복수의 홈의 적어도 일부분과 능동적으로 맞물린다. 일부 실시예에서, 케이블 세그먼트는 원위 풀리(222)의 복수의 홈의 전체 부분과 능동적으로 맞물린다. 도 23b 및 도 24a에 도시된 바와 같이, 원위 풀리(222)의 복수의 홈들 각각은 2개의 케이블 세그먼트와 맞물리도록 구성될 수 있다. 예를 들어, 도 24a 및 도 25c에 도시된 실시예에서, 제1 케이블 세그먼트(230) 및 제2 케이블 세그먼트(232)는 원위 풀리(222)의 제1 풀리(222a)와 맞물리는 한편, 제3 케이블 세그먼트(234) 및 제4 케이블 세그먼트(236)는 원위 풀리(222)의 제2 풀리(222b)와 맞물린다. 일부 실시예에서, 케이블 세그먼트들(230, 232, 234, 236)은 그들이 서로 교차하지 않도록 구성될 수 있다. 케이블 세그먼트(230, 232, 234, 236)는 수술용 이펙터(208)에 작동가능하게 결합된 원위 풀리(222)의 제1 풀리의 제1 측부 둘레로 연장되는 케이블 세그먼트를 후퇴시키거나 전진시키는 것이 수술용 이펙터(208)를 제1 이동도로 작동시키도록, 그리고 원위 풀리(222)의 제1 풀리의 제2 측부 둘레로 연장되는 제2 케이블 세그먼트를 전진시키거나 후퇴시키는 것이 수술용 이펙터(208)를 제2 이동도로 작동시키도록 추가로 구성될 수 있다.
도 26a는 근위 클레비스(250)의 일 실시예의 평면도를 도시한다. 근위 클레비스(250)는 2개의 아암(254) 및 근위 방향전환 표면(252)을 포함할 수 있다. 근위 클레비스(250) 및 근위 방향전환 표면(252)은 세장형 샤프트(202)(도시되지 않음)와 근위 풀리(220)(도시되지 않음) 사이에 형성되도록 구성될 수 있다. 2개의 아암(254)은 도 23a에 도시된 바와 같이, 근위 클레비스(250)의 측부 부분으로부터 수술용 이펙터(208)를 향해 원위로 연장될 수 있다. 2개의 아암들(254) 각각은 도 26c에 도시된 바와 같이, 2개의 아암(254)의 폭을 통해 연장되는 개구(256)를 갖도록 구성될 수 있다. 개구(256)는, 도 23b 및 도 26c에 도시된 바와 같이, 제1 세장형 로드(280)가 개구(256) 및 근위 풀리(220) 내로 삽입될 수 있도록 위치되고 구성될 수 있다. 제1 세장형 로드(280) 및 개구(256)는 원위 풀리(222)를 위한 회전 축을 한정하도록 구성될 수 있다. 일부 실시예에서, 근위 클레비스(250) 및 근위 풀리(220)와 연관된 회전 축은 도 22에 도시된 바와 같이 피치 축(290)일 수 있다.
근위 방향전환 표면(252)은 근위 클레비스(250)의 저부 부분을 통해 연장되는 슬롯, 리세스 또는 개구(258) 주위로 또는 둘레로 연장되는 하나 이상의 표면을 포함할 수 있다. 일부 실시예에서, 근위 방향전환 표면(252)은 근위 클레비스(250)의 하나 이상의 개구(268)의 주연부를 형성하는 하나 이상의 표면의 일부일 수 있다. 근위 방향전환 표면(252)은 케이블 세그먼트가 전술된 바와 같이 수술용 이펙터(208)를 작동시키도록 후퇴되거나 전진될 때 그들이 케이블 세그먼트(230, 232, 234, 236)와 근위 클레비스(250) 사이의 마찰을 감소시킬 수 있도록 경사지거나 만곡되거나 기울어질 수 있다. 근위 방향전환 표면(252)은 또한 케이블 세그먼트(230, 232, 234, 236)가 엉키거나 비틀리는 것을 방지하도록 구성될 수 있다. 일부 실시예에서, 근위 방향전환 표면(252)은 고정형일 수 있다. 일부 실시예에서, 근위 방향전환 표면(252)은 비-고정형일 수 있다. 예를 들어, 근위 방향전환 표면(252)은 케이블 세그먼트(230, 232, 234, 236)와 맞물리도록 구성되는 회전가능 볼 또는 표면과 같은 적어도 하나의 이동가능 구성요소로 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트(230, 232, 234, 236)는 근위 방향전환 표면(252)의 적어도 일부분과 맞물리도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트는 근위 방향전환 표면(252)의 전체 부분과 맞물리도록 구성될 수 있다.
도 26b에 도시된 바와 같이, 케이블 세그먼트(230, 232, 234, 236)는 근위 클레비스(250)를 통해 근위 풀리(220)(도 26b에 도시되지 않음)를 향해 연장되도록 구성될 수 있다. 도 23b, 도 24a 및 도 24b는 근위 클레비스(250) 및 근위 방향전환 표면(252)을 통해 연장된 후의 케이블 세그먼트(230, 232, 234, 236)의 구성의 일 실시예를 예시한다. 근위 방향전환 표면(252)을 통해 연장된 후에, 케이블 세그먼트는 근위 풀리(220) 둘레로 연장되도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트(230, 232, 234, 236)는 근위 풀리(220)의 복수의 홈의 적어도 일부분과 능동적으로 맞물리도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트(230, 232, 234, 236)는 근위 풀리(220)의 복수의 홈의 전체 부분과 능동적으로 맞물리도록 구성될 수 있다. 도 26c에 도시된 바와 같이, 근위 풀리(220)의 복수의 홈들 각각은 2개의 케이블 세그먼트와 맞물리도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트들(230, 232, 234, 236)은 그들이 서로 교차하지 않도록 구성될 수 있다. 케이블 세그먼트(230, 232, 234, 236)는 수술용 이펙터(208)에 작동가능하게 결합된 근위 풀리(220)의 제1 풀리의 제1 측부 둘레로 연장되는 케이블 세그먼트를 후퇴시키거나 전진시키는 것이 수술용 이펙터(308)를 제1 이동도로 작동시키도록, 그리고 원위 풀리(222)의 제1 풀리의 제2 측부 둘레로 연장되는 제2 케이블 세그먼트를 전진시키거나 후퇴시키는 것이 수술용 이펙터(208)를 제2 이동도로 작동시키도록 추가로 구성될 수 있다.
도 26c는 근위 클레비스(250)의 측면도를 예시한다. 근위 클레비스는 근위 방향전환 표면(252)을 포함할 수 있다. 근위 방향전환 표면(252)은 케이블 세그먼트(230, 232, 234, 236)를 실질적으로 근위 클레비스(250) 및 세장형 샤프트(202)(도시되지 않음)의 중심 부근으로부터 근위 풀리(220)의 홈으로 방향전환시키도록 구성될 수 있다. 일부 실시예에서, 근위 클레비스(250)의 근위 방향전환 표면(252)은 하나 이상의 이동가능 표면을 포함할 수 있다. 일부 실시예에서, 근위 클레비스(250)의 근위 방향전환 표면(252)은 근위 방향전환 표면(252)과 케이블 세그먼트 사이의 마찰을 감소시키기 위한 재료로 코팅될 수 있다. 일부 실시예에서, 케이블 세그먼트는 근위 방향전환 표면(252)의 적어도 일부분과 맞물리도록 구성될 수 있다. 일부 실시예에서, 케이블 세그먼트는 근위 방향전환 표면(252)의 전체 부분과 맞물리도록 구성될 수 있다.
3. 구현 시스템 및 용어.
본 명세서에 개시된 구현예는 로봇식 의료 시스템을 위한 시스템, 방법, 및 장치를 제공한다. 본 명세서에 기술된 다양한 구현예는 케이블 세그먼트에 의해 공유되는 하나 이상의 풀리를 포함하는 리스트를 갖는 로봇식 의료 시스템을 포함한다.
본 명세서에 사용되는 바와 같은 용어 "결합하다", "결합하는", "결합된" 또는 단어 결합하다의 다른 변형은 간접적인 연결 또는 직접적인 연결을 나타낼 수 있다는 것에 유의하여야 한다. 예를 들어, 제1 구성요소가 제2 구성요소에 "결합된" 경우, 제1 구성요소는 다른 구성요소를 통해 제2 구성요소에 간접적으로 연결되거나 제2 구성요소에 직접적으로 연결될 수 있다.
본 명세서에 기술된 로봇 운동 작동 기능은 프로세서-판독가능 또는 컴퓨터-판독가능 매체 상에 하나 이상의 명령어로서 저장될 수 있다. 용어 "컴퓨터-판독가능 매체"는 컴퓨터 또는 프로세서에 의해 액세스될 수 있는 임의의 이용가능한 매체를 지칭한다. 제한이 아닌 예로서, 그러한 매체는 랜덤 액세스 메모리(RAM), 판독-전용 메모리(ROM), 전기적 소거가능 프로그램가능 판독-전용 메모리(EEPROM), 플래시 메모리, 콤팩트 디스크 판독-전용 메모리(CD-ROM) 또는 다른 광학 디스크 저장 장치, 자기 디스크 저장 장치 또는 다른 자기 저장 장치, 또는 명령어 또는 데이터 구조의 형태로 원하는 프로그램 코드를 저장하는 데 사용될 수 있고 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 컴퓨터-판독가능 매체는 유형적이고 비-일시적일 수 있음에 유의하여야 한다. 본 명세서에 사용되는 바와 같이, 용어 "코드"는 컴퓨팅 장치 또는 프로세서에 의해 실행가능한 소프트웨어, 명령어, 코드 또는 데이터를 지칭할 수 있다.
본 명세서에 개시된 방법은 기술된 방법을 달성하기 위한 하나 이상의 단계 또는 동작을 포함한다. 방법 단계 및/또는 동작은 청구범위의 범주로부터 벗어남이 없이 서로 교환될 수 있다. 다시 말하면, 기술되는 방법의 적절한 작동을 위해 특정 순서의 단계 또는 동작이 요구되지 않는 한, 특정 단계 및/또는 동작의 순서 및/또는 사용은 청구범위의 범주로부터 벗어남이 없이 수정될 수 있다.
본 명세서에 사용되는 바와 같이, 용어 "복수"는 2개 이상을 나타낸다. 예를 들어, 복수의 구성요소는 2개 이상의 구성요소를 나타낸다. 용어 "결정하는"은 매우 다양한 동작을 포함하며, 따라서 "결정하는"은 계산, 컴퓨팅, 처리, 도출, 조사, 검색(예컨대, 테이블, 데이터베이스 또는 다른 데이터 구조에서의 검색), 확인 등을 포함할 수 있다. 또한, "결정하는"은 수신(예컨대, 정보를 수신함), 액세스(예컨대, 메모리의 데이터에 액세스함) 등을 포함할 수 있다. 또한, "결정하는"은 해석, 선택, 선정, 설정 등을 포함할 수 있다.
어구 "~에 기초한"은, 달리 명백히 명시되지 않는 한, "단지 ~에 기초한"을 의미하지는 않는다. 다시 말하면, 어구 "~에 기초한"은 "단지 ~에 기초한" 및 "적어도 ~에 기초한" 둘 모두를 기술한다.
개시된 구현예의 이전의 설명은 당업자가 본 발명을 제조하거나 사용하는 것을 가능하게 하도록 제공된다. 이들 구현예에 대한 다양한 수정은 당업자에게 용이하게 명백해질 것이고, 본 명세서에서 정의된 일반적인 원리는 본 발명의 범주로부터 벗어남이 없이 다른 구현예에 적용될 수 있다. 예를 들어, 당업자가 다수의 대응하는 대안적인 그리고 동등한 구조적 상세사항, 예컨대 도구 구성요소를 체결, 장착, 결합, 또는 맞물리게 하는 동등한 방식, 특정 작동 운동을 생성하기 위한 동등한 메커니즘, 및 전기 에너지를 전달하기 위한 동등한 메커니즘을 채용할 수 있을 것임이 인식될 것이다. 따라서, 본 발명은 본 명세서에 도시된 구현예로 제한되도록 의도되는 것이 아니라, 본 명세서에 개시된 원리 및 신규한 특징과 일치하는 가장 넓은 범주에 따른다.

Claims (30)

  1. 수술 기구로서,
    다중 이동도들(multiple degrees of movement)을 갖는 수술용 이펙터(surgical effector);
    상기 수술용 이펙터에 결합되는 리스트(wrist)로서, 적어도 제1 풀리(pulley)를 포함하는, 상기 리스트;
    상기 수술용 이펙터를 상기 다중 이동도들로 작동시키기 위해 상기 리스트를 통해 상기 수술용 이펙터로 연장되는 적어도 2개의 케이블 세그먼트(cable segment)들로서, 상기 제1 풀리의 서로 반대편에 있는 측부들과 맞물리고, 서로 독립적인, 상기 적어도 2개의 케이블 세그먼트들을 포함하는, 수술 기구.
  2. 제1항에 있어서, 상기 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 상기 적어도 2개의 케이블 세그먼트들은 동일한 케이블의 일부가 아닌, 수술 기구.
  3. 제1항에 있어서, 상기 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 상기 적어도 2개의 케이블 세그먼트들은 서로 독립적으로 이동가능한, 수술 기구.
  4. 제1항에 있어서, 상기 제1 풀리의 서로 반대편에 있는 측부들과 맞물리는 상기 적어도 2개의 케이블 세그먼트들은 서로 독립적으로 작동가능한, 수술 기구.
  5. 제1항에 있어서, 상기 수술용 이펙터의 상기 다중 이동도들은 피치 축(pitch axis)을 중심으로 하는 회전을 포함하고, 상기 제1 풀리는 또한 상기 피치 축을 중심으로 회전하는, 수술 기구.
  6. 제1항에 있어서, 상기 수술용 이펙터는 상기 리스트를 통해 상기 수술용 이펙터로 연장되는 N+1개의 케이블 세그먼트들에 의해 제어되는 적어도 N의 이동 자유도들(degrees of freedom of movement)을 갖는, 수술 기구.
  7. 제1항에 있어서, 상기 수술용 이펙터는 적어도 3의 이동도들을 갖고, 수술 시스템은 적어도 4개의 케이블 세그먼트들을 포함하는, 수술 기구.
  8. 제7항에 있어서, 상기 3 이동도들은 상기 수술용 이펙터의 제1 요 각도(yaw angle), 제2 요 각도 및 피치 각도를 포함하는, 수술 기구.
  9. 제1항에 있어서, 상기 리스트는 상기 수술용 이펙터의 피치 축을 따라 정렬되는 적어도 2개의 풀리들을 포함하는, 수술 기구.
  10. 제9항에 있어서, 상기 적어도 2개의 풀리들은 서로 인접하게 위치되는, 수술 기구.
  11. 제9항에 있어서, 상기 적어도 2개의 풀리들은 서로 이격되고 상기 리스트의 중심 축으로부터 오프셋되는(offset), 수술 기구.
  12. 제9항에 있어서, 상기 적어도 2개의 풀리들만이 상기 피치 축과 정렬되는 상기 리스트 내의 풀리들인, 수술 기구.
  13. 제1항에 있어서, 상기 제1 풀리는 풀리들의 근위 세트(proximal set)의 일부인, 수술 기구.
  14. 제13항에 있어서, 상기 수술 기구는 상기 풀리들의 근위 세트에 대해 풀리들의 원위 세트(distal set)를 추가로 포함하는, 수술 기구.
  15. 제13항에 있어서, 하나 이상의 방향전환 표면(redirect surface)(들)이 상기 풀리들의 근위 세트와 상기 풀리들의 원위 세트 사이에 형성되는, 수술 기구.
  16. 제15항에 있어서, 상기 하나 이상의 방향전환 표면(들)은 고정형인(stationary), 수술 기구.
  17. 수술 기구로서,
    하나 이상의 풀리(들)를 포함하는 리스트; 및
    N의 이동도들을 가진 수술용 이펙터로서, 상기 N의 이동도들 중 적어도 하나는 상기 리스트를 통해 연장되는 피치 축을 중심으로 하는 회전을 포함하는, 상기 수술용 이펙터를 포함하고,
    적어도 N+1개의 케이블 세그먼트들이 상기 수술용 이펙터를 상기 N의 이동도들로 작동시키기 위해 상기 리스트를 통해 연장되고,
    상기 N+1개의 케이블 세그먼트들 중 적어도 2개는 상기 리스트 내의 상기 풀리들 중 하나를 공유하는, 수술 기구.
  18. 제17항에 있어서, 상기 수술용 이펙터는 적어도 2의 이동도들을 갖고, 상기 수술용 이펙터는 제1 풀리와 맞물리는 적어도 제1 케이블 세그먼트 및 제2 케이블 세그먼트를 포함하고, 상기 제1 케이블 세그먼트와 상기 제2 케이블 세그먼트는 서로 독립적인, 수술 기구.
  19. 제17항에 있어서, 상기 리스트는 원위 클레비스(clevis) 및 근위 클레비스를 포함하는, 수술 기구.
  20. 제17항에 있어서, 상기 하나 이상의 풀리들은 풀리들의 제1 세트의 일부이고, 상기 리스트는 상기 풀리들의 제1 세트의 원위에 위치되는 풀리들의 제2 세트를 포함하는, 수술 기구.
  21. 제19항에 있어서, 상기 리스트의 상기 원위 클레비스는 상기 풀리들의 제1 세트와 상기 풀리들의 제2 세트 사이에 방향전환 표면들을 포함하는, 수술 기구.
  22. 제21항에 있어서, 상기 방향전환 표면들은 고정형 표면들인, 수술 기구.
  23. 수술 시스템으로서,
    수술 기구를 포함하고, 상기 수술 기구는,
    수술용 이펙터;
    상기 수술용 이펙터에 결합되는 리스트로서, 상기 리스트는 근위 클레비스 및 원위 클레비스를 포함하고, 상기 원위 클레비스는 하나 이상의 고정형 방향전환 표면(들)을 포함하는, 상기 리스트; 및
    상기 수술용 이펙터를 작동시키기 위해 상기 리스트를 통해 상기 수술용 이펙터로 연장되는 적어도 2개의 케이블 세그먼트들을 포함하고,
    상기 적어도 2개의 케이블 세그먼트들은 상기 원위 클레비스 내의 상기 하나 이상의 고정형 방향전환 표면(들)과 맞물리는, 수술 시스템.
  24. 제23항에 있어서,
    상기 수술용 이펙터는 로봇 아암(robotic arm)에 결합되고 다중 이동도들을 갖고;
    상기 리스트는 적어도 제1 풀리를 포함하고;
    상기 적어도 2개의 케이블 세그먼트들은 서로 독립적이고 상기 제1 풀리의 서로 반대편에 있는 측부들과 맞물리도록 구성되는, 수술 시스템.
  25. 제23항에 있어서, 상기 수술 기구는 상기 근위 클레비스 내의 하나 이상의 풀리(들) 및 상기 원위 클레비스 내의 하나 이상의 풀리(들)를 추가로 포함하는, 수술 시스템.
  26. 제24항에 있어서, 상기 고정형 방향전환 표면들은 상기 근위 클레비스 내의 상기 하나 이상의 풀리(들)와 상기 원위 클레비스 내의 상기 하나 이상의 풀리(들) 사이에 위치되는, 수술 시스템.
  27. 제23항에 있어서, 상기 원위 클레비스 내의 상기 하나 이상의 방향전환 고정형 표면(들)은 슬롯(slot)의 주연부를 형성하는 하나 이상의 표면(들)의 일부인, 수술 시스템.
  28. 제23항에 있어서, 상기 수술 기구는 상기 근위 클레비스 내의 하나 이상의 고정형 방향전환 표면(들)을 추가로 포함하는, 수술 시스템.
  29. 수술용 이펙터를 다중 이동도들로 작동시키는 방법으로서,
    상기 수술용 이펙터를 제1 이동도로 작동시키기 위해 상기 수술용 이펙터에 결합되는 리스트 내의 제1 풀리의 제1 측부 둘레로 연장되는 제1 케이블 세그먼트를 전진시키거나 후퇴시키는 단계; 및
    상기 수술용 이펙터를 제2 이동도로 작동시키기 위해 상기 제1 풀리의 제2 측부 둘레로 연장되는 제2 케이블 세그먼트를 전진시키거나 후퇴시키는 단계를 포함하는, 방법.
  30. 제29항에 있어서, 상기 제1 케이블 세그먼트를 전진시키거나 후퇴시킴으로써 그리고 상기 제2 풀리 세그먼트를 전진시키거나 후퇴시킴으로써 상기 제1 풀리의 축을 통해 연장되는 피치 축을 중심으로 상기 수술용 이펙터를 회전시키는 단계를 추가로 포함하는, 방법.
KR1020207037168A 2018-06-28 2019-06-24 풀리 공유를 통합한 의료 시스템 KR20210024484A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862691374P 2018-06-28 2018-06-28
US62/691,374 2018-06-28
PCT/US2019/038770 WO2020005854A1 (en) 2018-06-28 2019-06-24 Medical systems incorporating pulley sharing

Publications (1)

Publication Number Publication Date
KR20210024484A true KR20210024484A (ko) 2021-03-05

Family

ID=68984975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207037168A KR20210024484A (ko) 2018-06-28 2019-06-24 풀리 공유를 통합한 의료 시스템

Country Status (7)

Country Link
US (2) US11399905B2 (ko)
EP (1) EP3813682A4 (ko)
JP (1) JP7391886B2 (ko)
KR (1) KR20210024484A (ko)
CN (1) CN112367928A (ko)
MX (1) MX2020013783A (ko)
WO (1) WO2020005854A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231337A1 (ko) * 2021-04-28 2022-11-03 주식회사 리브스메드 다관절형 수술용 장치

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
WO2005087128A1 (en) 2004-03-05 2005-09-22 Hansen Medical, Inc. Robotic catheter system
US20220096112A1 (en) 2007-01-02 2022-03-31 Aquabeam, Llc Tissue resection with pressure sensing
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
ES2769535T3 (es) 2008-03-06 2020-06-26 Aquabeam Llc Ablación de tejido y cauterización con energía óptica transportada en una corriente de fluido
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20120191107A1 (en) 2010-09-17 2012-07-26 Tanner Neal A Systems and methods for positioning an elongate member inside a body
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
CN104203078B (zh) 2012-02-29 2018-04-20 普罗赛普特生物机器人公司 自动化图像引导的组织切除和处理
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9452018B2 (en) 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US10376672B2 (en) 2013-03-15 2019-08-13 Auris Health, Inc. Catheter insertion system and method of fabrication
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
JP6689832B2 (ja) 2014-09-30 2020-04-28 オーリス ヘルス インコーポレイテッド 仮軌道および可撓性内視鏡を有する構成可能なロボット手術システム
US10499999B2 (en) 2014-10-09 2019-12-10 Auris Health, Inc. Systems and methods for aligning an elongate member with an access site
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
US11819636B2 (en) 2015-03-30 2023-11-21 Auris Health, Inc. Endoscope pull wire electrical circuit
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
CN113229942A (zh) 2015-09-09 2021-08-10 奥瑞斯健康公司 手术器械装置操纵器
AU2016323982A1 (en) 2015-09-18 2018-04-12 Auris Health, Inc. Navigation of tubular networks
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
AU2016422171B2 (en) 2016-08-31 2022-01-20 Auris Health, Inc. Length conservative surgical instrument
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
JP7159192B2 (ja) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド シャフト作動ハンドル
AU2018243364B2 (en) 2017-03-31 2023-10-05 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
CN110602976B (zh) 2017-04-07 2022-11-15 奥瑞斯健康公司 患者导引器对准
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
CN110831498B (zh) 2017-05-12 2022-08-12 奥瑞斯健康公司 活检装置和系统
CN110769736B (zh) 2017-05-17 2023-01-13 奥瑞斯健康公司 可更换工作通道
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
KR102341451B1 (ko) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체
EP3644886A4 (en) 2017-06-28 2021-03-24 Auris Health, Inc. ELECTROMAGNETIC DISTORTION DETECTION
CN110809452B (zh) 2017-06-28 2023-05-23 奥瑞斯健康公司 电磁场发生器对准
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
US10850013B2 (en) 2017-12-08 2020-12-01 Auris Health, Inc. Directed fluidics
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. SYSTEMS AND METHODS FOR INSTRUMENT-BASED INSERTION ARCHITECTURES
CN110869173B (zh) 2017-12-14 2023-11-17 奥瑞斯健康公司 用于估计器械定位的系统与方法
US11160615B2 (en) 2017-12-18 2021-11-02 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
USD924410S1 (en) 2018-01-17 2021-07-06 Auris Health, Inc. Instrument tower
JP6999824B2 (ja) 2018-01-17 2022-01-19 オーリス ヘルス インコーポレイテッド 調節可能なアーム支持体を有する外科用プラットフォーム
EP3740150A4 (en) 2018-01-17 2021-11-03 Auris Health, Inc. SURGICAL ROBOTIC SYSTEMS WITH IMPROVED ROBOTIC ARMS
USD873878S1 (en) 2018-01-17 2020-01-28 Auris Health, Inc. Robotic arm
USD932628S1 (en) 2018-01-17 2021-10-05 Auris Health, Inc. Instrument cart
USD901694S1 (en) 2018-01-17 2020-11-10 Auris Health, Inc. Instrument handle
USD901018S1 (en) 2018-01-17 2020-11-03 Auris Health, Inc. Controller
CN110891514B (zh) 2018-02-13 2023-01-20 奥瑞斯健康公司 用于驱动医疗器械的系统和方法
KR102489198B1 (ko) 2018-03-28 2023-01-18 아우리스 헬스, 인코포레이티드 위치 센서의 정합을 위한 시스템 및 방법
EP3773135B1 (en) 2018-03-28 2024-02-14 Auris Health, Inc. Medical instruments with variable bending stiffness profiles
CN110913791B (zh) 2018-03-28 2021-10-08 奥瑞斯健康公司 用于显示所估计的器械定位的系统和方法
US10872449B2 (en) 2018-05-02 2020-12-22 Covidien Lp System and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
EP3793465A4 (en) 2018-05-18 2022-03-02 Auris Health, Inc. CONTROL DEVICES FOR ROBOTIC ACTIVATION REMOTE CONTROL SYSTEMS
JP7250824B2 (ja) 2018-05-30 2023-04-03 オーリス ヘルス インコーポレイテッド 位置センサベースの分岐予測のためのシステム及び方法
JP7146949B2 (ja) 2018-05-31 2022-10-04 オーリス ヘルス インコーポレイテッド 画像ベースの気道分析及びマッピング
EP3801280B1 (en) 2018-05-31 2024-10-02 Auris Health, Inc. Robotic systems for navigation of luminal network that detect physiological noise
EP3801189B1 (en) 2018-05-31 2024-09-11 Auris Health, Inc. Path-based navigation of tubular networks
CN112218596A (zh) 2018-06-07 2021-01-12 奥瑞斯健康公司 具有高力器械的机器人医疗系统
JP7366943B2 (ja) 2018-06-27 2023-10-23 オーリス ヘルス インコーポレイテッド 医療器具のための位置合わせ及び取り付けシステム
US10898276B2 (en) 2018-08-07 2021-01-26 Auris Health, Inc. Combining strain-based shape sensing with catheter control
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
EP3806758A4 (en) 2018-08-17 2022-04-06 Auris Health, Inc. BIPOLAR MEDICAL DEVICE
US10881280B2 (en) 2018-08-24 2021-01-05 Auris Health, Inc. Manually and robotically controllable medical instruments
US11197728B2 (en) 2018-09-17 2021-12-14 Auris Health, Inc. Systems and methods for concomitant medical procedures
WO2020068303A1 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Systems and instruments for suction and irrigation
WO2020068853A2 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Articulating medical instruments
US12076100B2 (en) 2018-09-28 2024-09-03 Auris Health, Inc. Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures
CN112770690A (zh) 2018-09-28 2021-05-07 奥瑞斯健康公司 用于对接医疗器械的系统和方法
WO2020069080A1 (en) 2018-09-28 2020-04-02 Auris Health, Inc. Devices, systems, and methods for manually and robotically driving medical instruments
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11254009B2 (en) 2018-12-20 2022-02-22 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
KR20210111259A (ko) 2018-12-28 2021-09-10 아우리스 헬스, 인코포레이티드 로봇 의료 시스템 및 방법을 위한 경피 시스
US11986257B2 (en) 2018-12-28 2024-05-21 Auris Health, Inc. Medical instrument with articulable segment
CN113347938A (zh) 2019-01-25 2021-09-03 奥瑞斯健康公司 具有加热和冷却能力的血管密封器
WO2020163076A1 (en) 2019-02-08 2020-08-13 Auris Health, Inc. Robotically controlled clot manipulation and removal
CN113453642A (zh) 2019-02-22 2021-09-28 奥瑞斯健康公司 具有用于可调式臂支撑件的机动臂的外科平台
US10945904B2 (en) * 2019-03-08 2021-03-16 Auris Health, Inc. Tilt mechanisms for medical systems and applications
WO2020197671A1 (en) 2019-03-22 2020-10-01 Auris Health, Inc. Systems and methods for aligning inputs on medical instruments
CN113613566B (zh) 2019-03-25 2024-10-11 奥瑞斯健康公司 用于医疗缝合的系统和方法
US11617627B2 (en) 2019-03-29 2023-04-04 Auris Health, Inc. Systems and methods for optical strain sensing in medical instruments
KR20210149805A (ko) 2019-04-08 2021-12-09 아우리스 헬스, 인코포레이티드 동시 절차를 위한 시스템, 방법, 및 작업흐름
EP3989862A4 (en) * 2019-06-25 2023-10-04 Auris Health, Inc. MEDICAL INSTRUMENTS INCLUDING WRISTS WITH HYBRID REORIENTATION SURFACES
WO2020263520A1 (en) 2019-06-26 2020-12-30 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
EP3989793A4 (en) 2019-06-28 2023-07-19 Auris Health, Inc. CONSOLE OVERLAY ITS METHODS OF USE
CN114040727A (zh) 2019-06-28 2022-02-11 奥瑞斯健康公司 包括具有混合重定向表面的腕部的医疗器械
US11717147B2 (en) 2019-08-15 2023-08-08 Auris Health, Inc. Medical device having multiple bending sections
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
KR20220058569A (ko) 2019-08-30 2022-05-09 아우리스 헬스, 인코포레이티드 위치 센서의 가중치-기반 정합을 위한 시스템 및 방법
JP7451686B2 (ja) 2019-08-30 2024-03-18 オーリス ヘルス インコーポレイテッド 器具画像信頼性システム及び方法
JP7494290B2 (ja) 2019-09-03 2024-06-03 オーリス ヘルス インコーポレイテッド 電磁歪み検出及び補償
EP4028221A1 (en) 2019-09-10 2022-07-20 Auris Health, Inc. Systems and methods for kinematic optimization with shared robotic degrees-of-freedom
EP4034349A1 (en) 2019-09-26 2022-08-03 Auris Health, Inc. Systems and methods for collision detection and avoidance
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health, Inc. IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING
WO2021137109A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Alignment techniques for percutaneous access
JP2023508718A (ja) 2019-12-31 2023-03-03 オーリス ヘルス インコーポレイテッド 高度バスケット駆動モード
EP4084717A4 (en) 2019-12-31 2024-02-14 Auris Health, Inc. DYNAMIC PULLEY SYSTEM
CN118383870A (zh) 2019-12-31 2024-07-26 奥瑞斯健康公司 用于经皮进入的对准界面
US11701492B2 (en) 2020-06-04 2023-07-18 Covidien Lp Active distal tip drive
WO2022003485A1 (en) 2020-06-29 2022-01-06 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
US11931901B2 (en) 2020-06-30 2024-03-19 Auris Health, Inc. Robotic medical system with collision proximity indicators
CN116634959B (zh) * 2020-12-08 2024-02-20 瑞德医疗机器股份有限公司 钳子装置以及基底部件
CN113208732A (zh) * 2021-04-30 2021-08-06 康诺思腾机器人(深圳)有限公司 后端传动装置、医疗器械和手术机器人

Family Cites Families (382)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763860A (en) 1971-08-26 1973-10-09 H Clarke Laparoscopy instruments and method for suturing and ligation
US4040413A (en) 1974-07-18 1977-08-09 Fuji Photo Optical Co. Ltd. Endoscope
JPS5394515A (en) 1977-01-31 1978-08-18 Kubota Ltd Method of producing glass fiber reinforced cement plate
US4470407A (en) 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
US4532935A (en) 1982-11-01 1985-08-06 Wang Ko P Bronchoscopic needle assembly
US4747405A (en) 1984-03-01 1988-05-31 Vaser, Inc. Angioplasty catheter
US4685458A (en) 1984-03-01 1987-08-11 Vaser, Inc. Angioplasty catheter and method for use thereof
DE3715418A1 (de) 1986-05-08 1987-11-12 Olympus Optical Co Lithotom
US4854301A (en) 1986-11-13 1989-08-08 Olympus Optical Co., Ltd. Endoscope apparatus having a chair with a switch
US5029574A (en) 1988-04-14 1991-07-09 Okamoto Industries, Inc. Endoscopic balloon with a protective film thereon
DE68917895T2 (de) 1988-06-06 1995-02-02 Sumitomo Electric Industries Katheter.
US5344395A (en) 1989-11-13 1994-09-06 Scimed Life Systems, Inc. Apparatus for intravascular cavitation or delivery of low frequency mechanical energy
US4983165A (en) 1990-01-23 1991-01-08 Loiterman David A Guidance system for vascular catheter or the like
DE9001262U1 (de) 1990-02-05 1990-08-09 Martin, Werner, 7207 Rietheim-Weilheim Chirurgischer Nadelhalter für eine Endo-Naht, Endo-Ligatur od.dgl.
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
CA2048120A1 (en) 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5496267A (en) 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5085659A (en) 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
JPH05208014A (ja) 1991-04-10 1993-08-20 Olympus Optical Co Ltd 処置具
WO1992021292A2 (en) 1991-05-29 1992-12-10 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5269797A (en) 1991-09-12 1993-12-14 Meditron Devices, Inc. Cervical discectomy instruments
US5449356A (en) 1991-10-18 1995-09-12 Birtcher Medical Systems, Inc. Multifunctional probe for minimally invasive surgery
US5217001A (en) 1991-12-09 1993-06-08 Nakao Naomi L Endoscope sheath and related method
US5217465A (en) 1992-02-28 1993-06-08 Alcon Surgical, Inc. Flexible and steerable aspiration tip for microsurgery
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5325848A (en) 1992-09-10 1994-07-05 Ethicon, Inc. Endoscopic tissue manipulator with expandable frame
US5545170A (en) 1992-10-09 1996-08-13 Innovasive Devices, Inc. Surgical instrument
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
DE69434185T2 (de) 1993-06-10 2005-06-02 Imran, Mir A., Los Altos Hills Urethrales gerät zur ablation mittels hochfrequenz
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5645083A (en) 1994-02-10 1997-07-08 Essig; Mitchell N. Peritoneal surgical method
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5441485A (en) 1994-02-24 1995-08-15 Peters; Michael J. Bladder catheter
US5501667A (en) 1994-03-15 1996-03-26 Cordis Corporation Perfusion balloon and method of use and manufacture
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US5613973A (en) 1995-03-10 1997-03-25 Wilson Greatbatch Ltd. Laraposcopic surgical grasper having an attachable strap
US5562648A (en) 1995-03-31 1996-10-08 E. I. Du Pont De Nemours And Company Adult incontinent absorbent undergarment
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
US5562678A (en) 1995-06-02 1996-10-08 Cook Pacemaker Corporation Needle's eye snare
DE19532098A1 (de) 1995-08-30 1997-03-06 Stuemed Gmbh Vorrichtung für endoskopische Operationen, insbesondere spreizbares Stütz-Epi-Hypopharyngo-Laryngoskop nach Feyh-Kastenbauer
US5710870A (en) 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
US5989230A (en) 1996-01-11 1999-11-23 Essex Technology, Inc. Rotate to advance catheterization system
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
EP0848598B1 (en) 1996-05-10 2005-02-23 Emmanuil Giannadakis System of laparoscopic-endoscopic surgery
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5658311A (en) 1996-07-05 1997-08-19 Schneider (Usa) Inc. High pressure expander bundle for large diameter stent deployment
US5788667A (en) 1996-07-19 1998-08-04 Stoller; Glenn Fluid jet vitrectomy device and method for use
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US5810770A (en) 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US5893869A (en) 1997-02-19 1999-04-13 University Of Iowa Research Foundation Retrievable inferior vena cava filter system and method for use thereof
US5924175A (en) 1997-04-29 1999-07-20 Lippitt; Robert G. Annularly expanding and retracting gripping and releasing mechanism
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
EP1015944B1 (en) * 1997-09-19 2013-02-27 Massachusetts Institute Of Technology Surgical robotic apparatus
US6174318B1 (en) 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6093157A (en) 1997-10-22 2000-07-25 Scimed Life Systems, Inc. Radiopaque guide wire
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
RU2130762C1 (ru) 1997-12-10 1999-05-27 Федоров Святослав Николаевич Устройство для офтальмохирургических операций
US6120498A (en) 1998-03-05 2000-09-19 Jani; Mahendra G. Aspirating handpieces for laser surgical operations
FR2779934B1 (fr) 1998-06-17 2001-01-05 Saphir Medical Sa Piece a main a commande pneumatique pour applications chirurgicales et medicales
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
DE19859434C2 (de) 1998-12-22 2001-03-08 Bruker Optik Gmbh IR-spektroskopisches Endoskop mit aufblasbarem Ballon
US6405078B1 (en) 1999-01-15 2002-06-11 Biosense Webster, Inc. Porous irrigated tip electrode catheter
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6110171A (en) 1999-03-09 2000-08-29 Everest Medical Corporation Electrosurgical cutting and coagulating instrument for open surgery
CA2363250A1 (en) 1999-03-09 2000-09-14 Advance Sentry Corporation Biopsy apparatus and method of obtaining biopsy sample
US6183435B1 (en) 1999-03-22 2001-02-06 Cordis Webster, Inc. Multi-directional steerable catheters and control handles
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6206903B1 (en) 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6491691B1 (en) 1999-10-08 2002-12-10 Intuitive Surgical, Inc. Minimally invasive surgical hook apparatus and method for using same
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
ES2365208T3 (es) 2000-07-24 2011-09-26 Jeffrey Grayzel Catéter con globo rigidizado para dilatación e implantación de prótesis endovasculares.
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US20030158545A1 (en) 2000-09-28 2003-08-21 Arthrocare Corporation Methods and apparatus for treating back pain
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
WO2002056805A2 (en) 2001-01-18 2002-07-25 The Regents Of The University Of California Minimally invasive glaucoma surgical instrument and method
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
JP4588906B2 (ja) 2001-03-13 2010-12-01 オリンパス株式会社 内視鏡用採取具
US20030004455A1 (en) 2001-06-28 2003-01-02 Kadziauskas Kenneth E. Bi-manual phaco needle
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
US20030208189A1 (en) 2001-10-19 2003-11-06 Payman Gholam A. Integrated system for correction of vision of the human eye
US6652537B2 (en) 2001-12-12 2003-11-25 C. R. Bard, Inc. Articulating stone basket
US6676668B2 (en) 2001-12-12 2004-01-13 C.R. Baed Articulating stone basket
DE10212154A1 (de) 2002-03-19 2003-10-09 Norbert F Heske Handstück einer Biopsievorrichtung
CA2479349C (en) 2002-03-19 2012-07-03 Bard Dublin Itc Limited Biopsy device and biopsy needle module that can be inserted into the biopsy device
US20040158261A1 (en) 2002-05-15 2004-08-12 Vu Dinh Q. Endoscopic device for spill-proof laparoscopic ovarian cystectomy
US8956280B2 (en) 2002-05-30 2015-02-17 Intuitive Surgical Operations, Inc. Apparatus and methods for placing leads using direct visualization
EP1531749A2 (en) 2002-08-13 2005-05-25 Microbotics Corporation Microsurgical robot system
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
US6984232B2 (en) 2003-01-17 2006-01-10 St. Jude Medical, Daig Division, Inc. Ablation catheter assembly having a virtual electrode comprising portholes
US20040153093A1 (en) 2003-01-31 2004-08-05 Advanced Medical Optics, Inc. Bi-manual phacoemulsification apparatus and method
US7559934B2 (en) 2003-04-07 2009-07-14 Scimed Life Systems, Inc. Beaded basket retrieval device
US7122003B2 (en) 2003-04-16 2006-10-17 Granit Medical Innovations, Llc Endoscopic retractor instrument and associated method
US7121781B2 (en) 2003-06-11 2006-10-17 Intuitive Surgical Surgical instrument with a universal wrist
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US8403828B2 (en) 2003-07-21 2013-03-26 Vanderbilt University Ophthalmic orbital surgery apparatus and method and image-guide navigation system
US20050159645A1 (en) 2003-11-12 2005-07-21 Bertolero Arthur A. Balloon catheter sheath
ITPI20030107A1 (it) 2003-11-14 2005-05-15 Massimo Bergamasco Dispositivo per l'esecuzione di operazioni
CA2555314C (en) 2004-02-09 2016-02-02 Smart Medical Systems Ltd. Endoscope assembly
WO2005086874A2 (en) 2004-03-11 2005-09-22 Medrad, Inc. Energy assisted medical devices, systems and methods
US9345456B2 (en) 2004-03-24 2016-05-24 Devicor Medical Products, Inc. Biopsy device
JP4638683B2 (ja) 2004-03-25 2011-02-23 テルモ株式会社 血管内異物除去吸引用カテーテル
US20050261705A1 (en) 2004-05-21 2005-11-24 Gist Christopher W Device to remove kidney stones
DE102004040959B4 (de) 2004-08-24 2008-12-24 Erbe Elektromedizin Gmbh Chirurgisches Instrument
US20060135963A1 (en) 2004-09-09 2006-06-22 Kick George F Expandable gastrointestinal sheath
US7824415B2 (en) 2004-09-15 2010-11-02 Boston Scientific Scimed, Inc. Atraumatic medical device
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
WO2006060658A2 (en) 2004-12-01 2006-06-08 Ethicon Endo-Surgery, Inc. Apparatus and method for stone capture and removal
WO2006065913A1 (en) 2004-12-15 2006-06-22 Wilson-Cook Medical Inc. Flexible surgical needle device
US20060156875A1 (en) 2005-01-19 2006-07-20 Depuy Mitek, Inc. Fluid cutting device and method of use
US8375808B2 (en) 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US7465288B2 (en) 2005-06-28 2008-12-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Actuation handle for a catheter
US20070027443A1 (en) 2005-06-29 2007-02-01 Ondine International, Ltd. Hand piece for the delivery of light and system employing the hand piece
EP1906858B1 (en) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
JP2009507617A (ja) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド 経腔的及び他の操作を行うための方法及び装置
CA2626867C (en) 2005-11-03 2015-08-11 Vance Products Incorporated, D/B/A Cook Urological Incorporated Articulating basket with simultaneous basket extension or basket retraction
JP4981680B2 (ja) 2005-11-04 2012-07-25 オリンパスメディカルシステムズ株式会社 内視鏡システム、内視鏡、支持部材
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
WO2007098494A1 (en) 2006-02-22 2007-08-30 Hansen Medical, Inc. System and apparatus for measuring distal forces on a working instrument
US20070208375A1 (en) 2006-02-23 2007-09-06 Kouji Nishizawa Surgical device
WO2007103995A2 (en) 2006-03-07 2007-09-13 Vance Products Incorporated, D/B/A Cook Urological Incorporated Foot operated irrigation control apparatus for medical procedures
US8211114B2 (en) 2006-04-24 2012-07-03 Ethicon Endo-Surgery, Inc. Medical instrument having a medical snare
US7927327B2 (en) 2006-04-25 2011-04-19 Ethicon Endo-Surgery, Inc. Medical instrument having an articulatable end effector
WO2007136591A1 (en) 2006-05-15 2007-11-29 Baystate Health, Inc. Balloon endoscope device
WO2007136984A2 (en) 2006-05-17 2007-11-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Auto lock for catheter handle
US8092470B2 (en) 2006-06-08 2012-01-10 Olympus Medical Systems Corp. Calculus crushing apparatus and medical procedure using endoscope
JP2009539509A (ja) 2006-06-14 2009-11-19 マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド 直角プーリ駆動機構付きの手術マニピュレータ
US9585714B2 (en) 2006-07-13 2017-03-07 Bovie Medical Corporation Surgical sealing and cutting apparatus
US8652086B2 (en) 2006-09-08 2014-02-18 Abbott Medical Optics Inc. Systems and methods for power and flow rate control
CA2663797A1 (en) 2006-09-19 2008-03-27 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for surgery on a hollow anatomically suspended organ
US7535991B2 (en) 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US20090131885A1 (en) 2006-11-08 2009-05-21 Takayuki Akahoshi Curved Irrigation/Aspiration Needle
US7935130B2 (en) * 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US8480595B2 (en) 2006-12-13 2013-07-09 Devicor Medical Products, Inc. Biopsy device with motorized needle cocking
WO2008097853A2 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
WO2008101206A2 (en) 2007-02-15 2008-08-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter and method of manufacture
AU2008226826A1 (en) 2007-03-13 2008-09-18 Optimedica Corporation Apparatus for creating ocular surgical and relaxing incisions
JP5090045B2 (ja) * 2007-04-03 2012-12-05 テルモ株式会社 マニピュレータ及びその制御方法
US7987046B1 (en) 2007-04-04 2011-07-26 Garmin Switzerland Gmbh Navigation device with improved user interface and mounting features
US20090030446A1 (en) 2007-07-25 2009-01-29 Measamer John P Tissue Manipulator
JP5296351B2 (ja) 2007-08-28 2013-09-25 オリンパスメディカルシステムズ株式会社 内視鏡挿入装置
US20090082634A1 (en) 2007-09-25 2009-03-26 Biten Kishore Kathrani Surgical method
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US8328819B2 (en) 2007-10-22 2012-12-11 Boston Scientific Scimed, Inc. Steerable stone basket
US20140058365A1 (en) 2007-12-17 2014-02-27 Josef F. Bille System and Method for Using Compensating Incisions in Intrastromal Refractive Surgery
US20090299352A1 (en) 2007-12-21 2009-12-03 Boston Scientific Scimed, Inc. Steerable laser-energy delivery device
EP2231277B1 (en) 2007-12-23 2017-08-30 Carl Zeiss Meditec, Inc. Devices for detecting, controlling, and predicting radiation delivery
KR20100120183A (ko) 2008-01-30 2010-11-12 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 로봇을 이용한 미세수술 스텐트 시술을 위한 시스템, 디바이스 및 방법
ES2769535T3 (es) 2008-03-06 2020-06-26 Aquabeam Llc Ablación de tejido y cauterización con energía óptica transportada en una corriente de fluido
US20090254083A1 (en) 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US8048024B2 (en) 2008-03-17 2011-11-01 Boston Scientific Scimed, Inc. Steering mechanism
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
WO2009131928A1 (en) 2008-04-21 2009-10-29 Electromedical Associates Llc Devices and methods for ablating and removing a tissue mass
US8864681B2 (en) 2008-04-23 2014-10-21 Devicor Medical Products, Inc. Biopsy devices
US9539381B2 (en) 2008-05-12 2017-01-10 Humparkull, Llc Hemostatic devices and methods for use thereof
US8641604B2 (en) 2008-05-13 2014-02-04 Boston Scientific Scimed, Inc. Steering system with locking mechanism
WO2009140688A2 (en) 2008-05-16 2009-11-19 The Johns Hopkins University System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye
KR101016102B1 (ko) 2008-05-30 2011-02-17 정창욱 최소 침습 수술 도구
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US20100004642A1 (en) 2008-07-02 2010-01-07 Lumpkin Christopher F Selectively bendable laser fiber for surgical laser probe
US8540748B2 (en) 2008-07-07 2013-09-24 Intuitive Surgical Operations, Inc. Surgical instrument wrist
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US9186221B2 (en) 2008-07-16 2015-11-17 Intuitive Surgical Operations Inc. Backend mechanism for four-cable wrist
US8771270B2 (en) 2008-07-16 2014-07-08 Intuitive Surgical Operations, Inc. Bipolar cautery instrument
US8821480B2 (en) * 2008-07-16 2014-09-02 Intuitive Surgical Operations, Inc. Four-cable wrist with solid surface cable channels
US20100082017A1 (en) 2008-09-26 2010-04-01 Advanced Medical Optics, Inc. Laser modification of intraocular lens
ES2561777T3 (es) 2008-12-02 2016-02-29 Biolitec Unternehmensbeteilligung Ll Ag Dispositivo médico mediado por vapor/plasma inducidos por láser
US20100179632A1 (en) 2009-01-12 2010-07-15 Medtronic Vascular, Inc. Robotic Fenestration Device Having Impedance Measurement
ITBO20090004U1 (it) 2009-02-11 2010-08-12 Tre Esse Progettazione Biomedica S R L Manipolatore robotico per la manovra a distanza di cateteri steerable nel sistema cardiovascolare umano.
US20100204556A1 (en) 2009-02-12 2010-08-12 Keimar, Inc. Physiological parameter sensors
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US8517955B2 (en) 2009-05-08 2013-08-27 Broncus Medical Inc. Tissue sampling devices, systems and methods
BRPI1007726A2 (pt) 2009-05-18 2017-01-31 Koninl Philips Electronics Nv método para registro baseado em imagem entre as imagens, sistema para registro baseado em imagem entre imagens, método para calibração de posição de câmera para endoscopia guiada e sistema para calibração de câmera para endoscopia guida
JP5827219B2 (ja) 2009-05-29 2015-12-02 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University 柔軟な内視鏡検査のためのロボットシステム
US20110015483A1 (en) 2009-07-16 2011-01-20 Federico Barbagli Endoscopic robotic catheter system
US8888789B2 (en) 2009-09-23 2014-11-18 Intuitive Surgical Operations, Inc. Curved cannula surgical system control
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
US8721631B2 (en) 2009-09-24 2014-05-13 Biolite Pharma Marketing Ltd Twister fiber optic systems and their use in medical applications
US20120232342A1 (en) 2009-10-15 2012-09-13 Boris Reydel Disposable and reusable comlex shaped see-through endoscope
ES2388867B1 (es) 2009-10-27 2013-09-18 Universitat Politècnica De Catalunya Pinzas para cirugia laparoscópica mínimamente invasiva.
US20110152880A1 (en) 2009-12-23 2011-06-23 Hansen Medical, Inc. Flexible and steerable elongate instruments with torsion control
US20130053877A1 (en) 2010-02-05 2013-02-28 Imds Corporation Multiple Function Surgical Instrument
US20130096422A1 (en) 2010-02-15 2013-04-18 The University Of Texas At Austin Interventional photoacoustic imaging system
US8292889B2 (en) 2010-02-26 2012-10-23 Tyco Healthcare Group Lp Drive mechanism for articulation of a surgical instrument
GB201006079D0 (en) 2010-04-13 2010-05-26 Central Manchester University Surgical device and methods
US20110257641A1 (en) 2010-04-14 2011-10-20 Roger Hastings Phototherapy for renal denervation
US8394120B2 (en) 2010-05-04 2013-03-12 Jacek Krzyzanowski End effector assembly with increased clamping force for a surgical instrument
CN103068419A (zh) 2010-06-13 2013-04-24 模托斯Gi医疗技术有限公司 用于清洁体腔的系统和方法
US20110313343A1 (en) 2010-06-18 2011-12-22 Alcon Research, Ltd. Phacoemulsification Fluidics System Having a Single Pump Head
WO2011160686A1 (en) 2010-06-23 2011-12-29 Renzo Marco Giovanni Brun Del Re Biopsy alignment guide
WO2017066518A1 (en) 2010-06-29 2017-04-20 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
EP2593171B1 (en) 2010-07-13 2019-08-28 Loma Vista Medical, Inc. Inflatable medical devices
US20120191107A1 (en) 2010-09-17 2012-07-26 Tanner Neal A Systems and methods for positioning an elongate member inside a body
US20120095504A1 (en) 2010-09-20 2012-04-19 Shanley John F Method for providing surgical access
DE11826290T1 (de) 2010-09-25 2019-10-10 Ipg Photonics (Canada) Inc. Verfahren und systeme für kohärente bildgebung und rückkopplungssteuerung zum modifizieren von materialien
US9066741B2 (en) 2010-11-01 2015-06-30 Atricure, Inc. Robotic toolkit
DE102011086032A1 (de) 2010-11-16 2012-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flüssigkeitsstrahlskalpell
US20130066136A1 (en) 2010-11-24 2013-03-14 Mount Sinai School Of Medicine Magnetic based device for retrieving a misplaced article
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
DE102011011497A1 (de) 2011-02-17 2012-08-23 Kuka Roboter Gmbh Chirurgisches Instrument
US10716706B2 (en) 2011-04-07 2020-07-21 Bausch & Lomb Incorporated System and method for performing lens fragmentation
US9655615B2 (en) 2011-04-19 2017-05-23 Dextera Surgical Inc. Active wedge and I-beam for surgical stapler
EP3381421B1 (en) 2011-05-12 2019-10-16 Carl Zeiss Meditec AG Laser instrument for eye therapy
US9301876B2 (en) 2011-05-16 2016-04-05 Wavelight Gmbh System and process for surgical treatment of an eye as well as process for calibrating a system of such a type
WO2013003088A1 (en) 2011-06-28 2013-01-03 Cook Medical Technologies, LLC Biopsy needle with flexible length
US20130035537A1 (en) 2011-08-05 2013-02-07 Wallace Daniel T Robotic systems and methods for treating tissue
US8821377B2 (en) 2011-09-07 2014-09-02 Justin Collins Laparoscopic surgery
US9597152B2 (en) 2011-09-10 2017-03-21 Cook Medical Technologies Llc Control handles for medical devices
US9918681B2 (en) 2011-09-16 2018-03-20 Auris Surgical Robotics, Inc. System and method for virtually tracking a surgical tool on a movable display
CA2850495A1 (en) 2011-10-03 2013-04-11 Biolase, Inc. Surgical laser cutting device
US9060794B2 (en) 2011-10-18 2015-06-23 Mako Surgical Corp. System and method for robotic surgery
EP2773257B1 (en) 2011-10-31 2018-12-19 Boston Scientific Scimed, Inc. An endoscopic instrument having a deflectable distal tool
WO2013063675A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
US10213260B2 (en) 2011-12-01 2019-02-26 Joe Denton Brown End fire fiber arrangements with improved erosion resistance
US9179927B2 (en) 2011-12-02 2015-11-10 Ethicon Endo-Surgery, Inc. Surgical methods using a surgical device having a fixed angular orientation
US9131987B2 (en) 2011-12-02 2015-09-15 Ethicon Endo-Surgery, Inc. Elbow assembly for surgical devices
US20140135745A1 (en) 2011-12-15 2014-05-15 Imricor Medical Systems, Inc. Mri compatible handle and steerable sheath
US9504604B2 (en) 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
JP6039692B2 (ja) 2012-01-18 2016-12-07 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング 光学濃度に従ったレーザーエネルギーの調整
EP2816965B1 (en) 2012-02-25 2020-08-26 Thrufocus Optics, Inc. Devices for improving vision using laser photomiosis
US20130225996A1 (en) 2012-02-28 2013-08-29 Spiration, Inc. Lung biopsy needle
CN104203078B (zh) 2012-02-29 2018-04-20 普罗赛普特生物机器人公司 自动化图像引导的组织切除和处理
WO2013149034A2 (en) 2012-03-28 2013-10-03 Cibiem, Inc. Carotid body modulation planning and assessment
US20140142591A1 (en) 2012-04-24 2014-05-22 Auris Surgical Robotics, Inc. Method, apparatus and a system for robotic assisted surgery
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
KR101647246B1 (ko) 2012-04-27 2016-08-09 쿠카 레보라토리즈 게엠베하 외과용 로봇 시스템
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
DE102012212510B4 (de) 2012-07-17 2014-02-13 Richard Wolf Gmbh Endoskopisches Instrument
US20140051985A1 (en) 2012-08-17 2014-02-20 Tailin Fan Percutaneous nephrolithotomy target finding system
JP6420764B2 (ja) 2012-08-27 2018-11-07 ファセット テクノロジーズ エルエルシーFacet Technologies, LLC 穿刺装置のねじり装填機構
US9375235B2 (en) 2012-12-12 2016-06-28 Boston Scientific Scimed, Inc. Method and system for transhiatal esophagectomy
WO2014110043A1 (en) 2013-01-08 2014-07-17 Boston Scientific Scimed, Inc. Low profile medical device and related methods of use
US20140194859A1 (en) 2013-01-10 2014-07-10 Pravoslava IANCHULEV System and method of performing femtosecond laser accomodative capsulotomy
US9522003B2 (en) 2013-01-14 2016-12-20 Intuitive Surgical Operations, Inc. Clamping instrument
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
EA033708B1 (ru) 2013-02-26 2019-11-19 Ahmet Sinan Kabakci Роботизированная манипуляционная система
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
WO2014136579A1 (ja) 2013-03-06 2014-09-12 オリンパスメディカルシステムズ株式会社 内視鏡システム及び内視鏡システムの作動方法
US9867635B2 (en) 2013-03-08 2018-01-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9737300B2 (en) 2013-03-13 2017-08-22 Ethicon Llc Electrosurgical device with disposable shaft having rack and pinion drive
WO2014143388A1 (en) 2013-03-14 2014-09-18 Gyrus Acmi, Inc. (D.B.A Olympus Surgical Technologies America) Surgical positioning circuit
WO2014158880A1 (en) 2013-03-14 2014-10-02 Brigham And Women's Hospital, Inc. System and method for a laparoscopic morcellator
AU2014236718B2 (en) * 2013-03-14 2018-07-05 Sri International Compact robotic wrist
US9232956B2 (en) 2013-04-16 2016-01-12 Calcula Technologies, Inc. Device for removing kidney stones
US10076231B2 (en) 2013-04-22 2018-09-18 Gyrus Acmi, Inc. Surgeon controlled endoscope device and method
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
KR102356881B1 (ko) 2013-08-15 2022-02-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 카테터 위치설정 및 삽입을 위한 그래픽 사용자 인터페이스
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
CN105939647B (zh) 2013-10-24 2020-01-21 奥瑞斯健康公司 机器人辅助腔内外科手术系统及相关方法
US9993313B2 (en) 2013-10-24 2018-06-12 Auris Health, Inc. Instrument device manipulator with roll mechanism
US10575851B2 (en) 2013-10-26 2020-03-03 The United States of America, as Represented by the the Secretary, Department of Health and Human Services Atrial appendage ligation
EP3079608B8 (en) 2013-12-11 2020-04-01 Covidien LP Wrist and jaw assemblies for robotic surgical systems
US9808269B2 (en) 2013-12-12 2017-11-07 Boston Scientific Scimed, Inc. Adjustable medical retrieval devices and related methods of use
EP3079597B1 (en) 2013-12-13 2023-07-26 Intuitive Surgical Operations, Inc. Telescoping biopsy needle
ES2746123T3 (es) 2014-01-17 2020-03-04 Merit Medical Systems Inc Montaje de aguja para biopsias de corte enrasado
JP6431678B2 (ja) 2014-03-20 2018-11-28 オリンパス株式会社 挿入形状検出装置
WO2015153174A1 (en) 2014-04-02 2015-10-08 Intuitive Surgical Operations, Inc. Devices, systems, and methods using a steerable stylet and flexible needle
US20150314110A1 (en) 2014-05-05 2015-11-05 Hansen Medical, Inc. Balloon visualization for traversing a vessel
JP6336620B2 (ja) 2014-05-06 2018-06-06 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 電極支持構造アセンブリ
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US20160270865A1 (en) 2014-07-01 2016-09-22 Auris Surgical Robotics, Inc. Reusable catheter with disposable balloon attachment and tapered tip
US10159533B2 (en) 2014-07-01 2018-12-25 Auris Health, Inc. Surgical system with configurable rail-mounted mechanical arms
US20170007337A1 (en) 2014-07-01 2017-01-12 Auris Surgical Robotics, Inc. Driver-mounted torque sensing mechanism
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
WO2016015011A1 (en) 2014-07-24 2016-01-28 Lim Innovations, Inc. A sequential series of orthopedic devices that include incremental changes in form
US10828051B2 (en) 2014-07-28 2020-11-10 Shaw P. Wan Suction evacuation device
US20160030014A1 (en) 2014-07-30 2016-02-04 Covidien Lp Exchangeable core biopsy needle
US10085759B2 (en) 2014-08-14 2018-10-02 Boston Scientific Scimed, Inc. Kidney stone suction device
CN107072681B (zh) 2014-09-08 2020-12-04 波士顿科学国际有限公司 回收器件及相关使用方法
JP6689832B2 (ja) 2014-09-30 2020-04-28 オーリス ヘルス インコーポレイテッド 仮軌道および可撓性内視鏡を有する構成可能なロボット手術システム
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
EP4218882A3 (en) 2014-11-05 2023-08-16 Clph, Llc Catheter devices and methods for making them
DE102014226240A1 (de) 2014-12-17 2016-06-23 Kuka Roboter Gmbh System zur roboterunterstützten medizinischen Behandlung
DE102015200428B3 (de) 2015-01-14 2016-03-17 Kuka Roboter Gmbh Verfahren zur Ausrichtung eines mehrachsigen Manipulators mit einem Eingabegerät
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US10117648B2 (en) 2015-04-23 2018-11-06 Via Surgical Ltd. Surgical fastener delivery and locking mechanism
US9622827B2 (en) 2015-05-15 2017-04-18 Auris Surgical Robotics, Inc. Surgical robotics system
US10610254B2 (en) 2015-08-20 2020-04-07 Boston Scientific Scimed, Inc. Medical device and related methods
CN113229942A (zh) 2015-09-09 2021-08-10 奥瑞斯健康公司 手术器械装置操纵器
NL2015423B1 (en) 2015-09-10 2017-03-29 Deam Holding B V Surgical instrument.
AU2016323982A1 (en) 2015-09-18 2018-04-12 Auris Health, Inc. Navigation of tubular networks
US10052164B2 (en) 2015-10-02 2018-08-21 Ethicon Llc System and method of converting user input into motion of a surgical instrument via a robotic surgical system
ITUB20155057A1 (it) 2015-10-16 2017-04-16 Medical Microinstruments S R L Assieme robotico di chirurgia
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
DE102015118914B4 (de) 2015-11-04 2019-07-04 Gottfried Wilhelm Leibniz Universität Hannover Arbeitskopf für einen medizinisch-chirurgischen Manipulator
US20170151416A1 (en) 2015-12-01 2017-06-01 Invivo Therapeutics Corporation Methods and Systems for Delivery of a Trail of a Therapeutic Substance into an Anatomical Space
GB201521804D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Pulley arrangement for articulating a surgical instrument
EP3397184A1 (en) 2015-12-29 2018-11-07 Koninklijke Philips N.V. System, control unit and method for control of a surgical robot
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US10667856B2 (en) 2016-03-07 2020-06-02 Ethicon Llc Robotic bi-polar instruments
US10350016B2 (en) 2016-03-17 2019-07-16 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and dual distal pulleys
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10470847B2 (en) 2016-06-17 2019-11-12 Align Technology, Inc. Intraoral appliances with sensing
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
AU2016422171B2 (en) 2016-08-31 2022-01-20 Auris Health, Inc. Length conservative surgical instrument
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
GB2554915B (en) * 2016-10-14 2022-03-02 Cmr Surgical Ltd Driving arrangement for articulating a surgical instrument
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10987120B2 (en) 2017-01-10 2021-04-27 New Wave Endo-Surgery Inc. Multifunction surgical instrument for use in laparoscopic surgery
JP7159192B2 (ja) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド シャフト作動ハンドル
AU2018243364B2 (en) 2017-03-31 2023-10-05 Auris Health, Inc. Robotic systems for navigation of luminal networks that compensate for physiological noise
CN110602976B (zh) 2017-04-07 2022-11-15 奥瑞斯健康公司 患者导引器对准
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
IT201700041991A1 (it) 2017-04-14 2018-10-14 Medical Microinstruments Spa Assieme robotico per microchirurgia
CN110831498B (zh) 2017-05-12 2022-08-12 奥瑞斯健康公司 活检装置和系统
CN110769736B (zh) 2017-05-17 2023-01-13 奥瑞斯健康公司 可更换工作通道
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
KR102341451B1 (ko) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체
CN110809452B (zh) 2017-06-28 2023-05-23 奥瑞斯健康公司 电磁场发生器对准
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
EP3644886A4 (en) 2017-06-28 2021-03-24 Auris Health, Inc. ELECTROMAGNETIC DISTORTION DETECTION
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10973600B2 (en) 2017-09-29 2021-04-13 Ethicon Llc Power axle wrist for robotic surgical tool
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
US10850013B2 (en) 2017-12-08 2020-12-01 Auris Health, Inc. Directed fluidics
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. SYSTEMS AND METHODS FOR INSTRUMENT-BASED INSERTION ARCHITECTURES
CN110869173B (zh) 2017-12-14 2023-11-17 奥瑞斯健康公司 用于估计器械定位的系统与方法
US11160615B2 (en) 2017-12-18 2021-11-02 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
JP6999824B2 (ja) 2018-01-17 2022-01-19 オーリス ヘルス インコーポレイテッド 調節可能なアーム支持体を有する外科用プラットフォーム
EP3740150A4 (en) 2018-01-17 2021-11-03 Auris Health, Inc. SURGICAL ROBOTIC SYSTEMS WITH IMPROVED ROBOTIC ARMS
US10779839B2 (en) 2018-02-08 2020-09-22 Ethicon Llc Surgical clip applier with parallel closure jaws
CN110891514B (zh) 2018-02-13 2023-01-20 奥瑞斯健康公司 用于驱动医疗器械的系统和方法
MX2020009075A (es) 2018-03-01 2021-03-25 Auris Health Inc Métodos y sistemas de mapeo y navegación.
KR102489198B1 (ko) 2018-03-28 2023-01-18 아우리스 헬스, 인코포레이티드 위치 센서의 정합을 위한 시스템 및 방법
EP3773135B1 (en) 2018-03-28 2024-02-14 Auris Health, Inc. Medical instruments with variable bending stiffness profiles
CN110913791B (zh) 2018-03-28 2021-10-08 奥瑞斯健康公司 用于显示所估计的器械定位的系统和方法
EP3773242A4 (en) 2018-03-29 2021-12-22 Auris Health, Inc. ROBOT ACTIVATED MEDICAL SYSTEMS INCLUDING MULTIFUNCTIONAL TERMINAL EFFECTORS WITH ROTATIONAL OFFSETS
JP7250824B2 (ja) 2018-05-30 2023-04-03 オーリス ヘルス インコーポレイテッド 位置センサベースの分岐予測のためのシステム及び方法
EP3801189B1 (en) 2018-05-31 2024-09-11 Auris Health, Inc. Path-based navigation of tubular networks
JP7146949B2 (ja) 2018-05-31 2022-10-04 オーリス ヘルス インコーポレイテッド 画像ベースの気道分析及びマッピング
EP3801280B1 (en) 2018-05-31 2024-10-02 Auris Health, Inc. Robotic systems for navigation of luminal network that detect physiological noise
US10744981B2 (en) 2018-06-06 2020-08-18 Sensata Technologies, Inc. Electromechanical braking connector
CN112218596A (zh) 2018-06-07 2021-01-12 奥瑞斯健康公司 具有高力器械的机器人医疗系统
US10667875B2 (en) 2018-06-27 2020-06-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
US10898276B2 (en) 2018-08-07 2021-01-26 Auris Health, Inc. Combining strain-based shape sensing with catheter control
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
EP3806758A4 (en) 2018-08-17 2022-04-06 Auris Health, Inc. BIPOLAR MEDICAL DEVICE
US10881280B2 (en) 2018-08-24 2021-01-05 Auris Health, Inc. Manually and robotically controllable medical instruments
WO2020068303A1 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Systems and instruments for suction and irrigation
WO2020068853A2 (en) 2018-09-26 2020-04-02 Auris Health, Inc. Articulating medical instruments
CN112770690A (zh) 2018-09-28 2021-05-07 奥瑞斯健康公司 用于对接医疗器械的系统和方法
WO2020069080A1 (en) 2018-09-28 2020-04-02 Auris Health, Inc. Devices, systems, and methods for manually and robotically driving medical instruments
US12076100B2 (en) 2018-09-28 2024-09-03 Auris Health, Inc. Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
KR20210111259A (ko) 2018-12-28 2021-09-10 아우리스 헬스, 인코포레이티드 로봇 의료 시스템 및 방법을 위한 경피 시스
CN113453642A (zh) 2019-02-22 2021-09-28 奥瑞斯健康公司 具有用于可调式臂支撑件的机动臂的外科平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231337A1 (ko) * 2021-04-28 2022-11-03 주식회사 리브스메드 다관절형 수술용 장치
US12004828B2 (en) 2021-04-28 2024-06-11 Livsmed Inc. Multi-joint type surgical device

Also Published As

Publication number Publication date
EP3813682A4 (en) 2022-03-30
EP3813682A1 (en) 2021-05-05
MX2020013783A (es) 2021-03-02
WO2020005854A1 (en) 2020-01-02
JP7391886B2 (ja) 2023-12-05
JP2021529018A (ja) 2021-10-28
US20200000533A1 (en) 2020-01-02
US20220370163A1 (en) 2022-11-24
US11399905B2 (en) 2022-08-02
CN112367928A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
US11399905B2 (en) Medical systems incorporating pulley sharing
US11638618B2 (en) Systems and methods for aligning inputs on medical instruments
US20200405423A1 (en) Medical instruments including wrists with hybrid redirect surfaces
US11801605B2 (en) Systems and methods for robotic arm alignment and docking
US20200093549A1 (en) Systems and instruments for suction and irrigation
KR20210052475A (ko) 수동 및 로봇 제어가능 의료 기구
US11771510B2 (en) Systems and methods for kinematic optimization with shared robotic degrees-of-freedom
US11701187B2 (en) Systems and methods for collision detection and avoidance
US20210030501A1 (en) Systems and methods for adjusting remote center distances in medical procedures
EP4171426A1 (en) Systems and methods for saturated robotic movement
US20230270513A1 (en) Systems and methods for improving external workspace in robotic surgical systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal