KR20190003640A - 공작 기계, 가공물의 제조 방법, 및 가공 시스템 - Google Patents
공작 기계, 가공물의 제조 방법, 및 가공 시스템 Download PDFInfo
- Publication number
- KR20190003640A KR20190003640A KR1020187034327A KR20187034327A KR20190003640A KR 20190003640 A KR20190003640 A KR 20190003640A KR 1020187034327 A KR1020187034327 A KR 1020187034327A KR 20187034327 A KR20187034327 A KR 20187034327A KR 20190003640 A KR20190003640 A KR 20190003640A
- Authority
- KR
- South Korea
- Prior art keywords
- data
- tool
- workpiece
- machining
- state
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/12—Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4069—Simulating machining process on screen
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49303—Tool identification and tool offset, compensation data together
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Automatic Control Of Machine Tools (AREA)
- General Factory Administration (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
공작 기계는, 공작물과 접촉하여 공작물을 가공하는 공구와, 공작물 및 공구의 상태량 데이터를 취득하는 상태량 데이터 취득부와, 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부와, 상태량 데이터와 상태량 추정 데이터에 기초하여 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부를 구비한다.
Description
본 발명은, 공작 기계(machine tool), 가공물의 제조 방법, 및 가공 시스템에 관한 것이다.
공작물(workpiece)을 가공하는 공작 기계로서, 예를 들면, 연삭(硏削) 장치가 알려져 있다(특허문헌 1 참조).
공작 기계에 의해 제조된 가공물은, 후속 공정에서 검사 장치에 의해 가공 품질을 검사된다. 검사에는 시간을 요하므로, 제조된 가공물의 전부를 검사하는 것은 곤란하다. 그러므로, 제조된 복수의 가공물 중 일부의 가공물을 선택하여 검사하는 추출 검사가 실시된다. 추출 검사에서는, 불량인 가공 품질의 가공물이 출하(出荷)될 가능성이 있다. 또한, 검사 장치를 사용하는 검사에서는, 불량인 가공 품질의 가공물은 후속 공정에서 발견되고, 가공 중에 실시간으로 발견하는 것은 곤란하다.
본 발명의 태양(態樣)은, 가공 중에 있어서 실시간으로 가공 품질을 검사할 수 있고, 불량인 가공 품질의 가공물의 제조를 억제할 수 있는 공작 기계, 가공물의 제조 방법, 및 가공 시스템을 제공하는 것을 목적으로 한다.
본 발명의 제1 태양에 따르면, 공작물과 접촉하여 상기 공작물을 가공하는 공구와, 상기 공작물 및 상기 공구의 상태량 데이터가 입력되는 상태량 데이터 취득부와, 상기 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부와, 상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부를 구비하는 공작 기계가 제공된다.
본 발명의 제2 태양에 따르면, 공작물과 공구를 접촉시켜 상기 공구로 상기 공작물을 가공하는 것과, 상기 가공에 있어서 상기 공작물 및 상기 공구의 상태량 데이터를 취득하는 것과, 상기 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 것과, 상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 것과, 상기 가공에 있어서 상기 가공 상태 데이터를 출력하는 것과, 상기 가공에 있어서 상기 가공 상태 데이터에 기초하여 상기 공구에 의한 가공 조건을 제어하는 것을 포함하는 가공물의 제조 방법이 제공된다.
본 발명의 제3 태양에 따르면, 공작물과 접촉하여 상기 공작물을 가공하는 공구와, 상기 공작물 및 상기 공구의 상태량 데이터가 입력되는 상태량 데이터 취득부와, 상기 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부와, 상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부를 구비하는 가공 시스템이 제공된다.
본 발명의 태양에 의하면, 가공 중에 있어서 실시간으로 가공 품질을 검사할 수 있어, 불량인 가공 품질의 가공물의 제조를 억제할 수 있는 공작 기계, 가공물의 제조 방법, 및 가공 시스템이 제공된다.
도 1은, 본 실시형태에 관한 공작 기계의 일례를 모식적으로 나타낸 평면도이다.
도 2는, 본 실시형태에 관한 공작 기계의 일례를 모식적으로 나타낸 측면도이다.
도 3은, 본 실시형태에 관한 제어 장치의 일례를 나타낸 기능 블록도이다.
도 4는, 본 실시형태에 관한 공작물의 거동(擧動; behavior)을 설명하기 위한 모식도이다.
도 5는, 본 실시형태에 관한 공작물과 공구와의 관계를 모식적으로 나타낸 도면이다.
도 6은, 본 실시형태에 관한 가공물의 제조 방법의 일례를 나타낸 플로우차트이다.
도 7은, 본 실시형태에 관한 공작 기계에 의해 산출된 가공 상태 데이터의 일례를 나타낸 도면이다.
도 8은, 본 실시형태에 관한 가공 시스템의 일례를 모식적으로 나타낸 도면이다.
도 2는, 본 실시형태에 관한 공작 기계의 일례를 모식적으로 나타낸 측면도이다.
도 3은, 본 실시형태에 관한 제어 장치의 일례를 나타낸 기능 블록도이다.
도 4는, 본 실시형태에 관한 공작물의 거동(擧動; behavior)을 설명하기 위한 모식도이다.
도 5는, 본 실시형태에 관한 공작물과 공구와의 관계를 모식적으로 나타낸 도면이다.
도 6은, 본 실시형태에 관한 가공물의 제조 방법의 일례를 나타낸 플로우차트이다.
도 7은, 본 실시형태에 관한 공작 기계에 의해 산출된 가공 상태 데이터의 일례를 나타낸 도면이다.
도 8은, 본 실시형태에 관한 가공 시스템의 일례를 모식적으로 나타낸 도면이다.
이하, 본 발명에 관한 실시형태에 대하여 도면을 참조하면서 설명하지만, 본 발명은 이에 한정되지 않는다. 이하에서 설명하는 실시형태의 구성 요소는 적절히 조합시키는 것이 가능하다. 또한, 일부의 구성 요소를 사용하지 않을 경우도 있다.
이하의 설명에 있어서는, 3차원 직교 좌표계(orthogonal coordinate system)를 설정하고, 3차원 직교 좌표계를 참조하면서 각 부의 위치 관계에 대하여 설명한다. 소정 면 내의 X축과 평행한 방향을 X축 방향이라고 하고, 소정 면 내에 있어서 X축과 직교하는 Y축과 평행한 방향을 Y축 방향이라고 하고, X축 및 Y축과 직교하는 Z축과 평행한 방향을 Z축 방향이라고 한다. 또한, X축을 중심으로 하는 회전 또는 경사 방향을 θX 방향이라고 하고, Y축을 중심으로 하는 회전 또는 경사 방향을 θY 방향이라고 하고, Z축을 중심으로 하는 회전 또는 경사 방향을 θZ 방향이라고 한다. 소정 면은 XY 평면이며, 본 실시형태에 있어서는 수평면과 평행이다. Z축 방향은 연직(沿直) 방향이다.
[공작 기계]
도 1은, 본 실시형태에 관한 공작 기계(100)의 일례를 모식적으로 나타낸 평면도이다. 도 2는, 본 실시형태에 관한 공작 기계(100)의 일례를 모식적으로 나타낸 측면도이다. 본 실시형태에 있어서, 공작 기계(100)는 연삭 장치이다.
도 1 및 도 2에 나타낸 바와 같이, 공작 기계(100)는, 공작물(W)과 접촉하여 공작물(W)을 가공하는 공구(1)와, 공구(1)를 회전시키는 제1 회전 장치(10)와, 공작물(W)을 회전시키는 제2 회전 장치(20)와, 공구(1)를 X축 방향으로 이동시키는 구동 장치(30)와, 공구(1)를 Y축 방향으로 이동하는 구동 장치(40)와, 제어 장치(50)를 구비한다.
공작물(W)은, 공작 기계(100)에 가공되는 가공 대상물(對象物)이다. 공작물(W)은, 원기둥형의 부재이다. 공작 기계(100)는, 공작물(W)을 가공하여, 캠샤프트 또는 크랭크샤프트(crankshaft)를 제조한다.
공구(1)는, 연삭용의 지석(grindstone)이다. 공구(1)는, 공작물(W)이 접촉된 상태에서 회전함으로써 공작물(W)을 연삭한다.
제1 회전 장치(10)는, Y축과 평행한 회전축 AX를 중심으로 공구(1)를 회전시킨다. 제1 회전 장치(10)는, 공구(1)를 회전 가능하게 지지하는 지지 기구(機構)(11)와, 공구(1)를 회전시키는 동력을 발생하는 제1 모터(12)를 구비한다. 지지 기구(11) 및 제1 모터(12)는, X축 방향으로 이동 가능한 스테이지 부재(stage member)(13)에 지지된다.
제2 회전 장치(20)는, Y축과 평행한 회전축 BX를 중심으로 공작물(W)을 회전시킨다. 제2 회전 장치(20)는, 공작물(W)의 한쪽의 단부(端部)를 회전 가능하게 지지하는 지지 기구(21)와, 공작물(W)의 다른 쪽의 단부를 회전 가능하게 지지하는 지지 기구(22)와, 공작물(W)을 회전시키는 동력을 발생하는 제2 모터(23)를 구비한다. 지지 기구(21) 및 지지 기구(22)는, 베이스 부재(2)에 지지된다.
구동 장치(30)는, 공구(1)의 회전축 AX에 직교하는 X축 방향으로 공구(1)를 이동시킨다. X축 방향은, 공구(1)의 이송 방향이다. 구동 장치(30)는, 스테이지 부재(13)를 X축 방향으로 이동시킴으로써 공구(1)를 X축 방향으로 이동한다. 구동 장치(30)는, 공구(1)를 X축 방향으로 이동시키는 동력을 발생하는 제3 모터(31)를 구비한다. 제3 모터(31)는, 직동(直動) 모터를 포함한다. 제3 모터(31)는, 리니어 모터이다. 그리고, 제3 모터(31)가 회전 모터를 포함하고, 제3 모터(31)에 의해 작동하는 볼나사 기구에 의해 공구(1)가 X축 방향으로 이동해도 된다. 스테이지 부재(13)가 ―X 방향으로 이동함으로써, 공구(1)가 ―X 방향으로 이동하여 공작물(W)에 가압된다.
구동 장치(40)는, Y축 방향으로 공구(1)를 이동시킨다. 구동 장치(40)는, 스테이지 부재(13)를 Y축 방향으로 이동시킴으로써 공구(1)를 Y축 방향으로 이동시킨다. 구동 장치(40)는, 공구(1)를 Y축 방향으로 이동하는 동력을 발생하는 제4 모터(41)를 구비한다. 제4 모터(41)는, 직동 모터를 포함한다. 제4 모터(41)는, 리니어 모터이다. 그리고, 제4 모터(41)가 회전 모터를 포함하고, 제4 모터(41)에 의해 작동하는 볼나사 기구에 의해 공구(1)가 Y축 방향으로 이동해도 된다. 스테이지 부재(13)는, 구동 장치(30) 및 구동 장치(40)를 통하여 베이스 부재(2)에 지지된다.
제어 장치(50)는, 컴퓨터 시스템을 포함한다. 제어 장치(50)는, CPU(Central Processing Unit)와 같은 프로세서와, ROM(Read Only Memory)과 같은 불휘발성 메모리 및 RAM(Random Access Memory)과 같은 휘발성 메모리를 포함하는 기억 장치와, 입출력 인터페이스 장치를 가진다.
[제어 시스템]
다음에, 본 실시형태에 관한 공작 기계(100)의 제어 시스템(200)의 일례에 대하여 설명한다. 도 3은, 본 실시형태에 관한 제어 시스템(200)의 일례를 나타낸 기능 블록도이다.
도 3에 나타낸 바와 같이, 제어 시스템(200)은, 제어 장치(50)와, 회전축 AX를 중심으로 공구(1)를 회전시키는 동력을 발생하는 제1 모터(12)와, 공구(1)의 회전 속도를 검출하는 회전 속도 센서(14)와, 공구(1)를 X축 방향으로 이동시키는 동력을 발생하는 제3 모터(31)와, X축 방향에서의 공구(1)의 위치를 검출하는 위치 센서(32)와, 회전축 BX를 중심으로 공작물(W)을 회전시키는 동력을 발생하는 제2 모터(23)와, 공작물(W)의 회전 각도를 검출하는 회전 각도 센서(24)와, 공작물(W)의 설계 데이터인 CAD(Computer Aided Design) 데이터를 유지하는 CAD 데이터 유지부(60)를 구비한다.
제어 장치(50)는, 공작물(W) 및 공구(1)의 상태량 데이터가 입력되는 상태량 데이터 취득부(51)와, 공구(1)의 동적 특성(dynamic characteristic)을 나타내는 장치의 동적 특성 모델 및 공작물(W)의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부(52)와, 상태량 데이터와 상태량 추정 데이터에 기초하여 공작물(W)의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부(53)를 구비한다.
또한, 제어 장치(50)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터를 출력하는 출력부(54)와, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여 공구(1)에 의한 가공 조건을 제어하는 가공 제어부(55)와, 기억부(56)를 구비한다.
시뮬레이션 모델은, 함수 또는 맵 등에 기초하여 미리 설정되고, 기억부(56)에 기억되어 있다.
상태량이란, 공구(1) 또는 공구(1)와 접촉하는 공작물(W)의 상태에 따라서 일의적(一義的)으로 정해지는 양을 말한다. 본 실시형태에 있어서, 상태량 데이터는, 제1 모터(12)의 출력 데이터 d1, 회전 속도 센서(14)에 의해 검출되는 공구(1)의 회전 속도 데이터 d2, 제3 모터(31)의 출력 데이터 d3, 위치 센서(32)에 의해 검출되는 X축 방향에서의 공구(1)의 위치 데이터 d4, 제2 모터(23)의 출력 데이터 d5, 및 회전 각도 센서(24)에 의해 검출되는 공작물(W)의 회전 각도 데이터 d6를 포함한다.
제1 모터(12)의 출력 데이터 d1는, 제1 모터(12)의 토크를 포함한다. 출력 데이터 d1는, 제1 모터(12)로부터 출력되는 전류값에 기초하여 도출된다. 출력 데이터 d1는, 상태량 데이터 취득부(state-quantity-data acquisition unit)(51)에 출력된다.
회전 속도 센서(14)는, 예를 들면, 로터리 인코더를 포함하고, 공구(1)의 회전 속도를 나타내는 회전 속도 데이터 d2를 검출한다. 회전 속도 데이터 d2는, 상태량 데이터 취득부(51)에 출력된다.
제3 모터(31)의 출력 데이터 d3는, 제3 모터(31)의 추진력을 포함한다. 출력 데이터 d3는, 제3 모터(31)로부터 출력되는 전류값에 기초하여 도출된다. 출력 데이터 d3는, 상태량 데이터 취득부(51)에 출력된다.
위치 센서(32)는, 예를 들면, 리니어 인코더를 포함하고, X축 방향에서의 공구(1)의 위치를 나타내는 위치 데이터 d4를 검출한다. 본 실시형태에 있어서, 위치 센서(32)는, 제3 모터(31)의 이동량을 검출함으로써, 공구(1)의 위치 데이터 d4를 검출한다. 위치 데이터 d4는, 상태량 데이터 취득부(51)에 출력된다.
제2 모터(23)의 출력 데이터 d5는, 제2 모터(23)의 토크를 포함한다. 출력 데이터 d5는, 제2 모터(23)로부터 출력되는 전류값에 기초하여 도출된다(derived). 출력 데이터 d5는, 상태량 데이터 취득부(51)에 출력된다.
회전 각도 데이터(24)는, 예를 들면, 로터리 인코더를 포함하고, 공작물(W)의 회전 각도를 나타내는 회전 각도 데이터 d6를 검출한다. 회전 각도 데이터 d6는, 상태량 데이터 취득부(51)에 출력된다.
CAD 데이터 유지부(60)는, CAD 데이터 d7를 유지한다. CAD 데이터 d7는, 공작물(W)의 목표 형상 데이터 및 공작물(W)의 물성 데이터(physical property data)를 포함한다. 공작물(W)의 목표 형상 데이터는, 회전축 BX에 직교하는 공작물(W)의 단면(斷面) 형상 데이터를 포함한다.
상태량 데이터 취득부(51)는, 상태량 데이터로서, 출력 데이터 d1, 회전 속도 데이터 d2, 출력 데이터 d3, 위치 데이터 d4, 출력 데이터 d5, 및 회전 각도 데이터 d6를 취득한다. 그리고, 상태량 데이터는, 출력 데이터 d1, 회전 속도 데이터 d2, 출력 데이터 d3, 위치 데이터 d4, 출력 데이터 d5, 및 회전 각도 데이터 d6에 한정되지 않는다. 상태량 데이터는, 예를 들면, 쿨란트 유량(coolant flow rate)을 포함해도 된다.
상태량 추정 데이터 산출부(state-quantity-estimation-data calculation unit)(52)는, 공구(1)의 동적 특성을 나타내는 장치의 동적 특성 모델로부터 상태량 추정 데이터로서 가공 저항 변동을 산출한다. 또한, 상태량 추정 데이터 산출부(52)는, CAD 데이터 d7에 기초하여, 공작물(W)의 목표 형상을 나타내는 공작물 모델로부터 상태량 추정 데이터로서 공구(1)와 공작물(W)의 접촉각 변동 또는 접촉 위치 변동을 산출한다.
장치의 동적 특성 모델은, 공구(1)의 모델링 및 시스템 동정에 의해 산출된다. 모델이란, 대상물의 동작을 특징지우는 수학 모델(mathematical model)을 구축하는 처리를 말한다. 모델링에 의해, 대상물은 단순화된 수학적 표현으로 변환된다. 공구(1)에 대하여, 예를 들면, 질량 성분, 댐퍼 성분, 및 스프링 성분을 가지는 장치의 동적 특성 모델이 산출된다.
시스템 동정(system identification)이란, 먼저 행해진 모델링의 올바름(correctness)을 실험에 의해 검증하는 처리를 말한다. 시스템 동정에 있어서는, 예를 들면, 공구(1)에 다양한 주파수의 입력 신호를 실험적으로 입력하고, 공구(1)로부터 출력되는 진폭 또는 위상을 계측하는 처리가 실시된다. 또한, 시스템 동정에 있어서는, 공구(1)에 다양한 주파수의 입력 신호를 입력했을 때, 공구(1)의 속도를 계측하는 처리가 실시된다. 시스템 동정에 의해, 모델링의 올바름이 실험적으로 검증된다.
시스템 동정의 결과에 기초하여, 공구(1)의 동적 특성을 나타내는 동적 특성 데이터가 도출된다. 공구(1)의 동적 특성 데이터는, 공구(1)의 질량 성분, 댐퍼 성분, 및 스프링 성분을 포함한다. 또한, 공구(1)의 동적 특성 데이터는, 공구(1)의 외형 및 치수와 같은 공구(1)에 관한 기지(旣知) 데이터를 포함한다.
공작물 모델은, CAD 데이터에 기초하여 산출된다. 공작물 모델은, 가공에서의 공작물(W)의 목표 형상 데이터를 포함한다. 공작물(W)의 목표 형상 데이터는, 회전축 BX에 직교하는 공작물(W)의 단면 형상 데이터를 포함한다. 또한, 공작물 모델은, 공작물(W)의 탄성률과 같은 공작물(W)의 물성 데이터를 포함한다. 또한, 공작물 모델은, 공작물(W)의 동적 특성 데이터를 포함한다. 공작물(W)의 동적 특성 데이터는, 예를 들면, 공작물(W)의 질량 성분, 댐퍼 성분, 및 스프링 성분을 포함한다. 공작물 모델이 산출되는 것에 의해, 예를 들면, 외력이 작용했을 때의 공작물(W)의 휨량 변동이 산출된다.
또한, 상태량 추정 데이터 산출부(52)는, 복수의 칼만 필터(Kalman filter)(52C)를 포함하고, 1조의 입출력 데이터로부터 복수의 상태량 데이터를 추출할 수 있다. 상태량 추정 데이터 산출부(52)는, 예를 들면, 제1 모터(12)로부터의 출력 데이터 d1와 회전 속도 센서(14)로부터의 회전 속도 데이터 d2에 기초하여, 상태량 추정 데이터로서, 공구(1)의 연삭 저항, 공작물(W)의 가공 개시점, 및 공구(1)의 마모량 등을 추출할 수 있다.
가공 상태 산출부(machining-state calculation unit)(53)는, 상태량 데이터 취득부(51)에서 취득된 상태량 데이터와 상태량 추정 데이터 산출부(52)에서 시뮬레이션 모델을 사용하여 산출된 상태량 추정 데이터에 기초하여, 공작물(W)의 가공 상태를 나타내는 가공 상태 데이터를 산출한다. 가공 상태 산출부(53)에 공급되는 상태량 데이터는, 상태량 추정 데이터 산출부(52)의 칼만 필터(52C)에 의해 추출된 상태량 추정 데이터를 포함한다. 또한, 가공 상태 산출부(53)에 공급되는 상태량 데이터는, 제1 모터(12)로부터 공급되는 출력 데이터 d1, 회전 속도 센서(14)로부터 공급되는 회전 속도 데이터 d2, 제3 모터(31)로부터 공급되는 출력 데이터 d3, 위치 센서(32)로부터 공급되는 위치 데이터 d4, 제2 모터(23)로부터 공급되는 출력 데이터 d5, 및 회전 각도 센서(24)로부터 공급되는 회전 각도 데이터 d6를 포함한다.
상태량 추정 데이터 산출부(52)는, 제1 모터(12)의 출력 데이터 d1 및 공구(1)의 회전 속도 데이터 d2와 시뮬레이션 모델에 기초하여, 공구(1)의 가공 저항을 산출한다. 본 실시형태에 있어서, 공구(1)의 가공 저항은, 공구(1)의 연삭 저항이다. 시뮬레이션 모델에 출력 데이터 d1가 입력되면, 공구(1)와 공작물(W)이 접촉하고 있지 않은 공전(空轉) 상태에서의 공구(1)의 회전 속도 데이터가 산출된다. 상태량 추정 데이터 산출부(52)는, 출력 데이터 d1 및 시뮬레이션 모델에 기초하여 산출된 공전 상태의 공구(1)의 회전 속도 데이터와, 회전 속도 센서(14)에 의해 검출된 회전 속도 데이터 d2와의 차이에 기초하여, 공구(1)의 가공 저항을 산출할 수 있다.
그리고, 공구(1)의 가공 저항은, 상태량 추정 데이터 산출부(52)의 칼만 필터(52C)에 의해 추출된 연삭 저항이라도 된다.
또한, 가공 상태 산출부(53)는, 가공 저항과 공작물 모델에 기초하여 공작물(W)의 휨량을 나타내는 휨량 변동 데이터(bending amount variation data)를 산출할 수 있다. 가공 저항은, 공작물(W)에 작용하는 부하와 등가(等價)이다. 본 실시형태에 있어서, 공작물(W)에 작용하는 부하는, 공작물(W)에 작용하는 연삭력(grinding force)이다. 전술한 바와 같이, 공작물 모델은, 공작물(W)의 단면 형상 데이터 및 공작물(W)의 물성 데이터를 포함한다. 가공 상태 산출부(53)는, 공작물 모델에 작용하는 부하와 공작물 모델에 기초하여, 공작물(W)의 휨량 변동 데이터를 산출할 수 있다.
또한, 가공 상태 산출부(53)는, 제3 모터(31)에 출력되는 제어 지령 데이터와, 산출된 공작물(W)의 휨량 변동 데이터에 기초하여, 공작물(W)의 형상 오차 변동을 산출한다.
도 4는, 본 실시형태에 관한 제3 모터(31)에 출력된 제어 지령 데이터와 공작물(W)의 휨량과의 관계를 나타내는 모식도이다. 제어 지령 데이터에 기초하여, 공작물(W)에 대한 지령 절입량(command cutting amount)이 산출된다. 공작물(W)의 목표 절입량을 나타내는 지령 절입량은, 제3 모터(31)의 목표 작동량을 포함한다. 공작물(W)에 작용하는 연삭력에 따라 공작물(W)이 휘었을 경우, 공작물(W)이 공구(1)로부터 퇴피하게 된다. 그 결과, 공작물(W)의 실제의 절입량을 나타내는 실제 절입량은, 지령 절입량보다도 휨량에 따른 양만큼 적어지게 된다. 즉, 공작물(W)에 작용하는 절삭력(cutting force)에 의해 공작물(W)이 휘었을 경우, 지령 절입량보다도 적은 양만큼 밖에 공작물(W)이 가공되지 않게 되어, 목표 형상에 대하여 공작물(W)에 형상 오차가 발생한다. 그리고, 공작물(W)의 목표 형상이나 가공 조건 등에 의해 공작물(W)에 작용하는 연삭력이 변동되는 것과 같은 경우에 있어서는, 공작물(W)의 휨량, 즉 목표 형상에 대한 공작물(W)의 형상 오차가 변동된다.
따라서, 가공 상태 산출부(53)는, 제3 모터(31)에 출력된 제어 지령 데이터와, 산출된 공작물(W)의 휨량 변동 데이터에 기초하여, CAD 데이터에 의해 규정되는 목표 형상에 대한 공작물(W)의 형상 오차 변동을 산출할 수 있다.
또한, 상태량 추정 데이터 산출부(52)는, 회전 각도 데이터 d6와 공작물 모델에 기초하여, 공작물(W)과 공구(1)와의 접촉 위치 C를 산출한다. 접촉 위치 C는, 공작물(W)이 공구(1)에 의해 가공되는 가공점을 나타낸다.
도 5는, 본 실시형태에 관한 공작물(W)과 공구(1)와의 관계를 나타내는 모식도이다. 공구(1)는 회전축 AX를 중심으로 회전하고, 공작물(W)은 회전축 BX를 중심으로 회전한다. 공작물(W)은, 캠샤프트 또는 크랭크샤프트에 가공된다. 회전축 BX에 직교하는 단면에 있어서, 공작물(W)은 비원형이다. 회전축 AX에 직교하는 단면에 있어서, 공구(1)는 실질적으로 원형이다.
회전하는 비원형의 공작물(W)과 회전하는 원형의 공구(1)가 접촉하는 경우, 공작물(W)의 회전에 따라 공구(1)와 접촉하는 공작물(W)의 접촉 위치 C와 회전축 BX와의 거리는 변화한다.
전술한 바와 같이, 공작물 모델은, 회전축 BX에 직교하는 공작물(W)의 단면 형상 데이터를 포함한다. 그러므로, 회전축 BX를 중심으로 하는 회전 방향에서의 공작물(W)의 회전 각도를 알 수 있으면, 공구(1)와 접촉하는 공작물(W)의 접촉 위치 C가 도출된다. 상태량 추정 데이터 산출부(52)는, 회전 각도 데이터 d6와 공작물 모델에 기초하여, 공작물(W)과 공구(1)와의 접촉 위치 C를 산출할 수 있다.
또한, 가공 상태 산출부(53)는, 제3 모터(31)의 출력 데이터 d3 및 X축 방향에서의 공구(1)의 위치 데이터 d4에 기초하여, 공작물(W)의 표면의 요철(凹凸)을 산출한다.
공구(1)의 회전축 AX가 변동하여, 공구(1)가 흔들리는(wobble) 현상이 발생할 가능성이 있다. 공구(1)가 흔들리면, 공구(1)에 있어서 채터링 진동(chattering vibration)이 발생하여, 공구(1) 및 공작물(W) 중 적어도 한쪽이 X축 방향으로 미진동한다. 채터링 진동이 발생하면, 공작물(W)의 표면에 미세한 요철이 형성된다.
채터링 진동이 발생하면, 공구(1)를 X축 방향으로 이동시키는 제3 모터(31)의 출력 데이터 d3가 변동된다. 따라서, 가공 상태 산출부(53)는, 제3 모터(31)의 출력 데이터 d3에 기초하여, 가공 상태 데이터로서, 채터링 진동의 발생의 유무, 및 채터링 진동의 힘을 나타내는 채터링력[N]을 산출할 수 있다. 또한, 가공 상태 산출부(53)는, 위치 센서(32)에 의해 검출되는 X축 방향에서의 공구(1)의 위치 데이터 d4에 기초하여, 가공 상태 데이터로서, 채터링 진동의 진폭을 나타내는 채터링량[㎛]을 산출할 수 있다.
그리고, 본 실시형태에 있어서는, 상태량 데이터 취득부(51)에 취득된 출력 데이터 d3로부터 공구(1)의 회전 속도에 대응하는 주파수 대역의 출력 데이터 d3가 필터링 처리에 의해 추출된다. 가공 상태 산출부(53)는, 추출된 출력 데이터 d3에 기초하여, 채터링력을 산출한다. 마찬가지로, 상태량 데이터 취득부(51)에 취득된 위치 데이터 d4로부터 공구(1)의 회전 속도에 대응하는 주파수 대역의 위치 데이터 d4가 필터링 처리에 의해 추출된다. 가공 상태 산출부(53)는, 추출된 위치 데이터 d4에 기초하여, 채터링량을 산출한다. 그리고, 공구(1)의 회전 속도에 대응하는 주파수 대역은, 공구(1)의 회전 속도 데이터 d2로부터 산출된다.
출력부(54)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터를 출력한다. 출력부(54)는, 공구(1)에 의한 가공에 있어서 가공 상태 데이터를 출력한다. 즉, 출력부(54)는, 공작물(W)의 가공 중에 있어서 공작물(W)의 가공 상태 데이터를 실시간으로 출력한다.
가공 제어부(55)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여, 공구(1)에 의한 가공 조건을 제어한다. 본 실시형태에 있어서, 가공 제어부(55)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여, 제1 모터(12), 제3 모터(31), 및 제2 모터(23) 중 하나 이상을 피드백 제어한다.
[가공물의 제조 방법]
다음에, 본 실시형태에 관한 가공물의 제조 방법에 대하여 설명한다. 도 6은, 본 실시형태에 관한 가공물의 제조 방법의 일례를 나타낸 플로우차트이다. 본 실시형태에 있어서는, 공작 기계(100)를 사용하여 공작물(W)로부터 가공물인 캠샤프트 또는 크랭크샤프트가 제조된다.
공작물(W)이 지지 기구(21) 및 지지 기구(22)에 지지된다. 제1 회전 장치(10)에 의해 공구(1)가 회전축 AX를 중심으로 회전하고, 제2 회전 장치(20)에 의해 공작물(W)이 회전축 BX를 중심으로 회전한다. 공구(1)가 회전하고 공작물(W)이 회전하고 있는 상태에서, 공구(1)와 공작물(W)이 접촉하도록, 구동 장치(30)에 의해 공구(1)가 ―X 방향으로 이동된다.
공작물(W)과 공구(1)가 접촉하고 공구(1)에 의해 공작물(W)이 가공되고 있는 상태에서, 상태량 데이터 취득부(51)는, 제1 모터(12)의 출력 데이터 d1, 회전 속도 센서(14)에 의해 검출되는 공구(1)의 회전 속도 데이터 d2, 제3 모터(31)의 출력 데이터 d3, 위치 센서(32)에 의해 검출되는 X축 방향에서의 공구(1)의 위치 데이터 d4, 제2 모터(23)의 출력 데이터 d5, 및 회전 각도 센서(24)에 의해 검출되는 공작물(W)의 회전 각도 데이터 d6를 포함하는 상태량 데이터를 취득한다(스텝 S10).
상태량 추정 데이터 산출부(52)는, 공구(1)의 동적 특성을 나타내는 장치의 동적 특성 모델 및 공작물(W)의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출한다(스텝 S20).
가공 상태 산출부(53)는, 상태량 데이터 취득부(51)에서 취득된 상태량 데이터와 상태량 추정 데이터 산출부(52)에서 산출된 상태량 추정 데이터에 기초하여, 공작물(W)의 가공 상태를 나타내는 가공 상태 데이터를 산출한다(스텝 S30).
본 실시형태에 있어서는, 상태량 추정 데이터 산출부(52)에 있어서, 제1 모터(12)의 출력 데이터 d1 및 공구(1)의 회전 속도 데이터 d2와 시뮬레이션 모델에 기초하여, 공구(1)의 가공 저항이 산출된다. 그리고, 상태량 추정 데이터 산출부(52)의 칼만 필터(52C)가, 제1 모터(12)의 출력 데이터 d1로부터 공구(1)의 가공 저항을 추출해도 된다.
공구(1)의 가공 저항이 도출(導出)된 후, 가공 상태 산출부(53)는, 가공 저항과 공작물 모델에 기초하여, 공작물(W)의 휨량 변동 데이터를 산출한다. 가공 저항은, 공작물(W)에 작용하는 부하와 등가이다. 또한, 공작물 모델은, 공작물(W)의 목표 형상 데이터, 공작물(W)의 물성 데이터, 및 공작물(W)의 동적 특성 데이터를 포함한다. 가공 상태 산출부(53)는, 공작물(W)에 작용하는 부하와 공작물 모델에 기초하여, 공작물(W)의 휨량 변동을 나타내는 휨량 변동 데이터를 산출할 수 있다.
공작물(W)의 휨량 변동 데이터가 산출되는 것에 의해, 도 4를 참조하여 설명한 바와 같이, 지령 절입량에 대한 실제 절입량이 산출된다. 실제 절입량이 산출되는 것에 의해, CAD 데이터에 의해 규정되는 목표 형상에 대한 공작물(W)의 형상 오차 변동이 산출된다. 가공 상태 산출부(53)는, 가공 상태 데이터로서, 목표 형상에 대한 공작물(W)의 형상 오차 변동을 나타내는 오차 데이터를 산출할 수 있다.
또한, 도 5를 참조하여 설명한 바와 같이, 상태량 추정 데이터 산출부(52)는, 공작물(W)의 회전 각도 데이터 d6와 공구(1)의 위치 데이터 d4와 공작물 모델에 기초하여, 공작물(W)과 공구(1)와의 접촉 위치 C를 산출할 수 있다. 접촉 위치 C는, 공작물(W)이 공구(1)와 접촉하는 가공점을 나타낸다. 가공 상태 산출부(53)는, 접촉 위치 C를 산출함으로써, 공작물(W)의 어느 부위가 어느 정도 가공되어 있는지를 파악할 수 있다. 환언하면, 가공 상태 산출부(53)는, 회전축 BX를 중심으로 하는 회전 방향에서의 공작물(W)의 복수 부위의 각각에 대한 목표 형상에 대한 형상 오차 변동을 산출할 수 있다.
또한, 가공 상태 산출부(53)는, 제3 모터(31)의 출력 데이터 d3 및 공구(1)의 위치 데이터 d4에 기초하여, 채터링 진동에 기인하여 생성되는 공작물(W)의 표면의 요철의 깊이 및 피치를 산출할 수 있다.
즉, 본 실시형태에 있어서는, 가공 상태 산출부(53)는, 공작물(W)의 가공 중에 취득되는 상태량 데이터에 기초하여, 공작물(W)의 가공 상태 데이터로서, 목표 형상에 대한 회전 방향에서의 공작물(W)의 복수 부위의 각각에 대한 오차 데이터, 및 채터링 진동에 기인하는 공작물(W)의 표면의 요철 데이터를 산출할 수 있다.
또한, 가공 상태 산출부(53)는, 상태량 추정 데이터인 공구(1)의 가공 저항과, 공구(1)에 의해 가공된 공작물(W)의 수에 기초하여, 공구(1)의 마모량을 산출하여 추정할 수 있다. 예를 들면, 추정되는 공구(1)의 가공 저항(연삭 저항)이 안정된(stabilized) 후, 공작물(W)을 2회전하여 복수의 공작물(W)의 각각이 거친 연삭되고, 이들 복수의 공작물(W)의 각각이 거친 연삭되었을 때의 공구(1)의 마모량이 취득된다. 가공 상태 산출부(53)는, 복수의 공작물(W)의 각각을 거친 연삭했을 때의 공구(1)의 마모량의 평균값을 나타내는 대표 마모량을 산출한다. 대표 마모량은 기억부(59)에 기억된다. 가공 상태 산출부(53)는, 산출한 공구(1)의 대표 마모량과, 그 공구(1)를 사용하여 가공된 공작물(W)의 수에 기초하여, 공구(1)의 마모량을 추정할 수 있다.
공구(1)에 의한 가공 중에 있어서, 출력부(54)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터를 출력한다(스텝 S40). 출력부(54)는, 공작물(W)의 가공 중에 있어서 실시간으로 가공 상태 데이터를 출력한다. 출력부(54)는, 예를 들면, 표시 장치에 가공 상태 데이터를 실시간으로 출력한다.
도 7은, 본 실시형태에 관한 공작 기계(100)에서 산출된 가공 상태 데이터의 일례를 나타낸 도면이다. 도 7에 나타낸 그래프는, 표시 장치에 표시된다.
도 7에 나타낸 그래프에 있어서, 가로축은, 공작물(W)의 기준 부위를 0[°]로 했을 때의 회전 방향에서의 공작물(W)의 부위의 각도를 나타낸다. 세로축은, 목표 형상에 대한 공작물(W)의 각각의 부위의 오차 데이터를 나타낸다.
도 7에 있어서, 라인 La는, 출력부(54)로부터 출력된 가공 상태 데이터를 나타낸다. 공작 기계(100)에 있어서 상태량 데이터가 취득되는 것에 의해, 가공 상태 산출부(53)는, 공작물(W)의 가공 중에 있어서 공작물(W)의 가공 상태 데이터를 실시간으로 산출할 수 있다. 출력부(54)는, 공작물(W)의 가공 중에 있어서 공작물(W)의 가공 상태 데이터를 실시간으로 출력할 수 있다.
그리고, 라인 Lb는, 공작 기계(100)에 의한 가공 후의 후속 공정에서 검사 장치에 의해 검출된 공작물(W)의 오차 데이터를 나타낸다. 라인 La와 라인 Lb는 충분히 일치하는 것을 알 수 있다.
가공 제어부(55)는, 공구(1)를 사용하는 공작물(W)의 가공에 있어서, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여, 공구(1)에 의한 가공 조건을 제어한다(스텝 S50). 가공 제어부(55)는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여, 산출된 오차가 0[㎛]로 되도록, 제1 모터(12), 제3 모터(31), 및 제2 모터(23) 중 하나 이상을 피드백 제어한다.
[작용 및 효과]
이상 설명한 바와 같이, 본 실시형태에 의하면, 공작물(W)의 가공 중에 있어서 취득되는 상태량 데이터에 기초하여, 공작물(W)의 가공 상태 데이터가 실시간으로 산출된다. 공작물(W)의 가공 상태 데이터는, 목표 형상에 대한 공작물(W)의 형상 오차 변동을 나타내는 오차 데이터를 포함하고, 공작물(W)의 가공 품질을 나타낸다. 본 실시형태에 의하면, 시뮬레이션 모델을 사용함으로써, 상태량 데이터와 시뮬레이션 모델에 기초하여, 공작물(W)의 가공 중에는 직접적으로는 계측할 수 없는 공작물(W)의 가공 품질을, 연산 처리에 의해 가상적(假想的)으로 검사할 수 있다.
따라서, 종래 기술과 같은, 후속 공정에서 검사 장치를 사용하여 가공물을 검사할 필요가 없어진다. 대형이며 고가의 검사 장치가 불필요하므로, 설비 비용을 억제할 수 있다.
또한, 공작물(W)의 가공 중에 취득되는 상태량 데이터에 기초하여 공작물(W)의 가공 품질이 실시간으로 검사된다. 그러므로, 가공 품질의 검사를 위한 검사 시간을 별도 형성하지 않아도 된다. 따라서, 제조된 가공물의 전부의 가공 품질을 저비용으로 검사할 수 있다. 그러므로, 불량인 가공 품질의 가공물의 출하(shipment)가 억제된다.
또한, 본 실시형태에 의하면, 공구(1)에 의한 공작물(W)의 가공에 있어서 가공 상태 데이터를 출력하는 출력부(54)가 설치된다. 이로써, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터는, 공작물(W)의 가공 중에 있어서 실시간으로 출력된다. 예를 들면, 가공 상태 데이터가 표시 장치에 실시간으로 출력됨으로써, 관리자는, 표시 장치를 통하여, 공작물(W)의 가공 품질을 실시간으로 육안 관찰할 수 있다.
또한, 본 실시형태에 의하면, 가공 상태 데이터에 기초하여 공구(1)에 의한 공작물(W)의 가공 조건을 제어하는 가공 제어부(55)가 설치된다. 가공 제어부(55)는, 가공 상태 산출부(53)에 있어서 실시간으로 산출된 가공 상태 데이터에 기초하여, 공작물(W)의 형상 오차가 억제되도록, 공작 기계(100)를 피드백 제어할 수 있다. 따라서, 공작물(W)의 가공 조건이 단시간에 최적화되고, 양호한 가공 품질의 가공물이 단시간에 효율적으로 제조된다.
또한, 본 실시형태에 있어서는, 상태량 데이터로서, 공구(1)를 회전시키는 동력을 발생하는 제1 모터(12)의 출력 데이터 d1가 취득된다. 칼만 필터(52C)에 있어서 제1 모터(12)의 출력 데이터 d1가 데이터 처리되는 것에 의해, 공구(1)의 연삭 저항, 공작물(W)의 가공 개시점, 및 공구(1)의 마모량 등, 다양한 상태량 데이터를 취득할 수 있다.
또한, 본 실시형태에 있어서는, 상태량 데이터로서, 회전 속도 센서(14)에 의해 검출되는 공구(1)의 회전 속도 데이터 d2가 취득된다. 이로써, 제1 모터(12)의 출력 데이터 d1 및 공구(1)의 회전 속도 데이터 d2와 시뮬레이션 모델에 기초하여, 공구(1)의 가공 저항을 산출할 수 있다. 공구(1)의 가공 저항이 산출되는 것에 의해, 공작물(W)의 가공량 및 공작물(W)의 휨량 변동을 추정할 수 있다.
또한, 본 실시형태에 있어서는, 공작물(W)의 휨량 변동 데이터가 산출된다. 이로써, 제3 모터(31)에 출력된 제어 지령 데이터와 공작물(W)의 휨량 변동 데이터에 기초하여, 공작물(W)의 형상 오차 변동을 나타내는 오차 데이터를 산출할 수 있다.
또한, 본 실시형태에 있어서는, 상태량 데이터로서, 공작물(W)의 회전 각도 데이터 d6가 취득된다. 이로써, 회전 각도 데이터 d6와 공작물 모델에 기초하여, 공작물(W)과 공구(1)와의 접촉 위치 C를 산출할 수 있다.
또한, 본 실시형태에 있어서는, 상태량 데이터로서, 제3 모터(31)의 출력 데이터 d3 및 이송 방향에서의 공구(1)의 위치 데이터 d4가 취득된다. 이로써, 제3 모터(31)의 출력 데이터 d3 및 공구(1)의 위치 데이터 d4에 기초하여, 채터링 진동에 기인하는 공작물(W)의 표면의 요철 데이터를 산출할 수 있다.
그리고, 전술한 실시형태에 있어서는, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터에 기초하여, 공구(1)에 의한 가공 조건이 피드백 제어되는 것으로 하였다. 예를 들면, 가공 상태 산출부(53)에서 산출된 가공 상태 데이터가, 가공물(제품)의 시리얼 번호에 대응되어 기억부(56)에 기억되어도 된다. 예를 들면, 공작 기계(100)에 의해 가공된 최종 제품인 가공물의 형상 데이터가 타임 스탬프 및/또는 시리얼 번호에 대응되어 기억부(56)에 기억되어도 되고, 또는 출력부(54)를 통하여 외부의 관리 단말기에 기억하도록 구성해도 된다.
그리고, 전술한 실시형태에 있어서는, 공작 기계(100)가, 캠샤프트나 크랭크샤프트를 가공하는 연삭 장치인 것으로 하였으나, 연삭 장치에 한정되지 않는다. 공작 기계(100)는, 일반적인 원통 연삭반이라도 되고, 구면 연삭반(spherical grinding machine)이라도 되고, 머시닝 센터라도 되고, 와이어 소(wire saw)라도 된다.
그리고, 전술한 실시형태에 있어서는, 제어 장치(50)가 공작 기계(100)에 설치되는 것으로 하였다. 제어 장치(50)는 공작 기계(100)는 다른 장치라도 된다. 예를 들면, 도 8에 나타낸 가공 시스템(1000)과 같이, 제어 장치(50)의 기능이 공장의 관리 단말기에 설치되어도 된다. 도 8에 나타낸 가공 시스템(1000)에 있어서, 공작 기계(100C)와 제어 장치(50)의 기능을 가지는 관리 단말기(50C)는, 통신 장치(1500)를 통하여 접속된다. 관리 단말기(50C)는, 통신 장치(1500)를 통하여, 공작 기계(100C)와 데이터 통신한다. 즉, 전술한 실시형태에 있어서, 상태량 데이터 취득부(51), 상태량 추정 데이터 산출부(52), 가공 상태 산출부(53), 출력부(54), 가공 제어부(55), 및 기억부(56) 중 1개 이상의 기능이, 공작 기계(100C)와는 별개로 설치되어도 된다.
1: 공구, 2: 베이스 부재, 10: 제1 회전 장치, 11: 지지 기구, 12: 제1 모터, 13: 스테이지부 재, 14: 회전 속도 센서, 20: 제2 회전 장치, 21: 지지 기구, 22: 지지 기구, 23: 제2 모터, 24: 회전 각도 센서, 30: 구동 장치, 31: 제3 모터, 32: 위치 센서, 40: 구동 장치, 41: 제4 모터, 50: 제어 장치, 51: 상태량 데이터 취득부, 52: 상태량 추정 데이터 산출부, 52C: 칼만 필터, 53: 가공 상태 산출부, 54: 출력부, 55: 가공 제어부, 56: 기억부, 60: CAD: 데이터 유지부, 100: 공작 기계, 200: 제어 시스템, 1000: 가공 시스템, AX: 회전축, BX: 회전축, C: 접촉 위치, W: 공작물.
Claims (12)
- 공작물(workpiece)과 접촉하여 상기 공작물을 가공하는 공구(tool);
상기 공작물 및 상기 공구의 상태량 데이터가 입력되는 상태량 데이터 취득부(state-quantity-data acquisition unit);
상기 공구의 동적 특성(dynamic characteristic)을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부(state-quantity-estimation-data calculation unit); 및
상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부(machining-state calculation unit);
를 포함하는 공작 기계(machine tool). - 제1항에 있어서,
상기 공구에 의한 상기 가공에 있어서 상기 가공 상태 데이터를 출력하는 출력부를 더 포함하는 공작 기계. - 제1항 또는 제2항에 있어서,
상기 가공 상태 데이터에 기초하여 상기 공구에 의한 가공 조건을 제어하는 가공 제어부를 더 포함하는 공작 기계. - 제1항 내지 제3항 중 어느 한 항에 있어서,
상기 공구를 회전시키는 동력을 발생하는 제1 모터를 포함하는 제1 회전 장치를 더 포함하고,
상기 상태량 데이터는, 상기 제1 모터의 출력 데이터를 포함하는, 공작 기계. - 제4항에 있어서,
상기 상태량 데이터는, 상기 공구의 회전 속도 데이터를 포함하고,
상기 상태량 추정 데이터 산출부는, 상기 제1 모터의 출력 데이터 및 상기 공구의 회전 속도 데이터와 상기 시뮬레이션 모델에 기초하여, 상기 공구의 가공 저항을 산출하는, 공작 기계. - 제5항에 있어서,
이송 방향으로 상기 공구 또는 상기 공작물을 이동시키는 동력을 발생하는 제3 모터를 구비하고, 상기 공구와 상기 공작물을 프레스(press)하는 구동 장치를 더 포함하고,
상기 가공 상태 산출부는, 상기 가공 저항과 공작물 모델에 기초하여 상기 공작물 또는 상기 공구의 휨량 변동 데이터(bending amount variation data)를 산출하고, 상기 제3 모터에 출력된 제어 지령 데이터와 상기 휨량 변동 데이터에 기초하여, 상기 공작물의 형상 오차 변동을 산출하는, 공작 기계. - 제6항에 있어서,
상기 공작물을 회전시키는 동력을 발생하는 제2 모터를 구비하는 제2 회전 장치를 더 포함하고,
상기 상태량 데이터는, 상기 공작물의 회전 각도 데이터를 포함하고,
상기 상태량 추정 데이터 산출부는, 상기 회전 각도 데이터와 상기 공작물 모델에 기초하여 상기 공작물과 상기 공구와의 접촉 위치를 산출하는, 공작 기계. - 제6항 또는 제7항에 있어서,
상기 상태량 데이터는, 상기 제3 모터의 출력 데이터 및 상기 이송 방향에 있어서의 상기 공구의 위치 데이터를 포함하고,
상기 가공 상태 산출부는, 상기 제3 모터의 출력 데이터 및 상기 위치 데이터에 기초하여, 상기 공작물의 표면의 요철(凹凸)을 산출하는, 공작 기계. - 공작물과 공구를 접촉시켜 상기 공구로 상기 공작물을 가공하는 단계;
상기 가공에 있어서 상기 공작물 및 상기 공구의 상태량 데이터를 취득하는 단계;
상기 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 단계;
상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 단계;
상기 가공에 있어서 상기 가공 상태 데이터를 출력하는 단계; 및
상기 가공에 있어서 상기 가공 상태 데이터에 기초하여 상기 공구에 의한 가공 조건을 제어하는 단계;
를 포함하는 가공물의 제조 방법. - 제9항에 있어서,
상기 공구를 회전시키는 동력을 발생하는 제1 모터로부터의 출력 데이터와 상기 공구의 회전 속도를 검출하는 회전 속도 센서로부터의 회전 속도 데이터에 기초하여 상기 공작물의 가공 개시점을 추출하는 단계를 더 포함하는 가공물의 제조 방법. - 제9항 또는 제10항에 있어서,
상기 상태량 추정 데이터는, 상기 공구의 가공 저항을 포함하고,
상기 가공 저항과 상기 공구에 의해 가공된 상기 공작물의 수에 기초하여 상기 공구의 마모량을 추정하는 단계를 더 포함하는 가공물의 제조 방법. - 공작물과 접촉하여 상기 공작물을 가공하는 공구;
상기 공작물 및 상기 공구의 상태량 데이터가 입력되는 상태량 데이터 취득부;
상기 공구의 동적 특성을 나타내는 장치의 동적 특성 모델 및 상기 공작물의 목표 형상을 나타내는 공작물 모델을 포함하는 시뮬레이션 모델로부터 상태량 추정 데이터를 산출하는 상태량 추정 데이터 산출부; 및
상기 상태량 데이터와 상기 상태량 추정 데이터에 기초하여 상기 공작물의 가공 상태를 나타내는 가공 상태 데이터를 산출하는 가공 상태 산출부;
를 포함하는 가공 시스템.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2016-128213 | 2016-06-28 | ||
JP2016128213A JP6727041B2 (ja) | 2016-06-28 | 2016-06-28 | 工作機械 |
PCT/JP2017/023619 WO2018003813A1 (ja) | 2016-06-28 | 2017-06-27 | 工作機械、加工物の製造方法、及び加工システム |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190003640A true KR20190003640A (ko) | 2019-01-09 |
KR102154067B1 KR102154067B1 (ko) | 2020-09-09 |
Family
ID=60785959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187034327A KR102154067B1 (ko) | 2016-06-28 | 2017-06-27 | 공작 기계, 가공물의 제조 방법, 및 가공 시스템 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11458584B2 (ko) |
EP (1) | EP3450096B1 (ko) |
JP (1) | JP6727041B2 (ko) |
KR (1) | KR102154067B1 (ko) |
CN (1) | CN109414792B (ko) |
ES (1) | ES2813350T3 (ko) |
MX (1) | MX2018015894A (ko) |
WO (1) | WO2018003813A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210116650A (ko) * | 2019-03-29 | 2021-09-27 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 산업 기계, 편심 특정 장치, 편심 특정 방법, 및 프로그램 |
KR20210118177A (ko) * | 2019-03-29 | 2021-09-29 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 산업 기계, 치수 추정 장치, 및 치수 추정 방법 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727041B2 (ja) | 2016-06-28 | 2020-07-22 | 株式会社小松製作所 | 工作機械 |
JP6629816B2 (ja) * | 2017-10-31 | 2020-01-15 | ファナック株式会社 | 診断装置および診断方法 |
US20200033842A1 (en) * | 2018-07-25 | 2020-01-30 | Jtekt Corporation | Grinding quality estimation model generating device, grinding quality estimating device, poor quality factor estimating device, grinding machine operation command data adjustment model generating device, and grinding machine operation command data updating device |
JP7194707B2 (ja) * | 2019-04-26 | 2022-12-22 | 芝浦機械株式会社 | ワークの加工方法およびワークの加工機 |
JP7015807B2 (ja) * | 2019-07-05 | 2022-02-03 | 富士通株式会社 | 研削状態監視方法、研削状態監視プログラムおよび研削状態監視装置 |
JP7396857B2 (ja) * | 2019-11-01 | 2023-12-12 | ファナック株式会社 | 表示装置 |
JP7456219B2 (ja) * | 2020-03-19 | 2024-03-27 | 株式会社ジェイテクト | 歯車加工装置及び歯車加工方法 |
WO2024023876A1 (ja) * | 2022-07-25 | 2024-02-01 | 株式会社ジーベックテクノロジー | 研磨具ホルダ、研磨工具、および研磨システム |
WO2024075284A1 (ja) * | 2022-10-07 | 2024-04-11 | 株式会社ジェイテクト | 接触動剛性算出システム、加工推定装置及び加工システム |
WO2024075303A1 (ja) * | 2022-10-07 | 2024-04-11 | 株式会社ジェイテクト | 工作物質量決定装置、加工推定装置及び加工システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013059840A (ja) * | 2011-09-14 | 2013-04-04 | Jtekt Corp | 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法 |
JP2015134400A (ja) * | 2013-12-16 | 2015-07-27 | 国立大学法人 東京大学 | 主軸モータの制御装置 |
JP2016016483A (ja) | 2014-07-09 | 2016-02-01 | 株式会社ジェイテクト | 被加工物のたわみ測定方法、被加工物の剛性測定方法及び工作機械 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60229113A (ja) | 1984-04-26 | 1985-11-14 | Mitsubishi Electric Corp | 数値制御装置 |
DE3722001A1 (de) | 1987-07-03 | 1989-01-12 | Studer Ag Fritz | Verfahren zum optimieren der bearbeitung von runden werkstuecken und werkzeugmaschine |
JPH031742U (ko) | 1989-05-30 | 1991-01-09 | ||
JP2941032B2 (ja) | 1990-09-27 | 1999-08-25 | 豊田工機株式会社 | 加工条件自動作成機能を有する数値制御装置 |
JPH08110808A (ja) | 1994-10-12 | 1996-04-30 | Makino Milling Mach Co Ltd | 数値制御工作機械の制御方法及び装置 |
JP3238852B2 (ja) | 1995-01-31 | 2001-12-17 | 株式会社日平トヤマ | 非真円体の研削装置及び研削方法 |
KR970020270A (ko) | 1995-10-31 | 1997-05-28 | 장관순 | 드링, 탭핑 머시인 주축의 구동 제어장치 |
DE19857364A1 (de) | 1998-12-11 | 2000-06-29 | Junker Erwin Maschf Gmbh | Verfahren und Schleifmaschine zur Prozeßführung beim Schälschleifen eines Werkstückes |
JP2004280267A (ja) | 2003-03-13 | 2004-10-07 | Sumitomo Heavy Ind Ltd | 加工装置用表示装置、加工装置用表示装置の表示方法、加工装置用表示装置の表示プログラム及び記録媒体 |
US6810302B2 (en) | 2003-03-31 | 2004-10-26 | Sikorsky Aircraft Corporation | Process and methodology for selecting cutting parameters for titanium |
US7930957B2 (en) | 2005-06-10 | 2011-04-26 | Prototype Productions, Inc. | Closed-loop CNC machine system and method |
DE102007026562B4 (de) | 2007-06-08 | 2010-08-26 | Erwin Junker Maschinenfabrik Gmbh | Schleifzentrum und Verfahren zum gleichzeitigen Schleifen mehrerer Lager von Kurbelwellen |
JP5105102B2 (ja) | 2009-04-10 | 2012-12-19 | エヌティーエンジニアリング株式会社 | 作業機械のびびり抑制方法及び装置 |
JP5372598B2 (ja) | 2009-05-15 | 2013-12-18 | 株式会社森精機製作所 | 加工方法及び加工システム |
EP2660671B1 (en) | 2011-09-14 | 2015-01-21 | JTEKT Corporation | Processing control apparatus, and processing control method |
EP2669755B1 (en) * | 2011-09-14 | 2015-07-29 | JTEKT Corporation | Machining error computation device, machining error computation method, machining control device and machining control method |
WO2015114811A1 (ja) | 2014-01-31 | 2015-08-06 | 株式会社牧野フライス製作所 | 切削加工方法および制御装置 |
JP6256069B2 (ja) | 2014-02-07 | 2018-01-10 | 株式会社ジェイテクト | 心なしシュー研削のシミュレーション装置、および、心なしシュー研削のシミュレーション方法 |
JP6354349B2 (ja) | 2014-06-05 | 2018-07-11 | ブラザー工業株式会社 | 振動検出装置と工作機械 |
JP6514876B2 (ja) | 2014-10-27 | 2019-05-15 | オークマ株式会社 | 工作機械における送り軸の制御方法及び工作機械 |
CN105598757A (zh) | 2016-03-13 | 2016-05-25 | 固耐重工(苏州)有限公司 | 大型曲轴随动磨床 |
JP6727041B2 (ja) | 2016-06-28 | 2020-07-22 | 株式会社小松製作所 | 工作機械 |
-
2016
- 2016-06-28 JP JP2016128213A patent/JP6727041B2/ja active Active
-
2017
- 2017-06-27 MX MX2018015894A patent/MX2018015894A/es unknown
- 2017-06-27 US US16/304,404 patent/US11458584B2/en active Active
- 2017-06-27 CN CN201780039865.0A patent/CN109414792B/zh active Active
- 2017-06-27 ES ES17820167T patent/ES2813350T3/es active Active
- 2017-06-27 KR KR1020187034327A patent/KR102154067B1/ko active IP Right Grant
- 2017-06-27 EP EP17820167.9A patent/EP3450096B1/en active Active
- 2017-06-27 WO PCT/JP2017/023619 patent/WO2018003813A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013059840A (ja) * | 2011-09-14 | 2013-04-04 | Jtekt Corp | 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法 |
JP2015134400A (ja) * | 2013-12-16 | 2015-07-27 | 国立大学法人 東京大学 | 主軸モータの制御装置 |
JP2016016483A (ja) | 2014-07-09 | 2016-02-01 | 株式会社ジェイテクト | 被加工物のたわみ測定方法、被加工物の剛性測定方法及び工作機械 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210116650A (ko) * | 2019-03-29 | 2021-09-27 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 산업 기계, 편심 특정 장치, 편심 특정 방법, 및 프로그램 |
KR20210118177A (ko) * | 2019-03-29 | 2021-09-29 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 산업 기계, 치수 추정 장치, 및 치수 추정 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2018003813A1 (ja) | 2018-01-04 |
US20190291228A1 (en) | 2019-09-26 |
JP2018001301A (ja) | 2018-01-11 |
ES2813350T3 (es) | 2021-03-23 |
KR102154067B1 (ko) | 2020-09-09 |
CN109414792B (zh) | 2021-01-08 |
EP3450096A1 (en) | 2019-03-06 |
EP3450096A4 (en) | 2020-01-15 |
CN109414792A (zh) | 2019-03-01 |
US11458584B2 (en) | 2022-10-04 |
EP3450096B1 (en) | 2020-08-05 |
MX2018015894A (es) | 2019-05-27 |
JP6727041B2 (ja) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102154067B1 (ko) | 공작 기계, 가공물의 제조 방법, 및 가공 시스템 | |
CN105785943B (zh) | 补偿误差的方法、单元、系统、测量设施、介质 | |
US10474128B2 (en) | Abnormality analysis system and analysis apparatus | |
US20140123740A1 (en) | Working Abnormality Detecting Device and Working Abnormality Detecting Method for Machine Tool | |
JP6862764B2 (ja) | 研削装置およびこれを用いる転がり軸受の製造方法 | |
EP2181802A1 (en) | Grinding machine and grinding method | |
JP6953690B2 (ja) | 解析システム | |
JP2014191607A (ja) | 数値制御工作機械および数値制御工作機械の主軸誤差補正方法 | |
CN112904797A (zh) | 数值控制装置以及控制方法 | |
JP6987174B2 (ja) | 研削装置、加工物の製造方法、及び研削システム | |
EP2732918B1 (en) | Grinding plate and grinding method | |
JP2005074569A (ja) | プログラム、コンピュータ装置、多軸加工機、ncプログラムの生成方法、ワークの加工方法 | |
Bas et al. | Assessment of the production quality in machining by integrating a system of high precision measurement | |
US10852709B2 (en) | Machine tool certification for part specific working volume | |
JP6166300B2 (ja) | 工具と被加工物の干渉チェックが可能な数値制御装置 | |
JP4940904B2 (ja) | かつぎ量計測装置 | |
JP7177669B2 (ja) | 解析装置、解析方法及び加工システム | |
KR102629252B1 (ko) | 산업 기계, 치수 추정 장치, 및 치수 추정 방법 | |
JP4581858B2 (ja) | 主軸の回転に同期させて工具を往復運動させる工作機械の制御装置 | |
KR20150053542A (ko) | 공작 기계 | |
Hong et al. | Influence of component errors of rotary axes on a machining test of cone frustum by five-axis machine tools | |
JP2017001118A (ja) | 研削盤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |