KR20200051663A - 웨이퍼 제조 프로세스에서 초 국부적 및 플라즈마 균일성 제어 - Google Patents

웨이퍼 제조 프로세스에서 초 국부적 및 플라즈마 균일성 제어 Download PDF

Info

Publication number
KR20200051663A
KR20200051663A KR1020207008849A KR20207008849A KR20200051663A KR 20200051663 A KR20200051663 A KR 20200051663A KR 1020207008849 A KR1020207008849 A KR 1020207008849A KR 20207008849 A KR20207008849 A KR 20207008849A KR 20200051663 A KR20200051663 A KR 20200051663A
Authority
KR
South Korea
Prior art keywords
plasma
structures
array
component
capacitive
Prior art date
Application number
KR1020207008849A
Other languages
English (en)
Inventor
바턴 지. 레인
피터 지. 벤트젝
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20200051663A publication Critical patent/KR20200051663A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • H01J37/32385Treating the edge of the workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

전반적인 균일화를 제공하기 위해 웨이퍼 제조 공정 동안 국소 가스를 점화시키는 국소화된 고밀도 플라즈마 소스를 제공하기 위한 아키텍처, 플랫폼 및 방법이 설명된다. 이러한 플라즈마 소스는 마이크로파 값 이상의 무선 주파수로 동작하는 공진 구조이다.

Description

웨이퍼 제조 프로세스에서 초 국부적 및 플라즈마 균일성 제어
패턴 전사 동안 막 에칭 프로세스를 포함하는 반도체 웨이퍼 다이 제조 공정은, 웨이퍼 다이 수율, 생산성, 신뢰성 및 비용에 영향을 미치는 많은 문제에 노출될 수 있다. 이러한 문제는 패턴이 작아지고 허용오차가 더욱 제한됨에 따라 더욱 강조될 수 있다. 이러한 허용오차는 에칭 패턴의 라인 균일성 (예를 들어, 폭, 깊이, 직진도) 및 한계 크기(CD)와 관련될 수 있다. 플라즈마 제조 공정에서, 전체적인 플라즈마 불균일로 인해 문제가 발생할 수 있다. 웨이퍼 에지에서의 재료/전기적 불연속성으로 인해, 에지보다 웨이퍼 다이의 중심을 향해서 플라즈마 균일성이 더 많이 존재할 수 있다. 일 예로서, 웨이퍼 기판 에지가 불연속적인 전기적 및 재료 경계를 나타내기 때문에 웨이퍼 다이의 에지 근처의 영역은 웨이퍼 다이 중심에서 이들 재료의 플럭스와 크게 다른 라디칼 및 하전된 재료 플럭스를 가질 수 있다.
첫 번째 예시적인 실시 예로서, 플라즈마 처리 시스템 내 플라즈마를 생성하기 위한 장치는 구조(structure)의 어레이를 포함한다. 각 구조는 유도성(L) 성분과 용량성(C) 성분을 포함한다. 전원 공급 장치는 어레이에 연결된다. 상기 유도성 및 용량성 성분은 공진 회로를 형성한다. 상기 전원 공급 장치는 하나 이상의 구조를 갖는 공진 주파수로 또는 공진 주파수 가까이로 공진 회로에 전력을 공급하도록 구성된다.
제 1 예시적인 실시 예의 일 태양에서, 전원은 구조에 용량적으로 결합된다.
제 1 예시적인 실시예의 다른 태양에서, 각각의 구조는 공진 주파수의 자유 공간 파장보다 작은 크기를 포함한다.
제 1 예시적인 실시 예의 또 다른 특징에서, 어레이의 각 구조의 유도성 성분 및 용량성 성분은 동일한 크기를 갖는다.
제1 예시적인 실시 예의 또 다른 특징에서, 어레이의 하나 이상의 구조의 유도성 성분 및 용량성 성분은 상이한 크기를 갖는다.
제1 예시적인 실시 예의 또 다른 특징에서, 구조의 어레이는 세라믹으로 싸인다.
제1 예시적인 실시 예의 또 다른 특징에서, 세라믹이 알루미나이다.
제1 예시적인 실시 예의 또 다른 특징에서, 본 발명 장치는 어레이에 대향이거나 또는 그에 인접하여 배치된 기판 척을 포함한다.
제1 예시적인 실시 예의 또 다른 특징에서, 본 발명 장치는 상기 장치 내에 배치된 기판 척을 더욱 포함하고, 상기 어레이는 상기 기판 척 주위에 배치된다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 공진 주파수는 대략 2 내지 8GHz 이다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 공진 주파수는 대략 100MHz 내지 15GHz 이다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 공진 주파수는 용량성 및 유도성 성분의 배열 또는 크기에 의해 결정된다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 용량성(C) 성분 및 유도성(L) 성분은 폭이 대략 4mm 내지 8mm 이다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 구조 각각은 서로 대략 10mm 이격된다.
제1 예시적인 실시 예의 또 다른 특징에서, 본 발명 장치는 상기 구조 각각에 포함된 국부적 가스 소스를 추가로 포함하고, 가스가 국부적 소스 각각에서 도입되고 각각의 구조에 의해 여기 된다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 국부적 가스 소스 각각이 상기 구조 내에서 부주의한 점화를 방지하기 위한 가드를 포함한다.
제1 예시적인 실시 예의 또 다른 특징에서, 본 발명 장치가 상기 전원 공급 장치와 상기 구조 사이에 배치된 전력 분배 구성 요소를 더욱 포함하고, 상기 전력 분배 구성 요소는 상기 구조의 어레이 내의 상기 구조에 인가된 전력 또는 주파수를 변경하도록 구성된다.
제1 예시적인 실시 예의 또 다른 특징에서, 상기 전력 분배 구성 요소는 적어도 하나의 구조에 전기적으로 연결된 적어도 하나의 트랜지스터를 포함한다.
제2 예시적인 실시 예의 또 다른 특징에서, 플라즈마 처리 방법이, 하나 이상의 처리 가스를 플라즈마 챔버에 제공하는 단계-상기 플라즈마 챔버는 플라즈마 챔버 내에 배치된 구조의 어레이를 포함하고, 각각의 구조는 공진 회로를 형성하는 용량성(C) 성분 및 유도성(L) 성분을 포함 함-;전원으로부터 구조의 어레이(array of structures)로 발진 전류(oscillating current)를 제공하는 단계-상기 발진 전류를 제공하는 것은 용량성 성분(C)에 근접한 전계를 생성하기 위해 공진 주파수로 용량성(C) 성분을 충전하고, 상기 전계는 유도성(L) 성분에 근접한 자계를 유도함-; 그리고 상기 구조와 관련된 전계 또는 자계에 근접한 하나 이상의 처리 가스 내에서 플라즈마 상태를 점화시키는 단계를 포함한다.
제2 예시적인 실시 예의 또 다른 특징에서, 상기 발진 전류를 제공하는 단계는 상기 구조들 각각의 위치를 서로로부터 결정하는 전류 파를 포함한다.
제2 예시적인 실시 예의 또 다른 특징에서, 상기 공진 주파수는 상기 구조의 하나 이상의 크기에 적어도 부분적으로 기초한다.
제2 예시적인 실시 예의 또 다른 특징에서, 상기 구조의 어레이는 상기 구조 각각에 대한 유사한 기계적 크기를 포함한다.
제2 예시적인 실시 예의 또 다른 특징에서, 상기 구조의 어레이는 상기 어레이 내의 다른 구조와 상이한 기계적 크기를 갖는 적어도 하나의 구조를 포함한다.
하기 상세한 설명은 첨부 도면을 참조하여 설명된다. 도면에서, 참조 번호의 가장 왼쪽 자리(들)는 참조 번호가 처음으로 나타나는 도면을 나타낸다. 도면 전체에 걸쳐 동일한 번호가 사용되어 유사한 특징 및 구성 요소를 참조하도록 한다.
도 1은 본 명세서의 실시 예들에 따라 설명된 용량 결합 플라즈마(CCP) 처리 시스템의 예시적인 개략적 구성을 도시하는 단면도이다.
도 2는 국부적 플라즈마 소스 또는 공진 구조/요소의 개략적인 구성의 예를 도시한 도면이다.
도 3은 가스 유입구 및 가드를 갖는 국부적 플라즈마 소스 또는 요소의 개략적인 구성 예를 도시한 도면이다.
도 4는 국부적 플라즈마 소스 또는 요소의 어레이의 개략적인 구성의 예를 도시한 도면이다.
도 5는 초 국부적 플라즈마 소스 및 균일성 제어를 구현하는 예시적인 프로세스를 도시한 도면이다.
웨이퍼 제조 공정 동안 고밀도 플라즈마 소스의 국소화를 위한 아키텍처, 플랫폼 및 방법이 본원 명세서에서 설명된다. 이러한 국소 고밀도 플라즈마 소스는 1 차 플라즈마 소스에 보조적 일 수 있다. 특정 실시는 제어된 국부적 플라즈마 소스의 어레이를 포함할 수 있다. 예를 들어, 플라즈마 소스 그룹 또는 어레이의 요소는 유닛 또는 개별 플라즈마 소스 또는 요소가 제어 가능할 때 제어될 수 있다. 어레이 플라즈마 소스 또는 요소 그룹을 단일 유닛으로서 제어할 때, 상기 어레이에 할당된 총 전력이 제어 가능한 방식으로 플라즈마 소스 또는 요소 사이에 분배되도록 하기 위해 일정한 상대 전력이 어레이 플라즈마 소스 또는 요소에 전달된다. 플라즈마 소스의 어레이는 플라즈마 밀도를 국부적으로 그 부근에서 제어하기 위해 반응기 표면의 제한된 부분을 덮을 수 있으며, 처리되고 있는 웨이퍼와 대면하는 전체 상부 표면과 같은 상당한 영역을 덮을 수 있다.
도 1은 본 명세서의 실시 예에 따른 용량성 결합 플라즈마(CCP) 처리 장치 또는 플라즈마 처리 시스템(100)에 대한 실시 예의 개략적인 단면도를 도시한다. RLSA(방사선 슬롯 안테나) 및 ICP(유도 결합 플라즈마) 처리 시스템과 같은 다른 처리 시스템이 구현될 수 있음을 이해해야 한다. 특정 실시 예에서, 플라즈마 프로세싱 시스템(100)이 웨이퍼 제조 프로세스에서 사용된다. 특정 실시 예에서, 상기 장치는 플라즈마를 생성하는 것으로 간주되고 플라즈마 프로세싱 시스템(100)의 일부이다. 본원 명세서에서는 보조 로컬 플라즈마 소스 및 분산 로컬 플라즈마 소스를 갖는 1 차 플라즈마 소스를 사용하는 실시 예 및 변형이 설명된다. 이러한 플라즈마 소스는 웨이퍼 제조 공정 동안 가스를 여기 및 분리하고 플라즈마에 의해 형성된 외피에 의해 웨이퍼 쪽으로 가속되는 이온을 생성하는데 사용된다. 이러한 국부적 플라즈마 소스의 어레이는 또한 1 차 또는 단독 플라즈마 소스를 구성할 수 있다. 이러한 구조의 어레이는 장치의 일부이거나 장치에 포함될 수 있다.
플라즈마 처리 시스템(100)은 애싱(ashing), 에칭, 증착, 세정, 플라즈마 중합, 플라즈마 강화 화학 기상 증착(PECVD), 플라즈마 강화 원자층 증착(PEALD) 등을 포함하는 다중 작업에 사용될 수 있다. 플라즈마 처리는 플라즈마 처리 챔버(102) 내에서 실행될 수 있으며, 이는 알루미늄 또는 스테인레스 스틸과 같은 금속으로 만들어진 진공 챔버 일 수 있다. 플라즈마 처리 챔버(102)는 접지(104)에 접지된다. 플라즈마 처리 챔버(102)는 플라즈마 생성을 위한 프로세스 공간 PS(106)를 제공하는 처리 용기를 정의한다. 플라즈마 처리 챔버(102)의 내벽은 알루미나, 이트리아 또는 다른 보호제로 코팅될 수 있다. 플라즈마 처리 챔버(102)는 원통형이거나 다른 기하학적 구성을 가질 수 있다.
플라즈마 프로세싱 챔버(102) 내의 하부 중앙 영역에서, 기판 홀더 또는 서 셉터(디스크-형태 일 수 있는)(108)는 장착 테이블로서 기능할 수 있으며, 그와 같은 테이블 상에 예를 들어 처리될 기판(W)(110)(반도체 웨이퍼와 같은)이 장착 될 수 있다. 기판(W)(110)은 로딩/언로딩 포트(112) 및 게이트 밸브(114)를 통해 플라즈마 처리 챔버(102) 내로 이동될 수 있다. 서셉터(108)는 기판(W)(110)을 장착하기 위한 장착 테이블로서 작용하는 제 2 전극의 예로서 하부 전극(116)(하부 전극 조립체)의 일부를 형성한다. 구체적으로, 서셉터(108)는 서셉터 서포트(118) 상에 지지되며, 서셉터 서포트(118)는 절연 플레이트 (120)를 통해 플라즈마 프로세싱 챔버 (102)의 바닥의 중앙에 실질적으로 제공된다. 서셉터 서포트(118)는 원통형 일 수 있다. 서 셉터(108)는 예를 들어 알루미늄 합금으로 형성될 수 있다. 서 셉터(108)에는 기판(W)(110)을 유지하기 위한 정전 척(122)(하부 전극 조립체(116)의 일부로서)이 제공된다. 정전 척(122)은 기판 척으로 간주 될 수 있다. 정전 척(122)에는 전극(124)이 제공된다. 전극(124)은 DC 전원(126)(직류 전원)에 전기적으로 연결된다. 정전 척(122)은 DC 전원(126)으로부터의 DC 전압이 전극(124)에 인가될 때 발생되는 정전기력을 통해 기판(W)(110)을 상기 정전 척으로 끌어당긴다.
서셉터(108)는 매칭 유닛(132)을 통해 고주파 전원(130)과 전기적으로 연결될 수 있다. 이 같은 고주파 전원(130)(제 2 전원)은 예를 들어 4MHz ~ 12MHz범위의 고주파 전압을 출력할 수 있다. 고 주파수 바이어스 전력을 인가하면 플라즈마 처리 챔버(102)에서 생성된 플라즈마의 이온이 기판(W)(110)으로 끌리게 된다. 서셉터(108)의 상부 표면에 포커스 링(134)이 제공되어 정전 척(122)을 둘러싸도록 한다.
특정 실시 예에서, 후술되는 바와 같이 국부적 플라즈마 소스들에 대해, 고주파 전압이 VHF 대역(30 MHz 내지 300 MHz), UHF 대역(300 MHz 내지 1 GHz), L 대역(1-2 GHz), S 대역(2GHz ~ 4 GHz) 또는 C 대역(4 GHz ~ 8 GHz) 또는 X 대역 (8GHz ~ 12GHz)으로 제공될 수 있다. 국부적 플라즈마 소스를 위한 고주파 전압은 RF 또는 마이크로파 전력(도시되지 않음)을 통해 플라즈마 처리 챔버(102)로 제공될 수 있다.
원통형일 수 있고 예를 들어 석영으로 형성될 수 있는 내벽 부재(136)는 정전 척(122) 및 서셉터 지지부(118)의 외주 측에 부착된다. 서셉터 지지부(118)는 냉각제 유로(coolant flow path)(138)를 포함한다. 냉각제 유로(138)는 플라즈마 처리 챔버(102) 외부에 설치된 냉각기 유닛(도시되지 않음)과 연통 된다. 냉각제 유로(138)에는 대응하는 라인을 통해 순환하는 냉각제(냉각 액체 또는 냉각수)가 공급된다. 따라서, 서셉터(108) 상에/위에 장착된 기판(W110)의 온도가 정확하게 제어될 수 있다. 서셉터(108) 및 서셉터 지지체(118)를 통과하는 가스 공급 라인(140)은 정전 척(122)의 상부 표면에 열 전달 가스를 공급하도록 구성된다. 헬륨(He)과 같은 열 전달 가스(후면 가스라 하기도 함)는 기판(W)(110)의 가열을 보조하기 위한 가스 공급 라인(140)을 통해 기판(W)(110)과 정전 척(122) 사이에 공급될 수 있다.
배기 통로(142)는 내벽 부재(136)의 외주 및 플라즈마 처리 챔버(102)의 내측 벽면을 따라 형성될 수 있다. 배기 포트(144)(또는 다수의 배기 포트)는 배기 통로(142)의 하부에 제공된다. 가스 배기 유닛 (146)은 가스 배기 라인(148)을 통해 각각의 배기 포트에 연결된다. 가스 배기 유닛(146)은 플라즈마 처리 챔버(102) 내의 플라즈마 처리 공간을 압축 해제하도록 구성된 터보 분자 펌프와 같은 진공 펌프를 포함할 수 있다. 가스 배출 유닛(146)은 플라즈마 처리 챔버(102) 내부를 배기함으로써, 원하는 진공도까지 내압을 감압시킨다.
상부 전극(150)(즉, 상부 전극 조립체)은 제 1 전극의 예이며, 하부 전극(116)과 평행하게 하부 전극(116) 위에 수직으로 위치된다. 1 차 플라즈마 소스의 경우, 플라즈마 생성 공간 또는 프로세스 공간 PS(106)은 하부 전극(116)과 상부 전극(150) 사이에 형성된다. 상부 전극(150)은 디스크 형상을 갖는 내측 상부 전극(152) 및 환상이며 내측 상부 전극(152) 주변을 에워싸는 외측 상부 전극(154)을 포함한다. 내측 상부 전극(152)은 또한 하부 전극(116) 상에 장착된 기판(W)(110) 위의 프로세스 공간 PS(106)에 특정 량의 처리 가스를 주입하기 위한 처리 가스 유입구로서 기능한다.
보다 구체적으로, 내측 상부 전극(152)은 가스 주입 개구(158)를 갖는 전극 플레이트(156)(일반적으로 원형)를 포함한다. 내측 상부 전극(152)은 또한 전극 플레이트(156)의 상부 면을 분리 가능하게 지지하는 전극 지지부(160)를 포함한다. 전극 지지부(160)는 전극 플레이트(156)와 실질적으로 동일한 직경을 갖는 디스크의 형상으로 형성될 수 있다(전극 플레이트(156)가 원형으로 실시 될 때). 대안적인 실시 예에서, 전극 플레이트(156)는 정사각형, 직사각형, 다각형 등일 수 있다. 전극 플레이트(156)는 Si, SiC, 도핑된 Si, 알루미늄 등과 같은 도체 또는 반도체 재료로 형성될 수 있다. 전극 플레이트(156)는 표면 침식 후 주어진 플레이트를 교체하는데 편의를 위해 상부 전극(150)과 일체형이거나 전극 지지부(160)에 의해 분리 가능하게 지지될 수 있다. 상부 전극 (150)은 또한 전극 플레이트(156)의 온도를 제어하기 위해 냉각 플레이트 또는 냉각 메커니즘(도시되지 않음)을 포함할 수 있다.
전극 지지부(160)는 예를 들어 알루미늄으로 형성 될 수 있고, 버퍼 챔버(162)를 포함할 수 있다. 버퍼 챔버(162)는 프로세스 가스를 확산시키기 위해 사용되며 디스크 형 공간을 한정할 수 있다. 처리 가스 공급 시스템(164)으로부터의 처리 가스는 상부 전극(150)으로 가스를 공급한다. 처리 가스 공급 시스템(164)은 기판(W)(110) 상에서 막 형성, 에칭 등과 같은 특정 프로세스를 수행하기 위해 처리 가스를 공급하도록 구성될 수 있다. 처리 가스 공급 시스템(164)은 처리 가스 공급 경로를 형성하는 가스 공급 라인(166)에 연결된다. 가스 공급 라인(166)은 내측 상부 전극(152)의 버퍼 챔버(162)에 연결된다. 다음으로 상기 처리 가스는 버퍼 챔버(162)로부터 그 하부 표면에서 가스 주입 개구(158)로 이동할 수 있다. 버퍼 챔버(162) 내로 도입된 처리 가스의 유량은 예를 들어 질량 유량 제어기를 사용함으로써 조정될 수 있다. 또한, 도입된 처리 가스는 전극 플레이트(샤워 헤드 전극)(156)의 가스 주입 개구(158)로부터 처리 공간(PS)(106)으로 균일하게 배출된다. 다음에 내측 상부 전극(152)은 샤워 헤드 전극 조립체를 제공하도록 부분적으로 기능한다. 국부적 플라즈마 소스의 경우, 개별 가스 출구 구멍이 국부적 플라즈마 소스 또는 요소 어레이(array of elements)의 요소에 대해 로컬일 수 있다. 특정 실시 예에서, 상기 어레이는 정전기 또는 기판 척(122) 주위에 배치된다.
내측 상부 전극(152)과 외측 상부 전극(154) 사이에 링 형상을 갖는 유전체(168)가 개재될 수 있다. 절연체(170)는 링 형상을 가지며 예를 들어 알루미나로 형성되는 차폐 부재 일 수 있으며, 플라즈마 처리 챔버(102)의 외측 상부 전극(154)과 내측 주변 벽 사이에는 기밀성이 유지되도록 개제된다.
한 실시 예에서, 외측 상부 전극(154)은 전력 공급기(174), 상부 전력 공급 로드(176) 및 매칭 유닛(178)을 통해 고주파 전력 소스(172)(제 1 고주파 전력 소스)와 전기적으로 연결된다. 고주파 전원(172)은 13MHz(메가 헤르츠) 이상의 주파수(예를 들어 60MHz)를 갖는 고주파 전압을 출력하거나, 30-300MHz의 주파수를 갖는 초고주파(VHF) 전압을 출력할 수 있다. 이 같은 전원(172)은 바이어스 전원과 비교하여 주 전원으로 지칭될 수 있다. 상기 전력 공급기(174)는 개방된 하측 표면을 갖는, 가령 원통형 형상으로 형성될 수 있다. 전력 공급기(174)는 그 하단부에서 외측 상부 전극(154)에 연결될 수 있다. 전력 공급기(174)는 상부 표면의 중앙부에서 상부 전력 공급 로드(176)의 하단부에 전기적으로 연결된다. 상부 전력 공급 로드(176)는 그 상단부에서 매칭 유닛(178)의 출력 측에 연결된다. 상기 매칭 유닛(178)은 고주파 전원(172)에 연결되고, 부하 임피던스를 고주파 전원(172)의 내부 임피던스와 매치 시킬 수 있다. 그러나 상기 외측 상부 전극(154)은 선택적이며, 실시 예는 단일 상부 전극과 함께 기능할 수 있다.
전원 공급기(174)는 직경이 플라즈마 처리 챔버(102)의 직경과 실질적으로 동일한 측벽을 갖는 원통형 일 수 있다. 접지 전도체(180)는 하단에서 플라즈마 처리 챔버(102)의 측벽 상부에 연결된다. 상부 전력 공급 로드(176)는 접지 전도체(180)의 상부 표면 중앙부를 통과한다. 접지 전도체(180)와 상부 전력 공급 로드(176) 사이의 접촉부에는 절연 부재(182)가 개재된다.
전극 지지부(160)는 그 상측 표면상의 하부 전원 공급 로드(184)와 전기적으로 연결된다. 하부 전원 공급 로드(184)는 커넥터를 통해 상부 전원 전원 공급(176)에 연결된다. 상부 전력 전원 공급(176) 및 하부 전원 공급 로드(184)는 고주파 전원(172)으로부터 상측 전극(150)으로 고주파 전력을 공급하기 위한 전력 공급 로드를 형성한다. 가변 콘덴서(186)는 하부 전원 공급 로드(184) 내에 제공된다. 가변 콘덴서(186)의 커패시턴스를 조정함으로써, 고주파 전력이 고주파 전원 (160)으로부터 인가될 때, 내측 상부 전극(172) 바로 아래에 형성된 전계 세기에 대한 외측 상부 전극(154) 바로 아래에 직접 형성된 전계 세기 상대적인 비율이 조절될 수 있다. 상부 전극(150)의 내측 상부 전극(152)은 저역 통과 필터(LPF)(188)와 전기적으로 연결된다. LPF (188)는 고주파 전원(130)으로부터 접지로 저주파를 통과시키고 고주파 전원(172)으로부터 고주파를 차단한다. 시스템의 저부, 하부 전극(120)의 일부를 형성하는 서셉터(108)는 고역 통과 필터(HPF)(190)와 전기적으로 연결된다. HPF(190)는 고주파 전원(172)으로부터 접지로 고주파를 통과시킨다.
플라즈마 처리 시스템(100)의 구성 요소는 제어 유닛(192)으로 연결되고 이에 의해 제어될 수 있으며, 제어 유닛은 대응하는 저장 유닛(194) 및 사용자 인터페이스(196)에 연결될 수 있다. 사용자 인터페이스(196)를 통하여 다양한 플라즈마 처리 동작이 실행될 수 있으며, 다양한 플라즈마 처리 레서피 그리고 동작이 저장 유닛(194)에 저장될 수 있다. 따라서, 주어진 기판은 다양한 마이크로 제조 기술로 플라즈마 처리 챔버 내에서 처리될 수 있다. 동작시에, 플라즈마 처리 장치는 상부 및 하부 전극을 사용하여, 처리 공간 PS(106)에서 플라즈마를 생성하도록 한다. 다음에 이와 같이 생성된 플라즈마가 플라즈마 에칭, 화학 기상 증착, 유리 재료의 처리 및 박막 태양 전지, 기타 광전지 및 평판 디스플레이용 유기/무기 플레이트와 같은 대형 패널의 처리와 같은 다양한 유형의 처리에서 타겟 기판(기판 W(110) 또는 처리 될 임의의 재료와 같은)을 처리하기 위해 사용될 수 있다.
제어 유닛(192)은 하나 이상의 프로세서, 마이크로 컴퓨터, 컴퓨팅 유닛 등을 포함할 수 있다. 저장 유닛(194)은 메모리를 포함할 수 있고, 본원 명세서에서 설명된 다양한 기능을 수행하기 위해 제어 유닛(192)에 의해 실행되는 명령을 저장하기 위한 비 일시적 컴퓨터 판독가능 저장 매체의 예이다. 예를 들어, 저장 유닛(194)은 일반적으로 휘발성 메모리 및 비휘발성 메모리(예를 들어, RAM, ROM 등)를 모두 포함할 수 있다. 메모리는 본 명세서에서 메모리 또는 컴퓨터 판독 가능 저장 매체로 지칭 될 수 있다. 메모리는 본원 명세서 실시 예에서 설명된 동작 및 기능을 수행하도록 구성된 특정 머신으로서, 제어 유닛(190)에 의해 실행될 수 있는 컴퓨터 프로그램 코드로서 컴퓨터 판독 가능, 프로세서 실행 가능 프로그램 명령들을 저장할 수 있다.
메모리는 하나 이상의 애플리케이션(도시되지 않음)을 추가로 저장할 수 있다. 상기 애플리케이션은 사전 구성/설치 및 다운로드 가능한 응용 프로그램을 포함할 수 있다.
특정 실시 예에서, 국소화된(초국소화된) 플라즈마 소스(198)는 웨이퍼 제조 공정에서 균일성을 다루기 위해 위치된다. 이러한 국부적 플라즈마 소스(198)는 기판(W)(110)의 에지를 향해 배치될 수 있다. 특히, 국부적 플라즈마 소스(198) 또는 이러한 구조의 어레이는 플라즈마 처리 시스템 또는 장치(100)의 웨이퍼 다이 플랫폼의 에지에 위치된다. 예를 들어, 국부적 플라즈마 소스(198) 또는 그러한 구조의 어레이는 웨이퍼(W)(110) 에지 위의 좁은 갭 반응기에 그와 같은 국부적 플라즈마 소스(198)를 위치시킴으로써 플라즈마의 극한 에지에 영향을 줄 수 있다. 특정 실시 예에서, 플라즈마 소스(198)의 방사상 방사 선형 또는 원주위 어레이는 전체 웨이퍼(W)(110)에 걸쳐 공간적으로 제어 가능한 플라즈마를 생성하는데 사용될 수 있다.
도 2는 국부적 플라즈마 소스 또는 공진 요소(198)의 예를 도시한다. 플라즈마 소스 또는 요소(198)는 하기에서 더욱 설명하는 바와 같이 플라즈마 소스 또는 공진 요소의 어레이의 일부일 수 있다. 플라즈마 소스 또는 요소(198)는 RF 또는 마이크로파 전력 또는 전류 소스(200)에 의해 구동되는 공진 구조로서 고려될 수 있다. 전원(200)은 공진 요소(198)에 직접 결합되거나 안테나 (202)를 통해 간접적으로 결합될 수 있다. 일정 실시 예에서, 공진 요소 또는 구조(198)는 전력 또는 전원(200)에 용량적으로 결합된다. 전력 또는 전원(200)은 단일 발전기일 수 있다. 특정 실시 예에서, 공진 요소(198)는 4중 극자 대칭(quadrupole symmetry)을 가질 것이다. 이 예에서, 각각의 공진 요소(198)를 여기 시키는 안테나(202) 부분은 또한 매칭 4중 극자 대칭을 가질 것이다. 안테나(202)는 안테나의 어레이 일 수 있다. 안테나 또는 안테나 어레이는 연속파(CW) 또는 펄스 방식으로 동작할 수 있다. 펄스 방식은 더 높은 피크 전력을 허용할 수 있다
공진 구조 어레이의 일부로서 플라즈마 소스 또는 공진 요소(198)는 VHF(30-300 MHz), UHF 밴드(300 MHz 내지 1 GHz), L 대역(1-2GHz), S 대역(2-4GHz), C 대역(4GHz ~ 8GHz), X 대역(8GHz ~ 12GHz)에서 전력 또는 전류 소스(200)로 구동될 수 있다. 특히, 관심의 무선 주파수(RF)는 플라즈마 소스 또는 공진 요소(198)를 충전하고, 관심의 주파수는 개별 요소의 공진 주파수에 의해 결정되며, 이들 개별 요소의 공진 주파수는 다시 이들을 둘러싸는 기하학적 구조 및 유전체 매체에 의존한다
도 2에 도시된 실시 예에서, 전원(200)은 이 실시 예에서 직사각형 단면(204a 및 204b)을 갖는 레일로서 도시된 병렬 전도체를 따라 전송한다. 이 같은 한 쌍의 레일(204a 및 204b)은 횡 전자기(TEM) 전송 라인을 형성한다. TEM 레일(204a 및 204b)에서 각각의 전류 흐름은 화살표(206a 및 206b)로 표시된다.
명확성을 위해, 플라즈마 소스 또는 공진 요소(198)의 부분적으로 도시된 도면이 도 2의 하단에 도시되어있다. 가독성을 높이기 위해 구조의 후면 부분만 도시된다. 이 예에서, 부분적으로 예시된 공진 요소(198)는 2 개의 거울 대칭 평면을 가지며; 그러나다른 비대칭 구성이 구현될 수 있다. 플라즈마 소스 또는 요소(198)는 TEM 레일(204a 및 204b)에 의해 공진 요소(198)를 주 전송 라인에 연결하는 한 쌍의 자기 결합 코일(208a 및 208b)을 포함한다. 자기 결합 코일(208a 및 208b) 각각은 상부 플레이트(210a 및 210b) 및 하부 플레이트(211a 및 211b)로 표현되는 한 쌍의 용량성 구성 요소들로 종단된다. 따라서, 각각의 용량성 소자는 각각 상부 플레이트(210a 및 210b) 및 하부 플레이트(211a 및 211b)를 포함한다. 이 예에서, 2 개의 용량성 소자의 하부 플레이트(211)는 각각 유도성 성분으로서 작용하고 (212a 및 212b)로 표시되는 2 개의 반원 루프 각각의 일단에 연결된다. 따라서 이들은 두 개의 유도성 루프이다. 각 유도성 루프에는 두 개의 단부 또는 네 개의 단부가 있다. 이들 4 개의 단부는 4 개의 용량성 소자(210 및 211)에 연결된다.
용량성 소자(210 및 211) 및 이들의 대응하는 유도성 성분 요소(212a 및 212b)는 LC 회로를 형성한다. 이러한 공진 회로에서, 저장된 에너지는 공진 주파수에서 커패시터와 인덕터 사이에서 교환된다. 특정 실시 예에서, 어레이의 유도성(212a 및 212b) 및 용량성 구성 요소(210 및 211)는 동일한 크기를 갖는다. 특정 실시 예에서, 어레이의 유도성 구성 요소(212a 및 212b) 및 용량성 구성 요소(210 및 211)는 상이한 크기를 갖는다. 공진 요소(198)는 유도 요소(212a 및 212b)에 의해 생성 된 변화하는 자계가 처리 영역(PS)(106) 내로 연장되는 방식으로 위치되며; 패러데이 법칙에 의해 변화하는 자계는 변화하는 전계를 유도하고, 이 같이 변화하는 전계는 전력을 플라즈마의 전자에 결합 시켜서 플라즈마가 생성 및 유지될 수 있게 한다. 공진 구조의 기하학적 크기는 공진 주파수에서 전자기 방사선의 공간 파장과 같거나 이보다 상당히 작을 수 있다. 유도성 소자(212a 및 212b)에 의해 형성된 하부 루프가 근처의 플라즈마와 고체 표면 사이의 계면(interface)에 의해 형성된 평면에 평행한 평면에 놓이는 경우, 유도된 전계는 플라즈마 계면에 평행하므로 그 진폭은 상기 플라즈마 계면에서 연속적이며 플라즈마로 침투할 수 있다.
도 2에 도시된 실시 예에서 전자기 전력은 상부 유도성 루프(208)를 통해 공진 구조에 유도적으로 결합된다. 그러나전자기 전력은 또한 4 개의 용량성 요소(210a, 210b, 211a 및 211b)에 직접 용량적으로 결합될 수 있다. 전자기 전력은 또한 용량성 유도 방식으로 혼합되어 결합될 수 있다. 공진 요소(198)가 4중 극자 대칭 또는 거울 대칭을 갖는 것은 중요하지 않다.
공진 구조(198)는 구동 주파수가 다른 공진 구조(198)의 공진 주파수 근처에 있도록 구동될 수 있다. 플라즈마의 존재 하에서, 공진 구조(198)의 공진 주파수는 오리지널 공진 주파수로부터 벗어날 수 있다. 전력이 오리지널 공진 주파수로 계속 전달된다면, 더 적은 전력이 플라즈마 소스 또는 공진 구조(198)로 전달될 것이다. 플라즈마 밀도는 일반적으로 무선 주파수(RF) 전력에 비례하기 때문에, 한 요소(즉, 플라즈마 소스 또는 공진 구조(198))에 대한 전력의 감소는 그와 같은 요소(즉, 플라즈마 소스 또는 공진 구조(198))에 의해 유지되는 밀도의 감소를 초래할 수 있다. 플라즈마 소스 또는 공진 구조(198)의 어레이에서, 이 같은 어레이는 플라즈마 소스 또는 공진 구조(198) 중 하나가 어레이의 공진 구조 또는 플라즈마 소스(198)를 지배하는 것을 방지하는 플라즈마 밀도에 대한 네가티브 피드백을 보장한다. 이와 같이 하여 모든 구조 또는 플라즈마 소스(198) 또는 어레이가 거의 동일한 전력이 각 구조 또는 플라즈마 소스(198)로 전달되도록 보장한다. 그러나 다른 실시 예에서, 전력 분배 구성요소는 하나 이상의 구조에 대하여 전력 및/또는 주파수를 변환시키기 위해 전력 공급과 구조 사이에 배치될 수 있다. 예를 들어, 전력 분배 구성 요소는 전원에 의해 제공되는 전력 신호의 전력 및/또는 주파수를 변경 시키도록 배열된 하나 이상의 트랜지스터를 포함할 수 있다.
공진 구조(198)의 크기는 그 공진 주파수에 영향을 줄 수 있다. 그 구조가 작을수록 공진 주파수가 높아진다. 저주파 단부에서, 공진 구조(198)의 크기는 전형적으로 300 mm의 웨이퍼 크기의 몇 배인 반응기의 기하학적 크기에 의해 제한된다. 알루미나 내에 매립될 때 200 mm 범위의 공진 구조는 55 MHz의 공진 주파수를 갖는다. 이에 비해 55MHz의 반 자유 공간 파장은 2727mm이다. 특정 실시 예에서, 공진 주파수는 대략 2 내지 8 GHz이다. 특정 실시 예에서, 공진 주파수는 대략 100 MHz 내지 15 GHz이다. 특정 실시 예에서, 공진 주파수는 용량성 성분 및 유도성 구성 요소의 배열 및 크기에 의해 결정된다.
위상 수학적으로, 이러한 구조는 더 높은 주파수에서 동작하는 공진 구조 (198)와 동일하다. 이러한 구조는 용량성 구조에서 각각의 단부에서 종결되는 2 개의 루프를 포함할 수 있다. 두 루프 사이에는 상호 용량 결합이 있다. 이것은 전류 순환 방향의 퇴화를 분할하고 여기 주파수에 따라 병렬 또는 역 병렬 전류 흐름을 허용한다. 용량성 소자의 접힌 구조는 구조의 기하학적 크기를 증가시키지 않고 커패시턴스를 증가시킨다. 원통형 구조에서, 이들 구조는 원의 일부상에 놓이도록 곡선화될 수 있다. 예를 들어, 하나 이상의 이러한 구조 세트는 세그먼트화된 고리를 형성하는 특정 반경에서 반응기의 대칭축을 둘러 쌀 수 있다. 한 세트의 그와 같은 세그먼트화된 반경은, 상이한 반경에서 예를 들어 반응기의 상부 전극을 커버한다. 자유 공간 반 파장에 비해 작은 크기는 이러한 구조는, 이들 구조가 자유 공간 전자기파에 결합되지 않음을 의미한다는 점에 유의해야 한다. 플라즈마에 결합하는 필드는 전류가 인덕터를 통해 커패시터로부터 커패시터로 전달될 때 생성되는 근거리 필드이다. 유도 소자가 플라즈마에 가장 가깝도록 구조의 방향을 선택했다. 이는 플라즈마 영역에 도달하는 필드(fields)가 주로 구조의 유도 부분을 통과하는 전류에 의해 생성되는 변화하는 자계에 의해 유도된 전계에 기인한다는 것을 의미한다. 역 병렬 동작 모드에서, 이들 필드는 공진 소자로부터 빠르게 떨어져 나가고, 병렬 동작 모드에서는 플라즈마 영역으로 더 연장된다. 따라서 여기 주파수를 변경함으로써 전계의 침투 및 플라즈마 발생 영역이 변경될 수 있다. 서로 다른 진폭으로 두 주파수를 동시에 여기 시킴으로써 여기 필드의 침투 깊이를 임의로 제어할 수 있다.
공진 구조(198)는 용량성 소자가 플라즈마에 가장 근접하도록 배향될 수 있으며; 이는 플라즈마로의 결합이 용량성 소자에 의해 생성된 근접 필드(near fields)로부터 기인하도록 허용할 수 있다. 이들은 일반적으로 플라즈마 표면에 수직으로 편광되는 반면, 도시된 기하학적 구조에 대해 상기에서 논의 된 유도장은 플라즈마 표면에 평행하다.
플라즈마 처리에 통상적으로 사용되는 압력에서 이러한 공진 구조에 의해 생성된 플라즈마는 그 같은 크기이거나 그 이상의 크기를 갖기 때문에, 주파수 범위의 상단에서 대략 10mm보다 작은 크기는 덜 유용할 수 있다. 매우 국소화된 플라즈마가 요구되는 애플리케이션에서, 작은 구조 및 따라서 고주파가 요구될 수 있다. 매우 국소화된 플라즈마의 경우, 플라즈마가 작고 비교적 높은 플라즈마 밀도를 갖는 것이 바람직할 수 있다. 이것은 웨이퍼의 일부에 측정 가능한 효과를 갖기 위해 특히 실현될 수 있다. 고주파수에서의 동작의 특별한 이점은 작은 크기의 공진 구조(198)가 고주파수에서 동작하고, 고주파수는 전형적으로 더 높은 플라즈마 밀도를 생성한다는 것이다. 이 것은 높은 주파수는 이온의 가속이 아닌 전자 가열에 우선적으로 전력을 연결하고, 높은 주파수는 더 높은 밀도의 플라즈마로 전파될 수 있기 때문이다.
국소화된 플라즈마를 갖는 것이 바람직한 상황에서, 공진 소자는 플라즈마와 고체 벽 사이의 계면을 따라 전파되는 표면 모드를 여기 시키지 않는 것이 유리하다. 이러한 모드는 공진 소자로부터 멀리 전파되어 제어하기 어렵다. 도 2에 도시된 소자는 4 중 극자 대칭(quadrupole symmetry)을 가지며 표면 모드와 잘 결합되지 않는 전계 패턴을 생성한다. 오히려 이 4 중 극자 공진 구조에 의해 생성된 전계 패턴은 하단 2 개의 반 루프 아래에 전류 링을 생성한다.
구조 또는 플라즈마 소스(198)의 크기는 대략 10 mm 정도이며, 관심 있는 무선 주파수(RF)의 대략 1/4 파장이다. 용량성 구성 요소(210a 및 210b) 및 유도성 구성 요소(212a 및 212b)는 폭이 대략 4 mm 내지 8 mm 일 수 있다.
도 3은 가스 유입구 및 가드를 갖는 국부적 플라즈마 소스 또는 요소를 도시한다. 구조 또는 플라즈마 소스(198)가 TEM 레일(204a 및 204b)에 연결된 것으로 도시된다. TEM 레일의 폭은 (300)으로 표시되며, 이러한 폭(300)은 대략 2mm 일 수 있다.
가스 주입 홀(302)은 구조 또는 플라즈마 소스(198)내에 포함되어 플라즈마 소스(198)에 의해 제공된 고밀도 플라즈마 내로 국소화된 가스의 주입을 허용하여 라디칼을 생성할 수 있다. 다시 말해서, 각각의 국부적 플라즈마 소스(198)는 각각의 플라즈마 소스(198)에 도입된 국부화된 가스를 여기 시킨다. 웨이퍼 제조 공정에서, 작업 가스가 도입되어 라디칼을 형성한다. 가스는 플라즈마를 통해 송풍되어 전자가 가스 분자와 반응하여 이들을 분리하여 반응성 화학 종을 형성하도록 한다. 가스 주입구(302)는 가스 공급 라인(140)으로부터 반응성 가스를 수용할 수 있으며, 상기 도 1에 도시된 바와 같이 가스 유입구(158)의 일부일 수 있다.
특정 실시 예에서, 가스 주입구를 차폐하는 가스 구멍 점화 억제 구조(suppressor structure)(304)가 포함될 수 있다. 상기 억제 구조(304)는 상기 구조 또는 플라즈마 소스(198) 내에서 부주의 한 점화를 방지하기 위해 사용된다. 억제 구조(304)는 가스 주입구(302) 내에서 부주의한 점화를 야기할 수 있는 자계 또는 전계로부터의 차폐물로서 효과적으로 작용할 수 있다. 공진 구조가 4중 극자 대칭을 가지는 경우, 대칭에 의해 주입구 축에 평행한 가스 주입구 내에 진동 전계가 없기 때문에 이러한 억제 구조는 필요하지 않다.
도 4는 국부적 플라즈마 소스 또는 요소의 어레이를 도시한다. 어레이(400)는 198a, 198b, 198c, 198d, 198e, 198f, 198g, 198h 및 198i로 식별되는 다중 구조 또는 플라즈마 소스를 포함한다. 특정 실시 예에서, 어레이(400)는 세라믹(402) 내에 싸여있다. 세라믹(402)은 알루미나를 포함한다. 세라믹으로 포장하면 어레이가 플라즈마 호환이 가능하다. 세라믹(402)의 표면은 국부적인 응력 집중을 피하기 위해 매끄러워야 한다.
도 1을 참조하여 상기 설명한 바와 같이. 실시 예에서, 어레이(400)는 플라즈마 프로세싱 시스템 또는 장치(100)의 웨이퍼 다이 플랫폼의 에지에 위치될 수 있다. 특정 실시 예에서, 어레이(400) (또는 어레이들)은 프로세싱 시스템 또는 장치(100)의 웨이퍼 다이 플랫폼 다양한 위치에 배치된다.
어레이(400)에서 공진 요소(198)는 한 쌍의 TEM 전송 라인(204a 및 204b)에 의해 연결된다. 전력이 분기 네트워크에 의해 공진 소자(198)에 결합되는 다른 구성이 가능하다는 것이 고려된다. 각각의 공진 요소(198)는 그 자신의 전원에 의해 구동될 수 있으며, 이러한 전원은 예를 들어 한 쌍의 트랜지스터일 수 있다. 구조들 또는 플라즈마 소스들의 간격(404)은 관심 주파수(RF)에 기초하여 결정될 수 있다. 주파수 범위의 선택은 파장에 기초하여 선택할 수 있다. 유지되는 RF 전력의 파장이 반응기 또는 시스템(100)의 기하학적 크기 중 하나와 유사하거나 더 작을 때, 플라즈마는 "모드"를 형성하는 경향이 있을 것이며, 상기 모드의 형태가 플라즈마의 존재 하에서 전자기파의 전파 특성에 의해 결정된다. 2-8 GHz의 마이크로파 범위에서 파장은 전형적인 CCP 반응기에서의 갭의 간격보다 작거나 비슷하다. 공진 소자가 웨이퍼에 미치는 영향이 연속적 이도록 충분히 가깝게 배치하는 것이 바람직할 수 있으므로, 이보다 높은 주파수 범위가 바람직할 수 있다.
하나의 모드를 선택하는 기하학적 구조가 없다면, 고주파에서, 매우 가까운 주파수를 갖는 상이한 패턴을 갖는 다수의 모드가 일반적으로 존재한다. 필드- 플라즈마 커플링의 비선형 특성은 제어하기 어려운 이들 모드간 전환을 유발한다. 이러한 어려움으로 인해 2.45GHz 반응기의 유용성에 제약이 따른다. 기하학적 공진 구조는 특정 동작 모드에서 선택될 수 있으며, 따라서 모드 호핑(mode hopping) 문제를 피할 수 있다. 공진 구조를 보다 콤팩트하게 만드는 더 높은 주파수로 가능 것이 가능하다.
예를 들어, 5GHz의 관심 무선 주파수(RF)에서, 알루미나(402)내에 싸인 어레이(400)는 10mm의 파장을 가질 것이다. 공진 구조 또는 플라즈마 소스(198) 사이의 간격(404)은 약 10 mm 일 것이다. 상기 도2에서 도시한 바와 같이 RF/마이크로파 전력/전류 소스(200)로부터의 자계가 정현파이기 때문에, 공진 구조 또는 플라즈마 소스(198)는 서로 안티-노드 거리로 이격될 수 있다. 특히, 공진 구조 또는 플라즈마 소스(198)는 TEM 레일(204a 및 204b)을 따라 자계 안티-노드에 배치될 수 있다.
비록 도 4에 도시된 구조들이 선형이지만, 반응기에서의 실시는 예를 들어 많은 다른 기하학적 구조를 가질 수 있으며, 상기 어레이는 도 6에서 아크 또는 공진 요소를 따라 배열될 수 있으며, 이들 요소 중 하나 이상의 어레이가 실질적으로 축 대칭인 플라즈마를 여기 시킬 수 있도록 아크 또는 완전한 원형 일 수 있다. 더 큰 반경을 따라 배열된 연속 어레이는 전체 반도체 웨이퍼에 걸쳐 커버리지를 제공하는데 사용될 수 있다.
공진 요소의 공진 주파수는 이들의 기하학적 구조에 의존하기 때문에, 각각의 공진 요소는 다른 공진 주파수를 가질 수 있다. 따라서, 상이한 여기 주파수를 선택함으로써 특정 공진 요소 또는 특정 공진 요소 어레이를 선택적으로 여기 시킬 수 있다. 개별적인 또는 요소들의 어레이는 시분할 또는 다중 동시 주파수 방식으로 여기 될 수 있으며; 다수의 동시 주파수에 의한 여기의 경우, 플라즈마 공간 균일성을 제어하기 위해 각 주파수의 진폭이 조정될 수 있다. 시분할 또는 펄스 여기의 경우, 펄스의 시퀀싱은 하부 전극의 RF 바이어스 또는 처리 가스의 시간 의존적 주입과 같은 다른 시간 의존적 처리와 조정될 수 있다. 이것은 다양한 특성, 특히 플라즈마의 공간 프로파일의 제어를 허용 할 것이다.
도 5는 초 국소화된(ultra-localized) 플라즈마 소스 및 균일성 제어를 실현하기 위한 예시적인 프로세스(500)를 도시한다. 특히, 이 프로세스는 웨이퍼 에칭 프로세스에서 패턴 전사를 위해 사용될 수 있다. 이 방법이 설명되는 순서는 제한으로서 해석되지 않아야 하며, 설명된 방법 블록을 임의의 수로 조합하여 상기 방법 또는 대안 방법을 실현할 수 있다. 부가적으로, 개별 블록들은 본원 명세서에서 설명된 주제의 사상 및 범위를 벗어나지 않는 한도에서 상기 방법으로부터 삭제될 수 있다. 또한, 본 방법은 본 발명의 범위를 벗어나지 않는 한, 임의의 적합한 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 실현 될 수 있다.
블록(502)에서, 하나 이상의 가스가 플라즈마 챔버로 제공된다. 상기 플라즈마 챔버는 플라즈마 챔버 내에 배치된 구조의 어레이를 포함하고, 각각의 구조는 공진 회로를 형성하는 용량성(C) 성분 및 유도 성(L) 성분을 포함한다.
블록(504)에서, 발진 전류가 전원으로부터 상기 구조의 어레이로 제공된다. 상기 발진 전류는 용량성(C) 성분에 근접한 전계를 생성하기 위해 공진 주파수에서 용량성(C) 성분을 충전하고, 전계는 유도성(L) 성분에 근접한 자계를 유도한다. 상기 발진 전류는 상기 구조의 위치를 서로 결정하는 전류 파를 포함할 수 있다. 공진 주파수는 상기 구조의 크기에 기초하여 결정될 수 있다. 상기 구조는 다른 구조와 유사한 기계적 크기를 가질 수 있다.
블록(506)에서, 플라즈마 상태는 상기 구조와 관련된 전계 또는 자계에 근접한 하나 이상의 프로세스 가스 내에서 충전된다.

Claims (23)

  1. 플라즈마 처리 시스템에서 플라즈마를 생성하기 위한 장치에 있어서,
    구조의 어레이(array of structures)로서, 구조 각각이:
    유도성(L) 성분; 그리고
    용량성(C) 성분-상기 유도성 성분 및 용량성 성분은 공진 회로를 형성함-; 그리고
    상기 어레이에 결합된 전원을 포함하고, 상기 전원은 상기 구조들 중 하나 이상의 공진 주파수 또는 그 주변 주파수로 상기 공진 회로에 전력을 공급하도록 구성되는, 플라즈마를 생성하기 위한 장치.
  2. 제 1 항에 있어서, 상기 전원은 상기 구조에 용량성으로 결합됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  3. 제 1 항에 있어서, 상기 구조들 각각은 공진 주파수의 자유 공간 파장보다 작은 크기를 포함함을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  4. 제 1 항에 있어서, 상기 어레이의 구조 각각의 유도성 성분 및 용량성 성분은 동일한 크기를 가짐을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  5. 제 1 항에 있어서, 상기 어레이의 하나 이상의 구조의 유도성 성분 및 용량성 성분은 상이한 크기를 가짐을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  6. 제 1 항에 있어서, 상기 구조의 어레이는 세라믹으로 둘러싸임을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  7. 제 6 항에 있어서, 상기 세라믹은 알루미나임을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  8. 제 1 항에 있어서, 상기 어레이에 대향이거나 또는 그에 인접하여 배치된 기판 척을 더욱 포함함을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  9. 제 1 항에 있어서, 상기 장치 내에 배치된 기판 척을 더욱 포함하고, 상기 어레이는 상기 기판 척 주위에 배치됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  10. 제 1 항에 있어서, 상기 공진 주파수는 대략 2 내지 8GHz 임을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  11. 제 1 항에 있어서, 상기 공진 주파수는 대략 100MHz 내지 15GHz 임을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  12. 제 1 항에 있어서, 상기 공진 주파수는 용량성 및 유도성 성분의 배열 또는 크기에 의해 결정됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  13. 제 1 항에 있어서, 용량성(C) 성분 및 유도성 (L) 성분은 폭이 대략 4mm 내지 8mm 임을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  14. 제 1 항에 있어서, 상기 구조 각각은 서로 대략 10mm 이격됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  15. 제 1 항에 있어서, 상기 구조 각각에 포함된 국부적 가스 소스를 추가로 포함하고, 가스가 국부적 소스 각각에서 도입되고 각각의 구조에 의해 여기 됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  16. 제 15 항에 있어서, 상기 국부적 가스 소스 각각이 상기 구조 내에서 부주의한 점화를 방지하기 위한 가드를 포함함을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  17. 제 1 항에 있어서, 상기 전원 공급 장치와 상기 구조 사이에 배치된 전력 분배 구성 요소를 더욱 포함하고, 상기 전력 분배 구성 요소는 상기 구조의 어레이 내의 상기 구조에 인가된 전력 또는 주파수를 변경하도록 구성됨을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  18. 제 17 항에 있어서, 상기 전력 분배 구성 요소는 적어도 하나의 구조에 전기적으로 연결된 적어도 하나의 트랜지스터를 포함함을 특징으로 하는 플라즈마를 생성하기 위한 장치.
  19. 플라즈마 처리 방법으로서,
    하나 이상의 처리 가스를 플라즈마 챔버에 제공하는 단계-상기 플라즈마 챔버는 플라즈마 챔버 내에 배치된 구조의 어레이를 포함하고, 각각의 구조는 공진 회로를 형성하는 용량성(C) 성분 및 유도성(L) 성분을 포함 함-;
    전원으로부터 구조의 어레이(array of structures)로 발진 전류(oscillating current)를 제공하는 단계-상기 발진 전류를 제공하는 것은 용량성 성분(C)에 근접한 전계를 생성하기 위해 공진 주파수로 용량성(C) 성분을 충전하고, 상기 전계는 유도성(L) 성분에 근접한 자계를 유도함-; 그리고
    상기 구조와 관련된 전계 또는 자계에 근접한 하나 이상의 처리 가스 내에서 플라즈마 상태를 점화시키는 단계를 포함하는 플라즈마 처리 방법.
  20. 제 19 항에 있어서, 상기 발진 전류를 제공하는 단계는 상기 구조들 각각의 위치를 서로로부터 결정하는 전류 파를 포함함을 특징으로 하는 플라즈마 처리 방법.
  21. 제 20 항에 있어서, 상기 공진 주파수는 상기 구조의 하나 이상의 크기에 적어도 부분적으로 기초함을 특징으로 하는 플라즈마 처리 방법.
  22. 제 20 항에 있어서, 상기 구조의 어레이는 상기 구조 각각에 대한 유사한 기계적 크기를 포함함을 특징으로 하는 플라즈마 처리 방법.
  23. 제 20 항에 있어서, 상기 구조의 어레이는 상기 어레이 내의 다른 구조와 상이한 기계적 크기를 갖는 적어도 하나의 구조를 포함함을 특징으로 하는 플라즈마 처리 방법.
KR1020207008849A 2017-10-02 2018-09-28 웨이퍼 제조 프로세스에서 초 국부적 및 플라즈마 균일성 제어 KR20200051663A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/723,005 US11551909B2 (en) 2017-10-02 2017-10-02 Ultra-localized and plasma uniformity control in a plasma processing system
US15/723,005 2017-10-02
PCT/US2018/053373 WO2019070524A1 (en) 2017-10-02 2018-09-28 PLASMA UNIFORMITY CONTROL AND ULTRA-LOCALIZED IN A MANUFACTURING PROCESS

Publications (1)

Publication Number Publication Date
KR20200051663A true KR20200051663A (ko) 2020-05-13

Family

ID=65896170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207008849A KR20200051663A (ko) 2017-10-02 2018-09-28 웨이퍼 제조 프로세스에서 초 국부적 및 플라즈마 균일성 제어

Country Status (7)

Country Link
US (1) US11551909B2 (ko)
JP (1) JP7264576B2 (ko)
KR (1) KR20200051663A (ko)
CN (1) CN111183504B (ko)
SG (1) SG11202002555WA (ko)
TW (1) TW201929031A (ko)
WO (1) WO2019070524A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852197B2 (ja) * 2018-01-29 2021-03-31 株式会社アルバック 反応性イオンエッチング装置
US11037765B2 (en) * 2018-07-03 2021-06-15 Tokyo Electron Limited Resonant structure for electron cyclotron resonant (ECR) plasma ionization
WO2023023289A1 (en) * 2021-08-20 2023-02-23 Tokyo Electron Limited Apparatus for plasma processing
KR102399398B1 (ko) * 2021-09-27 2022-05-18 아리온주식회사 알에프 스플리트 조정 시스템

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997294A (en) * 1955-09-15 1961-08-22 Gen Electric Apparatus for feeding, cutting and stacking material for capacitors
US4864464A (en) * 1989-01-09 1989-09-05 Micron Technology, Inc. Low-profile, folded-plate dram-cell capacitor fabricated with two mask steps
US6353206B1 (en) * 1996-05-30 2002-03-05 Applied Materials, Inc. Plasma system with a balanced source
US6178920B1 (en) * 1997-06-05 2001-01-30 Applied Materials, Inc. Plasma reactor with internal inductive antenna capable of generating helicon wave
US6388226B1 (en) * 1997-06-26 2002-05-14 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
US7100532B2 (en) 2001-10-09 2006-09-05 Plasma Control Systems, Llc Plasma production device and method and RF driver circuit with adjustable duty cycle
JP2003234338A (ja) * 2002-02-08 2003-08-22 Tokyo Electron Ltd 誘導結合プラズマ処理装置
EP1480250A1 (en) * 2003-05-22 2004-11-24 HELYSSEN S.à.r.l. A high density plasma reactor and RF-antenna therefor
JP2007258570A (ja) 2006-03-24 2007-10-04 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置
US20170213734A9 (en) 2007-03-30 2017-07-27 Alexei Marakhtanov Multifrequency capacitively coupled plasma etch chamber
US7976674B2 (en) * 2007-06-13 2011-07-12 Tokyo Electron Limited Embedded multi-inductive large area plasma source
JP5165993B2 (ja) 2007-10-18 2013-03-21 東京エレクトロン株式会社 プラズマ処理装置
WO2009093459A1 (ja) 2008-01-25 2009-07-30 Mitsui Engineering & Shipbuilding Co., Ltd. 原子層成長装置および薄膜形成方法
US9017533B2 (en) 2008-07-15 2015-04-28 Applied Materials, Inc. Apparatus for controlling radial distribution of plasma ion density and ion energy at a workpiece surface by multi-frequency RF impedance tuning
JP5391659B2 (ja) * 2008-11-18 2014-01-15 東京エレクトロン株式会社 プラズマ処理装置
JP5916044B2 (ja) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2012133899A (ja) * 2010-12-20 2012-07-12 Nissin Electric Co Ltd プラズマ処理装置
JP5781349B2 (ja) 2011-03-30 2015-09-24 東京エレクトロン株式会社 プラズマ処理装置
JP5712874B2 (ja) * 2011-09-05 2015-05-07 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US9881772B2 (en) 2012-03-28 2018-01-30 Lam Research Corporation Multi-radiofrequency impedance control for plasma uniformity tuning
JP6084784B2 (ja) * 2012-06-14 2017-02-22 東京エレクトロン株式会社 プラズマ処理装置、プラズマ生成装置、アンテナ構造体、及びプラズマ生成方法
EP2878005B1 (en) 2012-07-27 2019-05-15 TRUMPF Huettinger Sp. Z o. o. Apparatus for generating and maintaining plasma for plasma processing
US9293926B2 (en) 2012-11-21 2016-03-22 Lam Research Corporation Plasma processing systems having multi-layer segmented electrodes and methods therefor
US10049948B2 (en) * 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US20140175055A1 (en) * 2012-12-21 2014-06-26 Qualcomm Mems Technologies, Inc. Adjustable coil for inductively coupled plasma
US10249511B2 (en) * 2014-06-27 2019-04-02 Lam Research Corporation Ceramic showerhead including central gas injector for tunable convective-diffusive gas flow in semiconductor substrate processing apparatus
JP2017004602A (ja) 2015-06-04 2017-01-05 日新電機株式会社 プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置

Also Published As

Publication number Publication date
TW201929031A (zh) 2019-07-16
US20190103254A1 (en) 2019-04-04
CN111183504A (zh) 2020-05-19
WO2019070524A1 (en) 2019-04-11
JP2021503686A (ja) 2021-02-12
JP7264576B2 (ja) 2023-04-25
CN111183504B (zh) 2023-07-21
SG11202002555WA (en) 2020-04-29
US11551909B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP5717888B2 (ja) プラズマ処理装置
US6451161B1 (en) Method and apparatus for generating high-density uniform plasma
KR100498584B1 (ko) 플라즈마처리장치및플라즈마처리방법
CN111183504B (zh) 制造过程中的超局部和等离子体均匀性控制
JP3739137B2 (ja) プラズマ発生装置及びこのプラズマ発生装置を使用した表面処理装置
JPH09181052A (ja) プラズマ処理装置
JP2016506592A (ja) 均一なプラズマ密度を有する容量結合プラズマ装置
JP2004537830A (ja) 均一なプロセス速度を実現する方法および装置
KR102523730B1 (ko) 이중 주파수 표면파 플라즈마 소스
KR101274515B1 (ko) 플라즈마 처리장치
US11515122B2 (en) System and methods for VHF plasma processing
KR100786537B1 (ko) 반도체 기판 공정 챔버에 사용되는 다중 플라즈마 발생소스
JPH09289099A (ja) プラズマ処理方法および装置
TWI723406B (zh) 電漿處理裝置
JP3676680B2 (ja) プラズマ装置及びプラズマ生成方法
KR100845917B1 (ko) 대면적 플라즈마 처리를 위한 유도 결합 플라즈마 반응기
JP2002100615A (ja) プラズマ装置
JP3883615B2 (ja) プラズマ発生装置およびプラズマ処理装置
JP2000164394A (ja) プラズマ処理装置
KR102194176B1 (ko) 플라스마 처리 장치 및 플라스마 처리 장치의 제어 방법
JP2003224114A (ja) プラズマ処理システム
KR100855880B1 (ko) 기판 처리 장치 및 플라즈마 밀도의 제어 방법
US10825658B2 (en) Antenna and plasma processing apparatus
KR20040069746A (ko) 다중심축을 가지는 안테나와, 이를 채용한 유도 결합형플라즈마 발생 장치
KR200240816Y1 (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal