WO2015114811A1 - 切削加工方法および制御装置 - Google Patents

切削加工方法および制御装置 Download PDF

Info

Publication number
WO2015114811A1
WO2015114811A1 PCT/JP2014/052316 JP2014052316W WO2015114811A1 WO 2015114811 A1 WO2015114811 A1 WO 2015114811A1 JP 2014052316 W JP2014052316 W JP 2014052316W WO 2015114811 A1 WO2015114811 A1 WO 2015114811A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
axis
feed
quadrant
tool
Prior art date
Application number
PCT/JP2014/052316
Other languages
English (en)
French (fr)
Inventor
泰徳 増宮
恭平 鈴木
潤 金谷
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to PCT/JP2014/052316 priority Critical patent/WO2015114811A1/ja
Priority to EP14881214.2A priority patent/EP3101498A4/en
Priority to JP2015559729A priority patent/JP6076507B2/ja
Priority to PCT/JP2014/071406 priority patent/WO2015114861A1/ja
Priority to US15/115,546 priority patent/US10146204B2/en
Priority to CN201480072374.2A priority patent/CN105917282B/zh
Priority to KR1020167014439A priority patent/KR101954295B1/ko
Publication of WO2015114811A1 publication Critical patent/WO2015114811A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/27Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/195Controlling the position of several slides on one axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37355Cutting, milling, machining force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37618Observe, monitor position, posture of tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41032Backlash
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41079Cross coupled backlash for two other axis on reversing third axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41265To avoid backlash

Definitions

  • the present invention relates to a cutting method and a control device for forming a curved surface on a workpiece using a rotary tool.
  • Machine tools may cause motion errors in the feed axis due to drive system delays caused by various causes.
  • the cause of the motion error there is a so-called quadrant protrusion generated when the quadrant such as circular interpolation motion is switched, in addition to the variation of the cutting load.
  • a quadrant protrusion is an undesirable bite or protrusion-shaped machining trace that occurs on the machining surface, and when the feed direction of each axis is reversed in circular cutting, arc cutting, elliptical or spiral curving, etc. Arise.
  • the size of the quadrant projection is reduced.
  • the quadrant projection is caused by a cause that inevitably accompanies the mechanical system such as backlash, elastic deformation, and frictional resistance.
  • the occurrence of quadrant projections cannot be ruled out because it occurs when the feed direction is reversed.
  • the quadrant protrusions are concentrated when the feed direction of the linear feed shaft is reversed, that is, in a region where the positive / negative sign of the tangent or tangential plane slope changes on one curved surface.
  • the present invention has a technical problem to solve such problems of the prior art, and provides a cutting method and a control device in which quadrant projections are distributed over the entire processing surface without being concentrated in a specific region.
  • the purpose is to do.
  • a quadrant generated on the machining surface of the workpiece is added to the workpiece by rotating feed.
  • a cutting method characterized in that the positions of the protrusions are dispersed is provided.
  • a machine tool having a three-axis linear feed shaft and at least one rotary feed shaft, and machining the curved surface of the workpiece by moving the rotary tool and the workpiece relative to each other.
  • the control device two linear feed axes of the three orthogonal linear feed axes are simultaneously controlled to move the rotary tool relative to the workpiece along one curved path, and to the curved path A pick feed is provided in a vertical direction, and the two linear feed axes are simultaneously controlled to move the rotary tool relative to the workpiece along the next curved path adjacent to the workpiece.
  • a workpiece rotation program for rotating the workpiece around an axis parallel to the linear feed axis perpendicular to the two linear feed axes is executed, and is generated on the curved surface.
  • Control device for a machine tool that the position of the limit projection and characterized by comprising a superimposing unit for dispersing the direction of the rotary feed for each of the curvilinear path is provided.
  • the quadrant projections are distributed substantially uniformly along the work surface of the workpiece.
  • FIG. 2 shows an example of a machine tool to which the present invention is applied.
  • a machine tool 100 according to a preferred embodiment of the present invention constitutes a vertical machining center, and includes a bed 102 as a base fixed to the floor of a factory, a front portion of the bed 102 (in FIG. 2).
  • Y-axis slider 106 provided to be movable in the front-rear direction or Y-axis direction (left-right direction in FIG. 2) on the upper surface of the left-side portion), the rotary table 120 attached to the upper surface of Y-axis slider 106,
  • the column 104 fixed to the upper surface of the bed 102 (in FIG.
  • a spindle head 110 is mounted on the front surface of the shaft slider 108 and the X-axis slider 108 so as to be movable in the vertical direction or the Z-axis direction and rotatably supports the spindle 112. It is.
  • the Y-axis slider 106 is provided so as to reciprocate along a pair of Y-axis guide rails (not shown) extending in the horizontal Y-axis direction (left-right direction in FIG. 2) on the upper surface of the bed 102.
  • the bed 102 includes a ball screw (not shown) extending in the Y-axis direction as one Y-axis feeding device that reciprocates the Y-axis slider 106 along the Y-axis guide rail, and one end of the ball screw.
  • a linked Y-axis servo motor 116 is provided, and a nut (not shown) that engages with the ball screw is attached to the Y-axis slider 106.
  • the Y-axis slider 106 is also attached with a Y-axis scale (not shown) for measuring the coordinate position of the Y-axis slider 106 in the Y-axis direction in the Y-axis direction.
  • the spindle head 110 supports the spindle 112 so as to be rotatable around a central axis L extending in the vertical direction parallel to the Z axis.
  • the main shaft 112 is formed with a tool mounting hole (not shown) for mounting the rotary tool T at a tip portion facing the Y-axis slider 106.
  • the spindle head 110 has a servo motor (not shown) that rotationally drives the spindle 112.
  • the servo motor can be attached to the outside of the housing of the spindle head 110, but a stator coil (not shown) is provided on the inner surface of the housing of the spindle head 110, and a rotor coil (not shown) is provided on the spindle 112. And it is good also as what is called a built-in motor.
  • the X-axis slider 108 is provided so as to reciprocate along a pair of X-axis guide rails (not shown) extending in the X-axis direction on the front surface of the upper portion of the column 104.
  • the column 104 is connected to a ball screw (not shown) extending in the X-axis direction and one end of the ball screw as an X-axis feeding device that reciprocates the X-axis slider 108 along the X-axis guide rail.
  • An X-axis servo motor 114 is provided, and a nut (not shown) that engages with the ball screw is attached to the X-axis slider 108.
  • An X-axis scale (not shown) for measuring the coordinate position of the X-axis slider 108 in the X-axis direction is also attached to the column 104.
  • the spindle head 110 is provided so as to reciprocate along a pair of Z-axis guide rails extending in the Z-axis direction (vertical direction in FIG. 2) on the front surface of the X-axis slider 108.
  • the X-axis slider 108 includes a ball screw (not shown) extending in the Z-axis direction as one Z-axis feeding device that reciprocates the spindle head 110 along the Z-axis guide rail, and one end of the ball screw.
  • a coupled Z-axis servomotor 118 is provided, and a nut (not shown) that engages with the ball screw is attached to the spindle head 110.
  • a Z-axis scale (not shown) for measuring the coordinate position of the spindle head 110 in the Z-axis direction is also attached to the X-axis slider 108.
  • the rotary tool T is fed along its central axis by a Z-axis feeder.
  • the rotary table 120 is provided so as to be rotatable about an axis parallel to the Z axis, and has a workpiece mounting surface (not shown) for mounting the workpiece W, and is a C-axis feed that is a rotary feed shaft around the axis. Forming device.
  • the rotary table 120 includes a C-axis servo motor 122 that rotationally drives the workpiece mounting surface, and a rotation sensor such as a rotary encoder that measures the rotational position of the workpiece mounting surface.
  • the X-axis servo motor 114, the Y-axis servo motor 116, the Z-axis servo motor 118, the C-axis servo motor 122, the X-axis scale, the Y-axis scale, the Z-axis scale, and the rotation sensor are added to the NC device 10 that controls the machine tool 100. It is connected.
  • the NC device 10 controls the power (current value) supplied to the X-axis servo motor 114, the Y-axis servo motor 116, the Z-axis servo motor 118, and the C-axis servo motor.
  • the quadrant projection is a defective portion such as a bite or projection generated on the processing surface, and when cutting the circumference, arc, cylindrical surface, spherical surface, etc., when the sign of the tangential slope changes, Alternatively, it occurs when the feed directions of the X-axis, Y-axis, and Z-axis linear feed axes are reversed.
  • the quadrant projections on the surface of the circular groove G of the workpiece W are X-axis and Y-axis as shown by hatching in FIG.
  • the NC apparatus 10 includes a reading interpretation unit 12, an interpolation unit 14, and a servo control unit 16. .
  • the reading / interpreting unit 12 reads and interprets a machining program from a tool path generation device 20 described later, and outputs a movement command to the interpolation unit 14.
  • This movement command includes the feed amount and feed speed in the X-axis, Y-axis, Z-axis, and C-axis directions.
  • Interpolation unit 14 performs interpolation calculation on the received X-axis, Y-axis, Z-axis, and C-axis movement commands, and outputs a position command that matches the interpolation function and feed speed to servo control unit 16.
  • the servo control unit 16 drives the X-axis, Y-axis, Z-axis, and C-axis feed axes of the machine tool 100 from the received X-axis, Y-axis, Z-axis, and C-axis position commands. Is supplied to the X-axis, Y-axis, Z-axis, and C-axis servomotors 114, 116, 118, and 122.
  • the tool path generation device 20 includes a synthesis program calculation unit 22, a quadrant projection simulation unit 24, and a display unit 26.
  • a main program 30 for machining the workpiece W and a workpiece rotation program 32 for rotating and feeding the workpiece W in the C-axis direction are input to the synthesis program calculation unit 22.
  • the main program 30 and the workpiece rotation program 32 can be input to the synthesis program calculation unit 22 via a computer network such as a LAN from a machining program generation device (not shown) such as a CAM (Computer Aided Manufacturing) device. it can.
  • An input device such as a keyboard or a touch panel is provided in the tool path generation device 20, and an operator inputs the main program 30 and the workpiece rotation program 32 from the input device to the synthesis program calculation unit 22, or
  • the main program 30 and the work rotation program 32 input to the synthesis program calculation unit 22 may be edited.
  • the synthesis program calculation unit 22 generates a synthesis program based on the main program 30 and the work rotation program 32.
  • the synthesis program is output to the reading interpretation unit 12 of the NC apparatus 10.
  • the synthesis program is also sent to the quadrant projection simulation unit 24, where the machining surface created on the workpiece W is simulated by calculation. Based on the simulation result, the occurrence position of the quadrant protrusion can be displayed on the display unit 26 by graphic and / or numerical value. The size of the quadrant projection may be simulated and displayed.
  • the main program 30 for forming the circular groove G in the workpiece W and the workpiece rotation program 32 for rotating and feeding the rotary table 120 in the C-axis direction are input to the synthesis program calculation unit 22 of the tool path generation device 20.
  • the main program 30 is a machining program that includes a process of machining the rotary tool T relative to the workpiece W so as to draw a curve by simultaneously controlling only two linear feed axes.
  • the main program 30 controls the ball end mill T as a rotating tool by controlling two linear feed axes of the X axis and the Y axis, and moves the ball end mill T along a circular tool path TP.
  • the ball end mill T is given a pick feed in the X-axis and Z-axis directions, and the two linear feed axes of the X-axis and the Y-axis are controlled to move to the next adjacent circular tool path TP.
  • This is a machining program for moving the ball end mill T relative to the workpiece W along and forming one circular groove G having a semicircular cross section on the upper surface of the workpiece W.
  • the circular tool path TP is a large number of concentric circles centered on O, and the ball end mill T finishes the circular groove G by making many turns along the circular tool path TP.
  • the workpiece rotation program 32 distributes the quadrant projections generated during the machining of the workpiece W over the entire machining surface, so as not to concentrate on a specific part, the circular tool path which is the one curve.
  • the rotary table 120 is rotated in the C-axis direction, which is a rotation feed axis around an axis parallel to the Z-axis perpendicular to the X-axis and the Y-axis that moves the ball end mill T relative to the workpiece W along TP (work W Is rotated and fed in the C-axis direction).
  • the C-axis direction can be only clockwise or counterclockwise, or a mixture of clockwise and counterclockwise.
  • the synthesis program calculation unit 22 analyzes the main program 30 and extracts a code that defines a circular tool path TP for forming the circular groove G on the upper surface of the workpiece W. Further, the synthesis program calculation unit 22 analyzes the workpiece rotation program 32 and extracts a C-axis feed code. The synthesis program calculation unit 22 further changes the origin of the circular tool path TP for the circular groove G in the main program 30 from the extracted C-axis feed code, for example, the circular tool path TP in the example of FIG.
  • the synthesis program calculation unit 22 outputs the synthesis program to the reading interpretation unit 12 and the quadrant projection simulation unit 24 of the NC device 10.
  • the quadrant protrusion is hatched in FIG.
  • the noise occurs intensively along four boundaries QB between the quadrants with respect to the center O of the circular groove G in the XY plane.
  • the quadrant projections QP are distributed substantially uniformly along the surface of the circular groove G as shown in FIG.
  • the circular tool path TP excluding the pick feed portion in the main program 30 for machining a circular groove G having an inner diameter of 49.6 mm and a groove width of 5.7 mm using a ball end mill having an outer diameter of ⁇ 1.5 mm is centered on O. 300 concentric circles, and while the tool T circulates along the circular tool path TP 300 times, four quadrant protrusions are generated with a slight deviation for each adjacent circular tool path TP.
  • the NC device 40 includes first and second reading interpretation units 42 and 44, a superimposing unit 46, an interpolation unit 48, a quadrant projection simulation unit 50, a servo control unit 52, and a display unit 54.
  • the first reading / interpreting unit 42 reads and interprets the main program 30 and outputs a movement command to the superimposing unit 46.
  • This movement command includes the feed amount and feed speed in the three orthogonal directions of the X, Y, and Z axes.
  • the second reading / interpreting unit 44 reads and interprets the work rotation program 32 and outputs a movement command to the superimposing unit 46.
  • This movement command includes the direction and speed of the rotational feed of the C axis.
  • the superimposing unit 46 superimposes the movement commands output from the first and second reading interpretation units 42 and 44. That is, as in the first embodiment, for example, in the example of FIG. 3, the position vector V P (TP) representing the circular tool path TP is the position of the center O of the circular groove G viewed from the central axis direction of the C axis.
  • the superimposed movement command to which the vector VP (CO) is added and the C-axis rotational movement command are output to the interpolation unit 48.
  • the interpolation unit 48 performs an interpolation calculation on each of the received superimposed movement command and C-axis rotational movement command, and outputs a position command to the servo control unit 52.
  • the servo control unit 52 drives the X-axis, Y-axis, Z-axis, and C-axis feed axes of the machine tool 100 from the received X-axis, Y-axis, Z-axis, and C-axis position commands. Is output to the X-axis, Y-axis, Z-axis, and C-axis servomotors 114, 116, 118, and 122.
  • the superposition movement command from the superimposing unit 46 is simulated and calculated by the quadrant projection simulation unit 50 prior to actual machining, and the operation of displaying the position where the quadrant projection occurs on the display unit 54 is the same as in the first embodiment. It is.
  • the superimposing unit, the quadrant projection simulation unit, and the display unit according to claims 6 and 7 are provided on the tool path generation device 20, that is, the CAM device side as in the first embodiment, and in the second embodiment. Thus, it may be provided on the NC device side.
  • the quadrant protrusions generated in the circular groove G are dispersed by rotating the C-axis that is the rotation feed shaft around the axis parallel to the Z-axis.
  • the present invention is not limited to this, and for example, as shown in FIG. 7, the B-axis that is a rotation feed shaft around an axis parallel to the Y-axis may be rotated.
  • FIG. 7 shows an example in which a semi-cylindrical outer peripheral surface S having a central axis R parallel to the Y axis is processed into a workpiece W using a ball end mill as the rotary tool T.
  • the rotary table 120 is attached to the upper surface of a swinging member 130 that is swingably attached to the Y-axis slider 106 about the B axis.
  • the workpiece W is placed on the upper surface of the rotary table 120 so that its center axis R is the Y axis. Installed in parallel.
  • the main program 30 when machining the outer peripheral surface of the workpiece W, gives a ball end mill having the X-axis, Y-axis, and Z-axis as the rotary tool T and gives a pick feed PF in the Y-axis direction.
  • This is a machining program that feeds relative to the workpiece W along a plurality of arcs centered on the central axis R of the workpiece W parallel to the Y axis. That is, while machining along one of the plurality of arcs, the Y-axis feed device is fixed, and only the two linear feed axes of the X axis and the Z axis are controlled.
  • the work rotation program 32 is a program for causing the peristaltic member 130 to reciprocate or swing in the B-axis direction, which is a rotation feed axis around an axis parallel to the Y-axis.
  • the quadrant projections are intensively generated along a straight line parallel to the central axis R at the highest position on the outer surface of the workpiece W.
  • the quadrant protrusions are distributed substantially uniformly along the outer peripheral surface S of the workpiece W.
  • the position of the quadrant protrusion is used as the tool path.
  • the adjacent tool path refers to a tool path for one round separated by a spiral lead.
  • the generation positions of the quadrant protrusions can be similarly distributed along the tool path.

Abstract

 本発明は、回転工具(T)とワーク(W)とを相対移動させてワーク(W)の曲面(G)を加工する切削加工方法において、ワーク(W)に前記曲面(G)に沿った方向の回転送りを付加し、前記曲面(G)に生じる象限突起(QP)の位置を工具の経路毎に前記回転送りの方向に分散させるようにした。

Description

切削加工方法および制御装置
 本発明は、回転工具を用いてワークに曲面を形成する切削加工方法および制御装置に関する。
 工作機械は、種々の原因によって生じる駆動系の遅れのため、送り軸に運動誤差を生じることがある。運動誤差を生じる原因の一例として、切削負荷の変動の他、円弧補間運動などの象限が切り替わるときに生じるいわゆる象限突起がある。象限突起は、加工面に生じる食い込みや突起状の好ましくない加工痕であり、円切削加工、円弧切削加工、楕円やうず巻形の曲線状切削加工などにおいて各軸の送り方向が反転するときに生じる。例えば、X軸、Y軸、Z軸の直線送りによって曲面を加工する際、各軸の送りの方向が反転するときに、X軸、Y軸、Z軸の送り装置(ボールねじ、軸受、案内装置等)のバックラッシ、弾性変形、摩擦抵抗による追従遅れのために運動誤差を生じ、それによって象限突起が生じる。
 象限突起の発生を防止または抑制するために、特許文献1の発明では、送り軸の反転時の速度指令に予め設定された加速速度を加えている。また特許文献2の発明では、回転工具とワークとを相対移動させワークを切削加工する工作機械において、加工中に回転工具の位相を制御することによって象限突起の発生を防止している。
特許第2558580号公報 特開2013-206342号公報
 特許文献1の発明によれば、象限突起のサイズは小さくなるが、既述したように、象限突起は、バックラッシ、弾性変形、摩擦抵抗等の機械系に不可避的に伴う原因によって、直線送り軸の送り方向が反転するときに発生するので、象限突起の発生を排除することはできない。更に、象限突起は、直線送り軸の送り方向が反転するときに生じる、つまり1つの曲面において接線または接平面の傾きの正負の符号が変化する領域に集中する。従って、多数のピックフィードを与えて多数の工具経路に沿って工具を相対移動させて曲面を加工する場合、個々の象限突起のサイズ(高さ)が加工誤差範囲に収まっても、多数の象限突起が集中することによって、すじ状の加工痕として視覚的に目立ち、製品として用いることができない場合が生じ得る。また、特許文献2の発明によれば、象限突起が生じない回転工具の位相制御は、高速回転、高速送り領域では難しくなる問題がある。
 本発明は、こうした従来技術の問題を解決することを技術課題としており、象限突起が特定の領域に集中することなく、加工面の全体に分散するようにした切削加工方法およ制御装置を提供することを目的としている。
 上述の目的を達成するために、本発明によれば、回転工具とワークとを相対移動させてワークを加工する切削加工方法において、ワークに回転送りを付加し、前記ワークの加工面に生じる象限突起の位置を分散させることを特徴とした切削加工方法が提供される。
 また、本発明の他の特徴によれば、直交3軸の直線送り軸と少なくとも1つの回転送り軸とを有し、回転工具とワークとを相対移動させてワークの曲面を加工する工作機械の制御装置において、前記直交3軸の直線送り軸の2つの直線送り軸を同時制御して、前記回転工具を1つの曲線経路に沿って前記ワークに対して相対移動させ、前記曲線経路に対して垂直な方向にピックフィードを与え、前記2つの直線送り軸を同時制御して前記回転工具を隣接する次の曲線経路に沿って前記ワークに対して相対移動させ、これを繰返して前記ワークに所望の曲面を形成する主プログラムを実行する間、前記2つの直線送り軸に対して垂直な直線送り軸に平行な軸線周りに前記ワークを回転させるワーク回転プログラムを実行し、前記曲面に生じる象限突起の位置を前記曲線経路毎に前記回転送りの方向に分散させる重畳部を具備することを特徴とした工作機械の制御装置が提供される。
 本発明によれば、象限突起はワークの加工面に沿って略一様に分散する。
本発明の第1の実施形態による制御装置のブロック図である。 本発明を適用する工作機械の一例を示す側面図である。 本発明の切削加工方法により加工されるワークの一例を示す斜視図である。 本発明の切削加工方法によるワークの加工シミュレーション結果を示す略図である。 従来技術により加工されたワークの略示平面図である。 本発明の第2の実施形態による制御装置のブロック図である。 本発明の切削加工方法の変形例を示す斜視図である。
 図2を参照すると、本発明を適用する工作機械の一例が示されている。図2において、本発明の好ましい実施の形態による工作機械100は、立形マシニングセンタを構成しており、工場の床面に固定された基台としてのベッド102、ベッド102の前方部分(図2では左側部分)の上面で前後方向またはY軸方向(図2では左右方向)に移動可能に設けられたY軸スライダ106、Y軸スライダ106の上面に取り付けられた回転テーブル120、ベッド102の後方部分(図2では右側部分)で同ベッド102の上面に固定されたコラム104、該コラム104の前面で左右方向またはX軸方向(図2では紙面に垂直な方向)に移動可能に設けられたX軸スライダ108、X軸スライダ108の前面で上下方向またはZ軸方向に移動可能に取り付けられ、主軸112を回転可能に支持する主軸頭110を具備している。
 Y軸スライダ106は、ベッド102の上面において水平なY軸方向(図2の左右方向)に延設された一対のY軸案内レール(図示せず)に沿って往復動可能に設けられており、ベッド102には、Y軸スライダ106をY軸案内レールに沿って往復駆動するY軸送り装置として、Y軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたY軸サーボモータ116が設けられており、Y軸スライダ106には、前記ボールねじに係合するナット(図示せず)が取り付けられている。Y軸スライダ106には、また、Y軸方向のY軸スライダ106のY軸方向の座標位置を測定するY軸スケール(図示せず)が取り付けられている。
 主軸頭110は、Z軸に平行な鉛直方向に延びる中心軸線L周りに回転可能に主軸112を支持している。主軸112は、Y軸スライダ106に対面する先端部に回転工具Tを装着するための工具装着穴(図示せず)が形成されている。主軸頭110は主軸112を回転駆動するサーボモータ(図示せず)を有している。該サーボモータは、主軸頭110のハウジングの外側に取り付けるようにできるが、主軸頭110のハウジング内面にステーターコイル(図示せず)を設け、そして主軸112にローターコイル(図示せず)を配設して所謂ビルトインモータとしてもよい。
 X軸スライダ108は、コラム104の上方部分の前面においてX軸方向に延設された一対のX軸案内レール(図示せず)に沿って往復動可能に設けられている。コラム104には、X軸スライダ108をX軸案内レールに沿って往復駆動するX軸送り装置として、X軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたX軸サーボモータ114が設けられており、X軸スライダ108には、前記ボールねじに係合するナット(図示せず)が取り付けられている。コラム104には、また、X軸スライダ108のX軸方向の座標位置を測定するX軸スケール(図示せず)が取り付けられている。
 主軸頭110は、X軸スライダ108の前面においてZ軸方向(図2では上下方向)に延設された一対のZ軸案内レールに沿って往復動可能に設けられている。X軸スライダ108には、主軸頭110をZ軸案内レールに沿って往復駆動するZ軸送り装置として、Z軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたZ軸サーボモータ118が設けられており、主軸頭110には、前記ボールねじに係合するナット(図示せず)が取り付けられている。X軸スライダ108には、また、主軸頭110のZ軸方向の座標位置を測定するZ軸スケール(図示せず)取り付けられている。回転工具TはZ軸送り装置によって、その中心軸線に沿って送られる。
 回転テーブル120は、Z軸に平行な軸線周りに回転可能に設けられワークWを取り付けるためのワーク取付面(図示せず)を有しており、前記軸線周りの回転送り軸であるC軸送り装置を形成する。回転テーブル120は、前記ワーク取付面を回転駆動するC軸サーボモータ122と、前記ワーク取付面の回転位置を測定するロータリーエンコーダのような回転センサとを備えている。
 X軸サーボモータ114、Y軸サーボモータ116、Z軸サーボモータ118、C軸サーボモータ122およびX軸スケール、Y軸スケール、Z軸スケールおよび回転センサは、工作機械100を制御するNC装置10に接続されている。NC装置10によって、X軸サーボモータ114、Y軸サーボモータ116、Z軸サーボモータ118およびC軸サーボモータへ供給される電力(電流値)が制御される。
 象限突起は、既述したように、加工面に生じる食い込みや突起などの不良部分であり、円周、円弧、円筒面、球面等を切削加工する場合において、接線の傾きの符号が変わるとき、或いは、X軸、Y軸、Z軸の各直線送り軸の送り方向が反転するときに生じる。例えば、図3に示すOリングを成形するための金型を加工する場合、従来技術では図5においてハッチングで示すように、象限突起は、ワークWの円形溝Gの表面上でX軸およびY軸の2つの直線送り軸の送り方向が反転する領域、つまりXY平面内で円形溝Gの中心Oに関する各象限間の境界QBに沿って集中的に発生する。本発明では、象限突起が発生するような加工において、象限突起の発生を抑制するのでなく、象限突起を加工面の全体に分散させるようになっている。象限突起の大きさを小さくする従来からの制御(例えば前述の特許文献1の発明)を併用するのが好しい。
 本発明の穴加工方法を実施するためのNC装置の一例を示すブロック図である図1を参照すると、NC装置10は、読取解釈部12、補間部14およびサーボ制御部16を具備している。読取解釈部12は、後述する工具経路生成装置20からの加工プログラムを読取り解釈して移動指令を補間部14へ出力する。この移動指令は、X軸、Y軸、Z軸およびC軸方向の送り量と送り速度とを含んでいる。
 補間部14は、受け取ったX軸、Y軸、Z軸およびC軸移動指令を補間演算し、補間関数および送り速度に合った位置指令をサーボ制御部16に出力する。サーボ制御部16は、受け取ったX軸、Y軸、Z軸およびC軸の各位置指令から工作機械100のX軸、Y軸、Z軸およびC軸の各送り軸を駆動するための電流値を出力し、これがX軸、Y軸、Z軸およびC軸のサーボモータ114、116、118、122に供給される。
 工具経路生成装置20は、合成プログラム演算部22、象限突起シミュレーション部24および表示部26を具備している。合成プログラム演算部22には、ワークWを加工する主プログラム30と、ワークWをC軸方向に回転送りするワーク回転プログラム32とが入力される。
 主プログラム30およびワーク回転プログラム32は、例えばCAM(Computer Aided Manufacturing)装置のような加工プログラム生成装置(図示せず)からLANのようなコンピュータネットワークを介して合成プログラム演算部22に入力することができる。工具経路生成装置20に、キーボードやタッチパネルのような入力装置(図示せず)を設けて、オペレーターが該入力装置から合成プログラム演算部22に主プログラム30およびワーク回転プログラム32を入力したり、或いは、合成プログラム演算部22に入力された主プログラム30およびワーク回転プログラム32を編集できるようにしてもよい。
 合成プログラム演算部22は、主プログラム30およびワーク回転プログラム32に基づいて合成プログラムを生成する。該合成プログラムは、NC装置10の読取解釈部12へ出力される。合成プログラムは、また、象限突起シミュレーション部24へ送出され、該象限突起シミュレーション部24において、ワークWに創成される加工面が演算によってシミュレーションされる。シミュレーション結果に基づいて、象限突起の発生位置が表示部26にグラフィックおよび/または数値で表示することができる。象限突起の大きさもシミュレーションし、表示してもよい。
 ワークWに円形溝Gを形成するための主プログラム30および回転テーブル120をC軸方向に回転送りするためのワーク回転プログラム32が、工具経路生成装置20の合成プログラム演算部22に入力される。本実施形態において、主プログラム30は、2つの直線送り軸のみを同時に制御して曲線を描くように回転工具TをワークWに対して相対移動させて加工する工程を含む加工プログラムである。
 図3の例では、主プログラム30は、回転工具としてのボールエンドミルTをX軸およびY軸の2つの直線送り軸を制御して、該ボールエンドミルTを1つの円形工具経路TPに沿ってワークWに対して相対移動させ、次いで、ボールエンドミルTにX軸およびZ軸方向にピックフィードを与え、X軸およびY軸の2つの直線送り軸を制御して隣接する次の円形工具経路TPに沿ってボールエンドミルTをワークWに対して相対移動させ、これを繰返してワークWの上面に断面が半円形の1つの円形溝Gを形成するための加工プログラムである。つまり、1つの円形工具経路TPに沿ってボールエンドミルTをワークWに対して相対移動させている間は、Z軸送り装置は固定されており、X軸およびY軸の2つの直線送り軸のみが制御される。円形工具経路TPは、Oを中心とした多数の同心円であり、ボールエンドミルTは円形工具経路TPに沿って何周回もして円形溝Gを仕上げ加工する。
 これに対して、ワーク回転プログラム32は、ワークWの加工中に生じる象限突起を加工面の全体に分散し、特定の部位に集中しないようにするために、前記1つの曲線である円形工具経路TPに沿ってボールエンドミルTをワークWに対して相対移動させるX軸およびY軸に垂直なZ軸に平行な軸線周りの回転送り軸であるC軸方向に回転テーブル120を回転させる(ワークWをC軸方向に回転送りする)ためのプログラムである。C軸方向は、時計回りだけもしくは反時計回りだけ、または時計回りと反時計回りとが混在するようにできる。
 合成プログラム演算部22は、主プログラム30を解析して円形溝GをワークWの上面に形成するための円形工具経路TPを規定するコードを抽出する。更に、合成プログラム演算部22は、ワーク回転プログラム32を解析してC軸送りのコードを抽出する。合成プログラム演算部22は、更に、抽出したC軸送りのコードから、主プログラム30における円形溝Gのための円形工具経路TPの原点の変化、例えば、図3の例では、円形工具経路TPを表す位置ベクトルVP(TP)にC軸の中心軸線方向から見た円形溝Gの中心Oの位置ベクトルVP(CO)を加え、新たな工具経路(合成工具経路)を演算して合成プログラムを生成する。位置ベクトルVP(CO)の大きさは、C軸の中心と円形溝Gの中心Oとのずれ量に相当する。生成された合成プログラムには、C軸の中心と円形溝Gの中心OとがずれてワークWが回転テーブル120に取り付けられていても、工具とワークとの相対位置が加工すべき円形工具経路TPから逸脱しないように、C軸の回転送りに合わせてずれ量を補正するX軸およびY軸の同時制御の移動指令が加工すべき円形工具経路TPのX軸およびY軸の同時制御の移動指令に付加されている。尚、C軸の中心と円形溝Gの中心Oとが一致するようにワークWが回転テーブル120に取り付けられていれば、主プログラム30とワーク回転プログラム32とを単純に合成すればよい。合成プログラム演算部22は、合成プログラムをNC装置10の読取解釈部12および象限突起シミュレーション部24へ出力する。
 NC装置10は、既述したように、合成プログラム演算部22からの合成プログラムに基づいて、X軸、Y軸、Z軸およびC軸の各サーボモータ114、116、118および122を制御する。象限突起シミュレーション部24は、合成プログラム演算部22からの合成プログラムに基づいてワークWに形成される加工面および該加工面に発生する象限突起の位置をグラフィックおよび/または数値で表示する。X軸サーボモータ114またはY軸サーボモータ116が反転するときの工具経路上のX、Y、C軸位置を演算して表示するのである。
 従来技術では、例えば、図3に示したOリングを成形するための金型としてワークWの上面に円形溝Gを回転工具Tとしてのボールエンドミルによって形成する場合、象限突起は、図5においてハッチングで示すように、XY平面内で円形溝Gの中心Oに関する各象限間の4箇所の境界QBに沿って集中的に発生する。これに対して、本実施形態によれば、図4に示すように、象限突起QPは円形溝Gの表面に沿って略一様に分散する。一様に分散させるために、表示部26に表示される象限突起の分散具合を見て、ワーク回転プログラム32のC軸の回転方向や回転速度を調整する必要がある。表示部26があることにより、この調整作業がし易くなる。例えば、外径φ1.5mmのボールエンドミルを用い、内径φ49.6mm、溝幅5.7mmの円形溝Gを加工する主プログラム30におけるピックフィード部分を除いた円形工具経路TPが、Oを中心とした300本の同心円であり、工具Tが300回円形工具経路TPに沿って周回する間に、1周回当り4個の象限突起が隣接する円形工具経路TP毎に少しずつずれて発生し、円形溝G全体で略一様に分散して見えるように、シミュレーションと表示を繰り返し、試行錯誤的に上記の調整作業を行えばよい。従来は、象限突起を分散させていなかったため、円形溝Gに90°おきに4箇所の半径方向のすじが発生していて、このすじを除去する磨き作業が大変であったが、本発明の切削加工方法を用いることにより磨き作業が不要になる。
 次に、図6を参照して、本発明の制御装置の第2の実施形態を説明する。
 第2の実施形態において、図1のNC装置10は2系統制御タイプのNC装置40によって置換されている。NC装置40は、第1と第2の読取解釈部42、44、重畳部46、補間部48、象限突起シミュレーション部50、サーボ制御部52および表示部54を具備している。
 第1の読取解釈部42は、主プログラム30を読取り解釈して移動指令を重畳部46へ出力する。この移動指令は、X軸、Y軸、Z軸の直交3軸方向の送り量と送り速度とを含んでいる。第2の読取解釈部44はワーク回転プログラム32を読取り解釈して移動指令を重畳部46へ出力する。この移動指令はC軸の回転送りの方向と速度とを含んでいる。
 重畳部46は、第1と第2の読取解釈部42、44から出力される移動指令を重ね合わせる。つまり、第1の実施形態と同様に、例えば、図3の例において、円形工具経路TPを表す位置ベクトルVP(TP)にC軸の中心軸線方向から見た円形溝Gの中心Oの位置ベクトルVP(CO)を加えた重畳移動指令と、C軸の回転移動指令とを補間部48に出力する。補間部48は、受け取った重畳移動指令およびC軸の回転移動指令の各々を補間演算し位置指令をサーボ制御部52に出力する。サーボ制御部52は、受け取ったX軸、Y軸、Z軸およびC軸の各位置指令から工作機械100のX軸、Y軸、Z軸およびC軸の各送り軸を駆動するための電流値を出力し、これがX軸、Y軸、Z軸およびC軸のサーボモータ114、116、118および122に出力される。重畳部46からの重畳移動指令は、実際の加工に先立って象限突起シミュレーション部50でシミュレーション演算され、象限突起の発生する位置が表示部54に表示される作用は、第1の実施形態と同様である。
 請求項6および7に記載の重畳部、象限突起シミュレーション部、表示部は、第1の実施形態のように工具経路生成装置20、つまりCAM装置側に設けられる場合と、第2の実施形態のようにNC装置側に設けられる場合とがある。
 既述した第1と第2の実施形態では、Z軸に平行な軸線周りの回転送り軸であるC軸を回転させて円形溝Gに生じる象限突起を分散させるようにしたが、本発明はこれに限定されず、例えば図7に示すようにY軸に平行な軸線周りの回転送り軸であるB軸を回転させるようにしてもよい。図7は、回転工具Tとしてボールエンドミルを用い、Y軸に平行な中心軸線Rを有した半円筒状の外周面SをワークWに加工する例を示している。回転テーブル120が、Y軸スライダ106にB軸を中心として揺動可能に取り付けられた搖動部材130の上面に取り付けられており、回転テーブル120の上面にワークWがその中心軸線RがY軸と平行になるように取り付けられる。
 図7の例では、ワークWの外周面を加工する場合には、主プログラム30は、X軸、Y軸、Z軸を回転工具TとしてのボールエンドミルをY軸方向のピックフィードPFを与えつつY軸に平行なワークWの中心軸線Rを中心とする複数の円弧に沿ってワークWに対して相対送りさせる加工プログラムである。つまり、前記複数の円弧の1つに沿って加工する間は、Y軸送り装置は固定されており、X軸とZ軸の2つの直線送り軸のみが制御される。ワーク回転プログラム32は、搖動部材130をY軸に平行な軸線周りの回転送り軸であるB軸方向に往復回転動作またはスイング動作させるプログラムとなる。
 従来技術では、図7のような加工を行う場合、象限突起は、ワークWの外表面において最も高い位置に中心軸線Rに平行な直線に沿って集中的に発生する。これに対して、本実施形態によれば、象限突起はワークWの外周面Sに沿って略一様に分散する。
 他の変形例として、回転テーブル120上に円錐形のワークを取り付け、ボールエンドミルにらせん形の工具経路を付与してワークの円錐外周面を加工する場合にも、象限突起の位置を工具経路に沿って分散させることができる。この場合の隣接する工具経路は、らせんのリードだけ離れた1周分の工具経路のことを指す。また、ワークの加工面が平面で、工具経路が円形やうず巻き形等の象限の切替わりを伴う形状の場合にも、同様に象限突起の発生位置を工具経路に沿って分散させることができる。
 10  NC装置
 12  読取解釈部
 14  補間部
 16  サーボ制御部
 20  工具経路生成装置
 22  合成プログラム演算部
 24  象限突起シミュレーション部
 26  表示部
 30  主プログラム
 32  ワーク回転プログラム
 100  工作機械
 102  ベッド
 104  コラム
 110  主軸頭
 112  主軸
 120  回転テーブル

Claims (7)

  1.  回転工具とワークとを相対移動させてワークを加工する切削加工方法において、
     ワークに回転送りを付加し、
     前記ワークの加工面に生じる象限突起の位置を分散させることを特徴とした切削加工方法。
  2.  回転工具とワークとを隣接する複数の工具経路に沿って相対移動させてワークの曲面を加工する切削加工方法において、
     ワークに前記曲面に沿った方向の回転送りを付加し、
     前記曲面に生じる象限突起の位置を前記工具経路毎に前記回転送りの方向に分散させることを特徴とした切削加工方法。
  3.  前記象限突起を分散させるための回転送りの方向は、時計回りもしくは反時計回りの一方向回転送り、または時計回りと反時計回りが混在する両方向回転送りである請求項2に記載の切削加工方法。
  4.  前記ワークを、前記工具経路が含まれる平面に垂直な方向の軸線周りに回転送りするようにした請求項1に記載の切削加工方法。
  5.  2つの直線送り軸を同時制御して前記回転工具を1つの曲線経路に沿って前記ワークに対して相対移動させ、前記曲線経路に対して垂直な方向にピックフィードを与え、前記2つの直線送り軸を同時制御して前記回転工具を隣接する次の曲線経路に沿って前記ワークに対して相対移動させ、これを繰返して前記ワークに所望の曲面を形成する間、前記2つの直線送り軸に対して垂直な直線送り軸に平行な軸線周りに前記ワークを回転させるようにした請求項1に記載の切削加工方法。
  6.  直交3軸の直線送り軸と少なくとも1つの回転送り軸とを有し、回転工具とワークとを相対移動させてワークの曲面を加工する工作機械の制御装置において、
     前記直交3軸の直線送り軸の2つの直線送り軸を同時制御して、前記回転工具を1つの曲線経路に沿って前記ワークに対して相対移動させ、前記曲線経路に対して垂直な方向にピックフィードを与え、前記2つの直線送り軸を同時制御して前記回転工具を隣接する次の曲線経路に沿って前記ワークに対して相対移動させ、これを繰返して前記ワークに所望の曲面を形成する主プログラムを実行する間、前記2つの直線送り軸に対して垂直な直線送り軸に平行な軸線周りに前記ワークを回転させるワーク回転プログラムを実行し、前記曲面に生じる象限突起の位置を前記曲線経路毎に前記回転送りの方向に分散させる重畳部を具備することを特徴とした工作機械の制御装置。
  7.  前記重畳部により前記主プログラムによる動作と前記ワーク回転プログラムによる動作とが重畳されたとき、前記曲面に発生する象限突起の位置を前記曲線経路毎に演算する象限突起シミュレーション部と、演算された象限突起の位置を表示する表示部とを更に具備する請求項6に記載の工作機械の制御装置。
PCT/JP2014/052316 2014-01-31 2014-01-31 切削加工方法および制御装置 WO2015114811A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2014/052316 WO2015114811A1 (ja) 2014-01-31 2014-01-31 切削加工方法および制御装置
EP14881214.2A EP3101498A4 (en) 2014-01-31 2014-08-13 Machining method and machine-tool control device
JP2015559729A JP6076507B2 (ja) 2014-01-31 2014-08-13 加工方法および工作機械の制御装置
PCT/JP2014/071406 WO2015114861A1 (ja) 2014-01-31 2014-08-13 加工方法および工作機械の制御装置
US15/115,546 US10146204B2 (en) 2014-01-31 2014-08-13 Machining method and a control device for a machine tool
CN201480072374.2A CN105917282B (zh) 2014-01-31 2014-08-13 加工方法及机床的控制装置
KR1020167014439A KR101954295B1 (ko) 2014-01-31 2014-08-13 가공방법 및 공작기계의 제어장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052316 WO2015114811A1 (ja) 2014-01-31 2014-01-31 切削加工方法および制御装置

Publications (1)

Publication Number Publication Date
WO2015114811A1 true WO2015114811A1 (ja) 2015-08-06

Family

ID=53756422

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/052316 WO2015114811A1 (ja) 2014-01-31 2014-01-31 切削加工方法および制御装置
PCT/JP2014/071406 WO2015114861A1 (ja) 2014-01-31 2014-08-13 加工方法および工作機械の制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071406 WO2015114861A1 (ja) 2014-01-31 2014-08-13 加工方法および工作機械の制御装置

Country Status (6)

Country Link
US (1) US10146204B2 (ja)
EP (1) EP3101498A4 (ja)
JP (1) JP6076507B2 (ja)
KR (1) KR101954295B1 (ja)
CN (1) CN105917282B (ja)
WO (2) WO2015114811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149638A1 (ja) * 2020-01-23 2021-07-29 ファナック株式会社 ワーク加工方法
CN114326372A (zh) * 2021-12-08 2022-04-12 北京理工大学 一种位置伺服系统的非光滑反馈最佳跟踪控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514876B2 (ja) * 2014-10-27 2019-05-15 オークマ株式会社 工作機械における送り軸の制御方法及び工作機械
JP6727041B2 (ja) * 2016-06-28 2020-07-22 株式会社小松製作所 工作機械
JP6987174B2 (ja) * 2016-06-28 2021-12-22 株式会社小松製作所 研削装置、加工物の製造方法、及び研削システム
WO2018066048A1 (ja) * 2016-10-04 2018-04-12 三菱電機株式会社 数値制御装置
JP6499707B2 (ja) * 2017-04-03 2019-04-10 ファナック株式会社 シミュレーション装置、プログラム生成装置、制御装置およびコンピュータの表示方法
JP6599920B2 (ja) * 2017-04-18 2019-10-30 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP7000303B2 (ja) * 2018-12-19 2022-01-19 ファナック株式会社 数値制御装置、数値制御機械システム、加工シミュレーション装置、及び加工シミュレーション方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061777A (ja) * 1998-08-25 2000-02-29 Makino Milling Mach Co Ltd 曲面加工方法及び加工装置
JP2010049599A (ja) * 2008-08-25 2010-03-04 Tokyo Univ Of Agriculture & Technology 工作機械
JP2011022898A (ja) * 2009-07-17 2011-02-03 Doshisha 被削材の切削方法
JP2013206342A (ja) * 2012-03-29 2013-10-07 Makino Milling Mach Co Ltd 工作機械の制御装置及び回転工具によるワークの加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558580B2 (ja) 1992-10-23 1996-11-27 株式会社牧野フライス製作所 サーボシステムにおける加速制御方法及び装置
JPH07110717A (ja) * 1993-08-19 1995-04-25 Fanuc Ltd モータの制御方式
JP3478946B2 (ja) * 1997-07-02 2003-12-15 東芝機械株式会社 サーボ調整方法およびその装置
EP1114694B1 (en) * 1999-02-26 2004-04-28 Mori Seiki Co., Ltd. Machine tool
JP4316850B2 (ja) * 2002-09-26 2009-08-19 森精機興産株式会社 複合加工工作機械における加工方法
JP4361285B2 (ja) 2003-01-29 2009-11-11 三菱電機株式会社 数値制御装置
JP5471159B2 (ja) * 2009-08-24 2014-04-16 株式会社ジェイテクト 工作機械の制御装置
JP5373675B2 (ja) * 2010-03-17 2013-12-18 シチズンホールディングス株式会社 工作機械
CN102947037B (zh) * 2010-06-18 2015-01-28 株式会社牧野铣床制作所 齿轮的研磨加工方法以及加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061777A (ja) * 1998-08-25 2000-02-29 Makino Milling Mach Co Ltd 曲面加工方法及び加工装置
JP2010049599A (ja) * 2008-08-25 2010-03-04 Tokyo Univ Of Agriculture & Technology 工作機械
JP2011022898A (ja) * 2009-07-17 2011-02-03 Doshisha 被削材の切削方法
JP2013206342A (ja) * 2012-03-29 2013-10-07 Makino Milling Mach Co Ltd 工作機械の制御装置及び回転工具によるワークの加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149638A1 (ja) * 2020-01-23 2021-07-29 ファナック株式会社 ワーク加工方法
CN114326372A (zh) * 2021-12-08 2022-04-12 北京理工大学 一种位置伺服系统的非光滑反馈最佳跟踪控制方法
CN114326372B (zh) * 2021-12-08 2023-08-04 北京理工大学 一种位置伺服系统的非光滑反馈最佳跟踪控制方法

Also Published As

Publication number Publication date
US20170185064A1 (en) 2017-06-29
KR101954295B1 (ko) 2019-03-05
EP3101498A4 (en) 2017-10-25
JPWO2015114861A1 (ja) 2017-03-23
KR20160078483A (ko) 2016-07-04
CN105917282B (zh) 2019-08-06
WO2015114861A1 (ja) 2015-08-06
US10146204B2 (en) 2018-12-04
EP3101498A1 (en) 2016-12-07
JP6076507B2 (ja) 2017-02-08
CN105917282A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2015114811A1 (ja) 切削加工方法および制御装置
JP5219974B2 (ja) 加工制御装置、レーザ加工装置およびレーザ加工システム
US10569348B2 (en) Groove-forming method, control device for machine tool and tool path generating device
WO2018147232A1 (ja) 運動評価方法、評価装置および該評価方法を用いたパラメータ調節方法、ワークの加工方法および工作機械
CN106338968B (zh) 可进行考虑轴移动方向的误差修正的数值控制装置
JPWO2014002228A1 (ja) 工作機械の制御装置および工作機械
CN208068016U (zh) 转动机构及其磨床
CN103358174A (zh) 电机控制装置、电机控制系统以及切削加工装置
JP2013210926A (ja) 溝形成方法
JP2000263366A (ja) 工作機械
JP2015182170A (ja) 工作機械
JP7208151B2 (ja) 工作機械
Sudo Advanced Control Technologies for 5-Axis Machining.
US10437225B2 (en) Feed shaft control method and numerically controlled machine tool
KR101658780B1 (ko) 목형 금형 5축 제어용 밀링
JP5721506B2 (ja) 工作機械
JP5881988B2 (ja) ワイヤ曲げ装置
JP2007069318A (ja) 加工装置
JP4036502B2 (ja) Ncプログラム作成方法、作成装置及びnc工作機械の制御方法
JP2005169524A (ja) 自動旋盤
JPH068059A (ja) 放電加工機
Dai et al. The Principle and Application of the Multi-Axis Linkage Machining Center
JP2013094829A (ja) 加工方法および加工機
CN107756116A (zh) 数控装置
JP2015196201A (ja) 工作機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP