KR20190143292A - 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 - Google Patents
리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 Download PDFInfo
- Publication number
- KR20190143292A KR20190143292A KR1020180071055A KR20180071055A KR20190143292A KR 20190143292 A KR20190143292 A KR 20190143292A KR 1020180071055 A KR1020180071055 A KR 1020180071055A KR 20180071055 A KR20180071055 A KR 20180071055A KR 20190143292 A KR20190143292 A KR 20190143292A
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- positive electrode
- lithium
- metal oxide
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 및 전해질을 포함하는 리튬 이차 전지로서, 상기 양극이, 층상 구조를 가지며 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함하고, 상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 3% 이하인 리튬 이차 전지에 관한 것이다.
Description
본 발명은 리튬 이차 전지에 관한 것으로, 보다 상세하게는, 고온에서도 우수한 전기 화학 특성을 갖는 리튬 이차 전지에 관한 것이다.
최근 환경 문제가 대두되면서 원자력 발전, 화석연료를 대체할 수 있는 신재생 에너지에 대한 관심이 증대됨에 따라, 신재생 에너지 중 충방전이 가능하여 반복적으로 사용할 수 있는 반영구적인 특성을 가지는 이차전지에 대한 수요가 급증하고 있다.
리튬 이차전지는 우수한 사이클 수명 특성 및 높은 에너지 밀도로 인하여 가장 주목받는 이차전지이다. 이러한 리튬 이차전지의 양극활물질로 LiCoO2 , LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(NiaCobMnc)O2 (이때, a, b, c는 전이금속의 원자분율로서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1임, 이하, NCM계 리튬 산화물이라 함) 등의 다양한 리튬 전이금속 산화물이 개발되었다. 한편, 최근에는 전기 자동차용 전지 등과 같은 고용량 전지에 적용하기 위해, 에너지 밀도가 높은 니켈의 함유량을 증가시킨 고-Ni계열의 NCM계 리튬 산화물의 개발이 활발하게 이루어지고 있다.
그러나 고-Ni계열의 NCM계 리튬 산화물을 적용한 리튬 이차 전지의 경우, 용량 구현 측면에서는 우수한 효과가 있으나, 니켈 함량 증가에 따라 활물질의 구조적 안정성과 화학적 안정성이 떨어져 반복적인 충방전에 의해 활물질 표면 구조가 퇴화되고, 급격한 구조 붕괴를 동반한 발열 반응이 발생하여 전지 안정성이 저하되거나, 구조 변성에 의해 수명 특성이 급격히 저하된다는 문제점이 있다. 이와 같은 현상은 고온 및/또는 고전압 조건에서 심화되며, 특히 니켈 함유량이 전체 전이금속의 80atm% 이상인 양극 활물질을 사용할 경우에는 더욱 두드러진다. 또한, 니켈 함유량이 전체 전이금속의 80atm% 이상인 양극 활물질의 경우, 니켈 함량이 적은 양극 활물질에 비해 고온 조건에서 양이온 혼합이나 비가역 상전이 등이 가속화되어 수명 특성이 열화되는 문제점이 있다.
상기와 같은 문제점을 해결하기 위해 금속 원소들을 도핑하거나 코팅하여 양극 활물질의 구조 안전성을 개선하는 기술들이 시도되고 있으나, 현재까지 제안된 기술로는 용량 특성 및 고온 특성을 모두 충분하게 구현하기는 어려웠다.
따라서, 고용량화에 부합하면서도 고온 특성이 우수한 리튬 이차 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 니켈 함유량이 85atm% 이상인 양극 활물질을 사용하여 고용량 특성을 나타내면서도 고온에서도 우수한 수명 특성을 갖는 리튬 이차 전지를 제공하고자 한다.
일 측면에서, 본 발명은 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 및 전해질을 포함하는 리튬 이차 전지로서, 상기 양극이, 양극 활물질로 층상 구조를 가지며 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함하고, 상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리(LiO6 slab thickness) 변화율이 3% 이하, 바람직하게는 1% 이하인 리튬 이차 전지를 제공한다.
상기 리튬 복합 전이금속 산화물 분말은 SOC 100%로 충전한 상태에서의 Li-O 층간 거리가 SOC 0%인 상태에서의 Li-O 층간 거리 이상일 수 있다.
또한, 상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Lix[NiaCobMncMd]O2
상기 화학식 1에서,
상기 M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, 0.9≤x≤1.2, 0.85≤a≤0.99, 0<b<0.15, 0<c<0.15, 0<d<0.15이다.
또한, 상기 리튬 복합 전이금속 산화물은 그 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함할 수 있다.
다른 측면에서, 본 발명은 층상 구조를 가지며 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함하는 리튬 이차 전지용 양극 활물질을 제공하며, 이때, 상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리(LiO6 slab thickness) 변화율이 3% 이하일 수 있다.
본 발명에 따른 리튬 이차 전지는 니켈을 85atm% 이상 포함하면서, 충방전 시에 리튬 이온 탈리에 따른 Li-O 층간 거리 변화가 적은 양극 활물질을 포함하는 양극을 사용하여, 우수한 용량 특성 및 고온 수명 특성을 나타낸다.
도 1은 제조예 1 ~ 4에 의해 제조된 양극 활물질의 충전상태에 따른 Li-O 층간 거리 변화를 보여주는 그래프이다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 입경 Dn은, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
본 발명자들은 용량 특성과 고온 수명 특성이 모두 우수한 리튬 이차 전지를 개발하기 위해 연구를 거듭한 결과, 특정 SOC 영역에서 Li-O 층간 거리 변화가 적은 고-Ni 양극 활물질을 사용함으로써, 상기 목적을 달성할 수 있음을 알아내고 본 발명을 완성하였다.
종래에는 X선 회절법을 통해 양극 활물질의 결정을 분석하는 것이 일반적이었다. 그러나, 이러한 종래의 방법으로는 정밀한 측정이 어려워 충전 상태에 따른 양극 활물질의 결정 구조 변화를 측정할 수 없었다.
본 발명자들은 Synchroton Radiation을 이용하여 high resolution powder diffraction(이하, HRPD) 데이터를 측정하여 충전 상태에 따른 양극 활물질의 결정 구조 변화를 측정하였으며, 이를 통해, 특정 충전 영역에서 양극 활물질의 Li-O 층간 거리 변화 정도가 고온 수명 특성에 밀접한 영향을 미치는 것을 알아내었다. 구체적으로는, 층상 구조를 가지며 전체 전이금속 중 니켈을 85atm% 이상으로 포함하고, SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 3% 이하인 양극 활물질을 사용할 경우에, 고온 수명 특성이 우수하게 나타났다.
본 발명자들의 연구에 따르면, 유사한 조성을 가지며, 충방전 실시 전에 동일한 Li-O 층간 거리를 갖는 양극 활물질들이라도 SOC 58% 내지 72% 구간에서의 Li-O 층간 거리 변화율에 따라 고온 수명 특성 및 용량 특성이 달라지는 것이 확인되었다.
고-니켈 함유 층상 구조의 양극 활물질에 있어서, SOC 58% 내지 72% 구간에서의 Li-O 층간 거리 변화율이 고온 수명 특성 및 용량 특성에 영향을 미치는 매카니즘은 명확하지는 않으나, 다음과 같이 추측된다. 층상 결정 구조를 갖는 리튬 복합 전이금속 산화물은 Li-O 층과 전이금속층이 교대로 적층된 형태로 이루어져 있으며, 충전 시에 Li-O층에서 리튬이 탈리되면서 빠져나간 리튬 이온을 보상하기 위한 전하 보상에 의해 층간 거리가 변화되게 된다. 통상, SOC 50% ~ 60% 수준까지는 Li-O 층간 거리가 증가하였다가, 충전이 더 진행되면 Li-O 층간 거리가 감소하게 되는데, 니켈 함유량이 85atm% 이상인 양극 활물질의 경우, SOC 58% 이상인 영역에서 Li-O 층간 거리 변화가 감소하는 것으로 나타났다. 그런데, 이와 같은 변화 과정에서 Li-O 층간 거리가 급격하게 감소할 경우, 격자 구조에 변형(strain)이 가중되어 비가역적인 구조 변화가 발생하게 되며, 이로 인해 용량 및 수명 특성이 열화되는 것으로 추측된다.
따라서, 본 발명에서는 SOC 58% 내지 72% 구간에서의 Li-O 층간 거리 변화가 적은 고-니켈 양극 활물질을 적용함으로써, 리튬 이차 전지의 용량 특성 및 고온 수명 특성을 향상시킬 수 있도록 하였다.
보다 구체적으로, 본 발명의 리튬 이차 전지는 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 및 전해질을 포함하며, 이때, 상기 양극은, 양극 활물질로 층상 구조를 가지며, 전체 전이금속 중 니켈의 함유량이 85atm% 이상이고, SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 3% 이하인 리튬 복합 전이금속 산화물 분말을 포함하는 것을 그 특징으로 한다.
이하, 본 발명의 각 구성에 대해 자세히 설명한다.
(1) 양극
본 발명에 따른 양극은 양극 활물질층을 포함하며, 상기 양극 활물질층은 양극 활물질로 층상 구조를 가지며, 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함한다.
상기 리튬 복합 전이금속 산화물은, 예를 들면, 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Lix[NiaCobMncMd]O2
상기 화학식 1에서, 상기 M은 전이금속 사이트에 치환된 도핑원소로, 양극 활물질의 구조 안정성을 향상시켜주는 역할을 한다. 상기 M은, 예를 들면, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소일 수 있다. 바람직하게는 상기 M은 W, Zr, Al, Ti 및 Mg으로 이루어진 군에서 선택된 2종 이상의 원소를 포함하는 것일 수 있다. 더 바람직하게는 상기 M은 W과, Zr, Al, Ti 및 Mg으로 이루어진 군에서 선택된 1종 이상의 원소를 포함하는 것일 수 있다.
상기 x는 리튬 복합 전이금속 산화물 내에서의 리튬의 원자 분율을 의미하며, 0.9≤x≤1.2, 바람직하게는, 1.0≤x≤1.2, 더 바람직하게는 1.0≤x≤1.1일 수 있다.
상기 a는 리튬 복합 전이금속 산화물 내에서의 니켈의 원자 분율을 의미하며, 0.85≤a≤0.99, 바람직하게는 0.85≤a≤0.95일 수 있다. 상기와 같이 니켈을 높은 함량으로 포함할 경우, 우수한 용량 특성을 얻을 수 있다.
상기 b는 리튬 복합 전이금속 산화물 내에서의 코발트의 원자 분율을 의미하며, 0<b<0.15, 바람직하게는 0<b≤0.12일 수 있다.
상기 c는 리튬 복합 전이금속 산화물 내에서의 망간의 원자 분율을 의미하며, 0<c<0.15, 바람직하게는 0<c≤0.1일 수 있다.
상기 d는 리튬 복합 전이금속 산화물 내에서의 도핑 원소 M의 원자 분율을 의미하며, 0<d<0.15, 바람직하게는 0<d≤0.1일 수 있다.
한편, 상기 리튬 복합 전이금속 산화물은 그 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함할 수 있다. 상기와 같은 코팅층이 포함될 경우, 리튬 복합 전이금속 산화물 내의 전이금속과 전해질의 접촉이 억제되어 전해질과의 반응에 의해 리튬 복합 전이금속 산화물의 구조 안정성이 저하되는 것을 방지할 수 있다.
한편, 상기 리튬 복합 전이금속 산화물 내에서 전이금속 원소들의 함량은 위치에 관계없이 일정할 수도 있고, 입자 내부의 위치에 따라 하나 이상의 전이금속 원소의 함량이 변화되는 것일 수도 있다. 예를 들면, 상기 리튬 복합 전이금속 산화물은 Ni, Mn, Co 중 적어도 하나 이상의 성분이 점진적으로 변화하는 농도 구배를 가질 수 있다. 이때, 상기 '점진적으로 변화하는 농도 구배'는 상기 성분들의 농도가 입자 전체 또는 특정 영역에서 연속하여 단계적으로 변화하는 농도 분포로 존재하는 것을 의미한다.
한편, 본 발명에서는 양극 활물질로 SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 3% 이하, 바람직하게는 1% 이하인 리튬 복합 전이금속 산화물 분말을 사용한다.
이때, 상기 SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율은 하기 식(1)을 통해 계산될 수 있다.
식 (1): Li-O 층간 거리 변화율(%) = {(SOC 58%에서의 Li-O 층간 거리 - SOC 72%에서의 Li-O 층간 거리)/ SOC 58%에서의 Li-O 층간 거리} X 100
SOC 58% 내지 72% 구간에서 리튬 복합 전이금속 산화물 분말의 Li-O 층간 거리 변화율이 3%를 초과하는 경우, 고온 충방전 시에 격자 구조에 변형(stain)이 발생하여 Li-O층이 이동하게 되고, 이로 인해 리튬 이동 통로(lithium path)가 막혀 리튬 이온의 이동이 원활하게 이루어지지 못하게 되며, 이로 인해 수명 특성 및 용량 특성이 저하된다.
한편, 충방전 과정에서의 리튬 복합 전이금속 산화물 분말의 Li-O 층간 거리 변화는 리튬 복합 전이금속 산화물의 조성, 도핑 원소 및 코팅 원소의 종류, 입자 크기 등이 복합적으로 작용하여 결정되는 것이며, 어느 하나의 요인으로만 결정되는 것이 아니다.
상기 충전 과정에서의 리튬 복합 전이금속 산화물 분말의 Li-O 층간 거리 변화는 Synchroton Radiation을 이용하여 high resolution powder diffraction(이하, HRPD) 데이터를 측정한 후, 측정된 데이터를 리트벨트 법에 따라 해석함으로써 측정할 수 있다. 구체적으로, 충전 상태에서의 Li-O 층간 거리 변화를 측정하는 방법은 다음과 같다. 먼저, 측정하고자 하는 리튬 복합 전이금속 산화물을 양극 활물질로 포함하는 양극과 리튬 금속 음극 사이에 분리막을 개재하여 코인형 반쪽 전지를 제조한다. 상기와 같이 제조된 다수의 코인형 반쪽 전지를 각각 서로 다른 용량으로 충전시킨다. 그런 다음 각각의 이차 전지를 분해하여 양극을 분리한다. 분리된 양극에서 양극 활물질층을 긁어내어 충전된 상태의 리튬 복합 전이금속 산화물 분말을 얻은 후, 이를 Synchroton Radiation에 넣어 high resolution powder diffraction(이하, HRPD) 데이터를 얻고, 얻어진 데이터를 공간군 R-3m을 결정 구조 모델에 사용했을 때의 리트벨트법 (Ri etveld method)에 의한 결정 구조 해석에 따라 해석함으로써 각각의 충전 상태에서의 리튬 복합 전이금속 산화물 분말의 Li-O 층간 거리를 측정할 수 있으며, 이를 토대로 충전 상태에 따른 Li-O 층간 거리 변화율을 알 수 있다.
또한, 상기 리튬 복합 전이금속 산화물 분말은 SOC 100%로 충전한 상태, 즉, 만충전 상태에서의 Li-O 층간 거리가 SOC 0%인 상태에서의 Li-O 층간 거리 이상일 수 있다.
니켈 함유량이 높은 리튬 복합 전이금속 산화물의 경우, 충방전 과정에서 Li-O 층간 거리가 충전 전에 비해 감소하는 종종 발생한다. 이와 같이 Li-O 층간 거리가 감소하면, 리튬 이온의 이동이 원활하게 이루어지지 못해 수명 특성이 급격히 저하되는 문제점이 발생한다. 이와 같은 Li-O 층간 거리 감소는 충방전 과정에서 격자 구조가 급격하게 변화되면서 발생하게 된다. 그러나, 상기와 같이 SOC 100%로 충전한 상태에서의 Li-O 층간 거리가 SOC 0%인 상태에서의 Li-O 층간 거리 이상인 리튬 복합 전이금속 산화물을 사용할 경우, 리튬 이온의 이동이 원활하게 이루어지기 때문에, 수명 특성의 급격한 퇴화를 방지할 수 있다.
상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98.5중량%의 ?량으로 포함될 수 있다. 양극 활물질이 상기 범위로 포함될 때, 우수한 용량 특성을 나타낼 수 있다.
한편, 본 발명의 양극은 양극 활물질층에 상기 양극 활물질 이외에 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 상기 도전재의 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 상기 바인더의 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기와 같은 양극은 통상의 양극 제조방법에 따라 제조될 수 있으며, 예를 들면, 양극 활물질, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
이때, 상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 양극 합재의 도포 두께, 제조 수율, 작업성 등을 고려하여 양극 합재가 적절한 점도를 갖도록 조절될 수 있는 정도이면 되고, 특별히 한정되지 않는다.
한편, 상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극재의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
(2) 음극
본 발명에 있어서, 상기 음극은, 통상 리튬 이차전지에서 사용되는 것이라면 특별한 제한없이 사용가능하며, 예를 들면, 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함하는 것일 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 당해 기술 분야에서 사용되는 다양한 음극 활물질이 사용될 수 있으며, 특별히 제한되지 않는다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOy (0 < y < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다.
한편, 상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
(3) 분리막
상기 분리막은 음극과 양극 사이에 개재되어 양극 및 음극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
(4) 전해질
상기 전해질로는 리튬 이차전지에 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 특별히 한정되지 않는다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; Ra-CN(Ra는 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, 및 LiCH3SO3으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2C2F5)2), LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 나타내는 리튬 이미드염과 같은 전해질염을 제한 없이 사용할 수 있다. 구체적으로 전해질염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 LiN(C2F5SO2)2으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.8 M 내지 3M, 구체적으로 0.1M 내지 2.5M로 포함될 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 다양한 첨가제들이 사용될 수 있다.
상기 첨가제로는 리튬 비스(플루오로설포닐) 이미드(LiFSI), 리튬 비스(트리플루오로메틸 설포닐)이미드 등과 같은 이미드계 염; 리튬 비스(옥살레이토)보레이트(LiBOB), 리튬 디플루오로(옥살레이토)보레이트(LiOdFB), 트리스(트리메틸실릴) 보레이트(TMSB) 등과 같은 보레이트계 염; 디플루오로포스페이트, 트리스(트리메틸실릴)포스페이트와 같은 포스페이트계 염; 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시에탄올 또는 삼염화 알루미늄 등이 포함될 수 있으며, 상기 첨가제들은 단독 또는 혼합하여 사용될 수 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 각각 0.1중량% 내지 10중량%로 포함될 수 있다.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 더욱 자세히 설명한다.
제조예
1
Ni0 . 88Co0 . 09Mn0 .03(OH)2와 LiOH, ZrO2 , 및 Al(OH)3 을 건식 혼합하고, 760℃로 12시간 동안 소성하여, Al 및 Zr이 도핑된 리튬 복합 전이금속 산화물 분말을 제조하였다.
상기와 같이 제조된 리튬 복합 전이금속 산화물과 H3BO3를 혼합한 후, 350℃로 3시간 동안 열처리하여, 상기 리튬 복합 전이금속 산화물 표면에 B를 포함하는 코팅층을 형성하였다.
제조된 리튬 복합 전이금속 산화물 분말은 16㎛인 입자와 5㎛인 입자가 혼합된 바이모달 입도 분포를 가졌다.
제조예
2
Ni0 . 88Co0 . 09Mn0 .03(OH)2와 LiOH, ZrO2, WO3, 및 Al(OH)3을 건식 혼합하고, 740℃로 12시간 동안 소성하여, Al, Zr 및 W이 도핑된 리튬 복합 전이금속 산화물을 제조하였다.
상기와 같이 제조된 리튬 복합 전이금속 산화물과 H3BO3 를 혼합한 후, 350℃로 3시간 동안 열처리하여, 상기 리튬 복합 전이금속 산화물 표면에 B를 포함하는 코팅층을 형성하였다.
제조된 리튬 복합 전이금속 산화물 분말은 D50이 5㎛인 유니모달 입도 분포를 가졌다.
제조예
3
Ni0 . 90Co0 . 08Mn0 .02(OH)2와 LiOH, TiO2, 및 WO3을 건식 혼합하고, 760℃로 12시간 동안 소성하여, Ti 및 W이 도핑된 리튬 복합 전이금속 산화물을 제조하였다.
상기와 같이 제조된 리튬 복합 전이금속 산화물과 H3BO3를 혼합한 후, 350℃로 3시간 동안 열처리하여, 상기 리튬 복합 전이금속 산화물 표면에 B를 포함하는 코팅층을 형성하였다.
제조된 리튬 복합 전이금속 산화물 분말은 D50이 16㎛인 유니모달 입도 분포를 가졌다.
제조예
4
Ni0 . 90Co0 . 08Mn0 .02(OH)2와 LiOH, ZrO2, WO3, 및 Al(OH)3을 건식 혼합하고, 760℃로 12시간 동안 소성하여, Al, Zr 및 W이 도핑된 리튬 복합 전이금속 산화물을 제조하였다.
상기와 같이 제조된 리튬 복합 전이금속 산화물과 H3BO3 를 혼합한 후, 350℃로 3시간 동안 열처리하여, 상기 리튬 복합 전이금속 산화물 표면에 B를 포함하는 코팅층을 형성하였다.
제조된 리튬 복합 전이금속 산화물 분말은 D50이 16㎛인 유니모달 입도 분포를 가졌다.
실험예
1
상기 제조예 1 ~ 4에 의해 제조된 각각의 리튬 복합 전이금속 산화물과, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5 : 1.5 : 2.0의 비율로 혼합하여 양극 합재를 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지 (코인형 반쪽전지)를 제조하였다.
이때 음극으로는 리튬 금속을 사용하였고, 전해액은 에틸렌카보네이트:디메틸카보네이트:에틸메틸카보네이트를 3:4:3의 부피비로 혼합한 유기 용매에 1M의 리튬헥사플루오로포스페이트(LiFP6)를 용해시킨 전해액을 사용하였다.
각각의 리튬 복합 전이금속 산화물 당 8개의 리튬 이차 전지를 제조하였으며, 각각의 리튬 이차 전지를 0mA/g, 40mA/g, 80mA/g, 120mA/g, 160mA/g, 200mA/g, 240mA/g, 278mA/g로 충전한 다음, 리튬 이차 전지에서 양극을 분리시킨 후, 양극 활물질층을 긁어내어 리튬 복합 전이금속 산화물 분말을 채취하였다. 채취된 리튬 복합 전이금속 산화물 분말을 방사광 가속기에 넣고 X-선 분석을 실시하여 충전 상태에 따른 Li-O 층간 거리를 측정하였다.
측정 결과는 도 1 에 나타내었다. 또한, 도 1을 기초로 충전용량을 SOC로 환산하여 SOC에 따른 Li-O 층간 거리(단위: Å)를 계산하였으며, 그 결과는 표 1에 나타내었다.
제조예 1 | 제조예 2 | 제조예 3 | 제조예 4 | |
SOC 0% | 2.6756 | 2.6767 | 2.6767 | 2.6765 |
SOC 14% | 2.7134 | 2.7145 | 2.6483 | 2.7138 |
SOC 29% | 2.7559 | 2.7575 | 2.6857 | 2.7825 |
SOC 43% | 2.8052 | 2.8057 | 2.8047 | 2.8048 |
SOC 58% | 2.9063 | 2.9082 | 2.908 | 2.9084 |
SOC 72% | 2.8789 | 2.9179 | 2.8834 | 2.7683 |
SOC 86% | 2.7220 | 2.7286 | 2.6894 | 2.7259 |
SOC 100% | 2.6932 | 2.6768 | 2.6527 | 2.6440 |
상기 표 1 및 도 1에 도시된 바와 같이, 제조예 1 ~ 3에 의해 제조된 리튬 복합 전이금속 산화물은 SOC 58% ~ 72% 구간에서의 Li-O 층간거리의 변화율이 1% 이하인 반면, 제조예 4에 의해 제조된 리튬 복합 전이금속 산화물은 SOC 58% ~ 72% 구간에서의 Li-O 층간거리의 변화율이 4.8% 정도인 것으로 나타났다.
또한, 제조예 1 및 2에 의해 제조된 리튬 복합 전이금속 산화물은 만충전 시(SOC 100%)에 Li-O 층간거리가 충전 전(SOC 0%)에 비해 증가하거나 동등 수준인 반면, 제조예 3 및 4에 의해 제조된 리튬 복합 전이금속 산화물은 만충전 시에 Li-O 층간거리가 충전 전(SOC 0%)에 비해 감소하였음을 확인할 수 있다.
실시예
1
양극 활물질로 제조예 1에 의해 제조된 리튬 복합 전이금속 산화물, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5 : 1.5 : 2.0의 비율로 혼합하여 양극 합재를 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지 (코인형 반쪽전지)를 제조하였다.
이때 음극으로는 리튬 금속을 사용하였고, 전해액은 에틸렌카보네이트:디메틸카보네이트:에틸메틸카보네이트를 3:4:3의 부피비로 혼합한 유기 용매에 1M의 리튬헥사플루오로포스페이트(LiFP6)를 용해시킨 전해액을 사용하였다.
실시예
2
양극 활물질로 제조예 2에 의해 제조된 리튬 복합 전이금속 산화물을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실시예
3
양극 활물질로 제조예 3에 의해 제조된 리튬 복합 전이금속 산화물을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예
1
양극 활물질로 제조예 4에 의해 제조된 리튬 복합 전이금속 산화물을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실험예 2: 용량 특성 평가
실시예 1 ~ 3 및 비교예 1의 리튬 이차 전지의 용량 특성을 다음과 같은 방법으로 측정하였다.
리튬 이차전지 각각에 대하여 상온(25℃)에서 0.2C 정전류로 4.25V까지 0.005C Cut off로 충전을 실시하고, 20분 동안 유지하였다. 이후, 0.2C 정전류로 2.5V cut off로 방전을 실시한 후, 20분 동안 유지하였다. 상기 충전 및 방전 거동을 1 사이클로 하여, 첫번째 사이클에서의 충방전 용량을 측정하였다. 측정 결과는 하기 표 2에 나타내었다.
실험예 3: 고온 수명 특성 평가
실시예 1 ~ 3 및 비교예 1의 리튬 이차 전지의 고온 수명 특성을 다음과 같은 방법으로 측정하였다.
고온(45℃)에서 CC-CV 모드로 0.3C, 4.25V가 될 때까지 충전하고, 0.3C의 정전류로 2.5V가 될 때까지 방전하여 30회 충방전 사이클을 실시하면서 용량 유지율을 평가하였다. 측정 결과는 하기 표 2에 나타내었다.
충전용량(mAh/g) | 방전용량(mAh/g) | 초기 효율(%) | 고온 수명(%) | |
실시예 1 | 236.2 | 217.8 | 92.2 | 94.2 |
실시예 2 | 232.3 | 216.2 | 93.1 | 95.6 |
실시예 3 | 236.9 | 219.9 | 92.8 | 90.1 |
비교예 1 | 233.4 | 212.1 | 90.9 | 86.9 |
상기 표 2에 나타난 바와 같이, SOC 58%~72% 구간에서 Li-O 층간 거리 변화율이 3% 이하인 양극 활물질을 사용한 실시예 1 ~ 3의 리튬 이차 전지는 Li-O 층간 거리 변화율이 3%를 초과하는 양극 활물질을 사용한 비교예 1에 비해 초기 효율 및 고온 수명 특성이 우수하게 나타났다.
또한, 만충전 시에 Li-O의 층간 거리가 충전 전의 Li-O 층간 거리보다 작은 양극 활물질을 사용한 실시예 3의 리튬 이차 전지의 경우, 만충전 시에 Li-O의 층간 거리가 충전 전의 Li-O 층간 거리보다 증가한 양극 활물질을 사용한 실시예 1 및 2의 리튬 이차 전지에 비해 고온 수명 특성이 다소 감소한 것으로 나타났다. 실시예 3과 같이 만충전 시에 Li-O 층간 거리가 감소할 경우, 리튬 이온의 이동성이 저하되기 때문인 것으로 보인다.
Claims (8)
- 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 및 전해질을 포함하는 리튬 이차 전지에 있어서,
상기 양극은, 양극 활물질로 층상 구조를 가지며 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함하고,
상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 3% 이하인 리튬 이차 전지.
- 제1항에 있어서,
상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리 변화율이 1% 이하인 리튬 이차 전지.
- 제1항에 있어서,
상기 리튬 복합 전이금속 산화물 분말은 SOC 100%로 충전한 상태에서의 Li-O 층간 거리가 SOC 0%인 상태에서의 Li-O 층간 거리 이상인 리튬 이차 전지.
- 제1항에 있어서,
상기 리튬 복합 전이금속 산화물은 하기 화학식 1로 표시되는 것인 리튬 이차 전지:
[화학식 1]
Lix[NiaCobMncMd]O2
상기 화학식 1에서,
상기 M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고,
0.9≤x≤1.2, 0.85≤a≤0.99, 0<b<0.15, 0<c<0.15, 0<d<0.15임.
- 제4항에 있어서,
상기 리튬 전이금속 산화물은 M은 W, Zr, Al, Ti 및 Mg으로 이루어진 군에서 선택되는 2종 이상의 원소를 포함하는 것인 리튬 이차 전지.
- 제4항에 있어서,
상기 M은 W과, Zr, Al, Ti 및 Mg으로 이루어진 군에서 선택된 1종 이상의 원소를 포함하는 것인 리튬 이차 전지.
- 제1항에 있어서,
상기 리튬 복합 전이금속 산화물은 그 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것인 리튬 이차 전지.
- 층상 구조를 가지며 전체 전이금속 중 니켈의 함유량이 85atm% 이상인 리튬 복합 전이금속 산화물 분말을 포함하는 리튬 이차 전지용 양극 활물질이며,
상기 리튬 복합 전이금속 산화물 분말은 SOC 58% 내지 72% 구간에서 Li-O 층간 거리(LiO6 slab thickness) 변화율이 3% 이하인 양극 활물질.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180071055A KR102288293B1 (ko) | 2018-06-20 | 2018-06-20 | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 |
CN201980034513.5A CN112204777A (zh) | 2018-06-20 | 2019-06-19 | 锂二次电池用正极活性材料和锂二次电池 |
PCT/KR2019/007402 WO2019245286A1 (ko) | 2018-06-20 | 2019-06-19 | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 |
EP19821792.9A EP3800713A4 (en) | 2018-06-20 | 2019-06-19 | ACTIVE CATHODE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY |
JP2020566271A JP7254402B2 (ja) | 2018-06-20 | 2019-06-19 | リチウム二次電池用正極活物質及びリチウム二次電池 |
US15/734,352 US20210226206A1 (en) | 2018-06-20 | 2019-06-19 | Positive Electrode Active Material for Lithium Secondary Battery and Lithium Secondary Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180071055A KR102288293B1 (ko) | 2018-06-20 | 2018-06-20 | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190143292A true KR20190143292A (ko) | 2019-12-30 |
KR102288293B1 KR102288293B1 (ko) | 2021-08-10 |
Family
ID=68982686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180071055A KR102288293B1 (ko) | 2018-06-20 | 2018-06-20 | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210226206A1 (ko) |
EP (1) | EP3800713A4 (ko) |
JP (1) | JP7254402B2 (ko) |
KR (1) | KR102288293B1 (ko) |
CN (1) | CN112204777A (ko) |
WO (1) | WO2019245286A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7215261B2 (ja) * | 2019-03-15 | 2023-01-31 | 株式会社豊田自動織機 | 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法 |
JP7215260B2 (ja) * | 2019-03-15 | 2023-01-31 | 株式会社豊田自動織機 | 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法 |
CN114171734B (zh) * | 2020-09-10 | 2024-08-02 | 比亚迪股份有限公司 | 正极活性材料、正极极片及其制作方法、电池 |
KR102627508B1 (ko) | 2022-12-07 | 2024-01-18 | 에스케이온 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150050458A (ko) * | 2013-10-29 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 |
KR20170063407A (ko) * | 2015-11-30 | 2017-06-08 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
WO2018105481A1 (ja) * | 2016-12-07 | 2018-06-14 | 住友化学株式会社 | リチウム二次電池用正極活物質の製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2845150B2 (ja) * | 1995-01-10 | 1999-01-13 | 株式会社日立製作所 | 二次電池 |
JP3561607B2 (ja) * | 1997-05-08 | 2004-09-02 | 三洋電機株式会社 | 非水電解質二次電池及び正極材料の製造方法 |
JP2000302451A (ja) * | 1999-04-22 | 2000-10-31 | Fuji Chem Ind Co Ltd | リチウムイオン二次電池用正極活物質 |
US6753111B2 (en) | 2000-09-25 | 2004-06-22 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium batteries and method for preparing same |
US6921609B2 (en) | 2001-06-15 | 2005-07-26 | Kureha Chemical Industry Co., Ltd. | Gradient cathode material for lithium rechargeable batteries |
JP2003123839A (ja) * | 2001-10-16 | 2003-04-25 | Mitsubishi Chemicals Corp | リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池 |
JP2004127675A (ja) | 2002-10-01 | 2004-04-22 | Japan Storage Battery Co Ltd | 非水電解液二次電池 |
CN1268550C (zh) * | 2004-07-09 | 2006-08-09 | 华东理工大学 | 层间距大且稳定的层状二氧化锰的制备方法 |
JP2006082708A (ja) * | 2004-09-16 | 2006-03-30 | Yamaha Motor Co Ltd | 自動二輪車前記後側締付部を前記燃料タンクに車体側方から締付固定し、前記後側締付部を前記サイドカバーにより覆うことを特徴とする請求項7に記載の自動二輪車。 |
JP5033262B2 (ja) * | 2009-12-14 | 2012-09-26 | パナソニック株式会社 | リチウムイオン二次電池の充電完了の判定方法及び放電終了の判定方法、充電制御回路、放電制御回路、並びに電源 |
KR20120129926A (ko) | 2010-02-24 | 2012-11-28 | 히다치 막셀 에너지 가부시키가이샤 | 정극 재료, 그 제조 방법, 비수 이차 전지용 정극 및 비수 이차 전지 |
DE112012006167B4 (de) * | 2012-03-30 | 2024-03-28 | Toyota Jidosha Kabushiki Kaisha | Lithium-Ionen-Sekundärbatterie |
KR101567039B1 (ko) * | 2012-12-13 | 2015-11-10 | 주식회사 에코프로 | 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 |
JP6353310B2 (ja) | 2014-07-30 | 2018-07-04 | マクセルホールディングス株式会社 | 非水電解質二次電池 |
CN107431249A (zh) * | 2015-02-27 | 2017-12-01 | 三洋电机株式会社 | 非水电解质二次电池的制造方法 |
JP6541115B2 (ja) * | 2015-05-22 | 2019-07-10 | 国立研究開発法人産業技術総合研究所 | 正極材料、並びにそれを正極に使用したリチウム二次電池 |
EP3333961A1 (en) * | 2015-08-04 | 2018-06-13 | Hitachi Chemical Company, Ltd. | Nonaqueous electrolyte solution for lithium secondary batteries, positive electrode for lithium secondary batteries, method for producing positive electrode for lithium secondary batteries, and lithium secondary battery |
KR101927295B1 (ko) * | 2015-11-30 | 2018-12-10 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
KR20170073217A (ko) * | 2015-12-18 | 2017-06-28 | 삼성전자주식회사 | 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 전지 |
KR20160075404A (ko) * | 2016-06-02 | 2016-06-29 | 주식회사 포스코이에스엠 | 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 |
CN108123114B (zh) * | 2016-11-28 | 2019-11-29 | 华为技术有限公司 | 钴酸锂正极材料及其制备方法以及锂离子二次电池 |
CN107394160B (zh) * | 2017-07-24 | 2019-09-10 | 合肥国轩高科动力能源有限公司 | 一种锂离子电池正极材料及其制备方法 |
-
2018
- 2018-06-20 KR KR1020180071055A patent/KR102288293B1/ko active IP Right Grant
-
2019
- 2019-06-19 JP JP2020566271A patent/JP7254402B2/ja active Active
- 2019-06-19 CN CN201980034513.5A patent/CN112204777A/zh active Pending
- 2019-06-19 EP EP19821792.9A patent/EP3800713A4/en active Pending
- 2019-06-19 WO PCT/KR2019/007402 patent/WO2019245286A1/ko unknown
- 2019-06-19 US US15/734,352 patent/US20210226206A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150050458A (ko) * | 2013-10-29 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 |
KR20170063407A (ko) * | 2015-11-30 | 2017-06-08 | 주식회사 엘지화학 | 이차전지용 양극활물질 및 이를 포함하는 이차전지 |
WO2018105481A1 (ja) * | 2016-12-07 | 2018-06-14 | 住友化学株式会社 | リチウム二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112204777A (zh) | 2021-01-08 |
US20210226206A1 (en) | 2021-07-22 |
JP7254402B2 (ja) | 2023-04-10 |
KR102288293B1 (ko) | 2021-08-10 |
EP3800713A4 (en) | 2021-06-23 |
WO2019245286A1 (ko) | 2019-12-26 |
EP3800713A1 (en) | 2021-04-07 |
JP2021527921A (ja) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102354281B1 (ko) | 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지 | |
KR102225892B1 (ko) | 리튬 복합 산화물, 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR102204939B1 (ko) | 리튬 이차 전지용 양극재, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 | |
KR20200085679A (ko) | 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 | |
JP7254402B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
US20220336806A1 (en) | Positive Electrode Material for Secondary Battery and Lithium Secondary Battery Comprising Same | |
EP3783708B1 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery | |
KR102288294B1 (ko) | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 | |
KR20210048436A (ko) | 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 | |
KR20210059232A (ko) | 비수 전해액 및 이를 포함하는 리튬 이차 전지 | |
KR102288295B1 (ko) | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 | |
KR20240015245A (ko) | 양극 활물질 및 이의 제조 방법 | |
KR20240102103A (ko) | 리튬 이차 전지용 양극 활물질의 제조방법, 이를 이용하여 제조된 양극 및 이를 포함하는 리튬 이차 전지 | |
KR20220152943A (ko) | 리튬 이차전지의 양극용 첨가제, 이의 제조방법 및 이를 포함하는 리튬 이차전지의 양극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |