KR20200054324A - 다중 이동형 센서들을 포함한 센서 시스템의 캘리브레이션 - Google Patents

다중 이동형 센서들을 포함한 센서 시스템의 캘리브레이션 Download PDF

Info

Publication number
KR20200054324A
KR20200054324A KR1020207012920A KR20207012920A KR20200054324A KR 20200054324 A KR20200054324 A KR 20200054324A KR 1020207012920 A KR1020207012920 A KR 1020207012920A KR 20207012920 A KR20207012920 A KR 20207012920A KR 20200054324 A KR20200054324 A KR 20200054324A
Authority
KR
South Korea
Prior art keywords
sensor
calibration target
images
different
monitored site
Prior art date
Application number
KR1020207012920A
Other languages
English (en)
Inventor
아키테루 키무라
Original Assignee
매직 아이 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매직 아이 인코포레이티드 filed Critical 매직 아이 인코포레이티드
Publication of KR20200054324A publication Critical patent/KR20200054324A/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/04Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
    • G08B21/0438Sensor means for detecting
    • G08B21/0476Cameras to detect unsafe condition, e.g. video cameras
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19639Details of the system layout
    • G08B13/19645Multiple cameras, each having view on one of a plurality of scenes, e.g. multiple cameras for multi-room surveillance or for tracking an object by view hand-over
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/0202Child monitoring systems using a transmitter-receiver system carried by the parent and the child
    • G08B21/0261System arrangements wherein the object is to detect trespassing over a fixed physical boundary, e.g. the end of a garden
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/22Status alarms responsive to presence or absence of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose

Abstract

일례에서, 장치는 제 1 센서, 제 2 센서 및 통합 관리 시스템을 포함한다. 상기 제 1 센서는 모니터링되는 사이트 내에 배치된 캘리브레이션 타겟의 제 1 세트의 이미지들을 캡처하기 위한 것이며, 상기 제 1 센서는 상기 모니터링되는 사이트 내의 제 1 위치를 갖고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라진다. 상기 제 2 센서는 캘리브레이션 타겟의 제 2 세트의 이미지들을 캡처하기 위한 것이며, 상기 제 2 센서는 상기 제 1 위치와는 상이한 상기 모니터링되는 사이트 내의 제 2 위치를 갖는다. 상기 통합 관리 시스템은 상기 제 1 세트의 이미지들, 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 결정하기 위한 것이다.

Description

다중 이동형 센서들을 포함한 센서 시스템의 캘리브레이션
관련 출원들의 교차 참조
본 출원은 2017년 10월 8일자로 출원된 미국 가특허출원 번호 62/569,545의 우선권을 주장하며, 그 전문이 본원에 참조로 포함된다.
본 개시는 다중의 이동형 센서들을 포함하는 센서 시스템을 캘리브레이션하기 위한 장치, 방법 및 비-일시적 컴퓨터 판독 가능한 매체에 관한 것이다.
많은 작업장들 및 다른 장소들은 사람의 접근이 제한되는 구역들을 포함할 수 있다. 실례로, 건설 현장 또는 공장은 개인들이 잠재적으로 위험하거나 안전하지 않은 조건들과 마주하게 되는 것을 방지하기 위해 접근이 제한되는 하나 이상의 구역들을 포함할 수 있다. 정부 건물은 특정 보안 허가가 있는 사람들을 제외하고 모든 개인들에게 접근이 제한되는 하나 이상의 구역들을 포함할 수 있다.
제한 구역들을 지속적으로 모니터링하기 위해, 안전 센서 시스템이 배치될 수 있다. 종래의 안전 센서 시스템들은 모니터링된 구역 및 그 주변들의 이미지들을 캡처하기 위해 고정된 위치들에 설치되는 하나 이상의 카메라들을 포함한다. 상기 이미지들이 모니터링 영역에서 권한없는 개인이 감지된 것을 나타내면 경고가 작동될 수 있다.
종래의 안전 센서 시스템들은 모니터링된 구역 및 그 주변들의 이미지들을 캡처하기 위해 고정된 위치들에 설치되는 하나 이상의 카메라들을 포함한다. 그러나 경우에 따라 액세스가 제한되는 지역들이 매일 변화될 수 있다. 예를 들어, 건설 현장의 조건들은 건설이 진행됨에 따라 계속적인 변화가 있을 수 있다. 따라서, 고정된 위치 센서들을 갖는 기존의 안전 센서 시스템들은 계속적으로 변화하는 것을 모니터링하는 데 필요한 유연성을 제공할 수 없다.
본 발명은 상기 문제점은 물론 종개 기술에 따른 다른 문제점들에 대해서도 회피 또는 개선할 수 있는 구성을 제공한다.
일례에서, 장치는 제 1 센서, 제 2 센서 및 통합 관리 시스템을 포함한다. 상기 제 1 센서는 모니터링되는 사이트 내에 배치된 캘리브레이션 타겟의 제 1 세트의 이미지들을 캡처하기 위한 것이며, 상기 제 1 센서는 상기 모니터링되는 사이트 내의 제 1 위치를 갖고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라진다. 상기 제 2 센서는 캘리브레이션 타겟의 제 2 세트의 이미지들을 캡처하기 위한 것이며, 상기 제 2 센서는 상기 제 1 위치와는 상이한 상기 모니터링되는 사이트 내의 제 2 위치를 갖는다. 상기 통합 관리 시스템은 상기 제 1 세트의 이미지들, 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 결정하기 위한 것이다.
다른 예에서, 방법은 캘리브레이션 타겟의 제 1 세트의 이미지들을 획득하는 단계로서, 여기서 상기 제 1 세트의 이미지들은 모니터링되는 사이트 내의 제 1 위치를 갖는 제 1 센서에 의해 캡처되고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라지는, 상기 제 1 세트의 이미지들을 획득하는 단계, 상기 캘리브레이션 타겟의 제 2 세트의 이미지들을 획득하는 단계로서, 여기서 상기 제 2 세트의 이미지들은 상기 모니터링되는 사이트 내의 제 2 위치를 갖는 제 2 센서에 의해 캡처되는, 상기 제 2 세트의 이미지들을 획득하는 단계, 및 상기 제 1 세트의 이미지들, 상기 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 식별하는 단계를 포함한다.
또다른 예에서, 비-일시적 기계 판독 가능한 저장 매체는 프로세서에 의해 실행 가능한 명령들로 인코딩되며, 여기서 상기 명령들은 실행될 때 상기 프로세서로 하여금 동작들을 수행하게 한다. 상기 동작들은 캘리브레이션 타겟의 제 1 세트의 이미지들을 획득하는 동작으로서, 여기서 상기 제 1 세트의 이미지들은 모니터링되는 사이트 내의 제 1 위치를 갖는 제 1 센서에 의해 캡처되고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라지는, 상기 제 1 세트의 이미지들을 획득하는 동작, 상기 캘리브레이션 타겟의 제 2 세트의 이미지들을 획득하는 동작으로서, 여기서 상기 제 2 세트의 이미지들은 상기 모니터링되는 사이트 내의 제 2 위치를 갖는 제 2 센서에 의해 캡처되는, 상기 제 2 세트의 이미지들을 획득하는 동작, 및 상기 제 1 세트의 이미지들, 상기 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 식별하는 동작을 포함한다.
도 1은 본 개시의 예시적인 안전 센서 시스템(100)의 하이-레벨 개략적 다이어그램을 도시한다.
도 2a 내지 도 2c는 도 1의 안전 센서 시스템을 캘리브레이션하는 데 사용될 수 있는 캘리브레이션 타겟들의 다양한 예를 도시한다.
도 3은 둘 이상의 센서들을 포함하는 안전 센서 시스템에서 센서들의 위치들을 결정하기 위한 예시적인 방법의 흐름도를 도시한다.
도 4는 둘 이상의 센서들을 포함하는 안전 센서 시스템에서 센서들의 위치들을 결정하기 위한 예시적인 전자 디바이스의 하이-레벨 블록도를 도시한다.
본 개시는 다중의 이동형 센서들을 포함하는 센서 시스템을 캘리브레이션하기 위한 장치, 방법 및 비-일시적 컴퓨터 판독 가능한 매체를 광범위하게 기술한다. 앞서 논의된 바와 같이, 많은 작업장들 및 다른 장소들은 사람의 접근이 제한되는 구역들을 포함할 수 있다. 제한 구역들을 지속적으로 모니터링하기 위해, 안전 센서 시스템이 배치될 수 있다. 종래의 안전 센서 시스템들은 모니터링된 구역 및 그 주변들의 이미지들을 캡처하기 위해 고정된 위치들에 설치되는 하나 이상의 카메라들을 포함한다. 그러나 경우에 따라 액세스가 제한되는 지역들이 매일 변화될 수 있다. 예를 들어, 건설 현장의 조건들은 건설이 진행됨에 따라 계속적인 변화가 있을 수 있다. 따라서, 고정된 위치 센서들을 갖는 기존의 안전 센서 시스템들은 계속적으로 변화하는 것을 모니터링하는 데 필요한 유연성을 제공할 수 없다.
본 개시의 예들은 복수의 3 차원 센서들을 포함하는 안전 센서 시스템을 제공하는데, 상기 센서들의 위치들(즉, 배치 장소(locations) 및/또는 방향(orientations))이 모니터링되는 사이트 내에서 언제든지 동적으로 이동될 수 있다. 센서들 각각은 그들 각자의 시야(field of view)의 이미지들을 중앙 집중식 통합 관리 시스템으로 전송할 수 있고, 이는 복수의 센서들로부터의 이미지들을 상관시켜 모니터링되는 사이트의 완전한 뷰(complete view)를 생성할 수 있다. 하나 이상의 센서들이 새로운 위치로 이동될 때마다, 통합 관리 시스템은 안전 센서 시스템을 캘리브레이션하여 복수의 센서들로부터의 이미지들의 적절한 상관을 보장할 수 있다. 캘리브레이션은 복수의 센서들로부터 캘리브레이션 타겟의 이미지들을 획득하고, 캘리브레이션 타겟의 이미지들로부터 복수의 센서들의 상대 위치들을 결정하는 것을 수반할 수 있다. 이러한 결정을 용이하게 하기 위해, 캘리브레이션 타겟은 공지된 물리적 외관(예를 들어, 형상, 색상, 기하학적 구조 및/또는 치수들)을 가질 수 있으며, 이는 불규칙하고 비대칭적이며 및/또는 불균일할 수 있다(즉, 캘리브레이션 타겟의 형상, 색상, 기하학적 구조 및/또는 치수들은 상이한 시야들 내에서 또는 상이한 밴티지 포인트에서 볼 때 다르게 나타날 수 있다).
본 개시의 맥락 내에서, 센서의 "위치(position)"는 모니터링되는 사이트(즉, 센서를 포함하는 센서 시스템에 의해 모니터링되는 사이트) 내의 센서의 배치 장소(location) 및/또는 방향(orientation)을 나타내는 것으로 이해된다. 센서의 "배치 장소"는 3 차원 공간에서의 센서의 선형 위치를 나타낼 수 있으며, 센서의 "방향"은 3 차원 공간에서의 센서의 각도 위치를 나타낼 수 있다.
도 1은 본 개시의 예시적인 안전 센서 시스템(100)의 하이-레벨 개략적 다이어그램을 도시한다. 도 1에 도시된 바와 같이, 안전 센서 시스템(100)은 일반적으로 복수의 센서들(1021 내지 102n)(이하, 개별적으로 "센서(102)"로 지칭되거나 집합적으로 "센서들(102)"로 지칭됨) 및 통합 관리 시스템(IMS)(104)을 포함한다.
일례에서, 복수의 센서들(102)은 적어도 2 개의 센서들(예를 들어, 제 1 센서(1021) 및 제 2 센서(1022))를 포함하고, 이들은 모니터링되는 사이트(예를 들어, 건설 현장, 공장, 오피스 빌딩 등) 주위의 상이한 배치 장소들에 분포된다. 일례에서, 센서들 각각(102)은 마운트(예를 들어, 클램프)를 포함할 수 있으며, 상기 마운트는 센서(102)를 지지면에 분리 가능하게 장착함으로써 센서(102)의 배치 장소가 이동될 수 있게 한다. 따라서, 센서들(102)의 배치 장소들은 영구적으로 고정될 필요가 없다. 실례로, 센서들(102) 중 하나 이상은 트래픽 콘(traffic cone)의 맨 위에, 또는 한 쌍의 트래픽 콘들 사이에 매달린 장벽 또는 바를 따라, 또는 건축 폴을 따라(예를 들어, 건설 현장의 제한된 구역들을 차단하는데 사용될 수 있는 바와 같이) 장착될 수 있다. 다른 예에서, 센서들(102) 중 하나 이상은 그 배치 장소 및 방향이 이동 가능한 로봇에 장착될 수 있다.
일례에서, 센서들(102) 각각은 모니터링되는 사이트의 일부를 나타내는 적어도 반구형(즉, 180도) 시야 내에 나타나는 물체들에 관한 3 차원 데이터를 수집할 수 있다. 실례로, 센서들(102) 중 하나 이상은 미국 특허 출원 번호들 14/920,246, 15/149,323 및/또는 15/149,429에 기재된 것들과 같은 센서를 포함할 수 있다. 이들 출원들에 기술된 센서들은 레이저들, 회절 광학 요소들 및/또는 시야에서 패턴(예를 들어, 도트, 대시 또는 다른 아티팩트의 패턴)을 생성하는 광 빔을 투영하도록 협력하는 다른 구성요소들을 포함한다. 상기 패턴이 시야에서 물체에 입사될 때, 센서로부터 물체까지의 거리는 시야의 하나 이상의 이미지들에서 패턴의 외관(예를 들어, 도트, 대시 또는 다른 아티팩트의 궤적들)에 기초하여 계산될 수 있다.
센서들(102) 각각은, 각자의 유선 또는 무선 연결(1061-106n)(이하, 개별적으로 "연결(106)”로서 지칭되거나 또는 집합적으로 "연결들(106)"로서 지칭됨)을 통해, IMS(104)에 통신 가능하게 결합될 수 있다. 센서들(102) 각각은 IMS(104) 및/또는 다른 센서들(102)에 알려진 그 자신의 고유한 식별자를 가질 수 있다.
IMS(104)는 센서들(102)로부터 수신된 3 차원 데이터(예를 들어, 스틸 및/또는 비디오 이미지)를 통합하도록 구성된 컴퓨팅 시스템을 포함할 수 있다. 예를 들어, IMS(104)는 센서들(1021 내지 102n)에 의해 각자 캡쳐된 이미지들(1101-110n)(이하에서, 개별적으로 "이미지(110)"로 지칭되거나 또는 집합적으로 "이미지들(110)"로 지칭됨)을 상관시킬 수 있다. 이미지들(110)은 모두 동일한 물체(108)를 묘사할 수 있지만, 상이한 센서들의 위치들(즉, 배치 장소들 및 방향들)의 함수들인 상이한 밴티지 포이트들로부터 온 것일 수 있다. 각각의 이미지(110)는 또한 이미지(110)를 캡처한 센서(102)의 식별자와 연관될 수 있어서, IMS(104)는 어느 배치 장소 또는 방향으로부터 이미지(110)가 캡처됐는지를 알 수 있다.
이미지들(110)의 적절한 상관은 IMS(104)가 모니터링되는 사이트 내에서 물체의 형상 및 위치를 포함하는 물체(108)의 단일 3 차원 모델(112)을 생성할 수 있게 한다. 따라서, 이러한 것은 안전 센서 시스템(100)으로 하여금 언제 물체(예를 들어, 차량, 사람, 동물 등)가 모니터링되는 사이트에 존재하는 지를 감지할 수 있게 한다. 감지된 물체가 모니터링되는 사이트에 있는 것에 대해 허가되는지 여부를 결정하기 위해 추가적인 프로세싱(예를 들어, 물체 인식, 얼굴 인식 등)이 채용될 수 있다.
IMS(104)는 또한 센서들(102)의 특정 기능들을 원격으로 제어할 수 있다. 실례로, IMS(104)는 (예를 들어, 레이저들이 언제 활성화되어야 하는지를 나타내는 신호를 센서(102)에 보냄으로써) 광의 패턴들을 그들 각자의 시야들로 투영하도록 센서(102)가 레이저를 활성화시키는 타이밍 및 센서들(102)이 이미지들을 캡처하는 타이밍을 제어할 수 있다. 실례로, IMS(104)는 복수의 신호들을 보낼 수 있다. 각각의 신호는 레이저를 활성화시키기 위한 및/또는 이미지를 캡처하기 위한 명령뿐만 아니라, 상기 명령을 수행할 센서(102)를 식별하는 식별자를 포함할 수 있다. IMS(104)는 또한 예를 들어 모니터링되는 사이트의 완전한 시각적 커버리지를 제공하기 위해 센서들(102)의 위치들을 제어하도록 센서들(102)에 신호들을 보낼 수 있다.
센서들(102)의 위치들은 쉽게 변화될 수 있기 때문에, 하나의 센서(102)와 다른 센서(102)의 상대 위치는 자주 변화될 수 있다. 그와 같이, IMS(104)는, 센서들(102)의 위치들이 서로에 대해 알려지도록, 때때로 안전 센서 시스템(100)을 캘리브레이션할 필요가 있을 수 있다. 위에서 논의된 바와 같이, 센서들(102)로부터 수신된 3 차원 데이터를 적절히 통합하기 위해서는 센서들(102)의 상대 위치들을 아는 것이 필요하다. 캘리브레이션은 주기적으로(예를 들어, 정의된 및/또는 규칙적인 스케줄에 따라), 요구가 있는 즉시(예를 들어, 인간 조작자로부터의 명령에 응답하여), 또는 미리 정의된 이벤트의 발생에 응답하여(예를 들어, 하나 이상의 센서들(102)의 이동) 수행될 수 있다.
일례에서, 안전 센서 시스템(100)의 캘리브레이션은 캘리브레이션 타겟을 사용하여 수행된다. 실례로, 도 2a 내지 도 2c는 캘리브레이션 타겟들(200a 내지 200c)의 다양한 예들을 도시하며, 이들 각각은 도 1의 안전 센서 시스템(100)을 캘리브레이션하는데 사용될 수 있다. 일례에서, 본 개시에 따른 캘리브레이션 타겟은 불규칙적이고, 비대칭적이며 및/또는 불균일한 물리적인 외관(예를 들어, 형상, 색상, 기하학 구조, 및/또는 치수들)을 가질 수 있는 물리적 물품이다. 다시 말해서, 캘리브레이션 타겟의 형상, 색상, 기하학 구조, 및/또는 치수들은 (예를 들어, 안전 센서 시스템(100)의 상이한 센서들(102)에 의해) 상이한 시야들 내에서 또는 상이한 밴티지 포인트들에서 볼 때 다르게 나타날 수 있다.
예를 들어,도 2a는 균일하지 않은 물리적 치수들을 갖는 캘리브레이션 타겟(200a)을 도시한다. 실례로, 캘리브레이션 타겟(200a)은 상이한 3 차원 형상들을 갖는 복수의 연결된 세그먼트들을 포함할 수 있다. 도 2a에 도시된 예에서, 캘리브레이션 타겟(200a)은 제 1 세그먼트(202), 제 2 세그먼트(204), 및 제 3 세그먼트(206)를 포함한다. 제 1 세그먼트(202)는 원통 형상을 갖고, 제 2 세그먼트(204)는 사각형 피라미드 형상을 가지며, 제 3 세그먼트(206)는 입방체 형상을 갖는다. 따라서, 캘리브레이션 타겟(200a)을 (예를 들어, 화살표들(208 및 210)에 의해 도시된 바와 같이) 다른 각도들 및/또는 방향들에서 볼 때, 캘리브레이션 타겟(200a)의 물리적 외관(예를 들어, 형상, 기하학 구조, 및/또는 치수들)은 상이하게 될 수 있다.
캘리브레이션 타겟(200a)이 원통, 피라미드 및 입방체 형상들을 갖는 3 개의 연결된 세그먼트들을 갖는 것으로 도시되어 있지만, 캘리브레이션 타겟(200a)은 임의의 형상들을 갖는 임의의 수의 연결된 세그먼트들을 포함할 수 있음을 이해할 것이다. 실례로, 캘리브레이션 타겟(200a)은 3 개의 연결된 세그먼트들보다 적게 또는 3 개 연결된 세그먼트들보다 많게 포함할 수 있다. 세그먼트들 중 임의의 하나 이상은 원통, 피라미드, 큐브, 다각형 프리즘, 또는 임의의 다른 형상과 유사한 형상을 가질 수 있다. 또한, 임의의 주어진 세그먼트의 형상이 반드시 대칭일 필요는 없다.
도 2b는 불균일한 시각적 패턴을 표시하는 캘리브레이션 타겟(200b)을 도시한다. 실례로, 캘리브레이션 타겟(200b)은 상이한 패턴들을 표시하는 복수의 패터닝된 섹션들을 포함할 수 있다. 도 2b에 도시된 예에서, 캘리브레이션 타겟(200b)은 적어도 제 1 패터닝된 섹션(212) 및 제 2 패터닝된 섹션(214)을 포함한다. 제 1 패터닝된 섹션(212)은 일련의 수평 막대들을 표시하고, 제 2 패터닝된 섹션(214)은 일련의 수직 막대들을 표시한다. 제 1 패터닝된 섹션(212) 및 제 2 패터닝된 섹션(214)은 캘리브레이션 타겟(200b)의 상이한 부분들 상에 위치될 수 있다(예를 들어, 캘리브레이션 타겟(200b)의 주변부(p) 주위의 상이한 배치 장소들 및/또는 캘리브레이션 타겟(200b)의 길이(l)를 따른 상이한 배치 장소들에 위치될 수 있다). 따라서, 캘리브레이션 타겟(200b)을 상이한 각도들 및/또는 방향들에서 볼 때, 캘리브레이션 타겟(200b)의 물리적 외관(예를 들어, 상이한 패턴들의 볼 수 있는 부분들)이 상이할 수 있다.
캘리브레이션 타겟(200b)의 경우, 제 1 패터닝된 섹션(212) 및 제 2 패터닝된 섹션(214)에 표시된 패턴들은 패턴들의 형상들(예를 들어, 수직 대 수평 막대들)에서만 상이할 필요가 없음에 유의해야 한다. 대안적으로 또는 추가적으로, 패턴들은 색상이 달라질 수 있다(예를 들어, 청색 수직 막대들 대 적색 수직 막대). 패턴들의 형태들은 또한 임의적이거나 불규칙적일 수 있다. 또한, 도 2b의 각도는 2 개의 패터닝된 섹션들(즉, 제 1 패터닝된 섹션(212) 및 제 2 패터닝된 섹션(214))을 도시하지만, 캘리브레이션 타겟(200b)은 임의의 수의 패터닝된 섹션들을 포함할 수 있다. 실례로, 캘리브레이션 타겟(200b)은 2 개의 패터닝된 섹션들보다 적게, 또는 2 개의 패터냉된 섹션들보다 많게 포함할 수 있다.
도 2c는 불균일한 반사 특성들을 표시하는 캘리브레이션 타겟(200c)을 도시한다. 실례로, 캘리브레이션 타겟(200c)은 상이한 반사 특성들을 갖는 복수의 반사 섹션들을 포함할 수 있다. 도 2c에 도시된 예에서, 캘리브레이션 타겟(200c)은 적어도 제 1 반사 섹션(216), 제 2 반사 섹션(218), 및 제 3 반사 섹션(220)을 포함한다. 제 1 반사 섹션(216), 제 2 반사 섹션(218), 및 제 3 반사 섹션(220)은 상이한 표면 반사율들을 갖도록 처리(예를 들어, 코팅)될 수 있다. 실례로, 제 1 반사 섹션(216)은 확산 반사율을 나타내도록 처리될 수 있고, 제 2 반사 섹션(218) 및 제 3 반사 섹션(220)은 정반사 표면 반사율을 나타내도록 처리될 수 있다. 제 1 반사 섹션(216), 제 2 반사 섹션(218), 및 제 3 반사 섹션(220)은 캘리브레이션 타겟(200c)의 상이한 부분들 상에 위치될 수 있다(예를 들어, 캘리브레이션 타겟(200c)의 주변부(p) 주위의 상이한 배치 장소들에 및/또는 캘리브레이션 타겟(200c)의 길이(l)를 따라 상이한 배치 장소들에 위치될 수 있다). 따라서, 캘리브레이션 타겟(200c)을 상이한 각도들 및/또는 방향들에서 볼 때, 캘리브레이션 타겟(200c)의 물리적 외관(예를 들어, 표면 반사율)이 상이할 수 있다.
캘리브레이션 타겟(200c)의 경우에, 반사 섹션들은 표면 반사율(예를 들어, 정반사 대 확산 반사(specular versus diffuse))의 관점에서만 상이할 필요는 없음에 유의해야 한다. 반사 섹션들이 정반사 또는 확산 반사율을 나타내는 정도도 또한 달라질 수 있다. 대안적으로 또는 추가적으로, 반사 섹션들은 형상이 달라질 수 있다(예를 들어, 직사각형 대 원형 또는 불규칙형). 또한, 도 2c의 각도는 3 개의 반사 섹션들을 도시하지만, 캘리브레이션 타겟(200c)은 임의의 수의 반사 섹션들을 포함할 수 있다. 실례로, 캘리브레이션 타겟(200c)은 3 개의 반사 섹션들보다 적게 또는 3 개의 반사 섹션들보다 많게 포함할 수 있다.
다른 예들에서, 캘리브레이션 타겟은 도 2a 내지 도 2c에 도시된 특징들 중 임의의 둘 이상을 조합할 수 있다. 예를 들어, 단일 캘리브레이션 타겟은 다음의 조합을 포함할 수 있다: (1) 상이한 형상들을 갖는 연결된 세그먼트들; (2) 상이한 패턴들 또는 색상들; 및 (2) 상이한 반사 특성들을 갖는 패치들. 또한, 캘리브레이션 타겟들(200a-200c), 또는 캘리브레이션 타겟들(200a-200c)의 특징들을 포함하는 캘리브레이션 타겟들은 금속, 폴리머, 목재, 세라믹, 합성 재료, 및/또는 이들의 조합을 포함하는 임의의 유형의 재료로부터 제조될 수 있다.
도 2a 내지 도 2c에 도시된 캘리브레이션 타겟들(200a-200c) 중 임의의 타겟(또는 이들의 임의의 조합)과 같이, 상이한 각도들에서 볼 때 상이한 물리적 외관들(예를 들어, 제 1 각도에서 볼 때의 제 1 물리적 외관, 제 2의 다른 각도에서 볼 때의 제 2 물리적 외관 등)을 갖는 캘리브레이션 타겟은 도 1에 도시된 시스템(100)과 같은 안전 센서 시스템을 캘리브레이션하는 데 사용될 수 있다. 캘리브레이션 타겟의 물리적 외관(크기, 색상(들), 기하학적 구조, 및 치수들을 포함)을 캘리브레이션 전에 알고 있는 한, 캘리브레이션 타겟을 바라보는 센서들의 상대 위치들은 효율적으로 결정될 수 있다. 캘리브레이션 타겟의 알려진 물리적 외관은 제어기 또는 IMS에 이용 가능한 3 차원 모델로 설명될 수 있다.
특히, 캘리브레이션 타겟은 모니터링되는 사이트에서의 임의의 배치 장소에 배치될 수 있으며, 상기 임의의 배치 장소는 안전 센서 시스템의 적어도 2 개의 센서들(예를 들어, 제 1 센서 및 제 2 센서)에 의해 볼 수 있게 될 수 있다. 상기 임의의 배치 장소는 예를 들어, 캘리브레이션 프로세스가 완료될 때까지 캘리브레이션 타겟의 배치 장소 및 방향이 변하지 않도록 모니터링된 위치 내에서 일정하거나 고정될 수 있다.
캘리브레이션 타겟이 그 일정한 배치 장소에 배치되면, 제 1 센서(예를 들어, 도 1의 제 1 센서(1021))는 모니터링되는 사이트의 제 1 위치로부터 캘리브레이션 타겟의 제 1 세트의 이미지들을 캡처할 수 있으며, 제 2 센서(예를 들어, 도 1의 제 2 센서(1022))는 모니터링되는 사이트의 제 2 위치로부터 캘리브레이션 타겟의 제 2 세트의 이미지들을 캡처할 수 있다. 임의의 추가 센서들이 모니터링되는 사이트에서의 그들 각자의 위치들로부터 캘리브레이션 타겟의 추가적인 세트들의 이미지들을 캡처할 수 있다. 제 1 센서 및 제 2 센서 (및 임의의 추가 센서들)는 상기 세트들의 이미지들을 IMS(예를 들어, 도 1의 IMS(104))로 보낼 수 있다. 제 1 센서 및 제 2 센서 (및 임의의 추가 센서들)는 캘리브레이션 타겟의 이미지들을 캡처하도록 동시에 동작할 수 있거나, 또는 제 1 센서 및 제 2 센서 (및 임의의 추가 센서들)는 한번에 하나씩 동작할 수 있다(예를 들어, 제 2 센서는 제 1 센서가 이미지 캡처를 완료할 때까지 이미지 캡처를 시작하지 않을 수 있다).
제 1 세트의 이미지들 및 제 2 세트의 이미지들 (및 임의의 추가 세트들의 이미지들)는 캘리브레이션 타겟의 3 차원 모델과 함께 IMS에 의해 사용되어, 제 1 및 제 2 센서들 (및 임의의 추가 센서들)의 위치들을 결정할 수 있다. 이러한 정보를 사용하여 센서들의 위치들을 결정하는 방법의 일례는 도 3과 관련하여 더 상세히 설명된다.
도 3은 둘 이상의 센서들을 포함하는 안전 센서 시스템에서 센서들의 위치들을 결정하기 위한 예시적인 방법(300)의 흐름도를 도시한다. 방법(300)은 예를 들어, 도 1의 IMS(104)에 의해 수행될 수 있다. 그와 같이, 방법(300)의 논의에서 도 1의 안전 센서 시스템(100)의 구성요소들에 대한 참조가 이루어질 수 있다. 하지만, 그러한 참조는 단지 예로서 이루어지는 것이며, 제한하려는 의도는 아니다.
방법(300)은 블록(302)에서 시작한다. 블록(304)에서, 캘리브레이션 타겟의 3 차원 모델이 획득된다. 캘리브레이션 타겟의 물리적 외관은 시야의 상이한 밴티지 포인트들에서 볼 때 상이하게 나타난다. 실례로, 캘리브레이션 타겟의 물리적 외관은 불균일하거나, 비대칭적이거나, 불규칙적일 수 있다. 3 차원 모델은 캘리브레이션 타겟의 기하학 구조 및 치수들뿐만 아니라, 캘리브레이션 타겟의 다른 물리적 특성들(예를 들어, 색상, 크기 등)을 설명한다. 3 차원 모델은 캘리브레이션 타겟에 대한 컴퓨터 지원 디자인 데이터로부터, (예를 들어, 안전 센서 시스템에 의한) 캘리브레이션 타겟의 3 차원 이미징으로부터, 또는 다른 신뢰할 수 있는 수단을 통해 얻을 수 있다.
블록(306)에서, 캘리브레이션 타겟의 제 1 세트의 이미지들은 모니터링되는 사이트 내에 배치된 안전 센서 시스템의 제 1 센서로부터 획득된다. 캘리브레이션 타겟은 제 1 센서가 제 1 세트의 이미지들을 캡처하기 전에 모니터링되는 사이트 내의 임의의 배치 장소에 배치되어 질 수 있다. 제 1 센서는 모니터링되는 사이트 내에서 제 1 위치를 가질 수 있다. 이러한 제 1 위치로부터, 제 1 센서는 상기 제 1 센서가 캘리브레이션 타겟의 이미지들을 캡처할 수 있게 하는 제 1 시야를 가지며, 상기 이미지들은 캘리브레이션 타겟의 적어도 일부의 물리적 특성들을 묘사한다. 일례에서, 제 1 세트의 이미지들은, 레이저를 활성화시키도록 및/또는 이미지를 획득하도록 제 1 센서에 지시하는 신호를 IMS가 제 1 센서에 보내는 것에 응답하여, 제 1 센서에 의해 IMS로 보내질 수 있다. 그러나, 상기 신호가 제 1 센서의 이미지 캡쳐 유닛의 작동 타이밍과 정확하게 일치하지 않을 수 있으므로, 레이저 활성화 및/또는 이미지 캡쳐의 실제 타이밍은 상기 신호의 타이밍에 대해 조정될 수 있다.
블록(308)에서, 캘리브레이션 타겟의 제 2 세트의 이미지들은 모니터링되는 사이트 내에 배치된 안전 센서 시스템의 제 2 센서로부터 획득된다. 제 2 센서는 모니터링되는 사이트 내에서 제 1 센서의 제 1 위치와 다른 제 2 위치를 가질 수 있다. 이러한 제 2 위치로부터, 제 2 센서는 상기 제 2 센서가 캘리브레이션 타겟의 이미지들을 캡처할 수 있게 하는 제 2 시야를 가지며, 상기 이미지들은 캘리브레이션 타겟의 적어도 일부의 물리적 특성들을 묘사한다. 제 2 시야는 제 1 시야와 중첩되거나 중첩되지 않을 수 있다. 일례에서, 제 2 세트의 이미지들은, 레이저를 활성화시키도록 및/또는 이미지를 획득하도록 제 2 센서에 지시하는 신호를 IMS가 제 2 센서에 보내는 것에 응답하여, 제 2 센서에 의해 IMS로 보내질 수 있다. 그러나, 상기 신호가 제 2 센서의 이미지 캡쳐 유닛의 작동 타이밍과 정확하게 일치하지 않을 수 있으므로, 레이저 활성화 및/또는 이미지 캡쳐의 실제 타이밍은 상기 신호의 타이밍에 대해 조정될 수 있다.
일례에서, 제 1 세트의 이미지들 및 제 2 세트의 이미지들은 제 1 센서 및 제 2 센서로부터 동시에 획득되고; 그러나 다른 예에서, 제 1 세트의 이미지들 및 제 2 세트의 이미지들은 상이한 시간들에서 획득된다. 그러나, 캘리브레이션 타겟의 위치는 일정하게 유지되며, 제 1 센서 및 제 2 센서에 의한 이미지 캡처 사이에 변하지 않는다.
블록(310)에서, 제 1 세트의 이미지들 및 제 2 세트의 이미지들은 캘리브레이션 타겟의 3 차원 모델에 정렬된다. 실례로, 제 1 세트의 이미지들은 제 1 세트의 이미지들이 가장 밀접하게 일치(match)하는 3 차원 모델의 제 1 부분에 정렬될 수 있는 한편, 제 2 세트의 이미지들은 제 2 세트의 이미지들이 가장 밀접하게 일치하는 3 차원 모델의 제 2 부분에 정렬될 수 있다. 일례에서, 제 1 세트의 이미지들 및 제 2 세트의 이미지들은 중첩될 수 있다. 즉, 캘리브레이션 타겟의 특정 부분들은 제 1 세트의 이미지들 및 제 2 세트의 이미지들 모두에서 묘사될 수 있다(예를 들어, 제 1 센서 및 제 2 센서 모두에게 보여질 수 있다).
블록(312)에서, 제 2 센서에 대한 제 1 센서의 위치는 캘리브레이션 타겟의 3 차원 모델에 대한 제 1 및 제 2 세트들의 이미지들의 정렬에 기초하여 식별된다.
블록(314)에서, 제 2 센서에 대한 제 1 센서의 위치가 저장된다. 일례에서, 제 1 및 제 2 센서들의 위치 관계의 저장은 제 1 센서와 제 2 센서 사이의 선형 거리, 제 1 및 제 2 센서들의 광축들 사이의 각도들, 및 위치 관계를 설명하는 다른 통계를 저장하는 것을 포함한다.
방법(300)은 블록(316)에서 종료한다.
방법(300)은 안전 센서 시스템 내에서 추가적인 센서들의 쌍들에 대해 반복될 수 있다(예를 들어, 안전 센서 시스템이 두 센서들보다 많은 센서들을 포함하는 경우). 모든 센서들의 상대 위치들이 결정되면, 안전 센서 시스템은 모니터링되는 사이트를 모니터링할 준비가 된 것일 수 있다. 모니터링되는 사이트 내에서 센서들의 각자의 위치들을 알게 됨으로써, 안전 센서 시스템으로 하여금 센서들에 의해 수집된 이미지들을 모니터링되는 사이트 내에 존재하는 물체들의 정확한 3 차원 모델들로 적절하게 상관시킬 수 있게 한다. 실례로, 센서들의 위치 관계들은 센서들로부터 수집된 이미지들의 정렬을 안내하는 데 사용될 수 있으며, 이는 다양한 상이한 각도들 또는 시야로부터 동일한 물체를 묘사할 수 있다. 상기 논의된 바와 같이, 모니터링되는 사이트 내에 존재하는 물체의 정확한 3 차원 모델이 구성되면, 상기 모델은 물체 인식, 얼굴 인식 등과 같은 추가 프로세싱을 위해 진행될 수 있다.
명시적으로 열거되지는 않았지만, 전술한 방법(300)의 블록들, 기능들, 또는 동작들 중 일부는 특정 애플리케이션에 대한 저장, 디스플레이 및/또는 출력을 포함할 수 있음에 유의해야 한다. 다시 말해서, 방법(300)에서 논의된 임의의 데이터, 기록들, 필드들, 및/또는 중간 결과들은 특정 애플리케이션에 따라 다른 디바이스에 저장, 디스플레이 및/또는 출력될 수 있다. 또한, 결정 동작을 인용하거나 결정을 수반하는 도 3에서의 블록들, 기능들, 또는 동작들은 결정 동작의 양쪽 분기들이 모두 수행되는 것을 의미하지는 않는다. 다시 말해서, 결정 동작의 결과에 따라, 결정 동작의 분기들 중 하나가 수행되지 않을 수 있다.
도 4는 둘 이상의 센서들을 포함하는 안전 센서 시스템에서 센서들의 위치들을 결정하기 위한 예시적인 전자 디바이스(400)의 하이-레벨 블록도를 도시한다. 실례로, 도 1에 도시된 IMS(104)는 전자 디바이스(400)와 유사한 방식으로 구성될 수 있다. 따라서, 전자 디바이스(400)는 안전 센서 시스템과 같은 전자 디바이스 또는 시스템의 제어기로서 구현될 수 있다.
도 4에 도시된 바와 같이, 전자 디바이스(400)는 예를 들어 중앙 처리 장치(CPU), 마이크로프로세서, 또는 멀티-코어 프로세서와 같은 하드웨어 프로세서 요소(402), 예를 들어 랜덤 액세스 메모리(RAM) 및/또는 판독 전용 메모리(ROM)와 같은 메모리(404), 둘 이상의 센서들을 포함하는 안전 센서 시스템 내에서 센서들의 위치들을 결정하기 위한 모듈(405), 및 예를 들어 제한되지는 않지만 테이프 드라이브, 플로피 드라이브, 하드 디스크 드라이브 또는 컴팩트 디스크 드라이브를 포함하는 저장 디바이스, 수신기, 송신기, 디스플레이, 출력 포트, 입력 포트, 및 사용자 입력 디바이스로서 예컨대 키보드, 키패드, 마우스, 마이크 등과 같은 사용자 입력 디바이스와 같은 다양한 입력/출력 디바이스들(406)을 포함한다.
하나의 프로세서 요소가 도시되어 있지만, 전자 디바이스(400)는 복수의 프로세서 요소들을 채용할 수 있음에 유의해야 한다. 또한, 하나의 전자 디바이스(400)가 도면에 도시되어 있지만, 전술한 바와 같은 방법(들)이 특정한 예시적인 예에 대해 분산 또는 병렬 방식으로 구현되는 경우, 즉 상기 방법(들)의 블록들 또는 전체 방법(들)이 다중 또는 병렬 전자 디바이스들에 걸쳐 구현되는 경우, 이 도면의 전자 디바이스(400)는 이들 다중의 전자 디바이스들 각각을 나타내도록 의도된다.
본 개시는 예를 들어, ASIC(application specific integrated circuit), FPGA(field-programmable gate array)를 포함하는 PLA(programmable logic array), 또는 하드웨어 디바이스, 범용 컴퓨터 또는 임의의 다른 하드웨어 등가물들 상에 배치된 상태 머신을 사용하여 기계 판독 가능한 명령들에 의해 및/또는 기계 판독 가능한 명령들과 하드웨어의 조합으로 구현될 수 있다는 점에 유의해야 하며, 예를 들어 위에서 논의된 방법(들)에 관한 컴퓨터 판독 가능한 명령들은 상기 개시된 방법(들)의 블록들, 기능들 및/또는 동작들을 수행하도록 하드웨어 프로세서를 구성하는 데 사용될 수 있다.
일례에서, 둘 이상의 센서들을 포함하는 안전 센서 시스템에서 센서들의 위치들을 결정하기 위한 본 모듈 또는 프로세스(405)에 대한 명령들 및 데이터, 예를 들어, 기계 판독 가능한 명령들은 메모리(404)에 로딩되고 하드웨어 프로세서 요소(402)에 의해 실행되어, 방법(300)과 관련하여 위에서 논의된 바와 같은 블록들, 기능들 또는 동작들을 구현할 수 있다. 또한, 하드웨어 프로세서가 "동작들"을 수행하기 위해 명령들을 실행할 때, 이러한 것은 동작들을 직접적으로 수행하거나 및/또는 예를 들어 동작들을 수행하기 위한 보조-프로세서 등과 같은 다른 하드웨어 디바이스 또는 구성요소를 가능하게 하거나, 지시하거나 또는 함께 협력하는 하드웨어 프로세서를 포함할 수 있다.
전술한 방법(들)과 관련한 기계 판독 가능한 명령들을 실행하는 프로세서는 프로그램된 프로세서 또는 특수화된 프로세서로서 인식될 수 있다. 그와 같이, 본 개시의 둘 이상의 센서들을 포함하는 안전 센서 시스템 내에서 센서들의 위치들을 결정하기 위한 본 모듈(405)은 유형의 또는 물리적인(광범위하게는 비-일시적) 컴퓨터 판독 가능한 저장 디바이스 또는 매체(예를 들어, 휘발성 메모리, 비-휘발성 메모리, ROM 메모리, RAM 메모리, 자기 또는 광학 드라이브, 디바이스 또는 디스켓 등)에 저장될 수 있다. 보다 구체적으로는, 컴퓨터 판독 가능한 저장 디바이스는 안전 센서 시스템의 컴퓨터 또는 컨트롤러와 같은 전자 디바이스 또는 프로세서에 의해 액세스될 데이터 및/또는 명령들과 같은 정보를 저장하는 능력을 제공하는 임의의 물리적 디바이스들을 포함할 수 있다.
상기 기술된 및 다른 특징들 및 기능들의 변형들, 또는 그 대안들이 많은 다른 상이한 시스템들 또는 애플리케이션들에 결합될 수 있음을 이해할 것이다. 다음의 청구 범위에 의해 포함되도록 또한 의도된 다양한 현재 예상되지 않거나 예상치 못한 대안들, 수정들 또는 변형들이 본 명세서에서 후속적으로 이루어질 수 있다.

Claims (20)

  1. 모니터링되는 사이트 내에 배치된 캘리브레이션 타겟의 제 1 세트의 이미지들을 캡처하기 위한 제 1 센서로서, 상기 제 1 센서는 상기 모니터링되는 사이트 내의 제 1 위치를 갖고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라지는, 상기 제 1 센서;
    상기 캘리브레이션 타겟의 제 2 세트의 이미지들을 캡처하기 위한 제 2 센서로서, 상기 제 1 위치와는 상이한 상기 모니터링되는 사이트 내의 제 2 위치를 갖는, 상기 제 2 센서; 및
    상기 제 1 세트의 이미지들, 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 결정하기 위한 통합 관리 시스템을 포함하는, 장치.
  2. 제 1 항에 있어서, 상기 캘리브레이션 타겟은 상기 모니터링되는 사이트 내에서 임의의 위치에 배치되는, 장치.
  3. 제 1 항에 있어서, 상기 제 1 센서 및 상기 제 2 센서 중 적어도 하나는 이동형인, 장치.
  4. 제 1 항에 있어서, 상기 통합 관리 시스템은 또한, 상기 제 1 센서 및 상기 제 2 센서에 의해 캡처된 물체의 이미지들을 사용하여 상기 모니터링되는 사이트 내에 존재하는 물체의 3 차원 모델을 생성하기 위한 것인, 장치.
  5. 제 1 항에 있어서, 상기 제 1 센서 및 상기 제 2 센서 중 적어도 하나는 적어도 반구형인 시야를 갖는, 장치.
  6. 제 1 항에 있어서, 상기 제 1 센서 및 상기 제 2 센서 중 적어도 하나는 복수의 광 빔들을 대응하는 시야에 투영하여, 상기 복수의 광 빔들이 상기 시야에서 아티팩트들의 패턴을 생성하는, 장치.
  7. 제 1 항에 있어서, 상기 캘리브레이션 타겟의 물리적 외관은 비균일한 물리적 치수들을 포함하는, 장치.
  8. 제 7 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1의 3 차원 형상을 갖는 제 1 세그먼트; 및
    상기 제 1 세그먼트에 연결되며, 상기 제 1의 3 차원 형상과는 상이한 제 2의 3 차원 형상을 갖는 제 2 세그먼트를 포함하는, 장치.
  9. 제 1 항에 있어서, 상기 캘리브레이션 타겟의 물리적 외관은 비균일한 시각적 패턴을 포함하는, 장치.
  10. 제 9 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1 패턴을 표시하는 제 1 패터닝된 섹션; 및
    상기 제 1 패턴과는 상이한 제 2 패턴을 표시하는 제 2 패터닝된 섹션을 포함하며,
    상기 제 1 패턴 및 상기 제 2 패턴은 상기 캘리브레이션 타겟의 주변의 상이한 부분들에 위치되는, 장치.
  11. 제 1 항에 있어서, 상기 캘리브레이션 타겟의 물리적 외관은 비균일한 반사 특성들을 포함하는, 장치.
  12. 제 11 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1 반사 특성들을 나타내는 제 1 반사 섹션; 및
    상기 제 1 반사 특성들과는 상이한 반사 특성들을 표시하는 제 2 반사 섹션을 포함하며,
    상기 제 1 반사 섹션 및 상기 제 2 반사 섹션은 상기 캘리브레이션 타겟의 주변의 상이한 부분들에 위치되는, 장치.
  13. 캘리브레이션 타겟의 제 1 세트의 이미지들을 획득하는 단계로서, 상기 제 1 세트의 이미지들은 모니터링되는 사이트 내에 제 1 위치를 갖는 제 1 센서에 의해 캡처되고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라지는, 상기 제 1 세트의 이미지들을 획득하는 단계;
    상기 캘리브레이션 타겟의 제 2 세트의 이미지들을 획득하는 단계로서, 상기 제 2 세트의 이미지들은 모니터링되는 사이트 내에 제 2 위치를 갖는 제 2 센서에 의해 캡처되는, 상기 제 2 세트의 이미지들을 획득하는 단계; 및
    상기 제 1 세트의 이미지들, 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 식별하는 단계를 포함하는, 방법.
  14. 제 13 항에 있어서, 상기 캘리브레이션 타겟은 상기 모니터링되는 사이트 내에서 임의의 위치에 배치되는, 방법.
  15. 제 13 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1의 3 차원 형상을 갖는 제 1 세그먼트; 및
    상기 제 1 세그먼트에 연결되며, 상기 제 1의 3 차원 형상과는 상이한 제 2의 3 차원 형상을 갖는 제 2 세그먼트를 포함하는, 방법.
  16. 제 13 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1 패턴을 표시하는 제 1 패터닝된 섹션; 및
    상기 제 1 패턴과는 상이한 제 2 패턴을 표시하는 제 2 패터닝된 섹션을 포함하며,
    상기 제 1 패턴 및 상기 제 2 패턴은 상기 캘리브레이션 타겟의 주변의 상이한 부분들에 위치되는, 방법.
  17. 제 13 항에 있어서, 상기 캘리브레이션 타겟은:
    제 1 반사 특성들을 나타내는 제 1 반사 섹션; 및
    상기 제 1 반사 특성들과는 상이한 반사 특성들을 표시하는 제 2 반사 섹션을 포함하며,
    상기 제 1 반사 섹션 및 상기 제 2 반사 섹션은 상기 캘리브레이션 타겟의 주변의 상이한 부분들에 위치되는, 방법.
  18. 제 13 항에 있어서, 상기 제 1 센서 및 상기 제 2 센서 중 적어도 하나는 이동형인, 방법.
  19. 제 13 항에 있어서, 상기 제 1 센서 및 상기 제 2 센서 중 적어도 하나는 복수의 광 빔들을 대응하는 시야에 투영하여, 상기 복수의 광 빔들이 상기 시야에서 아티팩트들의 패턴을 생성하는, 방법.
  20. 프로세서에 의해 실행 가능한 명령들로 인코딩된 비-일시적 기계 판독 가능한 저장 매체로서, 상기 명령들은 실행될 때 상기 프로세서로 하여금:
    캘리브레이션 타겟의 제 1 세트의 이미지들을 획득하는 동작으로서, 상기 제 1 세트의 이미지들은 모니터링되는 사이트 내에 제 1 위치를 갖는 제 1 센서에 의해 캡처되고, 상기 캘리브레이션 타겟의 물리적 외관은 상기 모니터링되는 사이트 내의 상이한 위치들에서 볼 때 달라지는, 상기 제 1 세트의 이미지들을 획득하는 동작;
    상기 캘리브레이션 타겟의 제 2 세트의 이미지들을 획득하는 동작으로서, 상기 제 2 세트의 이미지들은 모니터링되는 사이트 내에 제 2 위치를 갖는 제 2 센서에 의해 캡처되는, 상기 제 2 세트의 이미지들을 획득하는 동작; 및
    상기 제 1 세트의 이미지들, 제 2 세트의 이미지들, 및 상기 캘리브레이션 타겟의 물리적 외관에 대한 지식에 기초하여 상기 제 1 센서와 상기 제 2 센서의 위치 관계를 식별하는 동작을,
    포함하는 동작들을 수행하게 하는, 비-일시적 기계 판독 가능한 저장 매체.
KR1020207012920A 2017-10-08 2018-10-03 다중 이동형 센서들을 포함한 센서 시스템의 캘리브레이션 KR20200054324A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762569545P 2017-10-08 2017-10-08
US62/569,545 2017-10-08
PCT/US2018/054099 WO2019070806A1 (en) 2017-10-08 2018-10-03 CALIBRATION OF A SENSOR SYSTEM COMPRISING MULTIPLE MOBILE SENSORS

Publications (1)

Publication Number Publication Date
KR20200054324A true KR20200054324A (ko) 2020-05-19

Family

ID=65993339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207012920A KR20200054324A (ko) 2017-10-08 2018-10-03 다중 이동형 센서들을 포함한 센서 시스템의 캘리브레이션

Country Status (7)

Country Link
US (1) US10885761B2 (ko)
EP (1) EP3692501A4 (ko)
JP (2) JP2020537242A (ko)
KR (1) KR20200054324A (ko)
CN (1) CN111164650B (ko)
TW (1) TWI808101B (ko)
WO (1) WO2019070806A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3551965A4 (en) 2016-12-07 2020-08-05 Magik Eye Inc. DISTANCE SENSOR PROJECTING PARALLEL PATTERNS
KR20200054326A (ko) 2017-10-08 2020-05-19 매직 아이 인코포레이티드 경도 그리드 패턴을 사용한 거리 측정
CN114827573A (zh) 2018-03-20 2022-07-29 魔眼公司 调整相机曝光以用于三维深度感测和二维成像
JP2021518535A (ja) 2018-03-20 2021-08-02 マジック アイ インコーポレイテッド 様々な密度の投影パターンを使用する距離測定
CN112513565B (zh) * 2018-06-06 2023-02-10 魔眼公司 使用高密度投影图案的距离测量
WO2020033169A1 (en) 2018-08-07 2020-02-13 Magik Eye Inc. Baffles for three-dimensional sensors having spherical fields of view
JP2022518023A (ja) 2019-01-20 2022-03-11 マジック アイ インコーポレイテッド 複数個の通過域を有するバンドパスフィルタを備える三次元センサ
US11474209B2 (en) 2019-03-25 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11019249B2 (en) 2019-05-12 2021-05-25 Magik Eye Inc. Mapping three-dimensional depth map data onto two-dimensional images
WO2021113135A1 (en) 2019-12-01 2021-06-10 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
KR20220122645A (ko) 2019-12-29 2022-09-02 매직 아이 인코포레이티드 3차원 좌표를 2차원 피처 포인트와 연관
CN115151945A (zh) 2020-01-05 2022-10-04 魔眼公司 将三维相机的坐标系转成二维相机的入射点

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914460A (en) 1987-05-29 1990-04-03 Harbor Branch Oceanographic Institution Inc. Apparatus and methods of determining distance and orientation
US4954962A (en) 1988-09-06 1990-09-04 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
JPH08555A (ja) 1994-06-16 1996-01-09 Fuji Photo Optical Co Ltd 内視鏡の照明装置
US5699444A (en) * 1995-03-31 1997-12-16 Synthonics Incorporated Methods and apparatus for using image data to determine camera location and orientation
US6038415A (en) * 1997-07-18 2000-03-14 Minolta Co., Ltd. Image forming apparatus and image-carrier cartridge device which is employed in the same
EP0898245B1 (en) * 1997-08-05 2004-04-14 Canon Kabushiki Kaisha Image processing method and apparatus
JPH11108637A (ja) * 1997-10-03 1999-04-23 Dakku Engineering Kk 品質検査装置
US5980454A (en) 1997-12-01 1999-11-09 Endonetics, Inc. Endoscopic imaging system employing diffractive optical elements
US5870136A (en) * 1997-12-05 1999-02-09 The University Of North Carolina At Chapel Hill Dynamic generation of imperceptible structured light for tracking and acquisition of three dimensional scene geometry and surface characteristics in interactive three dimensional computer graphics applications
AUPP299498A0 (en) * 1998-04-15 1998-05-07 Commonwealth Scientific And Industrial Research Organisation Method of tracking and sensing position of objects
JP2001338280A (ja) * 2000-05-30 2001-12-07 Nippon Telegr & Teleph Corp <Ntt> 3次元空間情報入力装置
US7193645B1 (en) * 2000-07-27 2007-03-20 Pvi Virtual Media Services, Llc Video system and method of operating a video system
US6937350B2 (en) 2001-06-29 2005-08-30 Massachusetts Institute Of Technology Apparatus and methods for optically monitoring thickness
JP2003065737A (ja) * 2001-08-28 2003-03-05 Topcon Corp 表面形状測定装置及びその方法、並びに表面状態図化装置
US7940299B2 (en) 2001-08-09 2011-05-10 Technest Holdings, Inc. Method and apparatus for an omni-directional video surveillance system
US6917702B2 (en) * 2002-04-24 2005-07-12 Mitsubishi Electric Research Labs, Inc. Calibration of multiple cameras for a turntable-based 3D scanner
US6831641B2 (en) 2002-06-17 2004-12-14 Mitsubishi Electric Research Labs, Inc. Modeling and rendering of surface reflectance fields of 3D objects
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
AU2003289106A1 (en) * 2002-12-27 2004-07-29 Hiroshi Arisawa Multi-view-point video capturing system
TWI247104B (en) 2003-02-26 2006-01-11 Hon Hai Prec Ind Co Ltd A measuring method for pattern of light guide plate
DE10308383A1 (de) 2003-02-27 2004-09-16 Storz Endoskop Produktions Gmbh Verfahren und optisches System zur Vermessung der Topographie eines Meßobjekts
WO2005076198A1 (en) 2004-02-09 2005-08-18 Cheol-Gwon Kang Device for measuring 3d shape using irregular pattern and method for the same
WO2005124675A2 (en) * 2004-06-16 2005-12-29 Ids Scheer Aktiengesellschaft Systems and methods for integrating business process documentation with work environments
US7191056B2 (en) * 2005-01-04 2007-03-13 The Boeing Company Precision landmark-aided navigation
JP2006313116A (ja) 2005-05-09 2006-11-16 Nec Viewtechnology Ltd 距離傾斜角度検出装置および該検出装置を備えたプロジェクタ
JP2006329817A (ja) * 2005-05-26 2006-12-07 Konica Minolta Sensing Inc 3次元計測におけるターゲット座標の取得方法およびそれに用いられるターゲット
JP4599515B2 (ja) * 2005-05-27 2010-12-15 コニカミノルタセンシング株式会社 3次元形状データの位置合わせ方法および装置
JP4644540B2 (ja) 2005-06-28 2011-03-02 富士通株式会社 撮像装置
JP5002144B2 (ja) * 2005-09-30 2012-08-15 株式会社トプコン 三次元計測用投影装置及びシステム
US20070091174A1 (en) 2005-09-30 2007-04-26 Topcon Corporation Projection device for three-dimensional measurement, and three-dimensional measurement system
JP4760391B2 (ja) 2006-01-13 2011-08-31 カシオ計算機株式会社 測距装置及び測距方法
JP4799216B2 (ja) 2006-03-03 2011-10-26 富士通株式会社 距離測定機能を有する撮像装置
US7375803B1 (en) 2006-05-18 2008-05-20 Canesta, Inc. RGBZ (red, green, blue, z-depth) filter system usable with sensor systems, including sensor systems with synthetic mirror enhanced three-dimensional imaging
JP4889373B2 (ja) 2006-05-24 2012-03-07 ローランドディー.ジー.株式会社 3次元形状測定方法およびその装置
US8471892B2 (en) 2006-11-23 2013-06-25 Z. Jason Geng Wide field-of-view reflector and method of designing and making same
TWI320480B (en) 2007-04-23 2010-02-11 Univ Nat Formosa One diffraction 6 degree of freedom optoelectronic measurement system
US8282485B1 (en) 2008-06-04 2012-10-09 Zhang Evan Y W Constant and shadowless light source
WO2010006081A1 (en) 2008-07-08 2010-01-14 Chiaro Technologies, Inc. Multiple channel locating
US8334900B2 (en) 2008-07-21 2012-12-18 The Hong Kong University Of Science And Technology Apparatus and method of optical imaging for medical diagnosis
JP2010091855A (ja) 2008-10-09 2010-04-22 Denso Corp レーザビーム照射装置
JP5251419B2 (ja) 2008-10-22 2013-07-31 日産自動車株式会社 距離計測装置および距離計測方法
JP5287152B2 (ja) * 2008-11-04 2013-09-11 オムロン株式会社 3次元モデルの作成方法および物体認識装置
CN101794065A (zh) 2009-02-02 2010-08-04 中强光电股份有限公司 投影显示系统
US20100223706A1 (en) * 2009-03-03 2010-09-09 Illinois Tool Works Inc. Welding helmet audio communication systems and methods with bone conduction transducers
JP5484098B2 (ja) 2009-03-18 2014-05-07 三菱電機株式会社 投写光学系及び画像表示装置
JP4991787B2 (ja) 2009-04-24 2012-08-01 パナソニック株式会社 反射型光電センサ
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
US20110188054A1 (en) 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
JP5499985B2 (ja) * 2010-08-09 2014-05-21 ソニー株式会社 表示装置組立体
WO2012023256A2 (en) 2010-08-19 2012-02-23 Canon Kabushiki Kaisha Three-dimensional measurement apparatus, method for three-dimensional measurement, and computer program
JP5163713B2 (ja) 2010-08-24 2013-03-13 カシオ計算機株式会社 距離画像センサ及び距離画像生成装置並びに距離画像データ取得方法及び距離画像生成方法
JP5639821B2 (ja) * 2010-09-03 2014-12-10 株式会社Ihi 3次元点群の合成方法
US20120056982A1 (en) 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
US8593535B2 (en) * 2010-09-10 2013-11-26 Apple Inc. Relative positioning of devices based on captured images of tags
EP2433716A1 (en) 2010-09-22 2012-03-28 Hexagon Technology Center GmbH Surface spraying device with a nozzle control mechanism and a corresponding method
TWI428558B (zh) 2010-11-10 2014-03-01 Pixart Imaging Inc 測距方法、測距系統與其處理軟體
JP5815940B2 (ja) 2010-12-15 2015-11-17 キヤノン株式会社 距離計測装置、距離計測方法、およびプログラム
US9888225B2 (en) * 2011-02-04 2018-02-06 Koninklijke Philips N.V. Method of recording an image and obtaining 3D information from the image, camera system
JP5746529B2 (ja) 2011-03-16 2015-07-08 キヤノン株式会社 三次元距離計測装置、三次元距離計測方法、およびプログラム
US8794181B2 (en) 2011-03-17 2014-08-05 Mirobot Ltd. System and method for three dimensional teat modeling for use with a milking system
JP2012202694A (ja) * 2011-03-23 2012-10-22 Canon Inc カメラ校正方法
JP2014122789A (ja) 2011-04-08 2014-07-03 Sanyo Electric Co Ltd 情報取得装置、投射装置および物体検出装置
JP5830270B2 (ja) 2011-05-24 2015-12-09 オリンパス株式会社 内視鏡装置および計測方法
CA2835306C (en) 2011-06-07 2016-11-15 Creaform Inc. Sensor positioning for 3d scanning
US9185401B2 (en) * 2011-07-15 2015-11-10 Electronics And Telecommunications Research Institute Method and apparatus for camera network calibration with small calibration pattern
US10054430B2 (en) 2011-08-09 2018-08-21 Apple Inc. Overlapping pattern projector
DE102012108567B4 (de) 2011-10-05 2017-04-27 Electronics And Telecommunications Research Institute Verfahren zum Erlangen von Tiefeninformationen unter Verwendung eines Lichtmusters
KR101605224B1 (ko) 2011-10-05 2016-03-22 한국전자통신연구원 패턴 광을 이용한 깊이 정보 획득 장치 및 방법
TW201329509A (zh) 2012-01-10 2013-07-16 Walsin Lihwa Corp 立體掃瞄裝置及其立體掃瞄方法
US9986208B2 (en) * 2012-01-27 2018-05-29 Qualcomm Incorporated System and method for determining location of a device using opposing cameras
KR20140116551A (ko) 2012-01-31 2014-10-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 표면의 삼차원 구조를 측정하는 방법 및 장치
JP5800082B2 (ja) 2012-03-01 2015-10-28 日産自動車株式会社 距離計測装置及び距離計測方法
CN104220838B (zh) 2012-03-28 2016-12-21 富士通株式会社 拍摄装置
EP2849648B1 (en) 2012-05-18 2020-01-08 Siemens Healthcare Diagnostics Inc. Fish eye lens imaging apparatus and imaging method
JP5745178B2 (ja) * 2012-06-29 2015-07-08 富士フイルム株式会社 3次元測定方法、装置及びシステム、並びに画像処理装置
DK2872030T3 (en) 2012-07-10 2017-03-06 Wavelight Gmbh METHOD AND APPARATUS FOR DETERMINING THE OPTICAL ABERRATIONS OF AN EYE
US20140016113A1 (en) 2012-07-13 2014-01-16 Microsoft Corporation Distance sensor using structured light
JP2014020978A (ja) 2012-07-20 2014-02-03 Fujitsu Ltd 照射装置、距離測定装置、照射装置のキャリブレーションプログラム及びキャリブレーション方法
EP2696590B1 (en) 2012-08-06 2014-09-24 Axis AB Image sensor positioning apparatus and method
US9275459B2 (en) * 2012-10-05 2016-03-01 Qualcomm Incorporated Method and apparatus for calibrating an imaging device
US9741184B2 (en) 2012-10-14 2017-08-22 Neonode Inc. Door handle with optical proximity sensors
US9927571B2 (en) 2012-10-24 2018-03-27 Seereal Technologies S.A. Illumination device
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US10466359B2 (en) 2013-01-01 2019-11-05 Inuitive Ltd. Method and system for light patterning and imaging
US9691163B2 (en) 2013-01-07 2017-06-27 Wexenergy Innovations Llc System and method of measuring distances related to an object utilizing ancillary objects
US8768559B1 (en) 2013-01-22 2014-07-01 Qunomic Virtual Technology, LLC Line projection system
US9142019B2 (en) 2013-02-28 2015-09-22 Google Technology Holdings LLC System for 2D/3D spatial feature processing
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9364167B2 (en) 2013-03-15 2016-06-14 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
US20140320605A1 (en) 2013-04-25 2014-10-30 Philip Martin Johnson Compound structured light projection system for 3-D surface profiling
CN103559735B (zh) 2013-11-05 2017-03-01 重庆安钻理科技股份有限公司 一种三维重建方法及系统
US9404742B2 (en) 2013-12-10 2016-08-02 GM Global Technology Operations LLC Distance determination system for a vehicle using holographic techniques
US10372982B2 (en) 2014-01-06 2019-08-06 Eyelock Llc Methods and apparatus for repetitive iris recognition
GB2522248A (en) 2014-01-20 2015-07-22 Promethean Ltd Interactive system
KR102166691B1 (ko) 2014-02-27 2020-10-16 엘지전자 주식회사 객체의 3차원 형상을 산출하는 장치 및 방법
US9307231B2 (en) 2014-04-08 2016-04-05 Lucasfilm Entertainment Company Ltd. Calibration target for video processing
JP6002275B2 (ja) 2014-04-30 2016-10-05 シナノケンシ株式会社 計測装置
JP5829306B2 (ja) 2014-05-12 2015-12-09 ファナック株式会社 レンジセンサの配置位置評価装置
US10207193B2 (en) * 2014-05-21 2019-02-19 Universal City Studios Llc Optical tracking system for automation of amusement park elements
KR20160020323A (ko) 2014-08-13 2016-02-23 옥은호 평행 적외선 투사기와 카메라 모듈로 구성되는 거리 측정 센서
JP6370177B2 (ja) 2014-09-05 2018-08-08 株式会社Screenホールディングス 検査装置および検査方法
US10268906B2 (en) 2014-10-24 2019-04-23 Magik Eye Inc. Distance sensor with directional projection beams
EP3859669A1 (en) 2014-11-04 2021-08-04 SZ DJI Technology Co., Ltd. Camera calibration
US20160128553A1 (en) 2014-11-07 2016-05-12 Zheng Jason Geng Intra- Abdominal Lightfield 3D Endoscope and Method of Making the Same
JP6602867B2 (ja) * 2014-12-22 2019-11-06 サイバーオプティクス コーポレーション 三次元計測システムの校正を更新する方法
KR102369792B1 (ko) 2015-03-05 2022-03-03 한화테크윈 주식회사 촬영 장치 및 촬영 방법
JP6484072B2 (ja) 2015-03-10 2019-03-13 アルプスアルパイン株式会社 物体検出装置
WO2016151918A1 (ja) 2015-03-26 2016-09-29 富士フイルム株式会社 距離画像取得装置及び距離画像取得方法
JP6247793B2 (ja) 2015-03-27 2017-12-13 富士フイルム株式会社 距離画像取得装置
US10215557B2 (en) 2015-03-30 2019-02-26 Fujifilm Corporation Distance image acquisition apparatus and distance image acquisition method
US10488192B2 (en) 2015-05-10 2019-11-26 Magik Eye Inc. Distance sensor projecting parallel patterns
TW201706563A (zh) 2015-05-10 2017-02-16 麥吉克艾公司 距離感測器(一)
WO2016194018A1 (ja) 2015-05-29 2016-12-08 オリンパス株式会社 照明装置及び計測装置
DE102015115011A1 (de) 2015-09-08 2017-03-09 Valeo Schalter Und Sensoren Gmbh Laserscanner für Kraftfahrzeuge
US10176554B2 (en) * 2015-10-05 2019-01-08 Google Llc Camera calibration using synthetic images
JP6597150B2 (ja) 2015-10-09 2019-10-30 富士通株式会社 距離測定装置、距離測定方法、距離測定プログラムおよびテーブルの作成方法
DE112015007146T5 (de) 2015-11-25 2018-08-02 Mitsubishi Electric Corporation Vorrichtung und verfahren zur dreidimensionalen bildmessung
KR20170094968A (ko) 2016-02-12 2017-08-22 엘지이노텍 주식회사 피사체 거리 측정 부재, 이를 갖는 카메라 모듈
US11030775B2 (en) * 2016-03-17 2021-06-08 Flir Systems, Inc. Minimal user input video analytics systems and methods
US9686539B1 (en) * 2016-06-12 2017-06-20 Apple Inc. Camera pair calibration using non-standard calibration objects
EP3551965A4 (en) 2016-12-07 2020-08-05 Magik Eye Inc. DISTANCE SENSOR PROJECTING PARALLEL PATTERNS
US20180227566A1 (en) 2017-02-06 2018-08-09 Microsoft Technology Licensing, Llc Variable field of view and directional sensors for mobile machine vision applications
US11025887B2 (en) 2017-02-27 2021-06-01 Sony Corporation Field calibration of stereo cameras with a projector
US10769914B2 (en) * 2017-06-07 2020-09-08 Amazon Technologies, Inc. Informative image data generation using audio/video recording and communication devices
KR20200054326A (ko) 2017-10-08 2020-05-19 매직 아이 인코포레이티드 경도 그리드 패턴을 사용한 거리 측정
US10679076B2 (en) 2017-10-22 2020-06-09 Magik Eye Inc. Adjusting the projection system of a distance sensor to optimize a beam layout
CN114827573A (zh) 2018-03-20 2022-07-29 魔眼公司 调整相机曝光以用于三维深度感测和二维成像
JP2021518535A (ja) 2018-03-20 2021-08-02 マジック アイ インコーポレイテッド 様々な密度の投影パターンを使用する距離測定
CN112513565B (zh) 2018-06-06 2023-02-10 魔眼公司 使用高密度投影图案的距离测量
WO2020033169A1 (en) 2018-08-07 2020-02-13 Magik Eye Inc. Baffles for three-dimensional sensors having spherical fields of view
US20200182974A1 (en) 2018-12-08 2020-06-11 Magik Eye Inc. Vertical cavity surface emitting laser-based projector
JP2022518023A (ja) 2019-01-20 2022-03-11 マジック アイ インコーポレイテッド 複数個の通過域を有するバンドパスフィルタを備える三次元センサ

Also Published As

Publication number Publication date
TW201926271A (zh) 2019-07-01
JP2020537242A (ja) 2020-12-17
WO2019070806A1 (en) 2019-04-11
EP3692501A1 (en) 2020-08-12
US20190108743A1 (en) 2019-04-11
JP2024012508A (ja) 2024-01-30
TWI808101B (zh) 2023-07-11
CN111164650B (zh) 2021-10-29
CN111164650A (zh) 2020-05-15
EP3692501A4 (en) 2021-07-07
US10885761B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
TWI808101B (zh) 校準包括多個可移動感測器的感測器系統
EP2048557B1 (de) Optoelektronischer Sensor und mobile Vorrichtung sowie Verfahren zur Konfiguration
US9596451B2 (en) Device for monitoring at least one three-dimensional safety area
EP3016382B1 (en) Monitoring methods and devices
US20180278919A1 (en) System for tracking subject moving within space using stereo cameras
JP6367102B2 (ja) 監視システム
EP3452848B1 (en) Monitoring method using a camera system with an area movement detection
JP2003515811A (ja) 映像危機管理カーテン
EP3300045A1 (en) System and method for surveilling a scene comprising an allowed region and a restricted region
US20210158674A1 (en) Worksite classification system and method
WO2018038149A1 (ja) ガス検出情報表示システム及びガス検出情報表示プログラム
US20150092040A1 (en) Gesture-Based Industrial Monitoring
WO2009095014A4 (de) Verfahren und vorrichtung zur überwachung eines raumvolumens
KR101648292B1 (ko) 무인 감시시스템 장치
CN107466413A (zh) 视场对准的系统和方法
JP2017034511A (ja) 移動体検出システム
EP2899566A1 (de) Verfahren zum Konfigurieren eines Laserscanners und Konfigurationsobjekt dafür
JP2020088840A (ja) 監視装置、監視システム、監視方法、監視プログラム
JP6825624B2 (ja) 監視システム
JP2020069572A (ja) ロボットシステム
JP6581280B1 (ja) 監視装置、監視システム、監視方法、監視プログラム
JP2009278300A (ja) 映像監視システムの監視エリア設定装置
JP6562722B2 (ja) 侵入監視装置及び侵入監視システム
KR102257846B1 (ko) 입체 모델 생성 장치 및 그 영상 표시 방법
US10698132B2 (en) System and method for configuring safety laser scanners with a defined monitoring zone