KR20180117196A - 신발류용 용량성 발 존재 감지 디바이스 - Google Patents

신발류용 용량성 발 존재 감지 디바이스 Download PDF

Info

Publication number
KR20180117196A
KR20180117196A KR1020187029261A KR20187029261A KR20180117196A KR 20180117196 A KR20180117196 A KR 20180117196A KR 1020187029261 A KR1020187029261 A KR 1020187029261A KR 20187029261 A KR20187029261 A KR 20187029261A KR 20180117196 A KR20180117196 A KR 20180117196A
Authority
KR
South Korea
Prior art keywords
footwear
foot
sensor
capacitance
article
Prior art date
Application number
KR1020187029261A
Other languages
English (en)
Other versions
KR102361930B1 (ko
Inventor
스티븐 에이치. 워커
필립 메노
Original Assignee
나이키 이노베이트 씨.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나이키 이노베이트 씨.브이. filed Critical 나이키 이노베이트 씨.브이.
Priority to KR1020227002198A priority Critical patent/KR102428289B1/ko
Publication of KR20180117196A publication Critical patent/KR20180117196A/ko
Application granted granted Critical
Publication of KR102361930B1 publication Critical patent/KR102361930B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • A43C11/16Fastenings secured by wire, bolts, or the like
    • A43C11/165Fastenings secured by wire, bolts, or the like characterised by a spool, reel or pulley for winding up cables, laces or straps by rotation
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0054Footwear characterised by the material provided with magnets, magnetic parts or magnetic substances
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B3/0005
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/0031Footwear characterised by the shape or the use provided with a pocket, e.g. for keys or a card
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/36Footwear characterised by the shape or the use with electrical or electronic arrangements with light sources
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/44Footwear characterised by the shape or the use with electrical or electronic arrangements with sensors, e.g. for detecting contact or position
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1415Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
    • A43B7/142Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the medial arch, i.e. under the navicular or cuneiform bones
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • A43C1/003Zone lacing, i.e. whereby different zones of the footwear have different lacing tightening degrees, using one or a plurality of laces
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • A43C1/006Rear lacing, i.e. with a lace placed on the back of the foot in place of, or in addition to the traditional front lace
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • A43C1/02Shoe lacing fastenings with elastic laces
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • A43C1/04Shoe lacing fastenings with rings or loops
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • A43C1/06Shoe lacing fastenings tightened by draw-strings
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • A43C11/008Combined fastenings, e.g. to accelerate undoing or fastening
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • A43C11/14Clamp fastenings, e.g. strap fastenings; Clamp-buckle fastenings; Fastenings with toggle levers
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C7/00Holding-devices for laces
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C7/00Holding-devices for laces
    • A43C7/08Clamps drawn tight by laces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0014Force sensors associated with a bearing by using capacitive sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0071Specific indicating arrangements, e.g. of overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/12Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring axial thrust in a rotary shaft, e.g. of propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/38Footwear characterised by the shape or the use with electrical or electronic arrangements with power sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24015Monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

능동 신발류 물품용 발 존재 센서 시스템은 물품의 안창에 또는 내에 배치되도록 구성된 센서 하우징, 및 센서 하우징 내에 배치되고 발 존재 지시에 기초하여 신발류의 하나 이상의 자동화 기능을 트리거링하도록 구성된 제어기 회로를 포함할 수 있다. 예에서, 센서 시스템은 신체의 근접도에 응답하여 커패시턴스 신호의 변화를 감지하도록 구성된 용량성 센서를 포함한다. 유전성 부재가 용량성 센서와 신체 사이에 제공되어 센서로부터의 출력 신호를 향상시킬 수 있다.

Description

신발류용 용량성 발 존재 감지 디바이스
우선권 주장
본 출원은 워커(Walker) 등의 2016년 3월 15일 출원된 발명의 명칭이 "능동 신발류용 자기 및 압력 기반 발 존재 및 위치 감지 시스템 및 방법(MAGNETIC AND PRESSURE-BASED FOOT PRESENCE AND POSITION SENSING SYSTEMS AND METHODS FOR ACTIVE FOOTWEAR)"인 미국 가특허 출원 번호 62/308,657호(대리인 문서 번호 제4228.054PRV), 워커(Walker) 등의 2016년 3월 15일 출원된 발명의 명칭이 "능동 신발류용 용량성 발 존재 및 위치 감지 시스템 및 방법(CAPACITIVE FOOT PRESENCE AND POSITION SENSING SYSTEMS AND METHODS FOR ACTIVE FOOTWEAR)"인 미국 가특허 출원 번호 62/308,667호(대리인 문서 번호 4228.074PRV), 워커(Walker) 및 스티븐 에이치.(Steven H.)등의 2016년 11월 21일 출원된 발명의 명칭이 "신발류용 용량성 발 존재 감지(CAPACITIVE FOOT PRESENCE SENSING FOR FOOTWEAR)"인 미국 가특허 출원 번호 62/424,939호(대리인 문서 번호 4228.081PRV), 및 워커(Walker) 및 스티븐 에이치.(Steven H.)등의 2016년 11월 21일 출원된 발명의 명칭이 "능동 신발류용 발 존재 및 충격 변화율(FOOT PRESENCE AND IMPACT RATE OF CHANGE FOR ACTIVE FOOTWEAR)"인 미국 가특허 출원 번호 62/424,959호(대리인 문서 번호 4228.093PRV)의 우선권의 이익을 주장하고, 이들 출원의 각각은 본 명세서에 참조로서 합체되어 있다.
다양한 신발 기반 센서가 다양한 조건을 모니터링하기 위해 제안되어 왔다. 예를 들어, 브라운(Brown)의 발명의 명칭이 "발의 조건을 모니터링하기 위한 센서 신발(Sensor shoe for monitoring the condition of a foot)"인 미국 특허 제5,929,332호는 신발 기반 센서의 다수의 예를 제공한다. 브라운은 발 힘 센서가 비교적 얇은 평면형 가요성 탄성 유전 재료의 층으로 제조된 안창(insole)을 포함할 수 있는 것을 언급하고 있다. 발 힘 센서는 인가된 압축력에 기초하여 변화하는 전기 저항을 가질 수 있는 전기 전도성 상호접속 수단을 포함할 수 있다.
브라운은 당뇨병 환자, 또는 다양한 유형의 발 질병에 시달리는 사람에 의해 착용되는 신발을 또한 설명하고 있는데, 여기서 발의 부분 상에 인가된 과도한 압력은 궤양을 일으키는 경향이 있다. 신발 바디는 힘 감지 저항기(force sensing resistor: FSR)를 포함할 수 있고, 저항기에 결합된 스위칭 회로가 임계 압력 레벨이 도달되거나 초과되었다는 것을 착용자에게 경고하기 위해 경보 유닛을 활성화할 수 있다.
신발류 물품(article of footwear)을 자동으로 조이기 위한 디바이스가 종래 제안되어 왔다. 류(Liu)의 발명의 명칭이 "자동 조임 신발(Automatic tightening shoe)"인 미국 특허 제6,691,433호는 신발의 갑피부(upper portion) 상에 장착된 제1 체결구(fastener), 및 폐쇄 부재(closure member)에 연결되고 폐쇄 부재를 조임 상태로 유지하기 위해 제1 체결구와 제거 가능하게 결합하는 것이 가능한 제2 체결구를 제공한다. 류는 밑창(sole)의 뒤꿈치부(heel portion)에 장착된 구동 유닛을 교시하고 있다. 구동 유닛은 하우징, 하우징 내에 회전 가능하게 장착된 스풀(spool), 한 쌍의 견인 스트링(pull string) 및 모터 유닛을 포함한다. 각각의 스트링은 스풀에 연결된 제1 단부 및 제2 체결구 내의 스트링 구멍에 대응하는 제2 단부를 갖는다. 모터 유닛은 스풀에 결합된다. 류는 모터 유닛이 하우징 내에서 스풀을 회전 구동하여 제2 체결구를 제1 체결구를 향해 견인하기 위해 스풀 상에 견인 스트링을 권취하도록 동작 가능하다는 것을 교시하고 있다. 류는 또한 견인 스트링이 연장할 수 있는 가이드 튜브 유닛 교시하고 있다.
반드시 실체 축척대로 도시되어 있지는 않은 도면에서, 유사한 도면 부호는 상이한 도면에서 유사한 구성요소를 설명할 수도 있다. 상이한 문자 접미사를 갖는 유사한 도면 부호는 유사한 구성요소의 상이한 실 예를 표현할 수도 있다. 도면은 일반적으로 본 명세서에 설명된 다양한 실시예를 한정으로서가 아니라 예로서 도시하고 있다.
도 1은 예시적인 실시예에 따른, 능동 신발류 물품의 구성요소의 분해도를 일반적으로 도시하고 있다.
도 2a 내지 도 2c는 몇몇 예시적인 실시예에 따른, 센서 시스템 및 전동식 신발끈 결속 엔진(lacing engine)을 일반적으로 도시하고 있다.
도 3은 예시적인 실시예에 따른, 전동식 신발끈 결속 시스템의 구성요소의 블록도를 일반적으로 도시하고 있다.
도 4는 신발류 물품의 사용자가 서 있을 때 신발류 물품 내의 공칭 또는 평균 발(좌측)에 대한 그리고 요족(high arch foot)(우측)에 대한 압력 분포 데이터를 도시하고 있는 도면이다.
도 5a 및 도 5b는 예시적인 실시예에 따른, 신발류 물품의 안창 내의 커패시턴스 기반 발 존재 센서의 도면을 일반적으로 도시하고 있다.
도 6은 예시적인 실시예에 따른, 발 존재 검출을 위한 용량성 센서 시스템을 일반적으로 도시하고 있다.
도 7은 예시적인 실시예에 따른, 제1 커패시턴스 기반 발 존재 센서의 개략도를 일반적으로 도시하고 있다.
도 8은 예시적인 실시예에 따른, 제2 커패시턴스 기반 발 존재 센서의 개략도를 일반적으로 도시하고 있다.
도 9a, 도 9b 및 도 9c는 몇몇 예시적인 실시예에 따른, 커패시턴스 기반 발 존재 센서 전극의 예를 일반적으로 도시하고 있다.
도 10은 신발류 센서로부터 발 존재 정보를 사용하는 예를 도시하고 있는 흐름도를 도시하고 있다.
도 11은 신발류 센서로부터 발 존재 정보를 사용하는 제2 예를 도시하고 있는 흐름도를 도시하고 있다.
도 12는 용량성 발 존재 센서로부터 제1 시변(time-varying) 정보의 차트를 일반적으로 도시하고 있다.
도 13은 용량성 발 존재 센서로부터 제2 시변 정보의 차트를 일반적으로 도시하고 있다.
도 14는 용량성 발 존재 센서로부터 제3 시변 정보의 차트를 일반적으로 도시하고 있다.
도 15는 용량성 발 존재 센서로부터 제4 시변 정보의 차트를 일반적으로 도시하고 있다.
도 16은 예시적인 실시예에 따른, 용량성 발 존재 센서로부터 시변(time-varying) 정보 및 신호 형태(morphology) 한계의 차트를 일반적으로 도시하고 있다.
도 17은 유전체 스택 아래에 위치된 신발류 물품의 중창(midsole) 내의 커패시턴스 기반 발 존재 센서의 도면의 예를 일반적으로 도시하고 있다.
도 18은 용량성 발 존재 센서로부터 커패시턴스-지시 신호에 대한 유전성 충전재의 효과를 도시하고 있는 차트를 포함하는 예를 일반적으로 도시하고 있다.
도 19는 신발류 내의 커패시턴스 기반 발 존재 센서로부터 커패시턴스-지시 제3 신호의 부분을 도시하고 있는 차트의 예를 일반적으로 도시하고 있다.
자가 조임 신발끈의 개념은 1989년 개봉된 영화 백투더 퓨처 II(Back to the Future II)에서 마티 맥플라이(Marty McFly)에 의해 착용되었던 가상의 전동식 신발끈 결속 Nike® 스니커즈에 의해 최초로 광범위하게 인기를 얻었다. Nike®는 개봉 이후로 백투더 퓨처 II로부터 영화 소품 버전에 외관이 유사한 전동식 신발끈 결속 스니커즈의 적어도 하나의 버전을 가졌지만, 채용된 내부 기계적 시스템 및 주위 신발류 플랫폼은 반드시 이들을 대량 생산 또는 일상 사용에 알맞게 하지 않는다. 부가적으로, 전동식 신발끈 결속 시스템을 위한 이전의 디자인은, 다수의 문제 중 단지 몇개만을 강조하면, 높은 제조 비용, 복잡성, 조립 과제, 수리 가능성(serviceability)의 결여, 취약한 또는 연약한 기계 기구와 같은 문제점을 상당히 겪고 있다. 본 발명자들은 다른 것들 중에서도, 전술된 문제점의 일부 또는 모두를 해결하는 전동식 및 비전동식 신발끈 결속 엔진을 수용하기 위해 모듈형 신발류 플랫폼을 개발하였다. 이하에 설명되는 구성요소는 이들에 한정되는 것은 아니지만, 수리 가능한 구성요소, 교환 가능한 자동화 신발끈 결속 엔진, 강인한(robust) 기계적 디자인, 강인한 제어 알고리즘, 신뢰적인 동작, 능률적인 조립 프로세스, 및 소매 레벨 맞춤화를 포함하는 다양한 이익을 제공한다. 이하에 설명되는 구성요소의 다양한 다른 이익은 통상의 기술자에 자명할 것이다.
예에서, 모듈형 자동화 신발끈 결속 신발류 플랫폼은 신발끈 결속 엔진을 수용하기 위해 신발류 물품의 중창에 고정된 중창 플레이트를 포함한다. 중창 플레이트의 디자인은 늦으면 구매 시점에 신발끈 결속 엔진이 신발류 플랫폼에 추가되게 한다. 중창 플레이트, 및 모듈형 자동화 신발류 플랫폼의 다른 양태는 상이한 유형의 신발끈 결속 엔진이 상호 교환가능하게 사용될 수 있게 한다. 예를 들어, 이하에 설명되는 전동식 신발끈 결속 엔진은 인력식(human-powered) 신발끈 결속 엔진으로 대체될 수 있다. 대안적으로, 발 존재 감지 또는 다른 특징을 갖는 완전 자동 전동식 신발끈 결속 엔진이 표준형 중창 플레이트 내에 수용될 수 있다.
본 명세서에 설명된 자동화 신발류 플랫폼은 최종 사용자에게 조임 제어 뿐만 아니라 예를 들어, 반투명 보호 겉창(outsole) 재료를 통해 투영된 LED 조명을 사용하여 시각적 피드백을 제공하기 위한 겉창 액추에이터 인터페이스를 포함할 수 있다. 액추에이터는 신발끈 결속 엔진 또는 다른 자동화 신발류 플랫폼 구성요소의 상태를 지시하기 위해 사용자에 촉각 및 시각 피드백을 제공할 수 있다.
예에서, 신발류 플랫폼은 발이 신발 내에 존재할 때를 검출하도록 구성된 발 존재 센서를 포함한다. 발이 검출될 때, 이어서 예로서 자동으로 그리고 추가의 사용자 입력 또는 명령 없이, 하나 이상의 신발류 기능 또는 프로세스가 개시될 수 있다. 예를 들어, 발이 안창에 접하여 신발류 내에 적절하게 안착된 것의 검출시에, 제어 회로는 신발끈 조임, 데이터 수집, 신발류 진단, 또는 다른 프로세스를 자동으로 개시할 수 있다.
자동화 신발끈 결속 또는 신발류 조임 기구를 조기에 활성화 또는 개시하는 것은 신발류와의 사용자의 경험을 손상시킬 수 있다. 예를 들어, 발이 안창에 접하여 완전히 안착되기 전에 신발끈 결속 엔진이 활성화되면, 사용자는 그 또는 그녀의 발의 잔여부를 신발류 내로 집어넣는데 곤란한 시간을 가질 수도 있고, 또는 사용자는 신발끈 결속 장력을 수동으로 조정해야 할 수도 있다. 본 발명자들은 따라서, 해결되어야 할 문제점이 예로서, 발가락부, 중창부, 및 뒤꿈치부가 안창의 대응부와 적절하게 정렬된 상태로, 발이 신발류 물품 내에 적절하게 또는 완전히 안착되는지 여부를 판정하는 것을 포함하는 점을 인지하였다. 본 발명자들은 문제점이 예로서, 센서 비용 및 조립 비용을 감소시키고, 디바이스 복잡성을 감소시키기 위해, 가능한 한 적은 수의 센서를 사용하여 발 로케이션(location) 또는 발 배향을 정확하게 결정하는 것을 포함한다는 것을 또한 인식하였다.
이들 문제점의 해결책은 신발류의 아치 및/또는 뒤꿈치 영역에 센서를 제공하는 것을 포함한다. 예에서, 센서는 이웃의 전기장의 변화를 감지하도록 구성된 용량성 센서이다. 발의 몇몇 부분이 발의 다른 부분보다 센서로부터 큰 거리에 있는 동안을 포함하여, 전기장의 변화, 또는 커패시턴스 변화가 발이 신발류에 진입 또는 진출함에 따라 실현될 수 있다. 예에서, 용량성 센서는 신발끈 결속 엔진 포위체(enclosure)와 일체화되거나 그 내에 수용된다. 예에서, 용량성 센서의 적어도 일부는 신발끈 결속 엔진 포위체의 외부에 제공되고, 포위체 내부의 전력 또는 처리 회로로의 하나 이상의 전도성 상호접속부를 포함한다.
발 존재 검출에 사용을 위해 적합한 용량성 센서는 다양한 구성을 가질 수 있다. 용량성 센서는 플레이트 커패시터를 포함할 수 있고, 여기서 하나의 플레이트는 예로서 플레이트 중 하나 이상에 인가된 압력 또는 압력의 변화에 응답하여 다른 플레이트에 대해 이동하도록 구성된다. 예에서, 용량성 센서는 예로서 안창의 상부면에 평행하거나 일치하는 평면 내에 실질적으로 배열된 다수의 트레이스를 포함한다. 이러한 트레이스는 에어갭(airgap)(또는 스티로폼과 같은 다른 재료)에 의해 측방향으로 분리되어 있을 수 있고, 여기 회로에 의해 제공된 AC 구동 신호에 의해 선택적으로 또는 주기적으로 구동될 수 있다. 예에서, 전극은 교차형 빗살 구성(interleaved comb configuration)을 가질 수 있다. 이러한 용량성 센서는, 서로에 대한 전극 자체의 이동에 기초하는 그리고 발 또는 다른 물체의 존재 또는 부존재(absence) 또는 이동에 기인하는 전극 부근의 전기장의 간섭에 기초하는 변화하는 커패시턴스 신호를 제공할 수 있다.
예에서, 커패시턴스 기반 센서는 예를 들어, 커패시턴스 기반 센서가 이동 부분을 포함할 필요가 없기 때문에, 기계적 센서보다 더 신뢰적일 수 있다. 커패시턴스 기반 센서의 전극은 내구성 전기장 투과성 재료에 의해 코팅되거나 커버될 수 있고, 따라서 전극은 환경 변화, 습기, 엎지름(spillage), 오물 또는 다른 오염제, 및 센서의 전극과 직접 접촉하지 않는 인간 또는 다른 재료로의 직접 노출로부터 보호될 수 있다.
예에서, 용량성 센서는 센서에 의해 검출되는, 커패시턴스의 크기를 지시하는, 또는 커패시턴스의 변화를 지시하는 아날로그 출력 신호를 제공한다. 출력 신호는 발이 센서 부근에 존재할 때의 제1 값(예를 들어, 낮은 커패시턴스에 대응함)을 가질 수 있고, 출력 신호는 발이 없을 때의 상이한 제2 값(예를 들어, 높은 커패시턴스에 대응함)을 갖는다.
예에서, 발이 존재할 때의 출력 신호는 추가의 정보를 제공할 수 있다. 예를 들어, 단계 이벤트에 상관하는 커패시턴스 신호의 검출 가능한 편차가 존재할 수 있다. 게다가, 안창, 보조기(orthotics), 또는 다른 구성요소와 같은 신발 구성요소의 마손(wear-and-tear) 및/또는 잔여 수명을 지시할 수 있는 커패시턴스 신호의 검출 가능한 장기간 드리프트가 존재할 수 있다.
예에서, 용량성 센서는 센서에 의해 감지된 커패시턴스의 크기를 지시하는 디지털 신호를 제공하도록 구성된 커패시턴스-대-디지털 변환기 회로를 포함하거나 또는 그에 결합된다. 예에서, 용량성 센서는 감지된 커패시턴스값이 지정된 임계 커패시턴스 조건에 부합하는지 여부를 지시하는 인터럽트(interrupt) 신호 또는 논리 신호를 제공하도록 구성된 프로세서 회로를 포함한다. 예에서, 용량성 센서는 기준선 또는 기준 커패시턴스값에 대한 커패시턴스 특성을 측정하고, 기준선 또는 기준은 예로서 감지된 커패시턴스값에 영향을 미칠 수 있는 환경 변화 또는 다른 변화를 수용하도록 업데이트되거나 조정될 수 있다.
예에서, 용량성 센서는 신발의 안창의 아치 또는 뒤꿈치 영역 부근에서 발 아래에 제공된다. 용량성 센서는 실질적으로 평면형 또는 편평형일 수 있다. 용량성 센서는 강성 또는 가요성이고 발의 윤곽에 합치하도록 구성될 수 있다. 몇몇 경우에, 예로서 비교적 낮은 유전 상수 또는 낮은 상대 유전율을 가질 수 있는 에어갭이 신발이 착용될 때 발과 용량성 센서의 부분 사이에 존재할 수 있다. 예로서 비교적 높은 유전 상수 또는 공기보다 큰 상대 유전율을 가질 수 있는 갭 충전재가 용량성 센서와 발 표면 사이의 임의의 공기층(airspace)을 브리징하기 위해 용량성 센서 위에 제공될 수 있다. 갭 충전재는 압축성 또는 비압축성일 수 있다. 예에서, 갭 충전재는 적절한 감도 및 발 아래의 사용자 편안함을 갖는 센서를 제공하기 위해 신발류에 사용을 위한 적합성과 유전값 사이의 적합한 절충을 제공하도록 선택된다.
이하에는 전동식 신발끈 결속 엔진, 발 존재 센서, 중창 플레이트, 및 플랫폼의 다양한 다른 구성요소를 포함하는 자동화 신발류 플랫폼의 다양한 구성요소를 설명한다. 본 개시내용의 다수는 전동식 신발끈 결속 엔진용 트리거로서 발 존재 감지에 초점을 맞추지만, 설명된 디자인의 다수의 양태는 인력식 신발끈 결속 엔진, 또는 예로서 데이터 수집 또는 생리학적 모니터링과 같은 다른 신발류 기능을 자동화하기 위한 발 존재 센서와 인터페이스할 수 있는 다른 회로 또는 특징부에 적용 가능하다. "자동화 신발류 플랫폼"에 사용되는 것과 같은 용어 "자동화"는 지정된 사용자 입력이 없이 동작하는 시스템만을 커버하도록 의도되는 것은 아니다. 오히려, 용어 "자동화 신발류 플랫폼"은 신발류의 신발끈 결속 또는 보유 시스템을 조이기 위한, 또는 능동 신발류의 다른 양태를 제어하기 위한 다양한 전기 전원식 및 인력식, 자동 활성화 및 인간 활성화 기구를 포함할 수 있다.
도 1은 예시적인 실시예에 따른, 능동 신발류 물품의 구성요소의 분해도를 일반적으로 도시하고 있다. 도 1의 예는 신발끈 결속 엔진(110), 뚜껑(lid)(120), 액추에이터(130), 중창 플레이트(140), 중창(155), 및 겉창(165)을 갖는 전동식 신발끈 결속 시스템(100)을 포함한다. 신발끈 결속 엔진(110)은 시스템(100) 내의 사용자 교체형 구성요소를 포함할 수 있고, 하나 이상의 발 존재 센서를 포함할 수 있거나 또는 결합될 수 있다. 예에서, 신발끈 결속 엔진(110)은 용량성 발 존재 센서를 포함하거나, 또는 결합된다. 도 1의 예에는 도시되지 않은 용량성 발 존재 센서는 신발끈 결속 엔진(110)의 발 지향측에 배열된 다수의 전극을 포함할 수 있다. 예에서, 용량성 발 존재 센서의 전극은 신발끈 결속 엔진(110) 내에 수용될 수 있고, 신발끈 결속 엔진(110)의 하우징과 일체화될 수 있고, 또는 신발끈 결속 엔진(110) 부근의 다른 장소에 배치되고 하나 이상의 전기 전도체를 사용하여 신발끈 결속 엔진(110)의 내부의 전력 또는 처리 회로에 결합될 수 있다.
도 1의 예의 전동식 신발끈 결속 시스템(100)을 조립하는 것은 중창(155) 내에 중창 플레이트(140)를 고정하는 것으로 시작한다. 다음에, 액추에이터(130)는 예로서 겉창(165) 내에 매립될 수 있는 인터페이스 버튼에 대향하여 중창 플레이트(140)의 외측면(lateral side) 내의 개구 내로 삽입될 수 있다. 다음에, 신발끈 결속 엔진(110)은 중창 플레이트(140) 내에 삽입될 수 있다. 예에서, 신발끈 결속 엔진(110)은 신발류의 다른 장소에 배치된 하나 이상의 센서와 결합될 수 있다. 다른 조립 방법이 전동식 신발끈 결속 시스템(100)을 구성하도록 유사하게 수행될 수 있다.
예에서, 신발끈 결속 시스템(100)은 신발끈 결속 케이블의 연속 루프 아래에 삽입되고, 신발끈 케이블은 신발끈 결속 엔진(110) 내의 스풀과 정렬된다. 조립을 완료하기 위해, 뚜껑(120)은 중창 플레이트(140) 내의 고정 수단 내로 삽입되고, 폐쇄 위치 내로 고정되고, 중창 플레이트(140) 내의 리세스 내로 래치결합될 수 있다. 뚜껑(120)은 신발끈 결속 엔진(110)을 포착할 수 있고, 동작 중에 신발끈 결속 케이블의 정렬을 유지하는 것을 보조할 수 있다.
중창 플레이트(140)는 신발끈 결속 엔진 캐비티(141), 내측(medial) 및 외측(lateral) 신발끈 가이드(142), 전위(anterior) 플랜지(143), 후위(posterior) 플랜지(144), 상위(superior)(상부) 및 하위(inferior)(하부)면, 및 액추에이터 절결부(cutout)(145)를 포함한다. 신발끈 결속 엔진 캐비티(141)는 신발끈 결속 엔진(110)을 수용하도록 구성된다. 본 예에서, 신발끈 결속 엔진 캐비티(141)는 측방향 및 전위/후위 방향으로 신발끈 결속 엔진(110)을 보유하지만, 신발끈 결속 엔진(110)을 캐비티(141) 내에 잠금하기 위한 특징부를 포함하지 않는다. 선택적으로, 신발끈 결속 엔진 캐비티(141)는 신발끈 결속 엔진(110)을 신발끈 결속 엔진 캐비티(141) 내에 더 명확하게(positively) 보유하기 위한 하나 이상의 측벽을 따른 멈춤쇠(detent), 탭(tab), 또는 다른 기계적 특징부를 포함한다.
신발끈 가이드(142)는 신발끈 결속 엔진(110)으로 신발끈 결속 케이블을 적소에 안내하는 것을 보조할 수 있다. 신발끈 가이드(142)는 신발끈 결속 엔진(110)에 관하여 원하는 위치로 신발끈 결속 케이블을 안내하는 것을 보조하기 위한 모따기된 에지 및 아래로 경사진 램프를 포함할 수 있다. 본 예에서, 신발끈 가이드(142)는 통상의 신발끈 결속 케이블 직경보다 다수배 더 넓은 개구를 중창 플레이트(140)의 측면에 포함하지만, 다른 직경이 사용될 수 있다.
도 1의 예에서, 중창 플레이트(140)는 중창 플레이트(140)의 내측면 상에서 더 연장하는 조각된(sculpted) 또는 윤곽형성된(contoured) 전위 플랜지(143)를 포함한다. 예시적인 전위 플랜지(143)는 신발류 플랫폼의 아치 아래에 부가의 지지를 제공하도록 설계된다. 그러나, 다른 예에서, 전위 플랜지(143)는 내측면 상에서 덜 뚜렷할 수도 있다. 본 예에서, 후위 플랜지(144)는 내측면 및 외측면의 모두 상에 연장된 부분을 갖는 윤곽을 포함한다. 예시된 후위 플랜지(144)는 신발끈 결속 엔진(110)을 위한 향상된 측방향 안정성을 제공할 수 있다.
예에서, 하나 이상의 전극이 중창 플레이트(140) 내에 매립되거나 위에 배치될 수 있고, 용량성 발 존재 센서의 부분과 같은, 발 존재 센서의 부분을 형성할 수 있다. 예에서, 신발끈 결속 엔진(110)은 중창 플레이트(140) 상의 하나 이상의 전극에 전기적으로 결합된 센서 회로를 포함한다. 센서 회로는 발이 중창 플레이트(140)에 인접한 영역에 존재하는지 아닌지 여부를 판정하기 위해 전극으로부터 감지된 전기장 또는 커패시턴스 정보를 사용하도록 구성될 수 있다. 예에서, 전극은 전위 플랜지(143)의 최전위 에지로부터 후위 플랜지(144)의 최후위 에지로 연장하고, 다른 예에서 전극은 플랜지 중 하나 또는 모두의 단지 일부만에 걸쳐 연장한다.
예에서, 신발류 또는 전동식 신발끈 결속 시스템(100)은 신발류 내의 발 존재, 신발류로부터의 발 부존재, 또는 신발류 내의 발 위치 특성을 모니터링하거나 결정할 수 있는 하나 이상의 센서를 포함하거나 인터페이스한다. 하나 이상의 이러한 발 존재 센서로부터의 정보에 기초하여, 전동식 신발끈 결속 시스템(100)을 포함하는 신발류는 다양한 기능을 수행하도록 구성될 수 있다. 예를 들어, 발 존재 센서는 발이 신발류 내에 존재하는지 아닌지 여부에 대한 2진 정보를 제공하도록 구성될 수 있다. 예에서, 발 존재 센서에 결합된 프로세서 회로가 디지털 또는 아날로그 신호 정보를 수신하고 해석하고, 발이 신발류 내에 존재하는지 존재하지 않는지 여부에 대한 2진 정보를 제공한다. 발 존재 센서로부터의 2진 신호가 발이 존재한다고 지시하면, 전동식 신발끈 결속 시스템(100) 내의 신발끈 결속 엔진(110)은 예로서 신발끈 결속 케이블 또는 다른 신발류 구속 수단 상의 장력을 자동으로 증가시키거나 감소시켜, 예로서 발에 대해 신발류를 조이거나 이완시키도록 활성화될 수 있다. 예에서, 신발끈 결속 엔진(110), 또는 신발류 물품의 다른 부분은 발 존재 센서로부터 신호를 수신하거나 해석할 수 있는 프로세서 회로를 포함한다.
예에서, 발 존재 센서는 신발류에 진입할 때 발의 로케이션에 대한 정보를 제공하도록 구성될 수 있다. 전동식 신발끈 결속 시스템(100)은 일반적으로, 예로서 신발류 물품의 안창의 모두 또는 일부에 접하여와 같이, 단지 발이 신발류 내에 적절하게 위치되거나 안착될 때에만 신발끈 결속 케이블을 조이도록 활성화될 수 있다. 발 이동 또는 로케이션에 대한 정보를 감지하는 발 존재 센서는 발이 예로서 안창에 대해 또는 신발류 물품의 몇몇 다른 특징부에 대해 완전히 또는 부분적으로 안착되어 있는지 여부에 대한 정보를 제공할 수 있다. 자동화 신발끈 결속 절차는 센서로부터의 정보가 발이 적절한 위치에 있다고 지시할 때까지 중단되거나 지연될 수 있다.
예에서, 발 존재 센서는 신발류의 내부의 발의 상대 로케이션에 대한 정보를 제공하도록 구성될 수 있다. 예를 들어, 발 존재 센서는 예로서 이러한 발 구성요소를 수용하도록 구성된 신발류의 대응 부분에 대하, 발의 아치, 뒤꿈치, 발가락, 또는 다른 구성요소 중 하나 이상의 상대 위치를 결정함으로써, 신발류가 소정의 발에 대해 양호하게 "꼭 맞는지(fit)" 여부를 감지하도록 구성될 수 있다. 예에서, 발 존재 센서는 예로서 시간 경과에 따른 신발끈 결속 케이블의 느슨해짐에 기인하여, 또는 발 자체의 자연적인 팽창 및 수축에 기인하여, 발 또는 발 구성요소의 위치가 지정된 또는 미리 기록된 기준 위치에 대해 시간 경과에 따라 변화하는지 여부를 감지하도록 구성될 수 있다.
예에서, 발 존재 센서는 신체의 존재에 대한 정보를 감지하거나 수신하도록 구성될 수 있는 전기, 자기, 열, 용량성, 압력, 광학 또는 다른 센서 디바이스를 포함할 수 있다. 예를 들어, 전기 센서는 적어도 2개의 전극 사이의 임피던스 특성을 측정하도록 구성된 임피던스 센서를 포함할 수 있다. 발과 같은 신체가 전극에 근접하여 또는 인접하여 위치될 때, 전기 센서는 제1 값을 갖는 신호를 센서에 제공할 수 있고, 신체가 전극으로부터 이격하여 위치될 때, 전기 센서는 상이한 제2 값을 갖는 센서 신호를 제공할 수 있다. 예를 들어, 제1 임피던스값이 비어 있는 신발류 조건과 연계될 수 있고, 더 낮은 제2 임피던스값이 점유된 신발류 조건과 연계될 수 있다.
전기 센서는 AC 신호 발생기 회로 및 예로서 무선 주파수 정보를 포함하는, 고주파수 신호 정보를 방출하거나 수신하도록 구성되는 안테나를 포함할 수 있다. 안테나에 대한 신체의 근접도에 기초하여, 임피던스, 주파수, 또는 신호 진폭과 같은 하나 이상의 전기 신호 특성이 수신되어 신체가 존재하는지 여부를 판정하도록 분석될 수 있다. 예에서, 수신 신호 강도 지시기(received signal strength indicator: RSSI)가 수신 무선 신호 내의 전력 레벨에 대한 정보를 제공한다. 예로서 몇몇 기준선 또는 기준값에 대한 RSSI의 변화가 신체의 존재 또는 부존재를 식별하는데 사용될 수 있다. 예에서, 와이파이(WiFi) 주파수가 예를 들어, 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 및 5.9 GHz 대역 중 하나 이상에서 사용될 수 있다. 예에서, 예를 들어 대략 400 kHz와 같은 킬로헤르츠 범위의 주파수가 사용될 수 있다. 예에서, 전력 신호 변화는 밀리와트 또는 마이크로와트 범위에서 검출될 수 있다.
발 존재 센서는 자기 센서를 포함할 수 있다. 제1 자기 센서는 자석 및 자기계(magnetometer)를 포함할 수 있다. 예에서, 자기계는 신발끈 결속 엔진(110)에 또는 부근에 위치될 수 있다. 자석은 겉창(165) 위에 착용되도록 구성된 2차 밑창, 또는 안창 내에와 같이, 신발끈 결속 엔진(110)으로부터 이격하여 위치될 수 있다. 예에서, 자석은 2차 안창의 발포체 내에 또는 다른 압축성 재료 내에 매립된다. 사용자가 예로서 서 있을 때 또는 걸을 때와 같이 2차 안창을 누름에 따라, 자기계에 대한 자석의 위치의 대응 변화가 감지되고 센서 신호를 거쳐 보고될 수 있다.
제2 자기 센서는 자기장의 변화 또는 중단을 감지하도록(예를 들어, 홀 효과를 거쳐) 구성된 자기장 센서를 포함할 수 있다. 신체가 제2 자기 센서에 근접할 때, 센서는 주위 자기장에 대한 변화를 지시하는 신호를 발생할 수 있다. 예를 들어, 제2 자기 센서는 검출된 자기장의 편차에 응답하여 전압 출력 신호를 변동하는 홀 효과 센서를 포함할 수 있다. 출력 신호에서 전압 변화는, 전도체 내의 전류를 횡단하는 것과 같은 전기 신호 전도체를 가로지르는 전압차 및 전류에 수직인 자기장의 생성에 기인할 수 있다.
예에서, 제2 자기 센서는 신체로부터 전자기장 신호를 수신하도록 구성된다. 예를 들어, 바르샤프스키(Varshavsky) 등의 발명의 명칭이 "자기장 기반 식별을 사용하는 보안용 디바이스, 시스템 및 방법(Devices, systems and methods for security using magnetic field based identification)"인 미국 특허 제8,752,200호에는 인증을 위한 신체의 고유 전자기 서명(signature)을 사용하는 것을 교시하고 있다. 예에서, 신발류 물품 내의 자기 센서는 검출된 전자기 서명을 거쳐, 현재 사용자가 신발의 소유자이고, 물품이 예로서 소유자의 하나 이상의 지정된 신발끈 결속 선호도(예를 들어, 조임도 프로파일)에 따라 물품이 자동으로 신발끈 결속되어야 한다고 인증하거나 검증하는데 사용될 수 있다.
예에서, 발 존재 센서는 신발류의 부분 내의 또는 부근의 온도의 변화를 감지하도록 구성된 열 센서를 포함한다. 착용자의 발이 신발류 물품에 진입할 때, 물품의 내부 온도는 착용자 자신의 체온이 신발류 물품의 주위 온도와 상이할 때 변화한다. 따라서, 열 센서는 온도 변화에 기초하여 발이 존재할 가능성이 있는지 아닌지의 지시를 제공할 수 있다.
예에서, 발 존재 센서는 커패시턴스의 변화를 감지하도록 구성된 용량성 센서를 포함한다. 용량성 센서는 단일의 플레이트 또는 전극을 포함할 수 있고, 또는 용량성 센서는 다중-플레이트 또는 다중-전극 구성을 포함할 수 있다. 용량성 유형 발 존재 센서의 다양한 예가 본 명세서에 더 설명된다.
예에서, 발 존재 센서는 광학 센서를 포함한다. 광학 센서는 시계선(line-of-sight)이 예로서 신발류 캐비티의 대향 측면들 사이에서 중단되었는지 여부를 판정하도록 구성될 수 있다. 예에서, 광학 센서는 발이 신발류 내에 삽입될 때 발에 의해 커버될 수 있는 광 센서를 포함한다. 센서가 감지된 광 또는 밝기 조건의 변화를 지시할 때, 발 존재 또는 위치의 지시가 제공될 수 있다.
본 명세서에 설명된 임의의 상이한 유형의 발 존재 센서는 독립적으로 사용될 수 있고, 또는 2개 이상의 상이한 센서 또는 센서 유형으로부터의 정보는 발 존재, 부존재, 배향, 신발류와의 양호한 꼭맞춤, 또는 발에 대한 다른 정보 및/또는 신발류와의 그 관계에 대한 더 많은 정보를 제공하도록 함께 사용될 수 있다.
도 2a 내지 도 2c는 몇몇 예시적인 실시예에 따른, 센서 시스템 및 전동식 신발끈 결속 엔진(lacing engine)을 일반적으로 도시하고 있다. 도 2a는 하우징 구조체(150), 케이스 나사(108), 신발끈 채널(112)[또한 신발끈 가이드 릴리프(112)라 칭함], 신발끈 채널 전이부(114), 스풀 리세스(115), 버튼 개구(122), 버튼(121), 버튼 멤브레인 밀봉부(124), 프로그래밍 헤더(128), 스풀(131), 및 스풀(131) 내의 신발끈 홈(132)을 포함하는, 예시적인 신발끈 결속 엔진(110)의 다양한 외부 특징부를 소개하고 있다. 다른 디자인이 유사하게 사용될 수 있다. 예를 들어, 밀봉형 돔 스위치와 같은 다른 스위치 유형이 사용될 수 있고, 또는 멤브레인 밀봉부(124)는 제거될 수 있는 등이다. 예에서, 신발끈 결속 엔진(110)은 외부 발 존재 센서(또는 그 구성요소), 스위치 또는 버튼과 같은 외부 액추에이터, 또는 다른 디바이스 또는 구성요소와 같은, 신발끈 결속 엔진(110)의 외부의 회로와 신발끈 결속 엔진(110) 내부의 회로를 인터페이스하기 위한 하나 이상의 상호접속부 또는 전기 접점을 포함할 수 있다.
신발끈 결속 엔진(110)은 케이스 나사(108)와 같은 하나 이상의 나사에 의해 함께 유지될 수 있다. 케이스 나사(108)는 신발끈 결속 엔진(110)의 구조적 완전성을 향상시키기 위해 1차 구동 기구 부근에 위치될 수 있다. 케이스 나사(108)는 또한 외부 시임(seam)의 초음파 용접을 위해 하우징 구조체(150)를 함께 유지하는 것과 같은, 조립 프로세스를 보조하는 기능을 한다.
도 2a의 예에서, 신발끈 결속 엔진(110)은 일단 엔진이 자동화 신발류 플랫폼 내에 조립되면 신발끈 또는 신발끈 케이블을 수용하기 위한 신발끈 채널(112)을 포함한다. 신발끈 채널(112)은 신발끈 케이블이 동작 중에 그에 접하여 또는 그 내에서 이동할 수 있는 평활한 안내면을 제공하기 위해 모따기된 에지를 갖는 채널벽을 포함할 수 있다. 신발끈 채널(112)의 평활한 안내면의 부분은 스풀 리세스(115) 내로 이어지는 신발끈 채널(112)의 확장된 부분일 수 있는 채널 전이부(114)를 포함할 수 있다. 스풀 리세스(115)는 채널 전이부(114)로부터 스풀(131)의 프로파일에 밀접하게 합치하는 일반적으로 원형 섹션으로 전이한다. 스풀 리세스(115)는 감겨진(spooled) 신발끈 케이블을 보유하는 것, 뿐만 아니라 스풀(131)의 위치를 보유하는 것을 보조할 수 있다. 디자인의 다른 양태는 스풀(131)을 보유하기 위한 다른 수단을 제공할 수 있다. 도 2a의 예에서, 스풀(131)은 편평한 상부면을 통해 연장하는 신발끈 홈(132) 및 반대측으로부터 아래로 연장하는 스풀 샤프트(도 2a에는 도시되어 있지 않음)를 갖는 요요(yo-yo)의 절반과 유사하게 성형된다.
신발끈 결속 엔진(110)의 외측면은 자동화 신발류 플랫폼의 하나 이상의 특징부를 활성화하거나 조정하도록 구성될 수 있는 버튼(121)을 수용하는 버튼 개구(122)를 포함한다. 버튼(121)은 신발끈 결속 엔진(110) 내에 포함된 다양한 스위치의 활성화를 위한 외부 인터페이스를 제공할 수 있다. 몇몇 예에서, 하우징 구조체(150)는 오물 및 물로부터의 보호를 제공하기 위한 버튼 멤브레인 밀봉부(124)를 포함한다. 본 예에서, 버튼 멤브레인 밀봉부(124)는 코너 위로 그리고 외측면을 따라 아래로와 같이, 하우징 구조체(150)의 상위면으로부터 접착될 수 있는 최대 수 mil(수천분의 1 인치) 두께의 투명 플라스틱(또는 유사한 재료)이다. 다른 예에서, 버튼 멤브레인 밀봉부(124)는 버튼(121) 및 버튼 개구(122)를 커버하는 대략 2-mil 두께의 비닐 접착제 백킹된 멤브레인이다. 다른 유형의 버튼 및 밀봉제가 유사하게 사용될 수 있다.
도 2b는 상부 섹션(102) 및 하부 섹션(104)을 포함하는 하우징 구조체(150)의 도면이다. 본 예에서, 상부 섹션(102)은 케이스 나사(108), 신발끈 채널(112), 신발끈 채널 전이부(114), 스풀 리세스(115), 버튼 개구(122), 및 버튼 밀봉부 리세스(126)와 같은 특징부를 포함한다. 예에서, 버튼 밀봉부 리세스(126)는 버튼 멤브레인 밀봉부(124)를 위한 삽입부를 제공하도록 릴리프 가공된(relieved) 상부 섹션(102)의 부분이다.
도 2b의 예에서, 하부 섹션(104)은 무선 충전기 액세스(105), 조인트(106), 및 그리스(grease) 격리벽(109)과 같은 특징부를 포함한다. 케이스 나사(108)를 수용하기 위한 케이스 나사 기부, 뿐만 아니라 구동 기구의 부분을 유지하기 위한 그리스 격리벽(109) 내의 다양한 특징부가 또한 도시되어 있지만, 구체적으로 식별되어 있지는 않다. 그리스 격리벽(109)은 그리스, 또는 구동 기구를 둘러싸는 유사한 화합물을 신발끈 결속 엔진(110)의 다양한 전기 구성요소로부터 이격하여 보유하도록 설계된다.
하우징 구조체(150)는 상부 및 하부 섹션(102, 104) 중 하나 또는 모두 내에, 구조체 표면 내에 매립되거나 위에 부착된 하나 이상의 전극(170)을 포함할 수 있다. 도 2b의 예에서 전극(170)은 하부 섹션(104)에 결합된 것으로 도시되어 있다. 예에서, 전극(170)은 커패시턴스 기반 발 존재 센서 회로[예를 들어, 본 명세서에 설명된 발 존재 센서(310) 참조]의 부분을 포함한다. 부가적으로 또는 대안적으로, 전극(170)은 상부 섹션(102)에 결합될 수 있다. 상부 또는 하부 섹션(102 또는 104)에 결합된 전극(170)은 무선 전력 전달을 위해 그리고/또는 커패시턴스 기반 발 존재 센서 회로의 부분으로서 사용될 수 있다. 예에서, 전극(170)은 하우징 구조체(150)의 외부면 상에 배치된 하나 이상의 부분을 포함하고, 다른 예에서 전극(170)은 하우징 구조체(150)의 내부면 상에 배치된 하나 이상의 부분을 포함한다.
도 2c는 예시적인 실시예에 따른, 신발끈 결속 엔진(110)의 다양한 내부 구성요소의 도면이다. 본 예에서, 신발끈 결속 엔진(110)은 스풀 자석(136), O-링 밀봉부(138), 웜 구동부(140), 부싱(141), 웜 구동 키이, 기어 박스(148), 기어 모터(145), 모터 인코더(146), 모터 회로 기판(147), 웜 기어(151), 회로 기판(160), 모터 헤더(161), 배터리 접속부(162), 및 유선 충전 헤더(163)를 더 포함한다. 스풀 자석(136)은 자기계(도 2c에는 도시되어 있지 않음)에 의한 검출을 통해 스풀(131)의 이동을 추적하는 것을 보조한다. O-링 밀봉부(138)는 스풀 샤프트 주위에서 신발끈 결속 엔진(110) 내로 이주할 수 있는 오물 및 습기를 밀봉 제거하는 기능을 한다. 회로 기판(160)은 후술되는 용량성 발 존재 센서(310)와 같은, 발 존재 센서를 위한 하나 이상의 인터페이스 또는 상호접속부를 포함할 수 있다. 예에서, 회로 기판(160)은 발 존재 센서(310)의 부분을 제공하는 하나 이상의 트레이스 또는 전도성 평면을 포함한다.
본 예에서, 신발끈 결속 엔진(110)의 주 구동 구성요소는 웜 구동부(140), 웜 기어(151), 기어 모터(145) 및 기어 박스(148)를 포함한다. 웜 기어(151)는 웜 구동부(140) 및 기어 모터(145)의 역구동을 저지하도록 설계되는데, 이는 신발끈 결속 케이블로부터 스풀(131)을 거쳐오는 주 입력 힘이 비교적 큰 웜 기어 및 웜 구동 톱니 상에 분해될 수 있다는 것을 의미한다. 이 구성은 기어 박스(148)가 신발류 플랫폼의 능동 사용으로부터 동적 부하 또는 신발끈 결속 시스템을 조이는 것으로부터의 조임 부하의 모두를 견디기 위해 충분한 강도의 기어를 포함해야 할 필요성을 방지한다. 웜 구동부(140)는 웜 구동 키이와 같은 구동 시스템의 다양한 연약한 부분을 보호하는 것을 돕기 위한 부가의 특징부를 포함한다. 본 예에서, 웜 구동 키이는 기어 박스(148) 외부로 나오는 구동 샤프트를 통해 핀과 인터페이스하는 웜 구동부(140)의 모터 단부 내의 반경방향 슬롯이다. 이 구성은 웜 구동부(140)가 축방향으로[기어 박스(148)로부터 이격하여] 자유롭게 이동하게 하고, 이들 축방향 부하를 부싱(141) 및 하우징 구조체(150) 상에 전달함으로써, 웜 구동부(140)가 기어 박스(148) 또는 기어 모터(145) 상에 과도한 축방향 힘을 부여하는 것을 방지한다.
도 3은 예시적인 실시예에 따른, 전동식 신발끈 결속 시스템(300)의 구성요소의 블록도를 일반적으로 도시하고 있다. 시스템(300)은 인터페이스 버튼(301), 용량성 발 존재 센서(310), 및 프로세서 회로(320), 배터리(321), 충전 코일(322), 인코더(325), 모션 센서(324), 및 구동 기구(340)를 갖는 인쇄 회로 기판 조립체(PCA)를 에워싸는 하우징 구조체(150)와 같은 전동식 신발끈 결속 시스템의 반드시 모두는 아닌 몇몇 구성요소를 포함한다. 구동 기구(340)는 다른 것들 중에서도, 모터(341), 변속기(342), 및 신발끈 스풀(343)을 포함할 수 있다. 모션 센서(324)는 다른 것들 중에서도, 단축 또는 다축 가속도계, 자기계, 자이로미터, 또는 하우징 구조체(150)의, 또는 하우징 구조체(150) 내에 있는 또는 결합된 하나 이상의 구성요소의 모션을 감지하도록 구성된 다른 센서 또는 디바이스를 포함할 수 있다.
도 3의 예에서, 프로세서 회로(320)는 인터페이스 버튼(301), 발 존재 센서(310), 배터리(321), 충전 코일(322), 및 구동 기구(340) 중 하나 이상과 데이터 또는 전력 신호 통신한다. 변속기(342)는 모터(341)를 스풀(343)에 결합하여 구동 기구(340)를 형성한다. 도 3의 예에서, 버튼(301), 발 존재 센서(310), 및 환경 센서(350)는 하우징 구조체(150)의 외부에 또는 부분적으로 외부에 도시되어 있다.
대안적인 실시예에서, 버튼(301), 발 존재 센서(310), 및 환경 센서(350) 중 하나 이상은 하우징 구조체(150) 내에 포위될 수 있다. 예에서, 발 존재 센서(310)는 땀 및 오물 또는 부스러기(debris)로부터 센서를 보호하기 위해 하우징 구조체(150)의 내부에 배치된다. 하우징 구조체(150)의 벽을 통한 연결부를 최소화하거나 제거하는 것은 조립체의 내구성 및 신뢰성을 증가시키는 것을 도울 수 있다.
예에서, 프로세서 회로(320)는 구동 기구(340)의 하나 이상의 양태를 제어한다. 예를 들어, 프로세서 회로(320)는 버튼(301)으로부터 그리고/또는 발 존재 센서(310)로부터 그리고/또는 모션 센서(324)로부터 정보를 수신하고, 이에 응답하여 예로서 발에 대해 신발류를 조이거나 느슨하게 하기 위해 구동 기구(340)를 제어하도록 구성될 수 있다. 예에서, 프로세서 회로(320)는 부가적으로 또는 대안적으로 다른 기능들 중에서도, 발 존재 센서(310) 또는 다른 센서로부터 센서 정보를 얻거나 기록하기 위해 명령을 발행하도록 구성된다. 예에서, 프로세서 회로(320)는 발 존재 센서(310)를 사용하여 발 존재를 검출하는 것, 발 존재 센서(310)를 사용하여 발 배향 또는 로케이션을 검출하는 것, 또는 모션 센서(324)를 사용하여 지정된 제스처를 검출하는 것 중 하나 이상에 구동 기구(340)의 동작을 조절한다.
예에서, 시스템(300)은 환경 센서(350)를 포함한다. 환경 센서(350)로부터의 정보는 발 존재 센서(310)를 위한 기준선 또는 기준값을 업데이트하거나 조정하는데 사용될 수 있다. 이하에 더 설명되는 바와 같이, 용량성 발 존재 센서에 의해 측정된 커패시턴스값은 예로서 센서 부근의 주위 조건에 응답하여, 시간 경과에 따라 변동할 수 있다. 환경 센서(350)로부터의 정보를 사용하여, 프로세서 회로(320) 및/또는 발 존재 센서(310)는 따라서 측정된 또는 감지된 커패시턴스값을 업데이트하거나 조정하도록 구성될 수 있다.
도 4는 신발류 물품의 사용자가 서 있을 때 신발류 물품(400) 내의 공칭 또는 평균 발(좌측)에 대한 그리고 요족(우측)에 대한 압력 분포 데이터를 도시하고 있는 도면이다. 본 예에서, 발 아래의 비교적 큰 압력 영역은 뒤꿈치 영역(401), 볼 영역(402)(예를 들어, 아치와 발가락 사이), 및 엄지발가락 영역(403)(예를 들어, "엄지발가락" 영역)에서를 포함한다는 것을 알 수 있다. 그러나, 전술된 바와 같이, 아치 영역 또는 그 부근과 같은, 중앙 집중된 영역에 다양한 능동 구성요소[예를 들어, 발 존재 센서(310)를 포함함]를 포함하는 것이 유리할 수 있다. 예에서, 아치 영역에서, 하우징 구조체(150)는 하우징 구조체(150)를 포함하는 신발류 물품이 착용될 때 일반적으로 사용자에게 덜 눈에 띄거나 또는 방해가 될 수 있다.
도 4의 예에서, 신발끈 결속 엔진 캐비티(141)는 아치 영역에 제공될 수 있다. 발 존재 센서(310)에 대응하는 하나 이상의 전극이 제1 로케이션(405)에 또는 그 부근에 위치될 수 있다. 제1 로케이션(405)에 위치된 전극을 사용하여 측정된 커패시턴스값은 제1 로케이션(405)에 대한 발의 근접도에 따라 상이할 수 있다. 예를 들어, 발의 표면 자체는 제1 로케이션(405)으로부터 상이한 거리에 존재하기 때문에, 상이한 커패시턴스값이 평균 발 및 요족에 대해 얻어질 것이다. 예에서, 발 존재 센서(310) 및/또는 신발끈 결속 엔진(110)의 로케이션은 예로서 상이한 사용자의 상이한 발 특성을 수용하고 발 존재 센서(310)로부터 얻어진 신호 품질을 향상시키기 위해, 신발류에 대해 조정될 수 있다(예를 들어, 사용자에 의해 또는 판매시점에 기술자에 의해). 예에서, 발 존재 센서(310)의 감도는 예로서, 구동 신호 레벨을 증가시킴으로써 또는 발 존재 센서(310)와 발 사이에 위치된 유전 재료를 변경함으로써 조정될 수 있다.
도 5a 및 도 5b는 예시적인 실시예에 따른, 신발류 물품의 안창 내의 커패시턴스 기반 발 존재 센서의 도면을 일반적으로 도시하고 있다. 커패시턴스 기반 발 존재 센서는 센서를 구비한 물품이 착용될 때, 발과 같은 물체 또는 신체(550)의 표면 아래에 제공될 수 있다.
도 5a에서, 커패시턴스 기반 발 존재 센서는 용량성 감지 제어기 회로(502)에 결합된 제1 전극 조립체(501A)를 포함할 수 있다. 예에서, 제어기 회로(502)는 프로세서 회로(320)에 의해 수행된 기능 내에 포함되거나 또는 이 기능을 포함한다. 도 5a의 예에서, 제1 전극 조립체(501A) 및/또는 제어기 회로(502)는 하우징 구조체(150)의 내부 부분 내에 포함되거나 그에 장착될 수 있고, 또는 하우징 구조체(150)의 내부의 PCA에 결합될 수 있다. 예에서, 제1 전극 조립체(501A)는 하우징 구조체(150)의 발 지향면에 또는 인접하여 배치될 수 있다. 예에서, 제1 전극 조립체(501A)는 하우징 구조체(150)의 내부, 상부면 영역을 가로질러 분배된 다수의 트레이스를 포함한다.
도 5b에서, 커패시턴스 기반 발 존재 센서는 용량성 감지 제어기 회로(502)에 결합된 제2 전극 조립체(501B)를 포함할 수 있다. 제2 전극 조립체(501B)는 하우징 구조체(150)의 외부 부분에 또는 부근에 장착될 수 있고, 또는 예로서 가요성 커넥터(511)를 사용하여 하우징 구조체(150)의 내부의 PCA에 전기적으로 결합될 수 있다. 예에서, 제2 전극 조립체(501B)는 하우징 구조체(150)의 발 지향면에 또는 인접하여 배치될 수 있다. 예에서, 제2 전극 조립체(501B)는 하우징 구조체(150)의 내부 또는 외부면에 고정되고, 하나 이상의 전도체를 거쳐 프로세서 회로(320)에 결합된 가요성 회로를 포함한다.
예에서, 제어기 회로(502)는 Atmel ATSAML21E18B-MU, ST Microelectronics STM32L476M, 또는 다른 유사한 디바이스를 포함한다. 제어기 회로(502)는 다른 것들 중에서도, 이하에 더 상세히 설명되는 바와 같이, 제1 또는 제2 전극 조립체(501A 또는 501B) 내의 적어도 한 쌍의 전극에 AC 구동 신호를 제공하고, 이에 응답하여 한 쌍의 전극에 대한 물체 또는 신체(550)의 근접도의 대응 변화에 기초하여 전기장의 변화를 감지하도록 구성될 수 있다. 예에서, 제어기 회로(502)는 발 존재 센서(310) 또는 프로세서 회로(320)를 포함하거나 사용한다.
다양한 재료가 전극 조립체(501)와 감지될 물체 또는 신체(550) 사이에 제공될 수 있다. 예를 들어, 전극 절연재, 하우징 구조체(150)의 재료, 안창 재료, 인서트 재료(510), 양말 또는 다른 발 커버, 바디 테이프, 운동요법 테이프(kinesiology tape), 또는 다른 재료가 신체(550)와 전극 조립체(501) 사이에 개재될 수 있어, 예를 들어 신발류의 유전 특성을 변화시키고 이에 의해 전극 조립체(501)를 포함하거나 사용하는 센서의 커패시턴스 검출 감도에 영향을 미친다. 제어기 회로(502)는 개재된 재료의 수 또는 유형에 기초하여 여기 또는 감지 파라미터를 업데이트하거나 조정하여, 예로서 전극 조립체(501)를 사용하여 감지된 커패시턴스값의 감도 또는 신호-대-노이즈비를 향상시키도록 구성될 수 있다.
도 5a/도 5b의 예에서, 제1 및/또는 제2 전극 조립체(501A 및/또는 501B)는 제어기 회로(502) 내의 신호 발생기에 의해 여기될 수 있고, 그 결과 전기장이 전극 조립체의 상부 발 지향측으로부터 나올 수 있다. 예에서, 전극 조립체 아래의 전기장은 적어도 부분적으로 감지 전극 아래에 위치된 종동 차폐부를 사용하여 차단될 수 있다. 종동 차폐부 및 전극 조립체는 서로로부터 전기적으로 절연될 수 있다. 예를 들어, 제1 전극 조립체(501A)가 PCA의 하나의 표면 위에 있으면, 종동 차폐부는 PCA의 하부층 위에 또는 다층 PCA 위의 다수의 내부층의 임의의 하나 위에 있을 수 있다. 예에서, 종동 차폐부는 제1 전극 조립체(501A)와 동일한 또는 더 큰 표면적을 가질 수 있고, 제1 전극 조립체(501A) 바로 아래에 중심설정될 수 있다. 종동 차폐부는 구동 신호를 수신할 있고, 이에 응답하여 제1 전극 조립체(501A)에 의해 발생된 장의 X축 레그와 동일한 극성, 위상 및/또는 진폭의 전기장을 발생할 수 있다. 종동 차폐부의 장은 제1 전극 조립체(501A)의 전기장을 밀어낼 수 있어, 이에 의해 PCA의 접지 평면으로의 바람직하지 않은 결합과 같은, 다양한 기생 효과로부터 센서장을 격리한다. 종동 차폐부가 제2 전극 조립체(501B)와 함께 사용을 위해 유사하게 제공될 수 있다. 예를 들어, 제2 전극 조립체(501B)는 도 5b의 예에 도시되어 있는 바와 같이 하우징 구조체(150) 위에 제공될 수 있고, 하우징 구조체(150)의 부분은 종동 차폐부로서 사용된 전도성 필름을 포함할 수 있다. 부가적으로 또는 대안적으로, 종동 차폐부는 제2 전극 조립체(501B)가 하우징 구조체(150)의 정상부 이외의 로케이션에 제공될 때 신발류 물품 내의 다른 장소에 제공될 수 있다.
하우징 구조체(150)를 위치시키기 위한 바람직한 위치는, 착용자에 의해 지각될 가능성이 적고 착용자에게 불편함을 유발할 가능성이 적은 영역이기 때문에, 신발류의 아치 영역 내이다. 신발류 내의 발 존재를 검출하기 위해 용량성 감지를 사용하는 일 장점은, 용량성 센서가 아치 영역 내에 배치되고 사용자가 비교적 또는 유별나게 요족을 가질 때에도 용량성 센서가 양호하게 기능할 수 있는 것을 포함한다. 예를 들어, 센서 구동 신호 진폭 또는 형태 특성은 용량성 센서로부터 수신된 신호의 검출된 신호-대-노이즈비에 기초하여 변화되거나 선택될 수 있다. 예에서, 센서 구동 신호는 신발류가 사용될 때마다 업데이트되거나 조정될 수 있어, 예로서 제1 또는 제2 전극 조립체(501A 또는 501B)와 신체(550) 사이에 배치된 하나 이상의 재료(예를 들어, 양말, 안창 등)의 변화를 수용한다.
예에서, 제1 또는 제2 전극 조립체(501A 또는 501B)와 같은 용량성 센서의 전극 조립체는 X 및 Y-축 배향된 전극 사이와 같은, 다수의 전극 사이의 신호의 차이를 감지하도록 구성될 수 있다. 예에서, 적합한 샘플링 주파수는 약 2 내지 50 Hz일 수 있다. 몇몇 예에서, 커패시턴스 기반 발 감지 기술은 발 주위의 안창 위에 또는 양말 내의 땀(습기)에 비교적 불변성일 수 있다. 이러한 수분의 효과는 수분의 존재가 측정된 커패시턴스를 증가시킬 수 있기 때문에 검출의 동적 범위를 감소시킬 수 있다는 것이다. 그러나, 몇몇 예에서, 동적 범위는 신발류 내의 수분의 예측된 레벨 내에서 이 효과를 수용하기에 충분하다.
도 6은 예시적인 실시예에 따른, 발 존재 검출을 위한 용량성 센서 시스템(600)을 일반적으로 도시하고 있다. 시스템(600)은 신체(550)(예를 들어, 능동 신발류 물품 내의 또는 부근의 발을 표현하고 있음) 및 제1 및 제2 전극(601, 602)을 포함한다. 전극(601, 602)은 발 존재 센서(310)의 부분을 포함하는 것과 같은, 도 5a/도 5b의 예로부터 제1 또는 제2 전극 조립체(501A 또는 501B)의 모두 또는 일부를 형성할 수 있다. 도 6의 예에서, 제1 및 제2 전극(601, 602)은 서로에 대해 그리고 신체(550)에 대해 수직으로 이격된 것으로서 도시되어 있지만, 전극은 예를 들어, 도 7 내지 도 9c의 예에 상세히 설명된 바와 같이, 유사하게 수평으로 이격될 수도 있다. 즉, 예에서, 전극은 신체(550)의 하부면에 평행한 평면 내에 배치될 수 있다. 도 6의 예에서, 제1 전극(601)은 전송 전극으로서 구성되고, 신호 발생기(610)에 결합된다. 예에서, 신호 발생기(610)는 도 3의 예로부터 프로세서 회로(320)의 부분을 포함한다. 즉, 프로세서 회로(320)는 구동 신호를 발생하여 이를 제1 전극(601)에 인가하도록 구성될 수 있다.
신호 발생기(610)로부터 구동 신호에 의해 제1 전극(601)을 여기하는 결과로서, 전기장(615)이 제1 및 제2 전극(601, 602) 사이에 주로 발생될 수 있다. 즉, 발생된 전기장(615)의 다양한 성분은 제1 및 제2 전극(601, 602) 사이에서 연장할 수 있고, 발생된 전기장(615)의 다른 프린지(fringe) 성분은 다른 방향으로 연장할 수 있다. 예를 들어, 프린지 성분은 하우징 구조체(150)(도 6의 예에는 도시되어 있지 않음)로부터 이격하여 송신기 전극 또는 제1 전극(601)으로부터 연장하고 수신기 전극 또는 제2 전극(602)에서 재차 종료할 수 있다.
신체(550)의 근접도에 기인하는 전기장(615)의 변화에 대한 정보를 포함하여, 전기장(615)에 대한 정보가 제2 전극(602)에 의해 감지되거나 수신될 수 있다. 제2 전극(602)으로부터 감지된 신호는 다양한 회로를 사용하여 처리되고 신체(550)의 존재 또는 부존재를 지시하는 아날로그 또는 디지털 신호를 제공하는데 사용될 수 있다.
예를 들어, 제2 전극(602)에 의해 수신된 전기장(615)의 장 강도는 아날로그 커패시턴스-지시 신호를 디지털 신호로 변환하도록 구성되는 시그마-델타 아날로그-대-디지털 변환기 회로(ADC)(620)를 사용하여 측정될 수 있다. 전극 부근의 전기 환경은 신체(550)와 같은 물체가 그 프린지 성분을 포함하여 전기장(615)을 침범할 때 변화한다. 신체(550)가 장에 진입할 때, 전기장(615)의 일부는 제2 전극(602)에서 수신되어 종료되는 대신에 접지로 분로되고(shunted) 또는 제2 전극(602)에서 수신되기 전에 신체(550)(예를 들어, 공기 대신에)를 통과한다. 이는 발 존재 센서(310)에 의해 그리고/또는 프로세서 회로(320)에 의해 검출될 수 있는 커패시턴스 변화를 야기할 수 있다.
예에서, 제2 전극(602)은 실질적으로 연속적으로 전기장 정보를 수신할 수 있고, 정보는 ADC(620)에 의해 연속적으로 또는 주기적으로 샘플링될 수 있다. ADC(620)로부터의 정보는 오프셋(621)에 따라 처리되거나 업데이트될 수 있고, 이어서 디지털 출력 신호(622)가 제공될 수 있다. 예에서, 오프셋(621)은 지정되거나 프로그램될 수 있거나[예를 들어, 프로세서 회로(320)의 내부에서] 또는 시간 경과에 따른 환경 변화, 온도, 및 환경의 다른 가변 특성을 트래킹하기 위해 사용되는 다른 커패시터에 기초할 수 있는 커패시턴스 오프셋이다.
예에서, 디지털 출력 신호(622)는 예로서, 측정된 커패시턴스값을 지정된 임계값에 비교함으로써, 신체(550)의 결정된 존재 또는 부존재에 대한 2진 정보를 포함할 수 있다. 예에서, 디지털 출력 신호(622)는 신체(550)가 존재하거나 존재하지 않는 확률의 지시를 제공하기 위해 사용될 수 있는[예를 들어, 프로세서 회로(320)에 의해] 것과 같은, 측정된 커패시턴스에 대한 정량적 정보를 포함한다.
주기적으로, 또는 발 존재 센서(310)가 활성이 아닐 때마다[예를 들어, 모션 센서(324)로부터의 정보를 사용하여 결정된 바와 같이], 커패시턴스값이 측정되어 기준값, 기준선값, 또는 주위값으로서 저장될 수 있다. 발 또는 신체가 발 존재 센서(310) 및 제1 및 제2 전극(601, 602)에 접근할 때, 측정된 커패시턴스는 예로서 저장된 기준값에 대해 감소하거나 증가할 수 있다. 예에서, 하나 이상의 임계 커패시턴스 레벨은 예를 들어, 프로세서 회로(320)를 갖는 온-칩 레지스터 내에 저장될 수 있다. 측정된 커패시턴스값이 지정된 임계치를 초과할 때, 이어서 신체(550)는 발 존재 센서(310)를 포함하는 신발류로부터 존재(또는 부재)하는 것으로 결정될 수 있다.
발 존재 센서(310), 및 발 존재 센서(310)의 부분을 포함하는 전극(601, 602)은 이어지는 다수의 비한정적인 예에 예시된 바와 같이 다수의 상이한 형태를 취할 수 있다. 예에서, 발 존재 센서(310)는 다수의 전극 또는 플레이트 중의 또는 사이의 상호 커패시턴스를 감지하거나 또는 그에 대한 정보를 사용하도록 구성된다.
예에서, 전극(601, 602)은 전극 그리드 내에 배열된다. 그리드를 사용하는 용량성 센서는 그리드의 각각의 행 및 각각의 열의 각각의 교점에 가변 커패시터를 포함할 수 있다. 선택적으로, 전극 그리드는 하나 또는 다수의 행 또는 열로 배열된 전극을 포함한다. 전압 신호가 행 또는 열에 인가될 수 있고, 센서의 표면 부근의 신체 또는 발은 국부 전기장에 영향을 미칠 수 있고, 이어서 상호 커패시턴스 효과를 감소시킬 수 있다. 예에서, 그리드 상의 다수의 점에서 커패시턴스 변화는 예로서, 각각의 축에서의 전압을 측정함으로써 신체 로케이션을 결정하도록 측정될 수 있다. 예에서, 상호 커패시턴스 측정 기술은 그리드 주위의 다수의 로케이션으로부터 동시에 정보를 제공할 수 있다.
예에서, 상호 커패시턴스 측정은 송신 및 수신 전극의 직교 그리드를 사용한다. 이러한 그리드 기반 센서 시스템에서, 측정치는 다수의 이산 X-Y 좌표쌍의 각각에 대해 검출될 수 있다. 예에서, 다수의 커패시터로부터의 커패시턴스 정보는 신발류 내의 발 존재 또는 발 배향을 결정하는데 사용될 수 있다. 다른 예에서, 하나 이상의 커패시터로부터의 커패시턴스 정보는 시간 경과에 따라 취득되고 발 존재 또는 발 배향을 결정하도록 분석될 수 있다. 예에서, X 및/또는 Y 검출 좌표에 대한 변화율 정보가 발이 신발류 내의 안창에 대해 적절하게 또는 완전히 안착될 때를 또는 안착되었는지를 결정하는데 사용될 수 있다.
예에서, 자기 커패시턴스 기반 발 존재 센서는 상호 커패시턴스 센서와 동일한 X-Y 그리드를 가질 수 있지만, 열 및 행은 독립적으로 동작할 수 있다. 자기 커패시턴스 센서에서, 각각의 열 또는 행에서의 신체의 용량성 부하는 독립적으로 검출될 수 있다.
도 7은 예시적인 실시예에 따른, 제1 커패시턴스 기반 발 존재 센서의 개략도를 일반적으로 도시하고 있다. 도 7의 예에서, 제1 용량성 센서(700)가 다수의 평행 용량성 플레이트를 포함한다. 다수의 플레이트는 하우징 구조체(150) 상에 또는 내에 배열될 수 있는데, 예를 들어 제1 용량성 센서(700)를 포함하는 신발류 물품이 착용될 때 발의 아래측에 또는 부근에 위치된다. 예에서, 용량성 발 존재 센서(310)는 제1 용량성 센서(700)를 포함하거나 사용한다.
도 7의 예에서, 4개의 전도성 커패시터 플레이트가 701 내지 704로서 도시되어 있다. 플레이트는 전도성 포일과 같은 전도성 재료로 제조될 수 있다. 포일은 가요성일 수 있고, 선택적으로 하우징 구조체(150) 자체의 플라스틱 내에 매립될 수 있고, 또는 하우징 구조체(150)에 독립적일 수 있다. 필름, 잉크, 증착 금속, 또는 다른 재료와 같은 임의의 전도성 재료가 사용될 수 있다는 것이 이해되어야 한다. 도 7의 예에서, 플레이트(701 내지 704)는 공통 평면 내에 배열되고, 이산 전도성 요소 또는 전극을 형성하도록 서로로부터 이격된다.
커패시터의 커패시턴스값은 커패시터를 형성하는 2개의 플레이트 사이의 재료의 유전 상수에 함수 관계이다. 제1 용량성 센서(700) 내에는, 커패시터가 커패시터 플레이트(701 내지 704)의 2개 이상의 각각의 쌍 사이에 형성될 수 있다. 이에 따라, 커패시터 A, B, C, D, E 및 F로서 도 7에 지정된 바와 같은 커패시터 플레이트(701 내지 704)의 6개의 고유의 조합쌍에 의해 형성된 6개의 유효 커패시터가 존재한다. 선택적으로, 플레이트의 2개 이상은 전기적으로 결합되어 단일의 플레이트를 형성할 수 있다. 즉, 예에서, 커패시터는 제1 전도체를 제공하도록 전기적으로 결합된 제1 및 제2 커패시터 플레이트(701, 702), 및 제2 전도체를 제공하도록 전기적으로 결합된 제3 및 제4 커패시터 플레이트(703, 704)를 사용하여 형성될 수 있다.
예에서, 제1 및 제2 커패시터 플레이트(701, 702) 사이의 용량성 효과는 문자 A에 의해 식별된 가상 커패시터에 의해 도 7에 표현되어 있다. 제1 및 제3 커패시터 플레이트(701, 703) 사이의 용량성 효과는 문자 B에 의해 식별된 가상 커패시터에 의해 표현되어 있다. 제2 및 제4 커패시터 플레이트(702, 704) 사이의 용량성 효과는 문자 C에 의해 식별된 가상 커패시터에 의해 표현되어 있는 등이다. 통상의 기술자는 각각의 가상 커패시터가 커패시터 플레이트의 각각의 쌍 사이에서 연장하는 정전장을 표현한다는 것을 이해할 수 있을 것이다. 이하, 용이한 식별을 위해, 용량성 플레이트의 각각의 쌍에 의해 형성된 커패시터는 가상 작도된 커패시터를 식별하기 위해 도 7에 사용된 문자(예를 들어, "A", "B" 등)로 나타낸다.
도 7의 예에서 커패시터 플레이트의 각각의 쌍에 있어서, 플레이트들 사이의 유효 유전율은 플레이트 사이에 배치된 에어갭(또는 다른 재료)을 포함한다. 커패시터 플레이트의 각각의 쌍에 있어서, 커패시터 플레이트의 각각의 쌍에 근접한 신체 또는 발의 임의의 부분은 용량성 플레이트의 주어진 쌍을 위한 유효 유전율의 부분이 될 수 있거나, 또는 영향을 미칠 수 있다. 즉, 가변 유전율이 플레이트의 각각의 쌍에 대한 신체의 근접도에 따라 커패시터 플레이트의 각각의 쌍 사이에 제공될 수 있다. 예를 들어, 신체 또는 발이 플레이트의 주어진 쌍에 더 근접할수록, 유효 유전율의 값이 클 수도 있다. 유전 상수값이 증가함에 따라, 커패시턴스값이 증가한다. 이러한 커패시턴스값 변화는 프로세서 회로(320)에 의해 수신되고 신체가 제1 용량성 센서(700)에 또는 부근에 존재하는지 여부를 지시하는데 사용될 수 있다.
제1 용량성 센서(700)를 포함하는 발 존재 센서(310)의 예에서, 복수의 용량성 센서 구동/모니터 회로가 플레이트(701 내지 704)에 결합될 수 있다. 예를 들어, 개별 구동/모니터 회로가 도 7의 예에서 커패시터 플레이트의 각각의 쌍과 연계될 수 있다. 예에서, 구동/모니터 회로는 커패시터 플레이트 쌍에 구동 신호(예를 들어, 시변 전기 여기 신호)를 제공할 수 있고, 이에 응답하여, 커패시턴스 지시값을 수신할 수 있다. 각각의 구동/모니터 회로는 연계된 커패시터[예를 들어, 제1 및 제2 플레이트(701, 702)에 대응하는 커패시터 "A"]의 가변 커패시턴스값을 측정하도록 구성될 수 있고, 측정된 커패시턴스값을 지시하는 신호를 제공하도록 또한 구성될 수 있다. 구동/모니터 회로는 커패시턴스를 측정하기 위한 임의의 적합한 구조체를 가질 수 있다. 예에서, 2개 이상의 구동/모니터 회로가 예로서 상이한 커패시터를 사용하여 측정된 커패시턴스값 사이의 차이의 지시를 제공하도록 함께 사용될 수 있다.
도 8은 예시적인 실시예에 따른, 제2 커패시턴스 기반 발 존재 센서의 개략도를 일반적으로 도시하고 있다. 도 8의 예는 제1 및 제2 전극(801, 802)을 포함하는 제2 용량성 센서(800)를 포함한다. 발 존재 센서(310)는 제2 용량성 센서(800)를 포함하거나 사용할 수 있다. 도 8의 예에서, 제1 및 제2 전극(801, 802)은 빗살 구성에서와 같이, 실질적으로 평면형 표면을 따라 배열된다. 예에서, 프로세서 회로(320)와 같은 구동 회로가 제1 및 제2 전극(801, 802)에 인가하기 위해 여기 또는 자극 신호를 발생하도록 구성될 수 있다. 동일한 또는 상이한 회로는 제1 및 제2 전극(801, 802) 사이의 커패시턴스의 변화를 지시하는 응답 신호를 감지하도록 구성될 수 있다. 커패시턴스는 전극에 대한 신체 또는 발의 존재에 의해 영향을 미칠 수 있다. 예를 들어, 제1 및 제2 전극(801, 802)은 예로서, 발이 하우징 구조체(150)를 포함하는 신발류 내에 존재할 때 발에 근접한 것과 같이, 하우징 구조체(150)의 표면 위에 또는 부근에 배열될 수 있다.
예에서, 제2 용량성 센서(800)는 예로서 전극의 패턴을 형성하기 위해 X-Y 그리드 내에 에칭된 전도성층을 포함한다. 부가적으로 또는 대안적으로, 제2 용량성 센서(800)의 전극은 예를 들어, 그리드를 형성하기 위해 수직 라인 또는 트랙을 갖는 전도성 재료의 다수의 개별 평행층을 에칭함으로써 제공될 수 있다. 이 그리고 다른 용량성 센서에서, 신체 또는 발과 전도성층 또는 전극 사이에 어떠한 직접적인 접촉도 요구되지 않는다. 예를 들어, 전도성층 또는 전극은 하우징 구조체(150) 내에 매립될 수 있고, 또는 보호 또는 절연층으로 코팅될 수 있다. 대신에, 검출될 신체 또는 발은 전극 부근의 전기장 특성과 간섭하거나 영향을 미칠 수 있고, 전기장의 변화가 검출될 수 있다.
예에서, 개별 커패시턴스값이 접지 또는 기준에 대해 제1 전극(801)에 대해, 그리고 접지 또는 기준에 대해 제2 전극(802)에 대해 측정될 수 있다. 발 존재 검출에 사용을 위한 신호는 제1 및 제2 전극(801, 802)에 대해 측정된 개별 커패시턴스값들 사이의 차이에 기초할 수 있다. 즉, 발 존재 또는 발 검출 신호는 제1 및 제2 전극(801, 802)을 사용하여 측정된 이산 커패시턴스 신호 사이의 차이에 기초할 수 있다.
도 9a 및 도 9b는 몇몇 예에 따른, 제3 용량성 센서(900)의 예를 일반적으로 도시하고 있다. 도 9c는 제4 용량성 센서(902)의 예를 일반적으로 도시하고 있다. 도 9a는 제3 용량성 센서(900)의 개략 평면도를 도시하고 있다. 도 9b는 제3 용량성 센서(900)를 포함하는 센서 조립체(901)의 사시도를 도시하고 있다. 도 9c는 제4 용량성 센서(902)의 개략 평면도를 도시하고 있다.
도 9a의 예에서, 제3 용량성 센서(900)는 제1 전극 트레이스(911) 및 제2 전극 트레이스(912)를 갖는 전극 영역을 포함한다. 제1 및 제2 전극 트레이스(911, 912)는 절연체 트레이스(913)에 의해 분리되어 있다. 예에서, 제1 및 제2 전극 트레이스(911, 912)는 다른 전도성 재료들 중에서도, 구리, 탄소, 또는 은일 수 있고, 다른 재료들 중에서도, FR4, 플렉스(flex), PET, 또는 ITO로부터 제조된 기판 상에 배치될 수 있다. 제3 용량성 센서(900)의 기판 및 트레이스는 하나 이상의 가요성 부분을 포함할 수 있다.
제1 및 제2 전극 트레이스(911, 912)는 제3 용량성 센서(900)의 기판의 표면 영역을 실질적으로 가로질러 분포될 수 있다. 전극 트레이스는 제3 용량성 센서(900)가 설치될 때 하우징 구조체(150)의 상부면 또는 상면에 접하여 위치될 수 있다. 예에서, 제1 및 제2 전극 트레이스(911, 912) 중 하나 또는 모두는 약 2 mm 폭일 수 있다. 절연체 트레이스(913)는 대략 동일한 폭일 수 있다. 예에서, 트레이스 폭은 다른 것들 중에서도, 신발류 치수 또는 안창 유형에 기초하여 선택될 수 있다. 예를 들어, 상이한 트레이스 폭이 예로서 제3 용량성 센서(900)를 사용하여 측정된 커패시턴스값의 신호-대-노이즈비를 최대화하기 위해, 예를 들어, 트레이스와 감지될 신체 사이의 거리, 안창 재료, 갭 충전재, 하우징 구조체(150) 재료, 또는 신발류 내에 사용된 다른 재료에 따라 제1 및 제2 전극 트레이스(911, 912)에 대해 및/또는 절연체 트레이스(913)에 대해 선택될 수 있다.
제3 용량성 센서(900)는 커넥터(915)를 포함할 수 있다. 커넥터(915)는 하우징 구조체(150) 내의 PCA에 결합되는 것과 같이, 정합 커넥터와 결합될 수 있다. 정합 커넥터는 제1 및 제2 전극 트레이스(911, 912)를 프로세서 회로(320)와 전기적으로 결합하기 위한 하나 이상의 전도체를 포함할 수 있다.
예에서, 제3 용량성 센서(900)는 입력 신호 전도체(920A, 920B)를 포함한다. 입력 신호 전도체(920A, 920B)는 예로서 도 2a의 예에서 버튼(121)에 대응하는 돔 버튼 또는 다른 스위치와 같은 하나 이상의 입력 디바이스와 결합되도록 구성될 수 있다.
도 9b는 제3 용량성 센서(900), 버튼(121A, 121B), 및 멤브레인 밀봉부(124A, 124B)를 포함하는 센서 조립체(901)를 도시하고 있다. 예에서, 접착제가 입력 신호 전도체(920A, 920B)의 대응 전도성 표면을 버튼(121A, 121B)과 결합한다. 멤브레인 밀봉부(124A, 124B)는 버튼(121A, 121B) 위에 접착될 수 있어, 예로서 버튼(121A, 121B)을 부스러기로부터 보호한다.
도 9c의 예에서, 제4 용량성 센서(902)는 제1 전극 트레이스(921) 및 제2 전극 트레이스(922)를 갖는 전극 영역을 포함한다. 제1 및 제2 전극 트레이스(921, 922)는 절연체 트레이스(923)에 의해 분리되어 있다. 전극 트레이스는 다양한 전도성 재료를 포함할 수 있고, 제4 용량성 센서(902)는 하나 이상의 가요성 부분을 포함할 수 있다. 제4 용량성 센서(902)는 커넥터(925)를 포함할 수 있고, 커넥터(915)는 하우징 구조체(150) 내의 PCA에 결합되는 것과 같이, 정합 커넥터와 결합될 수 있다.
본 발명자들은, 해결될 문제점이 예를 들어 발 존재 센서의 모두 또는 일부가 예로서 에어갭 또는 다른 개재 재료에 의해, 검출될 발 또는 신체로부터 이격되어 있을 때, 용량성 발 존재 센서로부터 적합한 감도 또는 응답을 얻는 것을 포함한다는 것을 인식하였다. 본 발명자들은, 해결책이 전극이 여기될 때 생성되는 전기장의 배향 및 상대 강도를 향상시키기 위해 지정된 형상, 크기, 및 배향의 다수의 전극을 사용하는 것을 포함할 수 있다는 것을 인식하였다. 즉, 본 발명자들은 용량성 발 존재 감지에 사용을 위한 최적의 전극 구성을 식별하였다.
예에서, 제4 용량성 센서(902)의 다수의 전극은 제1 및 제2 전극 트레이스(921, 922)를 포함하고, 제1 및 제2 전극 트레이스(921, 922)의 각각은 서로 실질적으로 평행하게 연장하는 다수의 이산 핑거 또는 트레이스를 포함한다. 예를 들어, 제1 및 제2 전극 트레이스(921, 922)는 도 9c에 도시되어 있는 바와 같이, 다수의 교차형 전도성 핑거부를 포함할 수 있다.
예에서, 제2 전극 트레이스(922)는 제4 용량성 센서(902)의 외주연부 또는 표면부 둘레로 실질적으로 연장하고 제1 전극 트레이스(921)를 실질적으로 둘러싸는 주연선(shoreline) 또는 주계부(perimeter portion)를 포함할 수 있다. 도 9c의 예에서, 제2 전극 트레이스(922)를 포함하는 주연선은 제4 용량성 센서(902) 조립체의 상부면의 실질적으로 전체 주위로 연장하지만, 주연선은 몇몇 다른 예에서 센서의 더 적은 부분 둘레로 연장할 수 있다. 본 발명자들은, 예로서 비평행한 하나 이상의 트레이스 또는 핑거부를 포함하는 대신에, 제1 및 제2 전극 트레이스(921, 922)의 핑거의 대부분 또는 모두가 서로 실질적으로 평행하게 배열될 때, 발 존재를 검출하기 위한 최적의 전기장이 발생한다는 것을 또한 인식하였다. 예를 들어, 제4 용량성 센서(902)와는 대조적으로, 도 9a의 제3 용량성 센서(900)는 예로서 수직으로 연장하는 핑거부를 포함하는 제1 전극 트레이스(911)의 상부 부분에 그리고 수평으로 연장하는 핑거부를 포함하는 제1 전극 트레이스(911)의 하부 부분에, 비평행한 핑거를 포함한다. 제1 및 제2 전극 트레이스(921, 922)의 상대 두께는 센서의 감도를 더 향상시키도록 조정될 수 있다. 예에서, 제2 전극 트레이스(922)는 제1 전극 트레이스(921)보다 3배 이상 더 두껍다.
예에서, 예로서 제1, 제2, 제3, 및 제4 용량성 센서(700, 800, 900, 902) 중 하나 이상을 사용하여 발 존재 센서(310)에 의해 측정된 커패시턴스값은 도 3의 프로세서 회로(320)와 같은 프로세서 회로 또는 제어기에 제공될 수 있다. 측정된 커패시턴스에 응답하여, 프로세서 회로(320)는 예로서 발에 대한 신발류 장력을 조정하기 위해, 구동 기구(340)를 작동할 수 있다. 조정 동작은 선택적으로 별개의 "유선" 구성에 의해 적어도 부분적으로 수행될 수 있고, 프로세서 실행 소프트웨어에 의해 수행될 수 있고, 또는 유선 구성요소와 소프트웨어의 조합에 의해 수행될 수 있다. 예에서, 구동 기구(340)를 작동하는 것은 (1) 하나 이상의 구동/모니터 회로를 사용하여, 예로서 프로세서 회로(320)를 사용하여 발 존재 센서(310)로부터 신호를 모니터링하는 것, (2) 존재하면, 어느 수신된 커패시턴스값이 지정된 임계값[예를 들어, 프로세서 회로(320)의 메모리 레지스터 내에 그리고/또는 프로세서 회로(320)와 데이터 통신하는 메모리 회로 내에 저장됨]에 부합하거나 초과하는 커패시턴스값을 지시하는지를 판정하는 것, (3) 예로서 초과된 다양한 지정된 임계값에 기초하여, 발 존재 센서(310) 부근의 신체 또는 발의 로케이션, 치수, 배향, 또는 다른 특징을 특징화하는 것, 및 (4) 특징화에 의존하여 구동 기구(340)의 작동을 허용, 가능화(enabling), 조정, 또는 억제하는 것을 포함한다.
도 10은 신발류 센서로부터 발 존재 정보를 사용하는 것을 포함하는 방법(1000)의 예를 도시하고 있는 흐름도를 도시하고 있다. 동작 1010에서, 예는 발 존재 센서(310)로부터 발 존재 정보를 수신하는 것을 포함한다. 발 존재 정보는 발이 신발류 내에 존재하는지 여부에 대한 2진 정보(예를 들어, 도 12 내지 도 14의 예에 설명된 인터럽트 신호 참조)를 포함할 수 있고, 또는 발이 신발류 물품 내에 존재하는 확률의 지시를 포함할 수 있다. 정보는 발 존재 센서(310)로부터 프로세서 회로(320)로 제공된 전기 신호를 포함할 수 있다. 예에서, 발 존재 정보는 신발류 내의 하나 이상의 센서에 대한 발의 로케이션에 대한 정량적 정보를 포함한다.
동작 1020에서, 예는 발이 신발류 내에 완전히 안착되었는지 여부를 판정하는 것을 포함한다. 센서 신호가 발이 완전히 안착되었다고 지시하면, 예는 구동 기구(340)를 작동하는 동작 1030에서 계속될 수 있다. 예를 들어, 예로서 발 존재 센서(310)로부터의 정보에 기초하여, 동작 1020에서 발이 완전히 안착되었다고 판정될 때, 구동 기구(340)는 전술된 바와 같이, 스풀(131)을 거쳐 신발류 신발끈을 조이도록 결합될 수 있다. 센서 신호가 발이 완전히 안착되지 않았다고 지시하면, 예는 몇몇 지정된 간격(예를 들어, 1 내지 2초 또는 그 초과) 동안 지연 또는 아이들링함으로써 동작 1022에서 계속될 수 있다. 지정된 지연이 경과한 후에, 예는 동작 1010으로 복귀할 수 있고, 프로세서 회로는 발이 완전히 안착되었는지 여부를 재차 판정하기 위해 발 존재 센서(310)로부터 정보를 리샘플링할 수 있다.
동작 1030에서 구동 기구(340)가 작동된 후에, 동작 1040에서 프로세서 회로(320)는 발 로케이션 정보를 모니터링하도록 구성될 수 있다. 예를 들어, 프로세서 회로는 신발류 내의 발의 절대 또는 상대 위치에 대한 정보를 발 존재 센서(310)로부터 주기적으로 또는 간헐적으로 모니터링하도록 구성될 수 있다. 예에서, 동작 1040에서 발 로케이션 정보를 모니터링하는 것 및 동작 1010에서 발 존재 정보를 수신하는 것은 동일한 또는 상이한 발 존재 센서(310)로부터 정보를 수신하는 것을 포함할 수 있다. 예를 들어, 동작 1010 및 1040에서 상이한 전극은 발 존재 또는 위치 정보를 모니터링하는데 사용될 수 있다.
동작 1040에서, 예는 버튼(121)과 같은 신발류와 연계된 하나 이상의 버튼으로부터 정보를 모니터링하는 것을 포함한다. 버튼(121)으로부터의 정보에 기초하여, 구동 기구(340)는 예로서 사용자가 신발류를 제거하기를 원할 때, 신발끈을 결합해제하거나 느슨하게 하도록 명령될 수 있다.
예에서, 신발끈 장력 정보는 구동 기구(340)를 작동하기 위해 또는 신발끈을 장력화하기 위해 부가적으로 또는 대안적으로 모니터링되거나 또는 피드백 정보로서 사용될 수 있다. 예를 들어, 신발끈 장력 정보는 모터(341)에 공급된 구동 전류를 측정함으로써 모니터링될 수 있다. 장력은 제조 시점에 특징화될 수 있고 또는 사용자에 의해 미리설정되거나 조정될 수 있고, 모니터링된 또는 측정된 구동 전류 레벨에 상관될 수 있다.
동작 1050에서, 예는 발 로케이션이 신발류 내에서 변화하였는지 여부를 판정하는 것을 포함한다. 발 로케이션의 변화가 발 존재 센서(310) 및 프로세서 회로(320)에 의해 검출되지 않으면, 예는 동작 1052에서 지연을 갖고 계속될 수 있다. 동작 1052에서 지정된 지연 간격 후에, 예는 발 위치가 변화되었는지 여부를 재차 판정하기 위해 발 존재 센서(310)로부터 정보를 리샘플링하기 위해 동작 1040으로 복귀할 수 있다. 동작 1052에서의 지연은 수 밀리초 내지 수 초의 범위일 수 있고, 선택적으로 사용자에 의해 지정될 수 있다.
예에서, 동작 1052에서의 지연은 예로서, 신발류 사용 특성을 결정하는 것에 응답하여, 프로세서 회로(320)에 의해 자동으로 결정될 수 있다. 예를 들어, 프로세서 회로(320)가 착용자가 격렬한 활동(예를 들어, 달리기, 점핑 등)에 관여하고 있는 것으로 판정하면, 프로세서 회로(320)는 동작 1052에서 제공된 지연 기간을 감소시킬 수 있다. 프로세서 회로가 착용자가 비격렬한 활동(예를 들어, 걷기 또는 앉아 있기)에 관여하고 있는 것으로 판정하면, 프로세서 회로는 동작 1052에서 제공된 지연 기간을 증가시킬 수 있다. 지연 기간을 증가시킴으로써, 프로세서 회로(320)에 의한 그리고/또는 발 존재 센서(310)에 의한 센서 샘플링 이벤트 및 대응 전력 소비를 연기함으로써 배터리 수명이 보존될 수 있다. 예에서, 동작 1050에서 로케이션 변화가 검출되면, 예는 동작 1030으로 복귀하여, 예를 들어 발에 대해 신발류를 조이거나 느슨하게 하도록 구동 기구(340)를 작동함으로써 계속될 수 있다. 예에서, 프로세서 회로(320)는 예를 들어, 발 위치의 작은 검출된 변화의 경우에 원하지 않는 신발끈 감김을 회피하는 것을 돕기 위해 구동 기구(340)를 위한 이력 제어기를 포함하거나 합체한다.
도 11은 신발류 센서로부터 발 존재 정보를 사용하는 방법(1100)의 예를 도시하고 있는 흐름도를 도시하고 있다. 도 11의 예는, 예에서 프로세서 회로(320) 및 발 존재 센서(310)를 사용하여 구현될 수 있는 것과 같은, 상태 기계(state machine)의 동작을 칭할 수 있다.
상태(1110)는 능동 신발류 물품을 위한 디폴트 또는 기준선 상태를 표현하는 "출고(Ship)" 상태를 포함할 수 있고, 물품은 발 존재 센서(310)로부터의 정보에 의해 영향을 받을 수 있는 하나 이상의 특징부를 포함한다. 출고 상태(1110)에서, 신발류의 다양한 능동 구성요소는 신발류의 배터리 수명을 보존하도록 스위칭 오프되거나 비활성화될 수 있다.
"파워업(Power Up)" 이벤트(1115)에 응답하여, 예는 "불능화(Disabled)" 또는 비활성 상태(1120)로 전이할 수 있다. 구동 기구(340), 또는 능동 신발류의 다른 특징부는 불능화 상태(1120)에서 대기 상태로 유지될 수 있다. 다양한 입력이 불능화 상태(1120)를 나오기 위해 트리거링 이벤트로서 사용될 수 있다. 예를 들어, 버튼(121) 중 하나로부터의 사용자 입력은 불능화 상태(1120) 외로의 전이를 지시하는데 사용될 수 있다. 예에서, 모션 센서(324)로부터의 정보는 웨이크업 신호로서 사용될 수 있다. 모션 센서(324)로부터의 정보는, 사용자가 준비 위치에 신발을 배치하는 것, 또는 사용자가 신발류 내에 발을 삽입하려는 것에 대응할 수 있는 것과 같은, 신발류의 이동에 대한 정보를 포함할 수 있다.
상태 기계는 자동 신발끈 가능화 이벤트(1123)가 마주치거나 수신될 때까지 파워업 이벤트(1115) 후에 불능화 상태(1120)에서 유지될 수 있다. 자동 신발끈 가능화 이벤트(1123)는 사용자에 의해 수동으로 트리거링될 수 있고[예를 들어, 구동 기구(340)로의 사용자 입력 또는 인터페이스 디바이스를 사용하여], 또는 예를 들어 모션 센서(324)로부터 수신된 제스처 정보에 응답하여 자동으로 트리거링될 수 있다. 자동 신발끈 가능화 이벤트(1123) 후에, 캘리브레이팅 이벤트(1125)가 발생할 수 있다. 캘리브레이팅 이벤트(1125)는 예로서, 센서 상의 환경 효과를 고려하기 위해, 발 존재 센서(310)의 커패시턴스에 대한 기준 또는 기준선값을 설정하는 것을 포함할 수 있다. 캘리브레이션은 발 존재 센서(310) 자체로부터 감지된 정보에 기초하여 수행될 수 있고 또는 프로그램된 또는 지정된 기준 정보에 기초할 수 있다.
자동 신발끈 가능화 이벤트(1123) 후에, 상태 기계는 "발 존재 신호를 대기"하기 위해 보류 상태(1130)에 진입할 수 있다. 상태(1130)에서, 상태 기계는 발 존재 센서(310)로부터 그리고/또는 모션 센서(324)로부터 인터럽트 신호를 대기할 수 있다. 발이 존재하는 것을 지시하는, 또는 발이 존재할 충분한 확률을 지시하는 것과 같은, 인터럽트 신호의 수신시에, 이벤트 레지스터는 이벤트(1135)에 "발 발견"을 지시할 수 있다.
상태 기계는 발 발견 이벤트(1135)가 발생할 때 다양한 기능으로 전이하거나 개시할 수 있다. 예를 들어, 신발류는 발 발견 이벤트(1135)에 응답하여 구동 기구(340)를 사용하여 장력 특성을 조정하거나 조이도록 구성될 수 있다. 예에서, 프로세서 회로(320)는 발 발견 이벤트(1135)에 응답하여 초기량만큼 신발끈 장력을 조정하도록 구동 기구(340)를 작동하고, 프로세서 회로(320)는 추가의 제어 제스처가 검출되거나 사용자 입력이 수신되지 않으면 또는 이러한 검출 또는 수신될 때까지 신발류를 더 장력화하는 것을 지연한다. 즉, 상태 기계는 "이동 대기" 상태(1140)로 전이할 수 있다. 예에서, 프로세서 회로(320)는 구동 기구(340)를 가능화하지만, 발 발견 이벤트(1135) 후에 구동 기구를 작동하지 않는다. 상태(1140)에서, 상태 기계는 임의의 초기 또는 추가의 장력 조정을 개시하기 전에 부가의 감지된 신발류 모션 정보를 위해 보류 또는 일시정지할 수 있다. 이동 대기 상태(1140) 후에, 발구르기/걷기/서 있기 이벤트(1145)가 검출될 수 있고, 이에 응답하여, 프로세서 회로(320)는 신발류를 위한 장력 특성을 더 조정할 수 있다.
발구르기/걷기/서 있기 이벤트(1145)는 예로서, 능동 신발류 내의 하나 이상의 센서로부터, 다양한 이산 감지된 입력을 포함할 수 있다. 예를 들어, 발구르기 이벤트는 정가속(affirmative acceleration)(예를 들어, 지정된 또는 일반 방향으로) 및 "위" 또는 "직립" 배향을 지시하는 모션 센서(324)로부터의 정보를 포함할 수 있다. 예에서, 발구르기 이벤트는 사용자가 한 무릎을 실질적으로 수직으로 그리고 전방으로 들어올리는 "하이니(high knee)" 또는 발차기형 이벤트(kick type event)를 포함한다. 모션 센서(324)로부터의 가속도 특성이 분석될 수 있어, 예로서 가속도가 지정된 임계치에 부합하는지 초과하는지 여부를 판정한다. 예를 들어, 저속 무릎-들어올림 이벤트는 발구르기 이벤트 응답을 트리거링하지 않을 수도 있고, 반면에 급속 또는 신속 무릎-들어올림 이벤트는 발구르기 이벤트 응답을 트리거링할 수도 있다.
걷기 이벤트는 정 발걸음 패턴 및 "위" 또는 "직립" 배향을 지시하는 모션 센서(324)로부터의 정보를 포함할 수 있다. 예에서, 모션 센서(324) 및/또는 프로세서 회로(320)는 발걸음 이벤트를 식별하도록 구성되고, 걷기 이벤트는 발걸음 이벤트가 식별될 때 그리고 가속도계[예를 들어, 모션 센서(324)에 포함되거나 별도의]가 신발류가 직립한 것을 지시할 때 인식될 수 있다.
서 있기 이벤트는 예로서, 모션 센서로부터의 신발류의 가속도 또는 방향 변화에 대한 추가의 정보 없이, "위" 또는 "직립" 배향을 지시하는 모션 센서로부터의 정보를 포함할 수 있다. 예에서, 서 있기 이벤트는 이하에 더 설명되는 바와 같이, 용량성 발 존재 센서(310)로부터 커패시턴스 신호의 변화에 대한 정보를 사용하여 분간될 수 있다. 즉, 발 존재 센서(310)로부터의 커패시턴스 신호는 예로서, 사용자의 발이 신발류 상에 하향 압력을 인가할 때, 사용자가 서 있는지 여부를 지시할 수 있는 신호 변동을 포함할 수 있다.
발구르기/걷기/서 있기 이벤트(1145)의 특정 예는 한정적인 것으로 고려되어서는 안되고, 예로서 발이 발 발견 이벤트(1135)에서 검출된 후에, 다양한 다른 제스처, 시간 기반 입력, 또는 사용자 입력 제어가 신발류의 거동을 더 제어하거나 영향을 미치도록 제공될 수 있다.
발구르기/걷기/서 있기 이벤트(1145) 후에, 상태 기계는 "신발끈 풀기 대기" 상태(1150)를 포함할 수 있다. 신발끈 풀기 대기 상태(1150)는 신발류를 이완, 장력 제거(de-tension), 또는 신발끈 풀기하기 위한 명령을 위한 사용자 입력 및/또는 제스처 정보를 모니터링하는 것을[예를 들어, 모션 센서(324)를 사용하여] 포함할 수 있다. 신발끈 풀기 대기 상태(1150)에서, 프로세서 회로(320)와 같은 상태 관리자는, 신발끈 결속 엔진 또는 구동 기구(340)가 신발끈이 풀리고 발 존재 신호 대기 상태(1130)로 복귀해야 한다는 것을 지시할 수 있다. 즉, 제1 예에서, 신발끈 풀기 이벤트(1155)가 발생할 수 있고(예를 들어, 사용자 입력에 응답하여), 상태 기계는 신발류를 신발끈 풀기 상태로 전이할 수 있고, 상태 기계는 발 존재 신호 대기 상태(1130)로 복귀할 수 있다. 제2 예에서, 자동 신발끈 불능화 이벤트(1153)가 발생하고 신발류를 불능화 상태(1120)로 전이할 수 있다.
도 12는 용량성 발 존재 센서로부터 제1 시변 정보의 차트(1200)를 일반적으로 도시하고 있다. 도 12의 예는 커패시턴스 대 시간 차트 및 차트 상에 플롯팅된 제1 시변 커패시턴스 신호(1201)를 포함한다. 예에서, 제1 시변 커패시턴스 신호(1201)는 본 명세서에 설명된 발 존재 센서(310)를 사용하여 얻어질 수 있다. 제1 시변 커패시턴스 신호(1201)는 전술된 바와 같이, 발 존재 센서(310) 내의 다수의 전극 사이의 측정된 커패시턴스, 또는 전기장에 대한 신체의 영향의 지시에 대응할 수 있다. 예에서, 제1 시변 커패시턴스 신호(1201)는 절대 또는 상대 커패시턴스값을 표현하고, 다른 예에서, 신호는 다수의 상이한 커패시턴스 신호 사이의 차이를 표현한다.
예에서, 제1 커패시턴스 신호(1201)는 지정된 제1 임계 커패시턴스값(1211)과 비교될 수 있다. 발 존재 센서(310)는 비교를 수행하도록 구성될 수 있고, 또는 프로세서 회로(320)는 발 존재 센서(310)로부터 커패시턴스 정보를 수신하고 비교를 수행하도록 구성될 수 있다. 도 12의 예에서, 제1 임계 커패시턴스값(1211)은 일정한 0이 아닌 값인 것으로 지시된다. 제1 커패시턴스 신호(1201)가 예로서 시간 T1에 제1 임계 커패시턴스값(1211)에 부합하거나 초과할 때, 발 존재 센서(310) 및/또는 프로세서 회로(320)는 제1 인터럽트 신호(INT1)를 제공할 수 있다. 제1 인터럽트 신호(INT1)는, 발 존재 센서(310)에 의해 지시된 커패시턴스값이 제1 임계 커패시턴스값(1211)에 부합하거나 초과하는 한 높게 유지될 수 있다.
예에서, 제1 인터럽트 신호(INT1)는 동작 1010 또는 1020에서와 같이, 도 10의 예에서 사용될 수 있다. 동작 1010에서, 발 존재 센서(310)로부터 발 존재 정보를 수신하는 것은, 예로서 프로세서 회로(320)에서, 제1 인터럽트 신호(INT1)를 수신하는 것을 포함할 수 있다. 예에서, 동작 1020은 발이 신발류 내에 완전히 안착되는지, 또는 완전히 안착될 가능성이 있는지 여부를 판정하기 위해 인터럽트 신호 정보를 사용하는 것을 포함할 수 있다. 예를 들어, 프로세서 회로(320)는 얼마나 오래 발 존재 센서(310)가 제1 임계 커패시턴스값(1211)을 초과하는 커패시턴스값을 제공하는지를 결정하기 위해 제1 인터럽트 신호(INT1)의 기간을 모니터링할 수 있다. 기간이 지정된 기준 기간을 초과하면, 프로세서 회로(320)는 발이 완전히 안착되었다고, 또는 완전히 안착될 가능성이 있다고 판정할 수 있다.
예에서, 제1 인터럽트 신호(INT1)는 상태 1130 또는 이벤트 1135에서와 같이, 도 11의 예에서 사용될 수 있다. 상태(1130)에서, 상태 기계는 프로세서 회로(320)로부터 또는 발 존재 센서(310)로부터 INT1과 같은 인터럽트 신호를 대기하도록 구성될 수 있다. 이벤트(1135)에서, 상태 기계는 제1 인터럽트 신호(INT1)를 수신할 수 있고, 이에 응답하여 하나 이상의 이하의 상태가 개시될 수 있다.
예에서, 제1 임계 커패시턴스값(1211)은 조정 가능하다. 임계치는 예로서 환경 변화에 기인하는, 커패시턴스 기준선 또는 기준의 측정된 또는 검출된 변화에 기초하여 변화할 수 있다. 예에서, 제1 임계 커패시턴스값(1211)은 사용자에 의해 지정될 수 있다. 임계값의 사용자의 지정은 신발류의 감도에 영향을 미칠 수 있다. 예에서, 제1 임계 커패시턴스값(1211)은 발 존재 센서(310) 내의 또는 주위의 감지된 환경 또는 재료 변화에 응답하여 자동으로 조정될 수 있다.
도 13은 용량성 발 존재 센서로부터 제2 시변 정보의 차트(1300)를 일반적으로 도시하고 있다. 도 13의 예는 제1 임계 커패시턴스값(1211) 부근의 제2 커패시턴스 신호(1202)의 변동이 신발류 내의 발 존재 또는 배향에 대한 더 많은 정보를 결정하기 위해 어떻게 취급되거나 사용될 수 있는지를 도시하고 있다.
예에서, 제2 커패시턴스 신호(1202)는 발 존재 센서(310)로부터 수신되고, 제2 커패시턴스 신호(1202)는 제1 임계 커패시턴스값(1211)과 비교된다. 다른 것들 중에서도, 사용자, 사용자 선호도, 신발류 유형, 또는 환경 또는 환경 특성에 따라 다른 임계값이 유사하게 사용될 수 있다. 도 13의 예에서, 제2 커패시턴스 신호(1202)는 시간 T2, T3 및 T4에 제1 임계 커패시턴스값(1211)을 크로싱할(cross) 수 있다. 예에서, 다수의 임계 크로싱이 예로서 신발류에 진입할 때 발을 위한 이동 경로를 지시함으로써, 발 존재 센서(310)에 의한 발 존재를 명확하게 식별하는데 사용될 수 있다. 예를 들어, 시간 T2 및 T3에서 제1 및 제2 임계 크로싱에 의해 경계가 정해진 시간 간격은 발의 발가락 또는 지골(phalanges)이 발 존재 센서(310)의 전극에 또는 부근에 위치될 때의 기간을 지시할 수 있다. 감지된 커패시턴스가 제1 임계 커패시턴스값(1211) 미만일 때 T3와 T4 사이의 간격은, 발의 중족 관절(metatarsal joint) 또는 중족골(metatarsal bone)이 발 존재 센서(310)의 전극 위로 또는 부근으로 이동할 때의 시간에 대응할 수 있다. 중족 관절 및 중족골은, 지골이 신발류 내로 이동할 때 발 존재 센서(310)로의 지골의 거리보다 큰 거리만큼 발 존재 센서(310)로부터 이격될 수도 있고, 따라서 T3와 T4 사이의 최종 측정된 커패시턴스는 낮을 수 있다. 시간 T4에서, 발의 뒤꿈치 또는 거골(talus)은 적소로 활주할 수 있고, 아치는 발 존재 센서(310)의 전극 위에 안착되게 될 수 있어, 이에 의해 감지된 커패시턴스를 재차 상승시키고 제1 임계 커패시턴스값(1211)을 초과하게 한다. 이에 따라, 발 존재 센서(310) 또는 프로세서 회로(320)는 시간 T2 및 T3 사이에 제2 인터럽트 신호(INT2)를 렌더링하고, 시간 T4 후에 제3 인터럽트 신호(INT3)를 렌더링하도록 구성될 수 있다.
예에서, 프로세서 회로(320)는 인터럽트 신호의 시퀀스에 기초하여 발 존재를 명확하게 식별하도록 구성될 수 있다. 예를 들어, 프로세서 회로(320)는 수신된 인터럽트 신호에 대한 그리고 수신된 인터럽트 신호들 사이의 하나 이상의 간격 또는 기간에 대한 정보를 사용할 수 있다. 예를 들어, 프로세서 회로는 발 존재의 명확한 지시를 제공하기 위해 지정된 기간만큼 분리된 한 쌍의 인터럽트 신호를 주시하도록 구성될 수 있다. 도 13에서, 예를 들어 T3와 T4 사이의 기간은 예로서 몇몇 조정 가능한 또는 지정된 오차의 마진을 갖고, 발 존재의 지시를 제공하는데 사용될 수 있다. 예에서, 프로세서 회로(320)는 데이터로서 인터럽트 신호를 수신하고, 예를 들어 제스처 기반 사용자 입력의 부분으로서, 다른 사용자 입력 신호와 함께 데이터를 처리할 수 있다. 예에서, 인터럽트 신호의 존재 또는 부존재에 대한 정보는 하나 이상의 다른 신호를 유효화하거나(validate) 또는 디스미스(dismiss)하는데 사용될 수 있다. 예를 들어, 인터럽트 신호가 수신되거나 최근에 수신되었을 때 가속도계 신호가 프로세서 회로(320)에 의해 유효화되어 처리될 수 있고, 또는 발 존재 센서에 대응하는 인터럽트 신호가 없을 때 가속도계 신호가 프로세서 회로(320)에 의해 디스미스될 수 있다.
도 12 및 도 13의 예는 발 존재 센서(310)로부터의 측정된 커패시턴스값이 환경 조건의 변화의 존재시를 포함하여, 시간 경과에 따라 신뢰적으로 일정하거나 또는 재현가능한 실시예를 도시하고 있다. 그러나, 다수의 신발류 사용 경우에, 예로서 온도, 습도, 또는 다른 환경 인자의 변화에 기인하여, 매립된 전자 기기 내의 주위 커패시턴스 변화가 일정하게 또는 예측 불가능하게 발생할 수 있다. 주위 커패시턴스의 상당한 변화는 예로서, 센서의 기준선 또는 기준 커패시턴스 특성을 변화함으로써, 발 존재 센서(310)의 활성화에 악영향을 미칠 수 있다.
도 14는 용량성 발 존재 센서로부터 제3 시변 정보의 차트(1400)를 일반적으로 도시하고 있다. 도 14의 예는 예로서, 다양한 주위 조건의 변화, 사용 시나리오의 변화, 또는 신발류 구성요소의 마손 또는 열화에 기인하는 변화에 기인하여 어떻게 기준 커패시턴스 변화가 고려될 수 있는지를 도시하고 있다. 예는 제2 임계 커패시턴스(1212) 및 시변 기준 커패시턴스(1213)를 갖고 차트(1400) 상에 플롯팅된 제3 커패시턴스 신호(1203)를 포함한다. 도 14의 예에서, 시변 기준 커패시턴스(1213)는 시간 경과에 따라 증가한다. 다른 예에서, 기준 커패시턴스는 시간 경과에 따라 감소할 수 있고, 또는 예로서 신발류 사용 이벤트의 경과에 걸쳐(예를 들어, 하루의 경과, 하나의 게임이 플레이됨, 하나의 사용자의 세팅 또는 선호도 등에 걸쳐) 변동할 수 있다. 예에서, 기준 커패시턴스는 안창, 겉창, 깔창(sock liner), 보조기 인서트, 또는 신발류의 다른 구성요소와 같은 신발류 자체의 다양한 구성요소의 라이프 사이클에 걸쳐 변화할 수 있다.
예에서, 제3 커패시턴스 신호(1203)는 발 존재 센서(310)로부터 수신되고, 제3 커패시턴스 신호(1203)는 예로서 발 존재 센서(310) 상에 처리 회로를 사용하여 또는 프로세서 회로(320)를 사용하여, 제2 임계 커패시턴스(1212)와 비교된다. 시변 기준 커패시턴스(1213)를 고려하거나 사용하지 않는 예에서, 제3 커패시턴스 신호(1203)를 위한 임계 크로싱이 T5, T6 및 T8에서 관찰될 수 있다. 그러나, 제2 임계 커패시턴스(1212)는 예로서 발 존재 센서(310)로부터의 감지된 정보와 실시간으로 조정될 수 있다. 제2 임계 커패시턴스(1212)로의 조정은 시변 기준 커패시턴스(1213)에 기초할 수 있다.
예에서, 제2 임계 커패시턴스(1212)는 시변 기준 커패시턴스(1213)의 변화에 대응하는 양만큼 연속적으로 조정된다. 대안적인 예에서, 제2 임계 커패시턴스(1212)는 예로서, 시변 기준 커패시턴스(1213)의 지정된 임계 변화량에 응답하여, 단계식 증분으로 조정된다. 단계식 조정 기술은 도시된 간격에 걸쳐 제2 임계 커패시턴스(1212)의 단계식 증가에 의해 도 14에 도시되어 있다. 예를 들어, 제2 임계 커패시턴스(1212)는 시변 기준 커패시턴스(1213)의 커패시턴스의 지정된 임계 증가(ΔC)에 응답하여 시간 T7 및 T10에 증가된다. 도 14의 예에서, 제3 커패시턴스 신호(1203)는 시간 T5, T6 및 T9에 기준 보상된 제2 임계 커패시턴스(1212)를 크로싱한다. 따라서, 상이한 인터럽트 신호 또는 인터럽트 신호 타이밍이 임계치가 기준 보상되는지 여부에 따라 제공될 수 있다. 예를 들어, 제4 인터럽트 신호(INT4)가 시간 T5와 T6 사이에 발생되어 제공될 수 있다. 제2 임계 커패시턴스(1212)가 기준 보상 없이 사용되면, 제5 인터럽트 신호(INT5)가 시간 T8에 발생되어 제공될 수 있다. 그러나, 기준 보상된 제2 임계 커패시턴스(1212)가 사용되면, 제3 커패시턴스 신호(1203)가 보상된 제2 임계 커패시턴스(1212)를 크로싱할 때 예시되는 바와 같이 제5 인터럽트 신호(INT5)가 시간 T9에 발생되어 제공된다.
논리 회로가 임계 커패시턴스값을 모니터링하고 업데이트하는데 사용될 수 있다. 이러한 논리 회로는 발 존재 센서(310) 또는 프로세서 회로(320)와 합체될 수 있다. 업데이트된 임계 레벨은 자동으로 제공되어 온-칩 RAM 내에 저장될 수 있다. 예에서, 사용자로부터의 어떠한 입력 또는 확인도 임계치 업데이트를 수행하기 위해 요구되지 않는다.
도 15는 용량성 발 존재 센서로부터 제4 시변 정보의 차트(1500)를 일반적으로 도시하고 있다. 도 15의 예는 예로서, 다양한 주위 조건의 변화, 사용 시나리오의 변화, 또는 신발류 구성요소의 마손 또는 열화에 기인하는 변화에 기인하여 어떻게 기준 커패시턴스 변화가 고려될 수 있는지를 도시하고 있다. 예는 적응성 임계 커패시턴스(1214)를 갖고 차트(1500) 상에 플롯팅된 제4 커패시턴스 신호(1204)를 포함한다. 제4 커패시턴스 신호(1204)는 발 존재 센서(310)에 의해 제공될 수 있다. 적응성 임계 커패시턴스(1214)는 발 존재 센서(310)에 의해 측정된 커패시턴스의 환경 또는 사용 경우 관련 변화를 보상하는 것을 돕는데 사용될 수 있다.
예에서, 발 존재 센서(310) 또는 프로세서 회로(320)는, 지정된 임계 크기량보다 큰 변화를 위한 것과 같이, 신호 크기 변화를 위해 제4 커패시턴스 신호(1204)를 모니터링하도록 구성된다. 즉, 제4 커패시턴스 신호(1204)가 지정된 임계 커패시턴스 크기(ΔC)에 부합하거나 초과하는 크기 변화를 포함할 때, 발 존재 센서(310) 또는 프로세서 회로(320)는 인터럽트 신호를 제공할 수 있다.
예에서, 제4 커패시턴스 신호(1204)의 감지된 또는 측정된 커패시턴스값은 기준 커패시턴스 또는 기준선과 비교되고, 그 기준 또는 기준선은 지정된 또는 시변 간격에 업데이트될 수 있다. 도 15의 예에서, 기준 업데이트가 도시된 바와 같이 시간 T11, T12, T13 등에 주기적으로 발생한다. 다른 트리거링 이벤트에 응답하는 다른 간격 또는 업데이트가 부가적으로 또는 대안적으로 사용될 수 있다.
도 15의 예에서, 초기 기준 커패시턴스는 0일 수 있고, 또는 x-축에 의해 표현될 수 있다. 제4 커패시턴스 신호(1204)가 미리 지정된 기준에 대해 지정된 임계 커패시턴스 크기(ΔC) 초과만큼 증가한 후에, 제6 인터럽트 신호(INT6)가 시간 T11에 제공될 수 있다. 도 15의 예에서, 인터럽트는 주기적인 간격으로 제공될 수 있지만, 다른 예에서 인터럽트는 커패시턴스의 임계 변화를 식별하는 것과 동시적으로 제공될 수 있다.
예로서 시간 T11에 식별된 임계 변화 후에, 기준 또는 기준선 커패시턴스는 제1 커패시턴스 기준(C1)으로 업데이트될 수 있다. 시간 T11 후에, 발 존재 센서(310) 또는 프로세서 회로(320)는 신호의 적어도 ΔC만큼의 후속의 변화에 대해 제4 커패시턴스 신호(1204)를 모니터링하도록, 즉 C1 + ΔC 또는 C1 - ΔC의 커패시턴스값을 주시하도록 구성될 수 있다.
제1 시간에 커패시턴스 증가를 식별하는 것을 포함하는 예에서, 인터럽트 신호 상태는 후속의 시간에 커패시턴스 감소를 식별하는 것에 응답하여 변화될 수 있다. 그러나, 추가의 커패시턴스 증가가 후속의 시간에 식별되면, 기준 커패시턴스는 업데이트될 수 있고, 후속의 비교가 업데이트된 기준 커패시턴스에 기초하여 이루어질 수 있다. 이 시나리오는 도 15에 도시되어 있다. 예를 들어, 시간 T12에, 제4 커패시턴스 신호(1204)의 커패시턴스 증가가 검출되고, 기준은 제2 커패시턴스 기준(C2)으로 업데이트될 수 있다. 제1 및 후속 제2 커패시턴스 변화는 증가를 표현하기 때문에, 제6 인터럽트 신호(INT6)의 상태는 불변일 수 있다. 시간 T13에, 제4 커패시턴스 신호(1204)의 커패시턴스 감소가 검출되고, 기준은 제3 커패시턴스 기준(C3)으로 업데이트될 수 있다. 시간 T13에서 커패시턴스 변화는 지정된 임계 커패시턴스 크기(ΔC)보다 큰 감소이기 때문에, 제6 인터럽트 신호(INT6)의 상태가 변화될 수 있다[예를 들어, 인터럽트 어서트 상태(asserted state)로부터 비어서트 상태(unasserted state)로].
예에서, 시간 T11에서 제1 검출된 변화 및 대응 인터럽트 신호(INT6)는 발 존재 센서(310)에 의해 감지되고 신발류 내에 존재하는 것으로 판정된 발을 표현한다. 기준 커패시턴스의 후속의 증가는 예로서 센서에서의 또는 부근에서의 환경 변화에 기인하여, 발 존재 센서(310)에 의해 측정된 기준선 커패시턴스로 변화를 표현한다. 시간 T13에서 검출된 변화는 발이 신발류로부터 제거되고 더 이상 발 존재 센서(310)에 근접하여 감지되지 않는 것을 표현할 수 있다. 후속의 커패시턴스 변화(예를 들어, 시간 T16에)는 발이 신발류 내로 재삽입되는 것을 표현할 수 있다.
도 16은 예시적인 실시예에 따른, 용량성 발 존재 센서로부터 시변 정보 및 신호 형태 한계의 차트(1600)를 일반적으로 도시하고 있다. 예는 차트(1600) 상에 플롯팅된 제5 및 제6 커패시턴스 신호(1205, 1206)를 포함한다. 차트(1600)는 형태 한계(1601)를 더 포함한다. 형태 한계(1601)는 발 존재 센서(310)로부터의 커패시턴스 신호의 샘플링된 세그먼트에 비교될 수 있다. 비교는 특정 샘플링된 세그먼트가 형태 한계(1601)에 합치하는지 여부를 판정하기 위해 발 존재 센서(310) 또는 프로세서 회로(320)를 사용하여 수행될 수 있다. 도 16의 예에서, 형태 한계는 초과되면, 커패시턴스 신호 세그먼트가 발 존재 센서(310)에 근접한 발 존재를 표현하지 않거나, 또는 표현할 가능성이 적은 것을 지시하는 하한을 규정한다.
제5 커패시턴스 신호(1205)의 예시된 샘플링된 부분은 형태 한계(1601)에 합치한다. 도 16의 예에서, 형태 한계(1601)는 커패시턴스 신호 크기 변화, 또는 급강하(dip), 체류(dwell), 및 복구(recovery)를 포함하는 형태를 규정한다. 제5 커패시턴스 신호(1205)가 형태 한계(1601)의 전체 또는 일부에 합치하는 것의 식별 후에, 인터럽트 신호는 발 존재 또는 성공적인 검출을 지시하도록 제공될 수 있다.
제6 커패시턴스 신호(1206)의 예시된 샘플링된 부분은 형태 한계(1601)에 합치하지 않는다. 예를 들어, 제6 커패시턴스 신호(1206)의 급격한 감소 및 긴 체류 시간은 형태 한계(1601)에 의해 규정된 경계 외부에 있고, 따라서 인터럽트 신호는 보류될 수 있어, 예로서 발이 발 존재 센서(310)에 의해 검출되지 않는 것을 지시한다.
형태 한계(1601)는 고정적이거나 가변적일 수 있다. 예를 들어, 형태 한계는 기준 커패시턴스, 환경, 신발류 사용 경우, 사용자, 감도 선호도, 또는 다른 정보에 대한 정보에 기초하여 조정될 수 있다. 예를 들어, 형태 한계(1601)는 사용된 신발류의 유형에 따라 상이할 수 있다. 즉, 적어도 부분적으로 신발의 상이한 기하학 형상 또는 재료 또는 사용자가 특정 신발류 물품을 신거나 벗도록 예측된 시간에 기인하여, 농구화는 런닝화와는 상이한 형태 한계(1601)를 가질 수 있다. 예에서, 형태 한계(1601)는 예로서 사용자의 고유한 신발류 신기 또는 벗기 선호도 또는 절차에 대응하도록, 사용자에 의해 프로그램될 수 있다.
전술된 바와 같이, 발 존재 센서(310)는 연계된 고정 또는 가변 기준선 또는 기준 커패시턴스값을 가질 수 있다. 기준 커패시턴스값은 전극 표면적, 또는 다른 신발류 구성요소에 대한 전극 배치, 또는 신발류 배향, 또는 센서 또는 신발류 자체가 사용되는 환경의 함수일 수 있다. 즉, 센서는 신발류 내에 존재하는 발이 없는 몇몇 연계된 커패시턴스값, 및 센서에서 또는 부근에서 하나 이상의 재료 또는 환경 인자의 유전 효과의 함수일 수 있는 값을 가질 수 있다. 예에서, 신발류 내의 보조기 인서트(예를 들어, 안창)는 용량성 센서에서 또는 부근에서 신발류의 유전 특성을 변화할 수 있다. 프로세서 회로(320)는 안창이 변경될 때와 같이, 기준선 또는 기준 특성이 변화할 때, 발 존재 센서(310)를 캘리브레이팅하도록 선택적으로 구성될 수 있다. 예에서, 프로세서 회로(320)는 기준선 또는 기준 커패시턴스 변화를 자동으로 검출하도록 구성될 수 있고, 또는 사용자 입력 또는 명령에 응답하여 기준선 또는 기준 커패시턴스를 업데이트하도록 구성될 수 있다.
도 17은 유전체 스택 아래에 위치된 신발류 물품의 중창 내의 커패시턴스 기반 발 존재 센서의 도면의 예(1700)를 일반적으로 도시하고 있다. 예(1700)는 용량성 발 존재 센서(1701)로부터의 정보에 적어도 부분적으로 기초하여 작동되는 신발끈 결속 엔진 또는 구동 기구(340)를 포함하거나 사용할 수 있는 것과 같은, 하우징 구조체(150)를 포함한다. 용량성 발 존재 센서(1701)는 센서에 근접한 신체(550)의 존재 또는 부존재에 기초하여 커패시턴스 또는 커패시턴스 지시 신호를 제공하도록 구성될 수 있다.
하나 이상의 재료는 신체(550)와 용량성 발 존재 센서(1701) 사이에 제공될 수 있고, 하나 이상의 재료는 센서의 감도에 영향을 미칠 수 있고, 또는 센서로부터 신호의 신호-대-노이즈비에 영향을 미칠 수 있다. 예에서, 하나 이상의 재료는 유전체 스택을 형성한다. 하나 이상의 재료는 다른 것들 중에서도, 양말(1751), 센서에서 또는 센서 부근에서 신체(550)의 아치 높이에 기인하는 것과 같은 에어갭, 깔창(1750), 벨크로(Velcro)와 같은 체결구(1730), 또는 유전성 충전재(1720)를 포함할 수 있다. 예에서, 용량성 발 존재 센서(1701)가 하우징 구조체(150)의 내부에 제공될 때, 하우징 구조체(150) 자체의 상부벽은 유전체 스택의 부분이다. 예에서, 보조기 인서트는 유전체 스택의 부분일 수 있다.
본 발명자들은 높은 상대 유전율, 또는 높은 k-값을 갖는 유전체 스택을 제공하는 것이 용량성 발 존재 센서(1701)의 입력 감도를 향상시킬 수 있다는 것을 인식하였다. 다양한 높은 k-값 재료가 신발류 내의 효용성 및 적합성을 위해 시험되었고 평가되었다. 예에서, 유전성 충전재(1720)는 네오프렌 부재를 포함할 수 있다. 네오프렌 부재는 신발류 내에서 발 아래에 사용을 위해 편안하고 예로서 에어갭 또는 다른 낮은 k-값 재료를 적소에 갖는 것에 대해, 용량성 발 존재 센서(1701)의 감도를 증가시키기 위한 충분한 유전 효과를 제공하는 경도 또는 듀로미터 특성을 갖도록 지정될 수 있다. 예에서, 네오프렌 부재는 약 30 쇼어 A 경도값을 갖는 독립 기포(closed-cell) 발포체 재료를 포함한다.
도 18은 용량성 발 존재 센서(1701)로부터 커패시턴스-지시 신호에 대한 유전성 충전재(1720)의 효과를 도시하고 있는 차트(1800)를 포함하는 예를 일반적으로 도시하고 있다. 차트(1800)에서, x축은 다수의 디지털 샘플을 지시하고 경과된 시간에 대응하고, y축은 용량성 발 존재 센서(1701)에 의해 검출된 커패시턴스의 상대 척도를 지시한다. 차트(1800)는 제1 유형의 유전성 충전재(1720) 재료에 대응하는 커패시턴스-지시 제1 신호(1801) 및 상이한 제2 유형의 유전성 충전재(1720)에 대응하는 커패시턴스-지시 제2 신호(1802)의 시간 정렬된 오버레이를 포함한다.
예에서, 제1 신호(1801)는 유전성 충전재(1720)로서 제공된 제1 유전성 부재를 갖는 신발류에 대응한다. 제1 유전성 부재는 예를 들어, 제1 유전성 k-값을 갖는 폴리우레탄 발포체를 포함할 수 있다. 차트(1800)는 제1 유전성 부재 및 발 존재 센서(1701)를 포함하는 신발류 물품 내로 삽입되고 이어서 제거되는 신체(550)의 다수의 실 예를 도시하고 있다. 예를 들어, 제1 신호(1801)의 제1 부분(1820)은 용량성 발 존재 센서(1701)에 의해 측정된 기준 또는 기준선 커패시턴스를 지시하고 있다. 도 18의 예에서, 기준 또는 기준선은 0의 값으로 정규화된다. 기준 또는 기준선 조건은 발이 신발류 내에 존재하지 않는 것에 대응할 수 있다. 즉, 제1 신호(1801)의 제1 부분(1820)은 발이 신발류에 없는 것을 지시하고 있다. 대략 샘플(600)에 대응하는 시간에, 신체(550)는 신발류 내에 삽입될 수 있고, 용량성 발 존재 센서(1701) 및 제1 유전성 부재에 또는 부근에 위치될 수 있다. 삽입 후에, 제1 신호(1801)의 크기는 예로서 제1 양(1811)만큼 변화하고, 발(또는 다른 신체)이 신발류 내에 존재하는 것을 지시한다. 도 18의 예에서, 신체(550)는 예로서 대략 샘플(600 내지 1400)에 대응하는 제1 신호(1801)의 제2 부분(1821)에 대응하는 기간 동안 신발류 내에 존재한다. 대략 샘플(1400)에 대응하는 시간에, 신체(550)는 신발류로부터 제거될 수 있다. 신체(550)가 제거될 때, 제1 신호(1801)는 그 기준 또는 기준선값으로 복귀할 수 있다.
도 18의 예에서, 제2 신호(1802)는 유전성 충전재(1720)로서 제공된 제2 유전성 부재를 갖는 신발류에 대응한다. 제2 유전성 부재는 예를 들어, 전술된 제1 유전성 부재의 제1 유전성 k-값을 초과하는 제2 유전성 k-값을 갖는 네오프렌 발포체를 포함할 수 있다. 차트(1800)는 제2 유전성 부재 및 발 존재 센서(1701)를 포함하는 신발류 물품 내로 삽입되고 이어서 제거되는 신체(550)의 다수의 실 예를 도시하고 있다. 제2 신호(1802)의 제1 부분(1820)은 용량성 발 존재 센서(1701)에 의해 측정된 기준 또는 기준선 커패시턴스를 지시하고 있고, 도 18의 예에서, 제2 신호(1802)의 제1 부분(1820)은 발이 신발류에 없는 것을 지시한다. 대략 샘플(600)에 대응하는 시간에, 신체(550)는 신발류 내에 삽입될 수 있고, 용량성 발 존재 센서(1701) 및 제2 유전성 부재에 또는 부근에 위치될 수 있다. 삽입 후에, 제2 신호(1802)의 크기는 예로서 제2 양(1812)만큼 변화하고, 발(또는 다른 신체)이 신발류 내에 존재하는 것을 지시한다. 예에서, 제2 양(1812)은 제1 양(1811)을 초과한다. 크기 변화의 차이는 유전성 충전재(1720)를 위해 사용된 재료의 유형에 기인한다. 즉, 커패시턴스-지시 제1 및 제2 신호(1801, 1802)의 크기는 상이한 유전체 스택이 사용될 때 상이할 수 있다. 유전체 스택이 높은 k-값 유전성 충전재(1720)를 포함할 때, 크기의 차이, 또는 기준선으로부터의 차이는 유전체 스택이 낮은 k-값 유전성 충전재(1720)를 포함할 때보다 크다.
예에서, 보조기 인서트는 신발류 내의 유전체 스택의 부분을 포함한다. 본 발명자들은 용량성 발 감지 기술에 대한 다양한 보조기 인서트의 효과를 평가하기 위해 다양한 시험을 수행하였다. 완전 또는 부분 길이 보조기 안창이 시험되었다. 신발류에 정규(부분 길이) 보조기의 추가는 스택의 전체 유전 효과를 증가시켰고, 발의 존재에 대한 전기장 감도를 감소시켰다. 감지된 신호 진폭(예를 들어, 커패시턴스의 감지된 변화에 대응함)은 보조기의 존재시에 또한 감소되었다. 그러나, 노이즈 플로어(noise floor)의 RMS 진폭은 보조기가 있거나 없을 때 유사하였다. 부하 및 미부하 조건 하에서의 응답은 또한 유사하였다.
보조기 시험의 결과에 기초하여, 정규 또는 전체 길이 보조기를 갖는 발 존재의 검출을 위한 용량성 감지를 사용하는 것이 신호 대 노이즈 분해능에 관하여 실현가능하다. 부분 또는 전체 길이 보조기를 사용하여, 약 6 dB의 바람직한 최소값을 초과하는 SNR이 발 존재를 분석하는데 사용될 수 있고, 저듀티 및 고듀티 부하 조건의 모두 하에서 사용될 수 있다. 예에서, 발 존재 센서(310)는 보조기의 추가된 유전 효과를 보상하기 위해 커패시턴스 오프셋 범위를 포함하거나 사용할 수 있다.
전체 길이 보조기와 발 존재 센서(310)의 전극 사이의 에어갭의 편차는 인가된 부하의 함수로서 SNR의 측정 가능한 편차에 대응할 수 있다. 예를 들어, 도 18의 예에 설명되는 바와 같이, 높은 k-값 유전 재료가 용량성 발 존재 센서에 또는 부근에 제공될 때, SNR은 낮은 k-값 유전 재료를 포함하거나 사용하는 예에 비해 향상될 수 있다.
다양한 발 구역은 보조기 아래의 갭 거리의 상당한 변형을 나타내지 않는 것과 같이, 낮은 부하 조건 하에서 유사하게 거동하는 것으로 판명되었다. 그러나, 고부하 조건 하에서, 예로서 사용자가 서 있을 때, 보조기의 아치 영역은 압축될 수 있고, 에어갭은 실질적으로 최소화되거나 제거될 수 있다. 따라서, 감지 조건 하에서, 보조기의 존재시에 측정된 전기장은 제조 또는 OEM 안창을 사용하여 측정된 전기장에 크기가 유사할 수 있다. 발 존재 센서(310)와 검출된 신체 사이에 에어갭을 생성하는 보조기 또는 OEM 제조 안창의 예에서, 다양한 재료가 에어갭을 보상하거나 충전하도록 제공되거나 추가될 수 있다. 예를 들어, 네오프렌과 같은 갭 충전 발포체가 전체 길이 보조기의 이면측에 제공될 수 있다.
예에서, 안창 내에 보조기를 포함하는 것은 유전체 스택의 전체 유전체 두께를 증가시켜, 발의 존재에 대한 전기장 감도를 감소시킨다. 신호 진폭은 보조기에 의해 감소된다. 노이즈 특성의 RMS 진폭은 보조기가 있거나 없을 때 유사하였다. 용량성 센서의 감지 전극과 보조기의 하부면 사이의 체적을 점유하는 유전성 부재는 용량성 센서의 감도에 크게 영향을 미칠 수 있다는 것이 또한 판정되었다. 예를 들어, 1.28의 k-값을 갖는 폴리우레탄 발포체는 약 5.6의 유전 상수 또는 k-값을 갖는 네오프렌 발포체를 사용할 때 측정된 것보다 약 70% 더 적은 신호 진폭을 가질 수 있다. 노이즈 진폭이 동일한 상태에서, 이는 약 4.6 dB의 SNR 차이에 동등하다.
탄소 섬유 보조기에 의한 발 존재의 검출을 위한 용량성 감지를 사용하는 것은 따라서 신호 대 노이즈에 관하여 실현가능하다. 발 존재를 분석하기 위해 요구되는 6 dB의 최소값을 초과하는 SNR이 측정되었다.
도 19는 신발류 내의 커패시턴스 기반 발 존재 센서로부터 커패시턴스-지시 제3 신호(1803)의 부분을 도시하고 있는 차트(1900)의 예를 일반적으로 도시하고 있다. 차트(1900)에서, x축은 다수의 디지털 샘플을 지시하고 경과된 시간에 대응하고, y축은 용량성 발 존재 센서(1701)에 의해 검출된 커패시턴스의 상대 척도를 지시한다. 제3 신호(1803)로부터의 정보는, 다른 것들 중에서도, 사용자가 앉아 있는지 서 있는지 여부를 분간하는데 사용될 수 있는 것과 같이, 사용자가 신발류 상에 하향력을 인가하는지 여부를 판정하는데, 또는 발걸음수를 결정하는데, 또는 사용자 걸음걸이(gait) 특성을 결정하는데 사용될 수 있다.
x축 상의 샘플 "0"에 대응하는 것과 같은 초기 시간에, 제3 신호(1803)는 상대 커패시턴스 스케일에 약 0의 기준 또는 기준선값을 가질 수 있다. 1901에서, 또는 x축 상의 대략 샘플 175에서, 제3 신호(1803)는 예를 들어, 신체(550)가 신발류 내로 삽입되는 것에 대응하는 신발류 신기 이벤트를 포함한다. 제3 신호(1803)는 1910에, 또는 대략 샘플 10000에 신발류 벗기 이벤트를 포함하고, 그 후에 제3 신호(1803)는 기준선값으로 복귀한다.
도 19의 예는 임계치(1920)를 더 포함한다. 임계치(1920)는 신체(550)가 신발류 내에 존재하는 것을 지시하는 상대 커패시턴스값에 대응할 수 있다. 예를 들어, 발 또는 신체(550)가 신발류 내에 존재할 때, 제3 신호(1803)에 의해 지시된 상대 커패시턴스는 임계치(1920)를 초과하고, 발 또는 신체(550)가 신발류에 없을 때, 상대 커패시턴스는 임계치(1920) 미만으로 강하할 수 있다. 다양한 방법 또는 기술이 본 명세서에 더 설명되는 것과 같이, 임계치(1920)를 동적으로 조정하여, 예로서 환경 변화 또는 신발류 재료 변화를 고려하기 위해 사용될 수 있다.
샘플 175와 1000 사이의 간격에 대응하는 것과 같은, 1901 및 1910에서 신발류 신기 및 벗기 이벤트 사이에서, 신발류 물품의 착용자는 앉아 있기 위치와 서 있기 위치 사이에서 다수회 전이할 수 있다. 앉아 있기와 서 있기 사이의 전이는 예를 들어, 제3 신호(1803)를 제공하는 용량성 센서 위에 유전체 스택을 형성하는 신발류 재료의 압축 및 이완에 기인하는 제3 신호(1803)의 변동에 대응할 수 있다. 즉, 사용자가 서 있고 유전체 스택 상에 하향력을 인가할 때, 유전체 스택 내의 하나 이상의 재료는 압축할 수 있고 사용자의 발은 용량성 센서에 더 근접하게 이동할 수 있어, 이에 의해 센서를 사용하여 측정된 상대 커패시턴스를 변화시킨다. 사용자가 앉아 있고 유전체 스택 상의 하향력이 감소될 때, 이어서 유전체 스택 재료는 이완하거나 신장할 수 있고, 사용자의 발은 용량성 센서로부터 이격하여 이동할 수 있다.
신기 이벤트(1901)는 제3 신호(1803)의 난류부를 포함한다. 즉, 평활한 또는 완만한 전이부를 나타내는 대신에, 제3 신호(1803)는 사용자가 신발류 내의 위치로 그 또는 그녀의 발을 안착함에 따라 급속하게 그리고 변덕스럽게 변동한다. 예에서, 신기 이벤트(1901)는, 사용자가 유전체 스택 위를 포함하여, 신발류 재료 위에 다양한 힘을 인가하는 것, 및 사용자가 사용자의 발에 대한 신발류의 장력을 조정하는 것에 대응할 수 있는, 자동 또는 수동 신발끈 결속과 같은 신발끈 결속을 포함한다. 도 19의 예에서, 1901에서의 신기 이벤트 후에, 사용자는 샘플 200 내지 275에 대응하는 것과 같은 제1 기간(1931) 동안 앉아 있을 수 있다. 제1 기간(1931) 동안, 제3 신호(1803)는 약 220 상대 커패시턴스 유닛의 평균값을 가질 수 있다.
제1 기간(1931) 후에, 사용자는 서 있을 수 있어, 유전체 스택의 재료(들)가 압축하게 할 수 있고 이에 의해 사용자의 발이 스택 아래의 용량성 센서에 접근하는 것을 허용한다. 사용자가 완전히 서 있고 유전체 스택을 압축할 때, 제3 신호(1803)는 제2 기간(1932) 동안 약 120 상대 커패시턴스 유닛의 평균값을 가질 수 있다. 즉, 제3 신호(1803)의 크기는 사용자가 앉기로부터 서 있기로 전이함에 따라, 또는 사용자가 유전체 스택 상에 최소력을 인가하는 것으로부터 유전체 스택 상에 최대력을 인가하는 것으로 전이함에 따라, 제1 크기 변화량(1951)만큼 변화할 수 있어, 이에 의해 유전체 스택 자체의 유전 특성을 변화한다. 예에서, 제1 크기 변화량(1951)은 유전체 스택 상에 인가된 힘의 크기에 대응할 수 있다. 즉, 제1 크기 변화량(1951)은, 예를 들어 사용자가 걷기에 비교하여 달릴 때 유전체 스택 상에 더 큰 힘을 인가하는 것으로 예측되기 때문에, 다른 것들 중에서도, 사용자의 체중 또는 사용자가 달리는지 걷는지 여부를 판정하는데 사용될 수 있다.
도 19의 예에서, 대략 샘플 375에서, 제3 신호(1803)는 사용자가 앉은 자세로 복귀할 때 약 220 상대 커패시턴스 유닛의 값으로 복귀한다. 사용자는 다음의 상대 커패시턴스 변화 전에 제3 기간(1933) 동안 앉아 있다.
제3 신호(1803)의 점선부(도 19의 예에서 대략 샘플 500 후에)는 시간 경과 및 x축의 스케일의 변화를 지시한다. 예에서, 샘플 0 내지 500은 용량성 센서를 구비한 신발류가 신품일 때, 또는 새로운 유전체 스택이 신발류와 함께 사용될 때의 시간에 대응한다. 대략 샘플 9,800 후의 샘플은 신발류가 더 노후하거나 부분적으로 낡았을 때, 또는 유전체 스택의 부분이 압축되고 이완된 또는 미사용 조건 하에서 재감김 또는 팽창하는 것을 실패할 때의 시간에 대응할 수 있다.
도 19의 예에서, 제3 신호(1803)는 앉은 자세와 서 있는 자세 사이의 다수의 사용자 전이를 지시한다. 예에서, 제4 기간(1934) 및 제6 기간(1936)은 신발류 내의 유전체 스택에 인가된 최소력 또는 압력을 갖는 앉은 자세에 대응한다. 제5 기간(1935)은 상승된 힘이 유전체 스택 상에 인가된 상태의 서 있는 자세에 대응한다. 예에서, 제4 및 제6 기간(1934, 1936)은 약 240의 상대 커패시턴스 유닛의 평균값에 대응할 수 있다. 즉, 제4 및 제6 기간(1934, 1936)의 평균은 약 220 유닛이었던 제1 및 제3 기간(1931, 1933)의 평균을 초과할 수 있다. 예에서, 평균값 사이의 차이는 신발류의 사용에 의해 시간 경과에 따라 변화하는 유전체 스택 또는 다른 신발류 재료의 하나 이상의 부분의 마손에 기인할 수 있다. 예에서, 제5 기간(1935)은 제3 기간(1933) 동안 약 120 유닛의 평균값을 초과하는 약 150 상대 커패시턴스 유닛의 평균값에 대응할 수 있다. 더욱이, 앉은 자세와 서 있는 자세 사이의, 즉 유전체 스택에 힘이 인가된 것 또는 인가되지 않은 것 사이의 차이는 신품 신발류 및 사용된 신발류의 경우에 상이할 수 있다. 제1 크기 변화량(1951)은 서 있는 자세와 앉은 자세 사이에서 신품 신발류에 대한 상대 커패시턴스의 약 200 유닛 변화를 지시하고, 제2 크기 변화량(1952)은 서 있는 자세와 앉은 자세 사이에서 오래된 또는 사용된 신발류에 대한 상대 커패시턴스의 약 150 유닛 변화를 지시하고, 도 19의 예에서, 제4 내지 제6 기간(1934 내지 1936)은 또한 신발류 또는 센서 구성요소의 마손에 부가적으로 기인할 수 있는 제1 내지 제3 기간(1931 내지 1933)에 비교하여 비교적 노이즈가 있는 신호를 지시한다.
도 19는 따라서 제3 신호(1803)로부터의 정보가 다른 것들 중에서도, 신발류 라이프 사이클 상태 또는 신발류 사용량 특성을 지시하는데 사용될 수 있는 것을 도시하고 있다. 정보는 예를 들어, 하나 이상의 신발류 구성요소가 낡았거나 소모되었고 최적의 또는 충분한 완충 또는 발 보유를 제공하기 위해 더 이상 이용 가능하지 않을 수도 있다는 것을 사용자에게 보고하거나 경고함으로써 사용자 상해(injury)를 방지하는 것을 돕는데 사용될 수 있다.
예에서, 용량성 발 센서로부터의 정보는, 예로서 사용자의 보폭(stride)이 알려지거나 결정 가능할 때, 발걸음수 카운터 또는 보수계(pedometer)로서 이후에 사용될 수 있는 발걸음 빈도 정보를 유도하거나 결정하는데 사용될 수 있다. 도 19를 재차 참조하면, 제3 신호(1803)의 변동은 상이한 발걸음 이벤트에 대응할 수 있다. 예를 들어, 제2 기간(1932)은, 예로서 사용자의 첫번째 발이 지면에 있고 사용자의 체중이 사용자의 신발류 상에 힘을 인가할 때와 같은, 사용자 발걸음의 제1 부분을 포함하는 간격에 대응할 수 있고, 신발류는 제3 신호(1803)를 제공하는 커패시턴스-기반 발 존재 센서를 포함한다. 제2 기간(1932) 후에, 사용자는 그 또는 그녀의 체중을 사용자의 첫번째 발로부터 그 또는 그녀의 두번째 발로 시프트할 수 있다. 그 결과, 사용자에 의해 신발류에 인가된 압력 또는 힘이 감소될 수 있고, 제3 신호(1803)의 대응 변화가 관찰될 수 있다. 예를 들어, 제3 신호(1803)의 크기는 예로서 제1 크기 변화량(1951)에 의해 증가할 수 있다. 사용자가 재차 발걸음을 내딛고 첫번째 발로 복귀할 때, 이어서 제3 신호(1803)의 크기는 예로서 동일한 또는 유사한 제1 크기 변화량(1951)만큼 감소할 수 있다. 예에서, 크기 변화는 이후에 사용자가 얼마나 빨리 걷는지 또는 달리는지에 대응할 수 있는, 사용자에 의해 신발류 상에 인가된 힘에 의존할 수 있거나, 또는 관련될 수 있다. 예를 들어, 더 큰 크기 변화량은 달리기 페이스(pace)에 대응할 수 있고, 더 적은 변화량은 걷기 페이스에 대응할 수 있다.
예에서, 제3 신호(1803)의 지정된 부분의 기간, 간격, 또는 샘플 수는 발걸음 간격 또는 발걸음수를 결정하는데 사용될 수 있다. 예를 들어, 제1 기간(1931)은 약 75개의 샘플의 샘플 수를 가질 수 있고, 제2 기간(1932)은 약 50개의 샘플의 샘플 수를 가질 수 있다. 제1 기간(1931)이 첫번째 발이 지면에서 떨어질 때 사용자의 걷기 또는 발걸음 내딛기 사이클의 제1 부분에 대응하고, 제2 기간(1932)이 첫번째 발이 지면에 있을 때 사용자의 걷기 또는 발걸음 내딛기 사이클의 이후의 제2 부분에 대응하면, 사용자는 약 125개의 샘플의 발걸음 간격을 가질 수 있다. 샘플 레이트에 따라, 발걸음 간격은 예로서 샘플 수 정보를 처리하기 위해 프로세서 회로(320)를 사용하여, 걷기 또는 달리기 페이스와 상관될 수 있다.
예에서, 제3 신호(1803)의 신호 크기 변화 사이의 기간, 간격, 또는 샘플 수는 발걸음 간격 또는 발걸음수를 결정하는데 사용될 수 있다. 예로서 지정된 임계 크기 변화량보다 큰 크기 변화는 프로세서 회로(320)에 의해 식별될 수 있고, 이어서 프로세서 회로(320)는 식별된 크기 변화 사이의 간격 길이를 계산하거나 식별할 수 있다. 예를 들어, 제2 기간(1932)의 개시는, 예로서 지정된 임계 변화보다 큰 제3 신호(1803)에서 관찰된 크기 변화에 대응하는 대략 샘플 325에 있는 것으로 프로세서 회로(320)에 의해 식별될 수 있다. 제2 기간(1932)의 종료는, 예로서 제3 신호(1803)에서 관찰된 후속의 크기 변화에 대응하고 지정된 임계 변화보다 큰 대략 샘플 375에 있는 것으로 프로세서 회로(320)에 의해 식별될 수 있다. 프로세서 회로(320)는 샘플 수 사이의 차이를 계산하고 제2 기간(1932)이 기간 내에 약 50개의 샘플인 것으로 결정할 수 있다. 프로세서 회로(320)는 유사하게 제3 신호(1803)의 임의의 하나 이상의 세그먼트에 대한 기간 또는 샘플 길이를 결정할 수 있다. 프로세서 회로(320)는 이어서 발걸음 간격을 결정할 수 있고, 발걸음 간격은 사용자가 이동하는 속도 또는 이동한 거리를 결정하는데 사용될 수 있다. 예에서, 사용자의 보폭 길이에 대한 정보가 이동한 거리를 결정하기 위해 발걸음 간격 정보와 함께 사용될 수 있다.
예에서, 사용자의 보폭 길이는 지정되거나 알려지지 않는다. 사용자의 보폭 길이는 선택적으로 발 센서 정보와 조화하여 가속도계 또는 위치 센서(예를 들어, GPS 센서)와 같은 하나 이상의 다른 센서로부터의 정보를 사용하여 결정될 수 있다. 예를 들어, 위치 센서로부터의 정보는 지정된 기간에 걸쳐 사용자에 의해 이동된 총 거리를 지시할 수 있다. 프로세서 회로(320), 또는 신발류에 부속하는 다른 프로세서는 제3 신호(1803)를 수신하고 발걸음 및 이동한 거리와 신호 크기 변화 이벤트의 수를 상관하여 평균 사용자 발걸음 또는 보폭 길이를 결정할 수 있다. 예를 들어, 사용자가 30초에 100 미터를 이동하고, 발 존재 센서로부터의 커패시턴스-지시 신호가 동일한 30초 간격 이내에 100회의 신호 크기 변화 이벤트를 지시하면, 프로세서 회로(320) 또는 다른 프로세서는 사용자의 보폭이 약 100 미터/100 크기 변화 이벤트 = 크기 변화 이벤트 당 1 미터인 것으로 결정할 수 있다.
예에서, 제3 신호(1803)로부터의 정보는 사용자 걸음걸이 특성, 또는 사용자의 걸음걸이의 변화를 결정하는데 사용될 수 있다. 프로세서 회로(320)는 예를 들어, 시간 경과에 따라 커패시턴스-지시 신호를 모니터링하도록, 예로서 신호의 변화를 식별하도록 구성될 수 있다. 예를 들어, 프로세서 회로(320)는 검출된 신기 이벤트 후에 제1(또는 다른) 기간 또는 제1 발걸음 이벤트를 모니터링할 수 있다. 일반적으로, 사용자는 사용자가 신발류를 신을 때마다, 유사한 걸음걸이를 사용하는 것과 같은, 유사한 방식으로 걷기 또는 달리기를 시작하는 것으로 예측될 수 있다. 프로세서 회로(320)가 신발류 신기 후에 설정된 기준선 또는 평균 신호 특성으로부터 편차를 검출하면, 사용자는 경고될 수 있다. 유사하게, 프로세서 회로(320)는 이어서 상해를 유도할 수 있는 사용자 피로와 연계될 수 있는 사용량 특성 또는 편차를 검출하도록 구성될 수 있다. 예를 들어, 설정된 기준선 또는 기준 신호 특성으로부터의 편차는, 예로서 발 위치 변화가 커패시턴스-기반 발 존재 센서에서 또는 위에서 유전 특성을 대응적으로 변화시킬 수 있기 때문에, 발 또는 발목이 신발류 내에서 회전하거나 미끄러진 것을 지시할 수 있다. 자동 신발끈 결속 엔진을 포함하는 예에서, 발 위치 변화에 대한 정보는 사용자로의 상해를 방지하는 것을 돕기 위해 사용자의 발에 대해 신발류를 자동으로 조이는데 사용될 수 있다.
이하의 양태는 본 명세서에 설명된 신발류 및 용량성 센서의 비한정적인 개요를 제공한다.
양태 1은 신발류 물품 내에 사용을 위한 자동화 신발류 시스템을 포함하거나 사용할 수 있는 것과 같은, 주제(장치, 시스템, 디바이스, 방법, 동작을 수행하기 위한 수단, 또는 디바이스에 의해 수행될 때, 디바이스가 동작을 수행하게 할 수 있는 명령을 포함하는 디바이스 판독 가능 매체와 같은)를 포함하거나 사용할 수 있고, 시스템은 물품 내에 배치되도록 구성된 디바이스 하우징; 디바이스 하우징 내에 제공된 프로세서 회로; 디바이스 하우징 내의 프로세서 회로 및 하나 이상의 포트에 결합된 전기 상호접속부; 및 디바이스 하우징의 적어도 부분적으로 외부에 제공되고 전기 상호접속부를 사용하여 프로세서 회로에 결합된 다수의 전극을 포함하는 용량성 센서로서, 용량성 센서는 전극에 대한 신체의 근접도를 감지하도록 구성되는, 용량성 센서를 포함한다.
양태 2는 용량성 센서에 의해 감지된 바와 같은 근접도에 대한 정보를 수신하고 물품 내의 발 존재 또는 물품으로부터의 발 부존재의 지시를 제공하도록 구성된 프로세서 회로를 선택적으로 포함하거나 사용하기 위해, 양태 1의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 3은 물품이 착용될 때 발에 대해 물품을 조이거나 이완하도록 구성된 신발끈 결속 엔진의 적어도 일부를 에워싸는 디바이스 하우징을 선택적으로 포함하거나 사용하고, 프로세서 회로는 지시에 기초하여 신발끈 결속 엔진의 동작을 개시하거나 저지하도록 구성되는, 양태 2의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 4는 공통 평면 내에서 이격되어 있는 적어도 2개의 전극을 포함하는 다수의 전극을 선택적으로 포함하거나 사용하기 위해, 양태 1 내지 3 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 5는 물품의 안창의 상부면과 실질적으로 평행하게 연장하는 다수의 전극의 적어도 일부를 선택적으로 포함하기 위해, 양태 4의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 6은 물품의 안창 또는 물품의 겉창에 또는 내에 배치되도록 구성된 디바이스 하우징을 선택적으로 포함하거나 사용하기 위해, 양태 1 내지 5 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 7은 디바이스 하우징의 외부면에 부착되는 용량성 센서의 일부를 선택적으로 포함하기 위해, 양태 1 내지 6 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 8은 물품의 중창 영역에서 발 아래에 제공되는 디바이스 하우징을 선택적으로 포함하고, 용량성 센서는 물품이 발에 의해 착용될 때 디바이스의 하우징의 상부면과 발 사이에 제공되는, 양태 1 내지 7 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 9는 용량성 센서의 발-지향면과 발 사이에 유전성 부재를 선택적으로 포함하거나 사용하기 위해, 양태 8의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 10은 공기보다 더 높은 상대 유전율, 또는 k-값을 갖는 재료를 포함하는 유전성 부재를 선택적으로 포함하거나 사용하기 위해, 양태 9의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 11은 네오프렌을 포함하는 유전성 부재를 선택적으로 포함하거나 사용하기 위해, 양태 9의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 12는 공통 가요성 기판 상에 배치된 다수의 전극을 선택적으로 포함하기 위해, 양태 1 내지 11 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 13은 다수의 전극으로서 제1 및 제2 빗살형 전극을 선택적으로 포함하고, 각각의 빗살형 전극은 공통 축에 평행하게 배열된 다수의 이격된 연장 부재를 갖는, 양태 1 내지 12 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 14는 신발류 물품을 포함하거나 사용할 수 있는 것과 같은, 주제(장치, 시스템, 디바이스, 방법, 동작을 수행하기 위한 수단, 또는 디바이스에 의해 수행될 때, 디바이스가 동작을 수행하게 할 수 있는 명령을 포함하는 디바이스 판독 가능 매체와 같은)를 포함하거나 사용할 수 있고, 장력화 부재; 장력화 부재의 장력을 제어하기 위한 전동식 장력화 디바이스; 신발류 내의 발의 존재 또는 부존재에 대한 정보를 수신하기 위한 적어도 하나의 용량성 센서로서, 용량성 센서는 신발류의 안창에 평행한 공통 평면 내에서 실질적으로 이격되어 있는 다수의 전극을 포함하는, 적어도 하나의 용량성 센서; 및 제어 유닛으로서, 제어 유닛은 적어도 하나의 용량성 센서로부터 정보를 수신할 수 있고 이에 의해 발이 신발류에 존재하는지, 없는지, 진입하는지 또는 진출하는지 여부를 판정할 수 있는, 제어 유닛을 포함한다.
양태 15는 적어도 하나의 용량성 센서로부터의 정보를 사용하여 전동식 장력화 디바이스를 조건적으로 동작하기 위한 제어 유닛을 선택적으로 사용하기 위해, 양태 14의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 16은 신발류 내에서 발 아래에 그리고 전동식 장력화 디바이스 및 제어 유닛의 적어도 일부를 수용하는 디바이스 하우징 위에 제공되는 적어도 하나의 용량성 센서를 선택적으로 포함하기 위해, 양태 14 또는 15 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 17은 공기보다 큰 유전율을 갖는 유전성 부재를 선택적으로 포함하거나 또는 사용하고, 유전성 부재는 용량성 센서의 다수의 전극에 인접한, 양태 16의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 18은 신발류 물품을 포함하거나 사용할 수 있는 것과 같은, 주제(장치, 시스템, 디바이스, 방법, 동작을 수행하기 위한 수단, 또는 디바이스에 의해 수행될 때, 디바이스가 동작을 수행하게 할 수 있는 명령을 포함하는 디바이스 판독 가능 매체와 같은)를 포함하거나 사용할 수 있고, 신발류 물품의 내부의 발의 존재 또는 상대 로케이션을 지시하는 커패시턴스-지시 신호를 발생하도록 구성된 커패시턴스-기반 발 존재 센서로서, 커패시턴스-기반 발 존재 센서는 신발류의 아치 영역에 그리고 발 아래에서 공통 기판 상에 배치된 한 쌍의 교차형 전극을 포함하는, 커패시턴스-기반 발 존재 센서; 및
신발류의 아치 영역 내에서 디바이스 하우징 내에 포함되고 전극의 적어도 일부 아래에 제공된 프로세서 회로로서, 프로세서 회로는 발 위치 센서로부터 신호를 수신하도록 구성되는 프로세서 회로를 포함하고, 신호가 발의 존재를 지시하거나 또는 신발류 물품 내의 발의 상대 로케이션의 변화를 지시할 때, 양태 18에서, 프로세서 회로는 신발류 물품 내의 또는 그와 연계된 하나 이상의 다른 센서로부터 데이터 수집을 개시하고; 또는 신발류 물품을 발에 대해 조이거나 느슨하게 하기 위해 구동 기구를 작동하도록 구성될 수 있다.
양태 19는 전극과 연계된 상호 커패시턴스 특성의 변화를 지시하는 신호를 발생하도록 구성되는 발 존재 센서를 선택적으로 포함하거나 사용하기 위해, 양태 18의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
양태 20은 물품이 착용될 때 발 존재 센서의 적어도 일부와 발 사이에 제공된 유전성 부재를 선택적으로 포함하거나 사용하고, 유전성 인서트 부재는 공기의 상대 유전율보다 큰 상대 유전율을 갖는, 양태 18 또는 19 중 하나 또는 임의의 조합의 주제를 포함하거나 사용할 수 있고, 또는 선택적으로 조합될 수 있다.
이들 비한정적인 양태의 각각은 자립할 수 있고, 또는 본 명세서에 설명된 다른 양태 또는 예 중 하나 이상과 다양한 치환 또는 조합으로 조합될 수 있다.
다양한 비고
상기 설명은 상세한 설명의 부분을 형성하는 첨부 도면의 참조를 포함한다. 도면은 본 발명의 실시될 수 있는 특정 실시예를 예시로서 도시하고 있다. 이들 실시예는 또한 본 명세서에서 "예"라 칭한다. 이러한 예는 도시되거나 설명된 것들에 추가하여 요소를 포함할 수 있다. 그러나, 본 발명자들은 도시되거나 설명된 단지 이들 요소만이 제공되는 예를 또한 고려한다. 더욱이, 본 발명자들은 특정 예(또는 그 하나 이상의 양태)에 관하여, 또는 본 명세서에 도시되거나 설명된 다른 예(또는 그 하나 이상의 양태)에 관하여, 도시되거나 설명된 이들 요소(또는 그 하나 이상의 양태)의 임의의 조합 또는 치환을 사용하는 예를 또한 고려한다.
본 명세서에서, 단수 표현의 용어는 특허 문헌에서 통상적인 바와 같이, "적어도 하나" 또는 "하나 이상"의 임의의 다른 실 예에 독립적으로 하나 또는 하나 초과를 포함하는 것으로 사용된다. 본 명세서에서, 용어 "또는(or)"은 달리 지시되지 않으면, 비배타적 or을 나타내거나 또는 "A 또는 B"가 "A 그러나 B는 아님", "B 그러나 A는 아님", 및 "A 및 B"가 되도록 사용된다. 본 명세서에서, 용어 "구비하는" 및 "여기에서"는 각각의 용어 "포함하는" 및 "여기서"의 평문 등가물로서 사용된다. 또한, 이하의 청구범위에서, 용어 "구비하는" 및 "포함하는"은 개방형인데, 즉 청구항에서 이러한 용어 다음에 열거되는 것들에 추가하여 요소를 포함하는 시스템, 디바이스, 물품, 조성, 조성물, 또는 프로세스가 여전히 그 청구항의 범주 내에 있는 것으로 간주된다. 더욱이, 이하의 청구범위에서, 용어 "제1", "제2" 및 "제3" 등은 단지 라벨로서만 사용되고, 이들의 대상물에 수치적 요구를 부여하도록 의도되지 않는다.
"평행", "수직", "둥근형" 또는 "정사각형"과 같은 기하학적 용어는, 문맥상 달리 지시되지 않으면, 절대적인 수학적 정밀도를 요구하도록 의도되는 것은 아니다. 대신에, 이러한 기하학적 용어는 제조 또는 등가 기능에 기인하여 편차를 허용한다. 예를 들어, 요소가 "둥근" 또는 "일반적으로 둥근"으로서 설명되면, 정확하게 원형이 아닌 구성요소(예를 들어, 약간 타원형이거나 다면체 다각형인 것)가 여전히 이 설명에 의해 포함된다.
본 명세서에 설명된 방법 예는 적어도 부분적으로 기계 또는 컴퓨터 구현될 수 있다. 몇몇 예는 상기 예에서 설명된 바와 같은 방법을 수행하기 위해 전자 디바이스를 구성하도록 동작 가능한 명령에 의해 인코딩된 컴퓨터-판독 가능 매체 또는 기계-판독 가능 매체를 포함할 수 있다. 이러한 방법의 구현예는 마이크로코드(microcode), 어셈블리 언어 코드(assembly language code), 고급 언어(higher-level language code) 또는 기타와 같은 코드를 포함할 수 있다. 이러한 코드는 다양한 방법을 수행하기 위한 컴퓨터 판독 가능 명령을 포함할 수 있다. 코드는 컴퓨터 프로그램 제품의 부분을 형성할 수도 있다. 또한, 예에서, 코드는 예로서 실행 중에 또는 다른 시간에, 하나 이상의 휘발성, 비일시적(non-transitory), 또는 비휘발성 탠저블(tangible) 컴퓨터 판독 가능 매체 상에 탠저블식으로(tangibly) 저장될 수 있다. 이들 탠저블 컴퓨터-판독 가능 매체의 예는 하드 디스크, 이동식 자기 디스크, 이동식 광학 디스크(예를 들어, 컴팩트 디스크 및 디지털 비디오 디스크), 자기 카세트, 메모리 카드 또는 스틱, 랜덤 액세스 메모리(random access memories: RAMs), 판독 전용 메모리(read only memories: ROMs) 등을 포함할 수 있지만, 이들에 한정되는 것은 아니다.
상기 설명은 예시적인 것이고, 한정적인 것이 아니도록 의도된다. 예를 들어, 전술된 예(또는 그 하나 이상의 양태)는 서로 조합하여 사용될 수도 있다. 다른 실시예가 예로서 상기 설명을 고찰시에 통상의 기술자에 의해 사용될 수 있다. 요약서는 독자가 기술적 개시내용의 성질을 신속하게 확인할 수 있게 하도록 제공된 것이다. 이는 청구범위의 범주 또는 의미를 해석하거나 한정하는데 사용되지 않을 것이라는 이해를 갖고 제출된다. 또한, 상기 상세한 설명에서, 다양한 특징이 본 개시내용을 능률화하기 위해 함께 그룹화될 수도 있다. 이는 청구되지 않은 개시된 특징이 임의의 청구항에 필수적이라는 것을 의도하는 것으로서 해석되어서는 안된다. 오히려, 본 발명의 주제는 특정 개시된 실시예의 모든 특징 미만에 놓여 있을 수도 있다. 따라서, 이하의 청구범위는 이에 의해 예 또는 실시예로서 상세한 설명에 합체되어 있고, 각각의 청구항은 개별 실시예로서 자립하고, 이러한 실시예는 다양한 조합 또는 치환에서 서로 조합될 수 있는 것으로 고려된다. 본 발명의 범주는 이러한 청구범위가 자격부여받은 등가물의 전체 범주와 함께, 첨부된 청구범위를 참조하여 결정되어야 한다.

Claims (20)

  1. 신발류 물품 내에 사용을 위한 자동화 신발류 시스템이며,
    상기 물품 내에 배치되도록 구성된 디바이스 하우징;
    상기 디바이스 하우징 내에 제공된 프로세서 회로;
    상기 디바이스 하우징 내의 상기 프로세서 회로 및 하나 이상의 포트에 결합된 전기 상호접속부; 및
    상기 디바이스 하우징의 적어도 부분적으로 외부에 제공되고 상기 전기 상호접속부를 사용하여 상기 프로세서 회로에 결합된 다수의 전극을 포함하는 용량성 센서로서, 상기 용량성 센서는 상기 전극에 대한 신체의 근접도를 감지하도록 구성되는, 용량성 센서
    를 포함하는, 자동화 신발류 시스템.
  2. 제1항에 있어서, 상기 프로세서 회로는 상기 용량성 센서에 의해 감지된 바와 같은 근접도에 대한 정보를 수신하고 상기 물품 내의 발 존재 또는 상기 물품으로부터의 발 부존재의 지시를 제공하도록 구성되는, 자동화 신발류 시스템.
  3. 제2항에 있어서, 상기 디바이스 하우징은 상기 물품이 착용될 때 발에 대해 상기 물품을 조이거나 이완하도록 구성된 신발끈 결속 엔진의 적어도 일부를 에워싸고, 상기 프로세서 회로는 상기 지시에 기초하여 상기 신발끈 결속 엔진의 동작을 개시하거나 저지하도록 구성되는, 자동화 신발류 시스템.
  4. 제1항에 있어서, 다수의 전극은 공통 평면 내에서 이격되어 있는 적어도 2개의 전극을 포함하는, 자동화 신발류 시스템.
  5. 제4항에 있어서, 상기 다수의 전극의 적어도 일부는 상기 물품의 안창의 상부면과 실질적으로 평행하게 연장하는, 자동화 신발류 시스템.
  6. 제1항에 있어서, 상기 디바이스 하우징은 상기 물품의 안창 또는 상기 물품의 겉창에 또는 내에 배치되도록 구성되는, 자동화 신발류 시스템.
  7. 제1항에 있어서, 상기 용량성 센서의 적어도 일부는 상기 디바이스 하우징의 외부면에 부착되는, 자동화 신발류 시스템.
  8. 제1항에 있어서, 상기 디바이스 하우징은 상기 물품의 중창 영역에서 발 아래에 제공되고, 상기 용량성 센서는 상기 물품이 발에 의해 착용될 때 상기 디바이스의 하우징의 상부면과 발 사이에 제공되는, 자동화 신발류 시스템.
  9. 제8항에 있어서, 상기 용량성 센서의 발-지향면과 발 사이에 유전성 부재를 더 포함하는, 자동화 신발류 시스템.
  10. 제9항에 있어서, 상기 유전성 부재는 공기보다 더 높은 상대 유전율을 갖는 재료를 포함하는, 자동화 신발류 시스템.
  11. 제9항에 있어서, 상기 유전성 부재는 네오프렌을 포함하는, 자동화 신발류 시스템.
  12. 제1항에 있어서, 상기 다수의 전극은 공통 가요성 기판 상에 배치되는, 자동화 신발류 시스템.
  13. 제1항에 있어서, 상기 다수의 전극은 제1 및 제2 빗살형 전극을 포함하고, 각각의 빗살형 전극은 공통 축에 평행하게 배열된 다수의 이격된 연장 부재를 갖는, 자동화 신발류 시스템.
  14. 신발류 물품이며,
    장력화 부재;
    상기 장력화 부재의 장력을 제어하기 위한 전동식 장력화 디바이스;
    상기 신발류 내의 발의 존재 또는 부존재에 대한 정보를 수신하기 위한 적어도 하나의 용량성 센서로서, 상기 용량성 센서는 상기 신발류의 안창에 평행한 공통 평면 내에서 실질적으로 이격되어 있는 다수의 전극을 포함하는, 적어도 하나의 용량성 센서; 및
    제어 유닛으로서, 상기 제어 유닛은 상기 적어도 하나의 용량성 센서로부터 정보를 수신할 수 있고 이에 의해 발이 상기 신발류에 존재하는지, 없는지, 진입하는지 또는 진출하는지 여부를 판정할 수 있는, 제어 유닛
    을 포함하는, 신발류 물품.
  15. 제14항에 있어서, 상기 제어 유닛은 상기 적어도 하나의 용량성 센서로부터의 정보를 사용하여 상기 전동식 장력화 디바이스를 조건적으로 동작시키는, 신발류 물품.
  16. 제14항에 있어서, 상기 적어도 하나의 용량성 센서는 상기 신발류 내에서 발 아래에 그리고 상기 전동식 장력화 디바이스 및 제어 유닛의 적어도 일부를 수용하는 디바이스 하우징 위에 제공되는, 신발류 물품.
  17. 제16항에 있어서, 공기보다 큰 유전율을 갖는 유전성 부재를 더 포함하고, 상기 유전성 부재는 상기 용량성 센서의 다수의 전극에 인접한, 신발류 물품.
  18. 신발류 물품이며,
    상기 신발류 물품의 내부의 발의 존재 또는 상대 로케이션을 지시하는 커패시턴스-지시 신호를 발생하도록 구성된 커패시턴스-기반 발 존재 센서로서, 상기 커패시턴스-기반 발 존재 센서는 상기 신발류의 아치 영역에 그리고 발 아래에서 공통 기판 상에 배치된 한 쌍의 교차형 전극을 포함하는, 커패시턴스-기반 발 존재 센서; 및
    상기 신발류의 아치 영역 내에서 디바이스 하우징 내에 포함되고 상기 전극의 적어도 일부 아래에 제공된 프로세서 회로로서, 상기 프로세서 회로는 발 위치 센서로부터 신호를 수신하도록 구성되고, 상기 신호가 발의 존재를 지시하거나 또는 상기 신발류 물품 내의 발의 상대 로케이션의 변화를 지시할 때, 상기 프로세서 회로는:
    상기 신발류 물품 내의 또는 그와 연계된 하나 이상의 다른 센서로부터 데이터 수집을 개시하고; 또는
    상기 신발류 물품을 발에 대해 조이거나 느슨하게 하기 위해 구동 기구를 작동하도록 구성되는,
    프로세서 회로
    를 포함하는, 신발류 물품.
  19. 제18항에 있어서, 상기 발 존재 센서는 상기 전극과 연계된 상호 커패시턴스 특성의 변화를 지시하는 신호를 발생하도록 구성되는, 신발류 물품.
  20. 제18항에 있어서, 상기 물품이 착용될 때 상기 발 존재 센서의 적어도 일부와 발 사이에 제공된 유전성 부재를 더 포함하고, 유전성 인서트 부재는 공기의 상대 유전율보다 큰 상대 유전율을 갖는, 신발류 물품.
KR1020187029261A 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스 KR102361930B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227002198A KR102428289B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201662308667P 2016-03-15 2016-03-15
US201662308657P 2016-03-15 2016-03-15
US62/308,667 2016-03-15
US62/308,657 2016-03-15
US201662424959P 2016-11-21 2016-11-21
US201662424939P 2016-11-21 2016-11-21
US62/424,939 2016-11-21
US62/424,959 2016-11-21
PCT/US2017/022533 WO2017161000A2 (en) 2016-03-15 2017-03-15 Capacitive foot presence sensing devices for footwear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227002198A Division KR102428289B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스

Publications (2)

Publication Number Publication Date
KR20180117196A true KR20180117196A (ko) 2018-10-26
KR102361930B1 KR102361930B1 (ko) 2022-02-11

Family

ID=59847273

Family Applications (12)

Application Number Title Priority Date Filing Date
KR1020237003347A KR20230021171A (ko) 2016-03-15 2017-03-14 신발류를 위한 용량성 발 존재 감지
KR1020187029690A KR102494900B1 (ko) 2016-03-15 2017-03-14 신발류를 위한 용량성 발 존재 감지
KR1020227002198A KR102428289B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020237041124A KR20230165394A (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020187029439A KR102345184B1 (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020187029691A KR102404494B1 (ko) 2016-03-15 2017-03-15 신발류에서의 자석을 이용한 발 존재 감지
KR1020227017939A KR102588978B1 (ko) 2016-03-15 2017-03-15 능동형 신발류를 위한 발 존재 감지 시스템
KR1020187029261A KR102361930B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020237001876A KR20230014877A (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020227026339A KR102609358B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020217042316A KR102490819B1 (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020187029682A KR102404495B1 (ko) 2016-03-15 2017-03-15 능동형 신발류를 위한 발 존재 감지 시스템

Family Applications Before (7)

Application Number Title Priority Date Filing Date
KR1020237003347A KR20230021171A (ko) 2016-03-15 2017-03-14 신발류를 위한 용량성 발 존재 감지
KR1020187029690A KR102494900B1 (ko) 2016-03-15 2017-03-14 신발류를 위한 용량성 발 존재 감지
KR1020227002198A KR102428289B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020237041124A KR20230165394A (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020187029439A KR102345184B1 (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020187029691A KR102404494B1 (ko) 2016-03-15 2017-03-15 신발류에서의 자석을 이용한 발 존재 감지
KR1020227017939A KR102588978B1 (ko) 2016-03-15 2017-03-15 능동형 신발류를 위한 발 존재 감지 시스템

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020237001876A KR20230014877A (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020227026339A KR102609358B1 (ko) 2016-03-15 2017-03-15 신발류용 용량성 발 존재 감지 디바이스
KR1020217042316A KR102490819B1 (ko) 2016-03-15 2017-03-15 발 존재 신호 처리 시스템 및 방법
KR1020187029682A KR102404495B1 (ko) 2016-03-15 2017-03-15 능동형 신발류를 위한 발 존재 감지 시스템

Country Status (7)

Country Link
US (15) US10499711B2 (ko)
EP (8) EP3429406A4 (ko)
JP (14) JP6896758B2 (ko)
KR (12) KR20230021171A (ko)
CN (8) CN109152445B (ko)
TW (3) TWI721132B (ko)
WO (5) WO2017160865A1 (ko)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164804A1 (en) * 2015-04-08 2016-10-13 Nike Innovate C.V. Multi-antenna tuned wearable article
US20180231393A1 (en) * 2015-06-23 2018-08-16 Ipcomm Llc Method for Calibrating Local Coordinates and Force Reference of Motion and Ground Reaction Force Analysis System
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
WO2018095500A1 (de) 2016-11-22 2018-05-31 Puma SE Verfahren zum anlegen oder ablegen eines kleidungsstücks an den träger oder vom träger desselben oder zum schliessen, anlegen, öffnen oder ablegen eines von einer person getragenen gepäckstücks
EP3383211B1 (de) 2015-12-02 2019-09-25 Puma Se Verfahren zum schnüren eines schuhs, insbesondere eines sportschuhs
WO2017136147A1 (en) * 2016-02-04 2017-08-10 3M Innovative Properties Company Removable footwear degradation sensor reader
US11357290B2 (en) 2016-03-15 2022-06-14 Nike, Inc. Active footwear sensor calibration
US10827804B2 (en) * 2016-03-15 2020-11-10 Nike, Inc. Lacing apparatus for automated footwear platform
US11026481B2 (en) 2016-03-15 2021-06-08 Nike, Inc. Foot presence signal processing using velocity
US11064768B2 (en) 2016-03-15 2021-07-20 Nike, Inc. Foot presence signal processing using velocity
US9961963B2 (en) 2016-03-15 2018-05-08 Nike, Inc. Lacing engine for automated footwear platform
US10390589B2 (en) 2016-03-15 2019-08-27 Nike, Inc. Drive mechanism for automated footwear platform
US10104937B2 (en) * 2016-03-15 2018-10-23 Nike, Inc. Input assembly for an article of manufacture
JP6896758B2 (ja) 2016-03-15 2021-06-30 ナイキ イノベイト シーブイ 履物のための容量性足存在センシング
US20170273849A1 (en) * 2016-03-28 2017-09-28 Under Armour, Inc. Active recorery system and method having capacitive proximity sensor
US10918156B2 (en) * 2016-05-23 2021-02-16 Lg Innotek Co., Ltd. Pressure detection sensor and pressure detection insole including same
CA3042721C (en) 2016-11-22 2023-09-26 Puma SE Method for fastening a shoe, in particular a sports shoe, and shoe, in particular sports shoe
JP2018119906A (ja) * 2017-01-27 2018-08-02 日立金属株式会社 複合検知センサ及びセンサ用ケーブル
US11857023B2 (en) 2017-02-27 2024-01-02 Kornit Digital Technologies Ltd. Digital molding and associated articles and methods
US20190039311A1 (en) 2017-02-27 2019-02-07 Voxel8, Inc. Systems and methods for 3d printing articles of footwear with property gradients
US11701813B2 (en) 2017-02-27 2023-07-18 Kornit Digital Technologies Ltd. Methods for three-dimensionally printing and associated multi-input print heads and systems
US11470908B2 (en) 2017-02-27 2022-10-18 Kornit Digital Technologies Ltd. Articles of footwear and apparel having a three-dimensionally printed feature
US20190039309A1 (en) 2017-02-27 2019-02-07 VoxeI8,Inc. Methods of 3d printing articles with particles
US11904614B2 (en) 2017-02-27 2024-02-20 Kornit Digital Technologies Ltd. Multi-input print heads for three-dimensionally printing and associated systems and methods
EP3595482B1 (en) * 2017-03-14 2023-06-28 Nike Innovate C.V. Foot presence signal processing using velocity
CN113662314B (zh) * 2017-05-31 2023-05-23 耐克创新有限合伙公司 自动鞋系带系统、装置和技术
KR20190009640A (ko) * 2017-07-19 2019-01-29 엘지전자 주식회사 신발 끈 조절장치 및 이를 구비하는 신발
US11298079B2 (en) * 2017-07-31 2022-04-12 The Industry & Academic Cooperation In Chungnam National University (Iac) Smart shoe system for calculating energy expenditure
US20190069759A1 (en) * 2017-09-06 2019-03-07 Biosense Webster (Israel) Ltd. Single Handled ENT Tool
CN107549917A (zh) * 2017-10-17 2018-01-09 张友光 一种夜间照明拖鞋
WO2019076461A1 (en) * 2017-10-19 2019-04-25 Nathan Smith INNER SOLE WITH SENSORS
WO2019079670A1 (en) * 2017-10-20 2019-04-25 Nike Innovate, C.V. CARRIER STRUCTURES FOR AUTOMATED SHOE PLATFORM
CN114652053A (zh) 2017-10-20 2022-06-24 耐克创新有限合伙公司 自动化鞋类平台的系带组件
KR102289287B1 (ko) * 2017-10-25 2021-08-13 나이키 이노베이트 씨.브이. 사전설정된 사용자 프로파일을 갖는 오토레이싱 신발류 시스템
JP7151072B2 (ja) * 2017-11-15 2022-10-12 セイコーエプソン株式会社 ロボット
USD889086S1 (en) * 2017-11-21 2020-07-07 Altra Llc Shoe sole
US11920996B2 (en) * 2018-03-09 2024-03-05 Case Western Reserve University Customizable pressure sensor array
CN108851320B (zh) * 2018-04-27 2021-03-19 深圳市科迈爱康科技有限公司 智能导航鞋及其控制方法
US10334906B1 (en) 2018-05-31 2019-07-02 Nike, Inc. Intelligent electronic footwear and control logic for automated infrastructure-based pedestrian tracking
US11793275B2 (en) 2018-06-14 2023-10-24 Puma SE Shoe, especially a sports shoe
KR102514651B1 (ko) 2018-08-27 2023-03-28 삼성전자주식회사 인솔 및 이를 포함하는 신발
KR102588072B1 (ko) 2018-08-27 2023-10-12 삼성전자주식회사 인솔 제조 방법
US11672308B2 (en) * 2018-08-31 2023-06-13 Nike, Inc. Autolacing footwear having a notched spool
US11684110B2 (en) * 2018-08-31 2023-06-27 Nike, Inc. Autolacing footwear
WO2020101703A1 (en) 2018-11-16 2020-05-22 Hewlett-Packard Development Company, L.P. Pressure sensors
KR102489210B1 (ko) 2018-11-30 2023-01-18 나이키 이노베이트 씨.브이. 회전식 드럼 인코더를 구비한 오토레이싱 신발류 모터
KR102604085B1 (ko) 2018-12-12 2023-11-21 삼성전자주식회사 신발형 장치 및 신발형 장치의 제어 방법
CN113347899B (zh) * 2019-01-24 2023-12-19 伊科斯克有限公司 用于鞋类物品的负荷感测装置
EP3917346A1 (en) * 2019-01-29 2021-12-08 Clim8 A textile element such as a clothing
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
EP3937717A4 (en) * 2019-03-14 2022-11-23 NIKE Innovate C.V. TOUCH INTERFACE FOR ACTIVE SHOE SYSTEMS
DE102019203878B4 (de) * 2019-03-21 2020-10-01 Festo Se & Co. Kg Sensoreinrichtung
GB201904768D0 (en) * 2019-04-04 2019-05-22 Tech 21 Licensing Ltd A pressure sensor incorporated into a resiliently deformable thermoplastic polymer
CN110113463B (zh) * 2019-04-04 2021-10-01 北京乐驾科技有限公司 基于电容检测的手机支架、信号处理方法及装置
US11236807B2 (en) * 2019-06-03 2022-02-01 Power Engineering & Mfg., Inc. Actuators for use with an external controller
JP6793417B1 (ja) * 2019-10-09 2020-12-02 株式会社ノーニューフォークスタジオ 接地態様評価システム、履物、情報処理サーバ、接地態様評価方法、および接地態様評価プログラム
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
KR20220100054A (ko) 2019-11-22 2022-07-14 나이키 이노베이트 씨.브이. 모션 기반의 미디어 생성
CN113023501B (zh) * 2019-12-09 2023-05-26 苏州星诺奇科技股份有限公司 一种高效传动的绳带松紧装置及穿戴制品
KR102145754B1 (ko) * 2019-12-18 2020-08-19 이지연 손을 이용하지 않는 신축조절수단이 구비되어 착용이 용이한 신발
TWI711431B (zh) * 2020-01-17 2020-12-01 寶成工業股份有限公司 左右步態的判斷方法及其分析裝置
WO2021231052A1 (en) 2020-05-15 2021-11-18 Nike Innovate C.V. Intelligent electronic footwear and logic for navigation assistance by automated tactile, audio, and visual feedback
CN111637956B (zh) * 2020-05-25 2021-11-16 湖北交投智能检测股份有限公司 基于偏振光的桥跨的监测系统及监测方法
WO2021243134A1 (en) * 2020-05-29 2021-12-02 Nike Innovate C.V. Footwear airbag with flexible electronic interconnect
US11842571B2 (en) * 2020-07-29 2023-12-12 Google Llc System and method for exercise type recognition using wearables
US20220110401A1 (en) * 2020-10-13 2022-04-14 Nike, Inc. Article of Footwear
DE102021213642A1 (de) * 2020-12-04 2022-06-09 Nidec Corporation Spule und schnürmodul, das mit derselben versehen ist
JP2022090802A (ja) * 2020-12-08 2022-06-20 日本電産株式会社 レーシングモジュール
CN113633067B (zh) * 2021-08-12 2023-08-11 广东足行健健康科技有限公司 多功能智能按摩鞋垫
US20230122485A1 (en) * 2021-10-15 2023-04-20 Shimano Inc. Cycling shoe system
CN114017928B (zh) * 2021-10-29 2023-06-09 广东万和新电气股份有限公司 智能鞋、热水器循环系统及其预热控制方法
CN114098716B (zh) * 2021-11-15 2023-11-21 北京航空航天大学 一种获取运动姿态的方法及装置
CN114305390B (zh) * 2021-12-29 2023-09-05 北京航空航天大学 用于足底压力检测和滑移校准的装置及检测方法
US20240019277A1 (en) * 2022-07-13 2024-01-18 Nike Inc. Footwear-based body presence detector
US20240016255A1 (en) * 2022-07-13 2024-01-18 Nike, Inc. Recursive footwear-based body presence detection
GB2621995A (en) * 2022-08-27 2024-03-06 Movmenta Ltd Shoe degradation sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349478A (ja) * 2005-06-15 2006-12-28 Denso Corp 静電容量型力学量センサおよびその製造方法
US8046937B2 (en) * 2008-05-02 2011-11-01 Nike, Inc. Automatic lacing system
US8676541B2 (en) * 2008-06-13 2014-03-18 Nike, Inc. Footwear having sensor system
JP2015057598A (ja) * 2011-04-08 2015-03-26 株式会社村田製作所 操作デバイス

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152748A (en) 1977-05-05 1979-05-01 Arkans Edward J Multiple transducer
CH674124A5 (ko) 1987-12-22 1990-05-15 Raichle Sportschuh Ag
DE3900777C2 (de) * 1988-06-30 1999-06-24 Lowa Sportschuhe Gmbh Skistiefel (Querschlitzspanner für Rist- und Fersenseil)
JPH0582319U (ja) 1992-04-15 1993-11-09 清太郎 大内 ブラシ
JPH0596758U (ja) 1992-05-26 1993-12-27 横山産業株式会社 炭の着火装置
US6033370A (en) 1992-07-01 2000-03-07 Preventive Medical Technologies, Inc. Capacitative sensor
US5449002A (en) 1992-07-01 1995-09-12 Goldman; Robert J. Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation
US5791068A (en) 1992-07-20 1998-08-11 Bernier; Rejeanne M. Self-tightening shoe
CA2078270C (en) 1992-09-15 1999-01-12 Nicholas A. Rodgers Signalling footwear
JP2675251B2 (ja) 1993-06-29 1997-11-12 住友ベークライト株式会社 複合テープの連続熱処理法
US6122960A (en) 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US5929332A (en) 1997-08-15 1999-07-27 Brown; Norma Sensor shoe for monitoring the condition of a foot
US5933102A (en) 1997-09-24 1999-08-03 Tanisys Technology, Inc. Capacitive sensitive switch method and system
US6301964B1 (en) 1997-10-14 2001-10-16 Dyhastream Innovations Inc. Motion analysis system
US6032387A (en) 1998-03-26 2000-03-07 Johnson; Gregory G. Automated tightening and loosening shoe
US6896128B1 (en) 1998-03-26 2005-05-24 Gregory G. Johnson Automated tightening shoe
US7096559B2 (en) * 1998-03-26 2006-08-29 Johnson Gregory G Automated tightening shoe and method
US7661205B2 (en) 1998-03-26 2010-02-16 Johnson Gregory G Automated tightening shoe
JP2000014402A (ja) 1998-07-02 2000-01-18 Matsushita Electric Ind Co Ltd
WO2000019383A2 (en) 1998-09-11 2000-04-06 Loquitor Technologies Llc Generation and detection of induced current using acoustic energy
DE19904744B4 (de) 1999-02-05 2005-11-10 Adidas International Marketing B.V. Schuh
US7334350B2 (en) 1999-03-16 2008-02-26 Anatomic Research, Inc Removable rounded midsole structures and chambers with computer processor-controlled variable pressure
US6297811B1 (en) 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
CN2438353Y (zh) 2000-07-28 2001-07-11 周龙交 变比传控式鞋带自动系解互动的鞋子
US6195921B1 (en) 1999-09-28 2001-03-06 Vinncente Hoa Gia Truong Virtual intelligence shoe with a podiatric analysis system
US6593755B1 (en) 2000-07-31 2003-07-15 Banner Engineering Corporation Method and apparatus for detection sensor shielding
DE10133489B4 (de) 2001-07-10 2005-11-03 Egon Voswinkel Vorrichtung zur Betätigung einer Schnürzugeinrichtung eines Schuhs
US6876135B2 (en) * 2001-10-05 2005-04-05 Sri International Master/slave electroactive polymer systems
WO2003036247A1 (en) 2001-10-22 2003-05-01 Microjenics, Inc. Pressure-sensitive sensor and monitor using the pressure-sensitive sensor
TW521593U (en) * 2002-02-08 2003-02-21 Kuen-Jung Liou Shoes capable of being tightened electrically
US7225565B2 (en) 2003-03-10 2007-06-05 Adidas International Marketing B.V. Intelligent footwear systems
US7631382B2 (en) 2003-03-10 2009-12-15 Adidas International Marketing B.V. Intelligent footwear systems
US7188439B2 (en) 2003-03-10 2007-03-13 Adidas International Marketing B.V. Intelligent footwear systems
JP3855950B2 (ja) 2003-03-19 2006-12-13 株式会社デンソー 容量式湿度センサ
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
US7355519B2 (en) 2004-02-24 2008-04-08 Kevin Grold Body force alarming apparatus and method
US7310895B2 (en) 2004-03-01 2007-12-25 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US8141277B2 (en) * 2004-03-01 2012-03-27 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US20050198867A1 (en) * 2004-03-12 2005-09-15 Frederick Labbe Self tying shoe
CN100409780C (zh) 2004-03-30 2008-08-13 阿迪达斯国际经营管理有限公司 鞋的智能系统
US20060021261A1 (en) 2004-07-19 2006-02-02 Face Bradbury R Footwear incorporating piezoelectric energy harvesting system
WO2006007782A1 (fr) 2004-07-20 2006-01-26 Lungchiao Chou Chaussure mise et enlevée automatiquement
JP4481806B2 (ja) * 2004-12-03 2010-06-16 アルプス電気株式会社 容量検出型センサ
DE102005004086A1 (de) 2005-01-21 2006-07-27 Xybermind Gmbh Vorrichtung und Verfahren zur Bewegungserfassung
JP4545108B2 (ja) * 2005-04-14 2010-09-15 ジー−マン カンパニー,リミテッド 機能性履物
US7497037B2 (en) * 2005-04-15 2009-03-03 Boston Ideas, Llc Lighted footwear
US8028443B2 (en) * 2005-06-27 2011-10-04 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear
US20070006489A1 (en) * 2005-07-11 2007-01-11 Nike, Inc. Control systems and foot-receiving device products containing such systems
WO2007047889A2 (en) 2005-10-18 2007-04-26 Phatrat Technology, Llc Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US8874227B2 (en) 2009-03-20 2014-10-28 ElectroCore, LLC Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient
US7712373B2 (en) 2006-03-03 2010-05-11 Nagle H Troy Sensor device for real-time monitoring or relative movement using capacitive fabric sensors
US7827000B2 (en) 2006-03-03 2010-11-02 Garmin Switzerland Gmbh Method and apparatus for estimating a motion parameter
US8087188B2 (en) 2006-10-15 2012-01-03 Frederick Labbe Weight-activated tying shoe
US7752774B2 (en) 2007-06-05 2010-07-13 Tim James Ussher Powered shoe tightening with lace cord guiding system
US7676957B2 (en) 2007-06-14 2010-03-16 Johnson Gregory G Automated tightening shoe
DE102007032821A1 (de) 2007-07-12 2009-01-15 Nora Systems Gmbh Schuh für medizinische Anwendungen
CN101815632B (zh) * 2007-08-27 2012-09-19 株式会社藤仓 头枕位置调整装置和头枕位置调整方法
US7943874B2 (en) 2007-09-18 2011-05-17 Honeywell International Inc. Ground contact switch for personal navigation system
US20090102669A1 (en) 2007-10-17 2009-04-23 Shyuh Der Lin Alarm clock with a proximity detector
DE102007050593B4 (de) 2007-10-23 2017-10-05 Adidas International Marketing B.V. Aktiv belüfteter Schuh
FR2924577B1 (fr) 2007-12-07 2010-03-12 Ct Tech Cuir Chaussure Maroqui Article chaussant a serrage facilite
US20100004566A1 (en) 2008-01-11 2010-01-07 Esoles, L,L.C. Intelligent orthotic insoles
CA2714534C (en) * 2008-02-28 2018-03-20 Kenneth Perlin Method and apparatus for providing input to a processor, and a sensor pad
US9907359B2 (en) * 2008-05-02 2018-03-06 Nike, Inc. Lacing system with guide elements
FI121197B (fi) 2008-05-16 2010-08-13 Marimils Oy Anturi johtavien kappaleiden havaitsemiseen
DE102008027104A1 (de) 2008-06-06 2009-12-10 Cairos Technologies Ag System und Verfahren zur mobilen Bewertung von Schuhdämpfungseigenschaften
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
DE112009002585B4 (de) * 2008-10-22 2023-03-23 Atmel Corp. Sensor und Erfassungsverfahren
US9063182B2 (en) 2008-11-10 2015-06-23 Google Technology Holdings LLC Detecting three different open ranges in a flip device
US8231506B2 (en) 2008-12-05 2012-07-31 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US8172722B2 (en) 2008-12-05 2012-05-08 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
WO2010091276A2 (en) * 2009-02-06 2010-08-12 Pressure Profile Systems, Inc. Capacitive proximity tactile sensor
US20110054359A1 (en) * 2009-02-20 2011-03-03 The Regents of the University of Colorado , a body corporate Footwear-based body weight monitor and postural allocation, physical activity classification, and energy expenditure calculator
AU2010229989B2 (en) 2009-03-25 2014-02-20 Alsentis, Llc Apparatus and method for determining a touch input
US9024907B2 (en) 2009-04-03 2015-05-05 Synaptics Incorporated Input device with capacitive force sensor and method for constructing the same
CN201450760U (zh) 2009-04-29 2010-05-12 河北农业大学 悬浮式开沟机
TWI406164B (zh) 2009-05-21 2013-08-21 Ite Tech Inc 滑軸架構的觸控感應器
US8480541B1 (en) 2009-06-23 2013-07-09 Randall Thomas Brunts User footfall sensing control system for treadmill exercise machines
DE102009028924A1 (de) 2009-08-27 2011-03-03 Robert Bosch Gmbh Kapazitiver Sensor und Aktor
US9272882B2 (en) * 2009-12-18 2016-03-01 Otis Elevator Company Detection of people relative to a passenger conveyor with a capacitive sensor
JP5540797B2 (ja) * 2010-03-19 2014-07-02 ソニー株式会社 センサ装置および表示装置
DE102010019841A1 (de) * 2010-05-07 2011-11-10 Ident Technology Ag Leiterplatte für Display und Anzeigemodul mit Display und Leiterplatte
WO2011158154A2 (en) 2010-06-15 2011-12-22 Aito B.V. A device for detecting the presence of at least one human finger on a surface, and a method of using the device in the user interface of a machine, a device (in particular a portable device), or a system
US9940682B2 (en) 2010-08-11 2018-04-10 Nike, Inc. Athletic activity user experience and environment
KR101685902B1 (ko) 2010-09-15 2016-12-13 삼성전자주식회사 터치 감지 장치 및 그의 접근 감지 방법
US8581731B2 (en) 2011-02-16 2013-11-12 Connor Kent Purks Circuits, systems, and methods for monitoring and reporting foot impact, foot placement, shoe life, and other running/walking characteristics
US9095251B2 (en) 2011-02-16 2015-08-04 Bryce Benjamin Purks Circuits, systems, and methods for monitoring and coaching a person's sideways spacing foot placement and roll, shoe life, and other running/walking characteristics
JP5899247B2 (ja) 2011-02-17 2016-04-06 ナイキ イノベイト セー. フェー. センサーシステムを有する履物
EP3662829A1 (en) 2011-02-17 2020-06-10 NIKE Innovate C.V. Footwear having sensor system
WO2012112934A2 (en) 2011-02-17 2012-08-23 Nike International Ltd. Footwear having sensor system
US8970230B2 (en) * 2011-02-28 2015-03-03 Cypress Semiconductor Corporation Capacitive sensing button on chip
US9993181B2 (en) 2011-03-24 2018-06-12 Med Hab, LLC System and method for monitoring a runner'S gait
WO2012162140A2 (en) * 2011-05-20 2012-11-29 Brian James Vogt Method and apparatus for cooling footwear
US20120304500A1 (en) 2011-05-30 2012-12-06 Thomas Bove Magnetic Shoe Insert System
US8752200B2 (en) 2011-07-12 2014-06-10 At&T Intellectual Property I, L.P. Devices, systems and methods for security using magnetic field based identification
US8904673B2 (en) 2011-08-18 2014-12-09 Palidium, Inc. Automated tightening shoe
JP5845747B2 (ja) 2011-09-10 2016-01-20 株式会社デンソー 履物
US8935860B2 (en) 2011-10-28 2015-01-20 George Torres Self-tightening shoe
JP5746604B2 (ja) 2011-12-07 2015-07-08 株式会社東芝 通信装置
US9411472B2 (en) * 2011-12-08 2016-08-09 Atmel Corporation Touch sensor with adaptive touch detection thresholding
US10197259B2 (en) 2012-01-09 2019-02-05 L&P Property Management Company Standalone capacitance sensor for furniture
CN202552364U (zh) 2012-01-16 2012-11-28 曾胜克 自发光鞋
US9352207B2 (en) 2012-01-19 2016-05-31 Nike, Inc. Action detection and activity classification
CN103251170B (zh) 2012-02-16 2015-09-02 安德润普科技开发(深圳)有限公司 一种压力监测鞋
US20130213144A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US8739639B2 (en) 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US9201548B2 (en) 2012-05-03 2015-12-01 Texas Instruments Incorporated Material-discerning proximity sensing
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9164629B2 (en) 2012-08-06 2015-10-20 Stmicroelectronics Asia Pacific Pte Ltd Touch screen panel with slide feature
EP3491954B1 (en) * 2012-08-31 2021-01-06 NIKE Innovate C.V. Motorized tensioning system
EP4331428A2 (en) * 2012-08-31 2024-03-06 Nike Innovate C.V. Motorized tensioning system with sensors
US9692875B2 (en) 2012-08-31 2017-06-27 Analog Devices, Inc. Grip detection and capacitive gesture system for mobile devices
CN104352010A (zh) * 2012-09-11 2015-02-18 赵汤臣 一种具有照明能力的拖鞋
FR2996673B1 (fr) 2012-10-05 2016-02-05 Bostik Sa Capteur capacitif pour la detection de presence d'un objet et/ou d'un individu.
US20140135954A1 (en) * 2012-11-13 2014-05-15 John M. Vranish Balance-assist shoe
WO2014100045A1 (en) 2012-12-17 2014-06-26 Qi2 ELEMENTS II, LLC Foot-mounted sensor systems for tracking body movement
US9066558B2 (en) 2012-12-17 2015-06-30 Nike, Inc. Electronically controlled bladder assembly
US9125595B2 (en) * 2012-12-20 2015-09-08 SmartMove, Inc. System and insole for measuring information from the foot of a user and related method of providing same
US8922963B2 (en) 2013-01-30 2014-12-30 Monolithic Power Systems, Inc. Electrostatic discharge protection circuit and method thereof
US11006690B2 (en) * 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9322121B2 (en) 2013-02-28 2016-04-26 Regents Of The University Of Minnesota Stitched stretch sensor
US10024740B2 (en) 2013-03-15 2018-07-17 Nike, Inc. System and method for analyzing athletic activity
US20140260189A1 (en) * 2013-03-15 2014-09-18 Desen Corporation Forced induction system with regenerative charge air control
EP2999368B1 (en) 2013-05-22 2017-04-19 Delmafin S.r.l. Traceable footwear, tracking system for said footwear and network application for said tracking
CN203505737U (zh) * 2013-07-01 2014-04-02 叶忠 一种快速系鞋带装置
CN104337105A (zh) * 2013-07-31 2015-02-11 北京红旗胜利科技发展有限责任公司 一种行走定位鞋
CN203762364U (zh) 2013-07-31 2014-08-13 北京红旗胜利科技发展有限责任公司 一种行走定位鞋
EP3593662B1 (en) * 2013-09-20 2022-12-07 NIKE Innovate C.V. Motorized adjustment system for an article of footwear
US9681827B2 (en) 2013-10-09 2017-06-20 LEDO Networks, Inc. Systems, methods, applications for smart sensing, motion activity monitoring, and motion activity pattern recognition
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US9433254B2 (en) 2014-03-26 2016-09-06 Step-Right LLC Footwork activity instruction and evaluation apparatus and system
CA2945792C (en) 2014-04-14 2021-02-23 Flyclip Llc Lace adjuster assembly including feedback assembly for use in visualizing and measuring athletic performance
US10092065B2 (en) 2014-04-15 2018-10-09 Nike, Inc. Footwear having motorized adjustment system and removable midsole
US9380834B2 (en) * 2014-04-22 2016-07-05 Nike, Inc. Article of footwear with dynamic support
WO2015162066A1 (en) 2014-04-25 2015-10-29 Mighty Styley Sl Shoe
FR3023914B1 (fr) 2014-07-18 2017-07-21 Feetme Systeme a reseau de cellules de capteurs capacitifs de pression et de cisaillement et procede de fabrication
US10318066B2 (en) 2014-08-25 2019-06-11 3M Innovative Properties Company Capacitive-based touch apparatus and method with reduced interference
US9687577B2 (en) 2014-09-13 2017-06-27 Sensor Electronic Technology, Inc. Ultraviolet illuminator for footwear treatment
US10575591B2 (en) 2014-10-07 2020-03-03 Boa Technology Inc. Devices, methods, and systems for remote control of a motorized closure system
US9582111B2 (en) 2014-10-31 2017-02-28 Semtech Corporation Method and device for improved accuracy of proximity and touch detection in mobile devices
CN104652046B (zh) 2015-02-13 2016-10-05 晋江守正缝纫机械贸易有限公司 木耳花自动加工设备
CN204561139U (zh) 2015-04-23 2015-08-19 长沙格致电子科技有限公司 一种惯性定位鞋垫
US20170002254A1 (en) 2015-06-30 2017-01-05 Exxonmobil Chemical Patents Inc. Lubricant Compositions and Methods of Making and Using Same
EP3340827B1 (en) 2015-08-25 2019-07-10 Feetme Insoles for insertion into an article of footwear and system for monitoring a foot pressure
EP3358981B1 (de) 2015-10-07 2019-07-17 Puma Se Schuh, insbesondere sportschuh
EP3383211B1 (de) 2015-12-02 2019-09-25 Puma Se Verfahren zum schnüren eines schuhs, insbesondere eines sportschuhs
US9591891B1 (en) 2015-12-07 2017-03-14 Nike, Inc. Article having sole assembly with cleats
CN105898460A (zh) 2015-12-10 2016-08-24 乐视网信息技术(北京)股份有限公司 调整智能电视的全景视频播放视角的方法和装置
JP6711009B2 (ja) 2016-02-24 2020-06-17 アイシン精機株式会社 車両用操作検出装置
JP6896758B2 (ja) 2016-03-15 2021-06-30 ナイキ イノベイト シーブイ 履物のための容量性足存在センシング
US11064768B2 (en) 2016-03-15 2021-07-20 Nike, Inc. Foot presence signal processing using velocity
US10390589B2 (en) 2016-03-15 2019-08-27 Nike, Inc. Drive mechanism for automated footwear platform
US11357290B2 (en) 2016-03-15 2022-06-14 Nike, Inc. Active footwear sensor calibration
US11026481B2 (en) 2016-03-15 2021-06-08 Nike, Inc. Foot presence signal processing using velocity
WO2018170148A2 (en) 2016-03-15 2018-09-20 Walker Steven H Foot presence signal processing using velocity
US20170273849A1 (en) 2016-03-28 2017-09-28 Under Armour, Inc. Active recorery system and method having capacitive proximity sensor
CN205568006U (zh) 2016-04-20 2016-09-14 浙江工贸职业技术学院 一种带智能装置且防臭透气的运动鞋
CA3042721C (en) 2016-11-22 2023-09-26 Puma SE Method for fastening a shoe, in particular a sports shoe, and shoe, in particular sports shoe
EP3595482B1 (en) 2017-03-14 2023-06-28 Nike Innovate C.V. Foot presence signal processing using velocity
EP3937717A4 (en) 2019-03-14 2022-11-23 NIKE Innovate C.V. TOUCH INTERFACE FOR ACTIVE SHOE SYSTEMS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349478A (ja) * 2005-06-15 2006-12-28 Denso Corp 静電容量型力学量センサおよびその製造方法
US8046937B2 (en) * 2008-05-02 2011-11-01 Nike, Inc. Automatic lacing system
US8676541B2 (en) * 2008-06-13 2014-03-18 Nike, Inc. Footwear having sensor system
JP2015057598A (ja) * 2011-04-08 2015-03-26 株式会社村田製作所 操作デバイス

Also Published As

Publication number Publication date
TWI721132B (zh) 2021-03-11
US11071355B2 (en) 2021-07-27
CN109414092A (zh) 2019-03-01
US20190373986A1 (en) 2019-12-12
WO2017160865A1 (en) 2017-09-21
US11213100B2 (en) 2022-01-04
KR20220016284A (ko) 2022-02-08
EP3429414A2 (en) 2019-01-23
JP7275197B2 (ja) 2023-05-17
US20170265584A1 (en) 2017-09-21
US20170265582A1 (en) 2017-09-21
KR20220079689A (ko) 2022-06-13
EP3429416A4 (en) 2019-12-11
EP3429415B1 (en) 2023-02-15
KR20220110613A (ko) 2022-08-08
CN114287695A (zh) 2022-04-08
CN112471685B (zh) 2022-08-30
CN109152448A (zh) 2019-01-04
US20190174871A1 (en) 2019-06-13
US20200077749A1 (en) 2020-03-12
JP2022110105A (ja) 2022-07-28
KR20180128009A (ko) 2018-11-30
JP7375114B2 (ja) 2023-11-07
US10758012B2 (en) 2020-09-01
WO2017161014A1 (en) 2017-09-21
KR102345184B1 (ko) 2021-12-30
CN109414092B (zh) 2022-03-29
EP3429406A4 (en) 2019-12-11
JP2021130004A (ja) 2021-09-09
WO2017160969A1 (en) 2017-09-21
KR102428289B1 (ko) 2022-08-02
US11044967B2 (en) 2021-06-29
TW201739371A (zh) 2017-11-16
JP2022137069A (ja) 2022-09-21
CN109152448B (zh) 2022-08-19
US20170265589A1 (en) 2017-09-21
US11925239B2 (en) 2024-03-12
JP2019508178A (ja) 2019-03-28
CN114652046A (zh) 2022-06-24
US20170265594A1 (en) 2017-09-21
EP4218488A3 (en) 2023-08-30
KR20220002707A (ko) 2022-01-06
US20210307455A1 (en) 2021-10-07
WO2017161037A1 (en) 2017-09-21
KR20180125996A (ko) 2018-11-26
JP2022133287A (ja) 2022-09-13
EP3429414A4 (en) 2021-04-28
CN109152446A (zh) 2019-01-04
CN109152445A (zh) 2019-01-04
US10722000B2 (en) 2020-07-28
US20200046081A1 (en) 2020-02-13
KR20230165394A (ko) 2023-12-05
TWI736797B (zh) 2021-08-21
JP6882319B2 (ja) 2021-06-02
EP3429410A4 (en) 2020-04-08
KR102490819B1 (ko) 2023-01-19
TWI766763B (zh) 2022-06-01
EP4098142A1 (en) 2022-12-07
KR102404495B1 (ko) 2022-06-07
CN109152447B (zh) 2021-10-15
CN109152447A (zh) 2019-01-04
KR20230021171A (ko) 2023-02-13
JP7346657B2 (ja) 2023-09-19
US20200352284A1 (en) 2020-11-12
JP2019508168A (ja) 2019-03-28
EP3795023A1 (en) 2021-03-24
JP2023100708A (ja) 2023-07-19
EP3429406A1 (en) 2019-01-23
US20210274888A1 (en) 2021-09-09
JP2019512325A (ja) 2019-05-16
KR102404494B1 (ko) 2022-06-07
US20170265587A1 (en) 2017-09-21
CN109152445B (zh) 2020-10-30
US10448707B2 (en) 2019-10-22
JP7268082B2 (ja) 2023-05-02
US20170265588A1 (en) 2017-09-21
US10477923B2 (en) 2019-11-19
JP2023103308A (ja) 2023-07-26
KR102361930B1 (ko) 2022-02-11
CN112471685A (zh) 2021-03-12
KR102609358B1 (ko) 2023-12-01
EP3429416A1 (en) 2019-01-23
US11857029B2 (en) 2024-01-02
US20220087368A1 (en) 2022-03-24
JP7077231B2 (ja) 2022-05-30
US10499711B2 (en) 2019-12-10
JP2019512323A (ja) 2019-05-16
JP6896758B2 (ja) 2021-06-30
TW202231212A (zh) 2022-08-16
JP2019512322A (ja) 2019-05-16
JP7434412B2 (ja) 2024-02-20
KR20180126006A (ko) 2018-11-26
US10172423B2 (en) 2019-01-08
KR20230014877A (ko) 2023-01-30
KR102588978B1 (ko) 2023-10-12
CN109152446B (zh) 2021-11-26
TW202139878A (zh) 2021-11-01
KR102494900B1 (ko) 2023-02-01
WO2017161000A3 (en) 2018-08-23
EP3429410A1 (en) 2019-01-23
JP7132124B2 (ja) 2022-09-06
JP7146133B2 (ja) 2022-10-03
US20190166954A1 (en) 2019-06-06
TW201902382A (zh) 2019-01-16
JP7086852B2 (ja) 2022-06-20
KR20180128010A (ko) 2018-11-30
WO2017161000A2 (en) 2017-09-21
JP2021142352A (ja) 2021-09-24
EP3429415A1 (en) 2019-01-23
JP2022110031A (ja) 2022-07-28
EP4218488A2 (en) 2023-08-02
EP3429415A4 (en) 2019-12-18
US11889900B2 (en) 2024-02-06
JP2023169227A (ja) 2023-11-29

Similar Documents

Publication Publication Date Title
US11925239B2 (en) Foot presence sensing systems for active footwear
US11766095B2 (en) Foot presence signal processing using velocity
KR102141214B1 (ko) 속도를 이용하는 발 존재 신호 처리
US20230371652A1 (en) Foot presence signal processing using velocity

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant