KR20180082249A - 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기 - Google Patents

가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기 Download PDF

Info

Publication number
KR20180082249A
KR20180082249A KR1020170003723A KR20170003723A KR20180082249A KR 20180082249 A KR20180082249 A KR 20180082249A KR 1020170003723 A KR1020170003723 A KR 1020170003723A KR 20170003723 A KR20170003723 A KR 20170003723A KR 20180082249 A KR20180082249 A KR 20180082249A
Authority
KR
South Korea
Prior art keywords
connecting member
movable core
segment
stator
mover
Prior art date
Application number
KR1020170003723A
Other languages
English (en)
Inventor
정상섭
김재범
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170003723A priority Critical patent/KR20180082249A/ko
Priority to PCT/KR2017/014967 priority patent/WO2018131810A1/en
Priority to CN201890000438.1U priority patent/CN210157068U/zh
Priority to PCT/KR2018/000377 priority patent/WO2018131859A1/ko
Priority to EP18150600.7A priority patent/EP3346584B1/en
Priority to US15/865,684 priority patent/US10819173B2/en
Priority to US15/866,727 priority patent/US10811920B2/en
Priority to EP18150923.3A priority patent/EP3346585B1/en
Publication of KR20180082249A publication Critical patent/KR20180082249A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0016Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • F04B53/125Reciprocating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Compressor (AREA)

Abstract

본 발명에 따른 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기는, 내측고정자와, 일측이 상기 내측고정자의 일측과 연결되고 타측이 상기 내측고정자의 타측과 공극을 형성하도록 상기 내측고정자의 반경 방향 외측에 이격 배치되는 외측고정자를 포함하는 고정자, 상기 내측고정자와 외측고정자 사이에 권취되는 마그넷코일, 상기 공극으로 노출되게 상기 내측고정자 또는 외측 고정자 중 적어도 어느 하나에 고정되는 마그네트, 상기 공극에 배치되고 자성체로 이루어져 상기 고정자 및 마그네트에 대해 왕복운동을 하는 가동코어 및, 비자성체로 이루어져 상기 가동코어가 상기 마그네트를 향해 공극으로 노출되게 상기 가동코어를 지지하는 중공의 연결부재를 포함하는 가동자를 포함하여, 왕복동 모터 및 이를 구비한 왕복동식 압축기가 소형화되고 경량화되며 보다 높은 효율을 얻을 수 있다.

Description

가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기{moving core type recyprocating motor and recyprocating compressor having the same}
본 발명은 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기에 관한 것이다.
모터(Motor)는 전기적 에너지를 기계적 에너지로 변환시켜 회전력 또는 왕복동력을 얻는 장치로서, 이러한 모터는 인가되는 전원에 따라서 교류모터와 직류모터로 구분될 수 있다.
모터는 고정자(Stator)와 가동자(Mover 또는 Rotor)를 포함해서 이루어지며, 고정자에 구비되는 권선(Coil)에 전류가 흐를 때 발생하는 자속(Flux)의 방향에 따라 마그네트(Magnet)가 구비된 가동자가 회전운동을 하거나 또는 왕복운동을 하게 된다.
모터는 가동자의 운동양태에 따라 회전 모터 또는 왕복동 모터로 구분될 수 있다. 회전 모터는 마그넷 코일에 인가되는 전원에 의해 고정자에 자속이 형성되고 이 자속에 의해 가동자가 고정자에 대해 회전운동을 하는 반면, 왕복동 모터는 가동자가 고정자에 대해 직선으로 왕복운동을 하는 방식이다.
왕복동 모터는 통상 입체적인 구조를 갖는 모터의 자속을 평판 형상으로 변형시킨 것으로서, 평면 형상의 가동자가 역시 평면 형상의 고정자 상측에 얹혀져 그 고정자의 자기장의 변화에 따라서 직선적으로 움직이는 모터의 한 종류이다.
최근에는 고정자가 내측고정자(Inner stator)와 외측고정자(Outer stator)를 갖는 원통형으로 형성되고, 내측고정자와 외측고정자 중 어느 한쪽에 유도자기를 발생하기 위한 마그넷 코일이 권취되며, 자극(Magnet pole)이 고정자의 축방향을 따라 배열된 마그네트(Magnet)가 가동자에 구비되어 그 가동자가 내측고정자와 외측고정자 사이의 공극(Air gap)에서 왕복운동을 하도록 하는 압축기용 왕복동 모터가 소개되고 있다.
이러한 압축기용 왕복동 모터는 대한민국 등록특허 제10-0492612호(이하, 선행기술 1) 및 대한민국 등록특허 제10-0539813호(이하, 선행기술 2) 등에 개시되어 있다.
선행기술 1과 선행기술 2에는 모두 박판으로 형성된 다수 개의 철심 코어를 환형으로 형성된 마그넷 코일에 방사상으로 적층하여 원통형으로 된 외측고정자 또는 내측고정자를 형성하고 있다.
상기와 같은 왕복동 모터는 가동자가 안정적으로 왕복운동을 할 수 있도록 그 가동자의 왕복방향 양쪽에 각각 압축코일스프링으로 된 기계적 공진 스프링이 구비되어 있다.
이에 따라, 가동자가 마그넷 코일에 인가된 전원의 자속 방향을 따라 전후 방향으로 이동을 할 때 그 가동자가 이동하는 방향에 구비된 기계적 공진스프링은 압축되면서 반발력을 축척하고, 이어서 가동자가 반대 방향으로 이동할 때 반발력을 축적했던 기계적 공진스프링은 가동자를 밀어내는 일련의 과정을 반복하게 된다.
그러나, 상기와 같은 종래의 왕복동 모터는, 가동자가 압축코일스프링으로 된 기계적 공진스프링으로 지지되나, 압축코일스프링은 특성상 발생하는 자체 공진 때문에 일정구간의 운전주파수 안에서도 특정구간은 운전주파수로 사용하지 못하는 문제점이 있었다.
또한, 종래의 왕복동 모터는, 압축코일스프링으로 된 기계적 공진스프링이 설치됨에 따라 그 압축코일스프링의 특성상 기계적 응력 한계 및 진동 거리 등의 제약이 발생하게 되고, 이로 인해 공진스프링은 일정한 선경과 길이 등을 확보해야 하므로 왕복동 모터의 횡방향 길이를 축소시키는데 한계가 있었다.
또한, 종래의 왕복동 모터는, 압축코일스프링으로 된 기계적 공진스프링이 설치됨에 따라 그 압축코일스프링의 양단을 고정하기 위한 스프링 지지부재를 가동자와 고정자에 각각 구비하여야 하므로 모터의 기구 구조가 복잡하게 될 뿐만 아니라, 복수 개씩의 공진스프링을 높은 압력으로 가압하여 가동자의 전후 양측에 각각 설치하여야 하므로 그만큼 조립공정이 어렵게 되는 문제점도 있었다.
또한, 종래의 왕복동 모터는, 외측고정자와 내측고정자 사이에 마그네트를 포함한 가동자가 왕복운동 가능하게 배치됨에 따라, 그 가동자를 기준으로 외측과 내측에 각각 공극이 형성되면서 전체 공극이 증가하여 모터 효율이 저하되는 문제점도 있었다.
또한, 종래의 왕복동 모터는, 마그네트 및 마그네트를 지지하는 마그네트 프레임의 두께가 커서 전체 가동자의 무게가 증가하고 이로 인해 전력소모량이 증가할 뿐 아니라, 외측고정자와 내측고정자 사이의 공극 또한 증가하면서 모터 효율이 더욱 저하되는 문제점도 있었다.
또한, 전술한 바와 같이 종래의 왕복동 모터는, 마그네트가 가동자에 포함되기되기 때문에, 가동자의 왕복운동 과정에서 마그네트가 마그네트 프레임으로부터 이탈되지 않도록 마그네트와 마그네트 프레임을 섬유 및 수지 등과 같은 비자성체, 비전도체의 재질로 감싸 코팅층을 형성해야만 했다. 따라서, 코팅층의 두께만큼 자기적 공극이 늘어날 수 밖에 없었고, 증가된 자기적 공극의 크기만큼 모터 효율이 더욱 저하되는 문제점이 있었다.
또한, 상기와 같은 왕복동 모터를 적용한 왕복동식 압축기는, 전술한 왕복동 모터에서의 문제를 여전히 가지게 되는 것은 물론 이로 인해 왕복동식 압축기를 소형화하는데 한계가 있었다.
본 발명의 상기되는 문제점을 해소하여, 운전주파수 내에서 모든 공진주파수를 사용할 수 있는 왕복동 모터를 제안한다.
본 발명은 축 방향 및 반경 방향으로의 모터의 크기를 소형화할 수 있는 왕복동 모터를 제안한다.
본 발명은 가동자의 무게를 줄여 전력소모량을 낮춤으로써 모터 효율을 높일 수 있고, 운전주파수를 증가시켜 고속운전이 가능한 왕복동 모터를 제안한다.
본 발명은 가동자의 크기는 유지하면서, 자석의 크기만을 증가시켜 모터 출력을 높일 수 있는 왕복동 모터를 제안한다.
본 발명은 가동자의 길이가 줄어들어 공차에 의한 자기적 공극을 최소한으로 유지할 수 있는 왕복동 모터를 제안한다.
본 발명은 가동코어가 공극으로 노출되어 마그네트 및 고정자와 가동코어의 자기적 공극을 더욱 줄일 수 있는 왕복동 모터를 제안한다.
본 발명은 줄어든 자기적 공극에 의해 모터 스프링 강성을 극대화할 수 있는 왕복동 모터를 제안한다.
본 발명은 가동코어의 고정을 위해 별도의 코팅층을 구비하지 않더라도 가동자의 왕복운동 시 가동코어의 이탈이 발생하지 않는 왕복동 모터를 제안한다.
본 발명은 고정자 및 가동자를 용이하게 제작하여 제조비용을 낮출 수 있는 왕복동 모터를 제안한다.
또, 본 발명은, 왕복동 모터의 크기를 줄여, 소형화되고 경량화된 왕복동식 압축기를 제안한다.
또, 본 발명은 왕복동 모터의 가동자와 피스톤 및 머플러를 일체로 형성하여, 작업성 및 결합력을 높이고, 공차관리에 유리하며, 공극의 균일화가 이루어져 가동자의 받는 편심력을 최소한으로 유지할 수 있는 왕복동식 압축기를 제안한다.
본 발명에 따른 왕복동 모터는, 내측고정자와, 일측이 상기 내측고정자의 일측과 연결되고 타측이 상기 내측고정자의 타측과 공극을 형성하도록 상기 내측고정자의 반경 방향 외측에 이격 배치되는 외측고정자를 포함하는 고정자와, 상기 내측고정자와 외측고정자 사이에 권취되는 마그넷코일과, 상기 공극으로 노출되게 상기 내측고정자 또는 외측 고정자 중 적어도 어느 하나에 고정되는 마그네트와, 상기 공극에 배치되고 자성체로 이루어져 상기 고정자 및 마그네트에 대해 왕복운동을 하는 가동코어 및, 비자성체로 이루어져 상기 가동코어가 상기 마그네트를 향해 공극으로 노출되게 상기 가동코어를 지지하는 중공의 연결부재를 포함하는 가동자를 포함하는 것을 특징으로 한다. 이에 따르면, 가동자의 무게를 줄여 전력소모량을 낮춤으로써 모터 효율을 높일 수 있고, 가동코어가 공극으로 노출되어 가동코어와 마그네트 및 고정자의 자기적 공극을 최소한으로 유지할 수 있다.
또한, 상기 연결부재는 내주면 또는 외주면에 내측으로 오목하게 형성된 매립홈을 형성하고, 상기 가동코어는 상기 매립홈에 적어도 일부가 매립된 것을 특징으로 한다. 이에 따르면, 가동코어와 연결부재의 결합력이 향상되어, 가동자의 왕복운동 과정에서 가동코어가 연결부재에서 이탈되는 것을 방지할 수 있고, 가동자의 두께가 얇아져 공극의 크기를 줄일 수 있으며, 가동자의 자기적 스프링 강성을 높일 수 있다.
또한, 상기 연결부재의 내측과 외측으로 노출되게 상기 연결부재를 관통하여 고정된 것을 특징으로 한다. 이에 따르면, 생략된 연결부재의 두께만큼 공극은 더욱 작아질 수 있고, 작아진 공극의 크기에 비례해서 가동자의 자기적 스프링 강성은 더욱 높아질 수 있다.
또한, 상기 연결부재의 내측 또는 외측으로 노출된 노출면이 상기 연결부재의 내주면 또는 외주면과 일직선상에 위치하는 것을 특징으로 한다. 이에 따르면, 가동자의 왕복운동 과정에서, 가동코어가 고정자 또는 마그네트 등과 충돌하는 것을 방지할 수 있다.
또한, 상기 가동코어와 상기 연결부재는 인서트 사출을 통해 일체로 형성된 것을 특징으로 한다. 이에 따르면, 가동코어를 연결부재에 고정하는 작업이 생략될 수 있어 작업성이 향상되고, 가동코어와 연결부재의 결합력이 향상되어, 공차관리에 유리하다.
또한, 상기 연결부재의 재질은 유리섬유(glass fiber)를 포함하는 것을 특징으로 한다. 이에 따르면, 연결부재의 강성을 확보할 수 있고, 가동자에서의 와류손실을 줄일 수 있다.
또한, 상기 가동코어는, 상기 가동코어의 왕복방향과 나란하게 배치된 제1세그먼트를 상기 연결부재의 원주방향을 따라 방사상으로 적층하여 형성된 것을 특징으로 한다. 이에 따르면, 와전류를 줄일 수 있다.
또한, 상기 제1세그먼트는, 상기 연결부재와 접촉된 적어도 하나의 측면에, 상기 연결부재의 내측을 향해 돌출된 고정돌기를 형성한 것을 특징으로 한다. 이에 따르면, 제1세그먼트와 연결부재의 결합력이 높아져, 제1세그먼트가 연결부재에서 이탈되지 않고, 고정된 상태를 안정적으로 유지할 수 있다.
또한, 상기 제1세그먼트에는, 적어도 하나 이상의 홀이 타공된 것을 특징으로 한다. 이에 따르면, 제1세그먼트의 중량이 가벼워져 전체적으로 가동자의 중량이 줄어들 수 있다.
또한, 상기 제1세그먼트는, 상기 연결부재의 내측 또는 외측으로 노출된 노출면의 길이가 상기 연결부재와 접촉하는 접촉면의 길이보다 짧게 형성된 것을 특징으로 한다. 이에 따르면, 제1세그먼트에 별도의 고정돌기 또는 고정홈을 형성하지 않더라도, 제1세그먼트와 연결부재의 결합력이 높아져, 제1세그먼트가 연결부재에서 이탈되지 않고, 고정된 상태를 안정적으로 유지할 수 있다.
또한, 상기 제1세그먼트는, 적층방향과 나란하게 돌출된 돌기부 및 요입된 홈부를 형성한 것을 특징으로 한다. 이에 따르면, 복수의 제1세그먼트를 적층시킬 때, 돌기부를 홈부에 끼우면서 적층할 수 있어, 적층 작업이 용이하게 진행될 수 있고, 복수의 제1세그먼트 간의 결합력이 확보되어, 적층된 모양이 흐트러지지 않고, 적층된 상태를 견고하게 유지할 수 있다.
또한, 상기 가동코어는, 상기 연결부재의 원주방향과 나란하게 배치된 제2세그먼트를 상기 가동코어의 왕복방향으로 적층하여 형되고, 상기 제2세그먼트에는 적어도 하나 이상의 연결구가 타공되고, 상기 연결부재에는 상기 제2세그먼트의 적층방향과 나란하게 연결돌기를 형성하여, 상기 연결구에 상기 연결돌기가 끼워지면서 제2세그먼트의 적층이 이루어진 것을 특징으로 한다. 이에 따르면, 제2세그먼트의 중량이 가벼워져 전체적으로 가동자의 중량이 줄어들 수 있고, 제2세그먼트의 적층이 보다 용이하게 이루어질 수 있음은 물론, 제2세그먼트와 연결부재의 결합력이 향상될 수 있다.
또한, 상기 제2세그먼트는, 적층방향과 나란하게 돌출된 돌기부 및 요입된 홈부를 형성한 것을 특징한다. 이에 따르면, 복수의 제2세그먼트를 적층시킬 때, 돌기부를 홈부에 끼우면서 적층할 수 있어, 적층 작업이 용이하게 진행될 수 있다.
또한, 상기 가동코어는, 호형상으로 이루어진 상기 제2세그먼트가 원형을 이루도록 연속해서 연결된 제2세그먼트링을 상기 가동코어의 왕복방향으로 적층하여 형성된 것을 특징으로 한다. 이에 따르면, 한번에 원주방향 전체의 제2세그먼트를 적층시킬 수 있어 작업성이 향상되고, 제2세그먼트 간의 결합력 또한 확보될 수 있어 가동코어의 구조적 강도가 향상될 수 있다.
또한, 상기 가동코어는, 호형상으로 이루어진 상기 제2세그먼트가 연속해서 연결된 제2세그먼트띠를 상기 연결부재에 나선형으로 감아서 형성된 것을 특징으로 한다. 이에 따르면, 길이재인 제2세그먼트띠를 타발 등의 작업으로 손쉽게 제작할 수 있고, 단순히 연결부재에 나선형으로 권취하는 작업 만으로 원하는 두께만큼 제2세그먼트를 적층시킬 수 있어 작업성이 향상될 수 있다.
본 발명에 따른 왕복동식 압축기는, 내부공간을 갖는 케이스, 상기 케이스의 내부공간에 배치되고, 가동자가 왕복운동을 하는 왕복동모터, 상기 왕복동 모터의 가동자에 결합되어 함께 왕복운동하는 피스톤, 상기 피스톤이 삽입되어 압축공간을 형성하는 실린더, 상기 압축공간의 흡입측을 개폐하는 흡입밸브 및 상기 압축공간의 토출측을 개폐하는 토출밸브를 포함하고, 상기 왕복동 모터는 앞서 설명한 왕복동 모터로 이루어진 것을 특징으로 한다. 이에 따르면 소형화, 경량화된 왕복동 모터를 구비함에 따라 왕복동식 압축기가 소형화되고, 경량화될 수 있다.
또한, 상기 연결부재와 상기 피스톤은 인서트 사출을 통해 일체로 형성된 것을 특징으로 한다. 이에 따르면, 가동자와 피스톤의 결합력이 확보되고, 가동자와 피스톤을 볼트 등으로 연결하기 위한 공정이 생략될 수 있어, 작업성이 높아질 수 있으며, 볼트 등과 같은 부품의 생략으로 가동자와 피스톤에 가해지는 하중이 줄어들어 모터의 효율은 더욱 향상되고, 조립부의 생략으로 그로 인한 소음 및 진동을 줄일 수 있다.
또한, 상기 피스톤은 내측에 머플러를 구비하고, 상기 머플러는 상기 연결부재의 외측면에 유전가열을 통한 융착 방식 또는 본딩 방식으로 부착된 것을 특징으로 한다. 이에 따르면, 가동자와 피스톤 및 머플러의 결합력은 더욱 확보되고, 가동자와 머플러를 볼트 등으로 연결하기 위한 공정이 생략될 수 있어, 작업성이 높아질 수 있으며, 머플러와, 피스톤과 가동자가 일체로 형성되기 때문에 공차관리에 유리하다. 또한, 유리한 공차관리로 인해 공극의 균일화가 가능하고, 가동자가 고정자 및 마그네트로부터 받는 편심력을 최소한으로 줄일 수 있어, 가동자가 회전하지 않고, 직선으로만 왕복운동 할 수 있다.
본 발명에 따르면, 가동자를 자기적 공진스프링으로 공진시킴에 따라 일정구간의 운전주파수 내에서 사용 주파수가 제한되는 것을 미연에 방지할 수 있어 모터의 효율이 향상될 수 있다.
본 발명에 따르면, 가동자를 자기적 공진스프링으로 공진시킴에 따라, 가동자를 공진시키기 위한 부품수를 줄일 수 있으며 모터의 횡방향 길이를 더욱 줄일 수 있다.
본 발명에 따르면, 가동자를 자기적 공진스프링으로 공진시킴에 따라, 가동자가 공진스프링의 측힘에 의해 편심되는 것을 방지하여 마찰손실 및 소음을 줄일 수 있다.
본 발명에 따르면, 마그네트를 고정자의 단부에 결합시켜 가동자의 무게를 줄일 수 있고 이를 통해 전력 소모량을 낮춰 모터의 효율을 높일 수 있고, 운전주파수를 증가시켜 고속운전할 수 있다.
본 발명에 따르면, 가동코어가 공극으로 노출되어 마그네트 및 고정자와 가동코어의 자기적 공극을 더욱 줄일 수 있다.
본 발명에 따르면, 고정자 및 가동자를 용이하게 제작하여 제조비용을 낮출 수 있다.
본 발명에 따르면, 상기한 왕복동 모터를 구비함에 따라 왕복동식 압축기가 소형화되고, 경량화될 수 있다.
본 발명에 따르면, 압축기의 효율향상 및 소음 저감 등의 효과를 얻을 수 있다.
본 발명에 따르면, 왕복동 모터의 가동자와 피스톤 및 머플러를 일체로 형성하여, 작업성 및 결합력을 높이고, 공차관리에 유리하며, 공극의 균일화가 이루어져 가동자의 받는 편심력을 최소한으로 유지할 수 있다. 나아가, 발명의 구체적인 실시예에 제시되는 각각의 구성에 의해서 이해될 수 있는 다양한 효과를 얻을 수 있는 것도 물론이다.
도 1은 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터를 개략적으로 보인 단면도,
도 2는 도 1에서 고정자와 가동자의 일부를 발췌하여 보인 단면도,
도 3은 본 발명의 일부 구성요소인 고정자를 구성하는 코어블럭을 발췌하여 보인 사시도,
도 4 내지 도 5는 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터의 동작을 설명하기 위해 보인 개략도,
도 6은 본 발명의 다른 실시예에 따른 가동코어형 왕복동 모터를 개략적으로 보인 단면도,
도 7은 본 발명의 일부 구성요소인 가동자의 일 예를 보인 사시도,
도 8은 본 발명의 일부 구성요소인 가동자의 일 예를 보인 부분 절개 사시도,
도 9는 본 발명의 일부 구성요소인 가동자의 다른 예를 보인 사시도,
도 10은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도,
도 11은 본 발명의 일부 구성요소인 제1세그먼트의 일 예를 보인 사시도,
도 12는 본 발명의 일부 구성요소인 제1세그먼트의 다른 예를 보인 사시도,
도 13 내지 도 14는 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도,
도 15는 본 발명의 일부 구성요소인 제1세그먼트의 또 다른 예를 보인 사시도,
도 16은 본 발명의 일부 구성요소인 제1세그먼트가 적층된 상태를 보인 단면도,
도 17은 본 발명의 일부 구성요소인 제1세그먼트가 방사적층되는 과정을 설명하는 개념도,
도 18 내지 도 19는 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 단면도,
도 20은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도,
도 21은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 부분 절개 사시도,
도 22는 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도,
도 23은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도,
도 24는 본 발명의 일부 구성요소인 제2세그먼트와 연결부재의 분리사시도,
도 25는 본 발명의 일부 구성요소인 제2세그먼트의 다른 예를 보인 사시도,
도 26은 본 발명의 일부 구성요소인 제2세그먼트가 적층된 상태를 보인 단면도,
도 27은 본 발명의 일부 구성요소인 가동코어를 구성하는 제2세그먼트띠의 일 예를 보인 도면,
도 28은 본 발명의 일부 구성요소인 가동코어를 구성하는 제2세그먼트띠의 다른 예를 보인 도면,
도 29는 일부 구성요소인 가동코어를 구성하는 제2세그먼트링의 일 예를 보인 도면,
도 30은 본 발명의 일부 구성요소인 가동코어가 제2세그먼트띠를 감아서 구성된 상태를 보인 사시도,
도 31은 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터를 구비한 왕복동식 압축기의 종단면도,
도 32는 본 발명의 다른 실시예에 따른 왕복동식 압축기의 가동자와 피스톤을 발췌하여 보인 단면도,
도 33은 본 발명의 또 다른 실시예에 왕복동식 압축기의 가동자와 피스톤을 발췌하여 보인 단면도,
도 34는 본 발명의 또 다른 실시예에 왕복동식 압축기의 가동자와 피스톤과 머플러를 발췌하여 보인 단면도이다.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하에 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다.
이하의 실시예에 첨부되는 도면은, 같은 발명 사상의 실시예이지만, 발명 사상이 훼손되지 않는 범위 내에서, 용이하게 이해될 수 있도록 하기 위하여, 미세한 부분의 표현에 있어서는 도면별로 서로 다르게 표현될 수 있고, 도면에 따라서 특정 부분이 표시되지 않거나, 도면에 따라서 과장되게 표현되어 있을 수 있다.
도 1은 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터를 개략적으로 보인 단면도이고, 도 2는 도 1에서 고정자와 가동자의 일부를 발췌하여 보인 단면도이며, 도 3은 본 발명의 일부 구성요소인 고정자를 구성하는 코어블럭을 발췌하여 보인 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 의한 가동코어형 왕복동 모터는, 고정자(100), 마그넷코일(200), 마그네트(300), 가동자(400)를 포함할 수 있다.
먼저, 상기 고정자(100)는 내측 고정자(110)와, 일측이 상기 내측 고정자(110)와 연결되고 타측이 상기 내측고정자(110)의 타측과 공극(130)을 형성하도록 상기 내측고정자(110)의 반경 방향 외측에 이격 배치되는 외측고정자(120)를 포함하여 구성된다.
이때, 상기 고정자(100)를 구성하는 내측 고정자(110)와 외측고정자(120)는 자성체 또는 전도체 재질로 이루어질 수 있다.
또한, 본 실시예에서, 내측 고정자(110)는 내측코어블럭(110a)을 방사상으로 적층하여 형성되고, 외측고정자(120)는 외측코어블럭(120a)을 방사상으로 적층하여 형성될 수 있다.
이때, 도 3에 도시한 바와 같이, 상기 내측코어블럭(110a) 및 외측코어블럭(120a)은 일측이 서로 연결되고 타측이 이격되어 공극(130a)을 형성하는 얇은 핀의 형태를 취할 수 있다.
상기와 같이 내측코어블럭(110a)과 외측코어블럭(120a)이 방사상으로 적층되면, 상기 내측고정자(110) 및 외측고정자(120)는 축 방향에서 바라봤을 때, 원형을 이룰 수 있으며, 전체적으로는 중공의 원통형을 이룰 수 있다. 이와 같은 경우, 내측고정자(110)와 외측고정자(120) 사이에 형성된 공극(130) 역시 전체적으로 원통형을 이룰 수 있다.
본 실시예에서, 상기 내측코어블럭(110a) 및 외측코어블럭(120a) 중 적어도 어느 하나는, 'ㅡ'자 또는 'ㄱ'자 또는 'ㄷ'자로 형성될 수 있으며, 이 밖에도 다양한 형태로 구비될 수 있다.
일 예로, 일체로 연결된 내측코어블럭(110a)과 외측코어블럭(120a)은 대체적으로 'ㄷ'자 형을 이룰 수 있다.
한편, 상기 마그넷코일(200)은 내측고정자(110)와 외측고정자(120) 사이에 권취되거나, 권취된 상태로 수용될 수도 있다.
본 실시예에서, 마그넷코일(200)은 내측고정자(110)에 권취되면서 내측고정자(110)와 연결될 수 있고, 별도로 권취된 후 내측고정자(110) 및 외측고정자(120) 사이에 고정될 수 있다.
전자의 경우, 내측 고정자(110)에 마그넷코일(200)이 권취된 후, 외측고정자(120)가 내측고정자(110)에 고정될 수 있다. 한편, 후자의 경우, 내측 고정자(110)는 권취된 상태의 마그넷코일(200)의 내주면에 복수의 내측코어블럭(110a)을 방사상으로 적층하여 이루어질 수 있고, 외측 고정자(120) 역시 권취된 상태의 마그넷코일(200)의 외주면에 복수의 외측코어블럭(120a)을 방사상으로 적층하여 이루어질 수 있다.
이때, 상기와 같이 방사상으로 적층된 내측코어블럭(110a)에 의해 내측 고정자(110)는 중공(101)을 형성할 수 있으며, 이 중공(101)은 추후, 피스톤 및 실린더 등이 배치되는 공간으로 활용될 수 있다.
다른 예로, 내측코어블럭(110a)과 외측코어블럭(120a)은 'ㄷ'자 형태를 이루도록 일체로 형성된 후, 마그넷코일(200)에 삽입하는 방식으로 적층이 이루어질 수 있다. 또한, 마그넷코일(200)의 내주면에 내측코어블럭(110a)을 방사상으로 적층한 후, 마그넷코일(200)의 외주면에 외측코어블럭(120a)을 방사상으로 적층할 수도 있다. 후자의 경우, 외측코어블럭(120a)을 마그넷코일(200)의 외주면에 배치하면서, 내측코어블럭(110a)의 일측과 외측코어블럭(120a)의 일측을 일체로 연결하는 작업이 동시에 진행될 수 있다.
다시 도 2를 참조하면, 상기 내측고정자(110)와 외측고정자(120) 사이에는 상기 마그넷코일(200)이 수용되고, 상기 공극(130)과 연통된 공간부(140)가 형성될 수 있다.
나아가, 내측고정자(110)와 외측고정자(120) 중 적어도 어느 하나에는 마주보는 면에 상기 공간부(140)가 형성하도록 내측으로 오목하게 권취홈(111,121)이 형성될 수 있다.
이때, 상기 공간부(140) 또는 권취홈(111,121)의 크기는 권취된 마그넷코일(200)의 양에 비례해서 형성될 수 있다.
일 예로, 도 1 내지 도 5에 도시한 바와 같이, 내측고정자(110)와 외측고정자(120) 양측 모두에 권취홈(111,121)이 형성될 수 있다.
다른 예로, 도 6에 도시한 바와 같이, 내측고정자(110)에는 권취홈이 형성되지 않고, 외측고정자(120)에만 권취홈(121)이 형성될 수 있다.
도시하지 않았지만, 또 다른 예로, 외측고정자(120)에는 권취홈이 형성되지 않고, 내측고정자(110)에만 권취홈이 형성될 수도 있다.
상기와 같이 권취홈(111,121)이 형성되면, 마그넷코일(200)이 수용되는 공간부(140)가 제공되어 마그넷코일(200)과 내,외측고정자(110,120)의 연결이 보다 용이하게 이루어질 수 있음은 물론, 권취홈(121)에 의해 내측고정자(110) 및 외측고정자(120)에는 마그네트(300)가 고정되는 폴부(124)에 비해 상대적으로 두께가 얇은 요크부(123)가 형성될 수도 있다.
상기한 바와 같이, 상기 내측고정자(110) 또는 외측고정자(120) 중 적어도 어느 하나에는, 자로를 이루는 요크부(123) 및 상기 요크부(123)의 폭보다 확장되고 상기 마그네트(300)가 고정되는 폴부(124)가 형성될 수 있다.
이때, 상기 폴부(124)는 고정되는 마그네트(300)의 길이와 동일하거나 조금 길게 형성될 수 있다.
상기와 같은 요크부(123) 및 폴부(124)의 조합에 의해 자기적 스프링의 강성, 알파값(모터의 추력상수), 알파값 변동율 등이 정해질 수 있으며, 요크부(123) 및 폴부(124)는 해당 왕복동 모터가 적용되는 제품의 설계에 따라 다양한 범위에서 그 길이나 형상이 정해질 수 있다.
한편, 전술한 바와 같이 원통모양으로 마그넷코일(200)의 내주면과 외주면에 각각 적층된 내측고정자(110)의 외주면 또는 외측고정자(120)의 내주면 중 적어도 어느 한 곳에는 마그네트(300)가 고정될 수 있다.
이때, 상기 마그네트(300)는, 상기 마그넷코일(200)과, 후술되는 가동자(400)의 왕복방향으로 이격되게 배치됨이 바람직하다. 즉, 상기 마그네트(300)와 마그넷코일(200)은 고정자(100)의 반경 방향으로 중첩되지 않게 배치될 수 있다.
종래의 경우, 마그네트(300)와 마그넷코일(200)이 고정자(100)의 반경 방향으로 중첩될 수 밖에 없었고, 그에 따라 모터의 직경이 커질 수 밖에 없었다. 반면, 본 발명의 경우 마그네트(300)와 마그넷코일(200)이 가동자(400)의 왕복방향으로 이격 배치되므로, 종래 대비 모터의 직경을 줄일 수 있다.
또한, 상기 마그네트(300)는 상기 가동자(400)의 왕복방향으로 서로 다른 자극이 배열되게 형성될 수 있다.
일 예로, 마그네트(300)는 N극과 S극이 양측에 동일한 길이로 형성된 2-폴(2-pole) 마그네트로 구비될 수 있다.
또한, 상기 마그네트(300)는 축방향 단면의 적어도 일부가 호(arc) 형상으로 이루어질 수 있다. 여기서 ‘축 방향’이라 함은 가동자(400)의 왕복방향을 의미한다.
본 실시예에서, 상기 마그네트(300)는 원통형으로 이루어질 수 있다.
다른 예로, 마그네트(300)는 축 방향에서 바라봤을 때, 호(arc) 형상의 단면을 갖고, 복수 구비되어 내측고정자(110)의 외주면이나, 외측고정자(120)의 내주면에 원주방향을 따라 이격 배치될 수도 있다.
이때, 마그네트(300)는 공극(130)으로 노출된 상태이다.
한편, 공극(130)을 형성하는 내측고정자(110)와 외측 고정자(120)의 마주보는 면에는 마그네트(300)가 고정되는 마그네트 고정면(115,125)이 형성될 수 있다.
상기 마그네트 고정면(115,125)은 마그네트(300)의 내측면 또는 외측면의 형상에 대응하여 형성될 수 있다.
예를 들어, 마그네트(300)가 외측고정자(120)에 고정된 경우, 마그네트(300)의 외측면이 곡면이면, 외측고정자(120)의 마그네트 고정면(125) 역시 곡면으로 형성되고, 마그네트(300)의 외측면이 평면이면, 외측고정자(120)의 마그네트 고정면(125) 역시 평면으로 형성될 수 있다.
다른 예로, 마그네트(300)가 내측고정자(110)에 고정된 경우, 마그네트(300)의 내측면이 곡면이면, 내측고정자(110)의 마그네트 고정면(115) 역시 곡면으로 형성되고, 마그네트(300)의 내측면이 평면이면, 내측고정자(110)의 마그네트 고정면(115) 역시 평면으로 형성된다.
참고로, 마그네트(300)의 외측면 또는 내측면이 곡면이라면, 내측고정자(110)의 외주면 또는 외측고정자(120)의 내주면은 원형을 이룰 수 있다.
또한, 마그네트(300)의 외측면 또는 내측면이 평면이라면, 내측고정자(110)의 외측면 또는 외측고정자(120) 내측면은 다각형(polygon) 모양을 이룰 수 있다.
도 1 내지 도 5에서와 같이, 마그네트(300)는 외측고정자(120)에 고정될 수 있다. 뿐만 아니라, 도 6에서와 같이, 마그네트(300)는 내측고정자(110)에 고정될 수 있다.
도시하고 있지 않지만, 다른 예로, 마그네트(300)는 내측고정자(110)와 외측고정자(120) 양측 모두에 고정될 수도 있다.
상기 가동자(400)는 마그네트(300)가 노출되는 공극(130)에 배치되며, 자성체로 이루어져 고정자(100) 및 마그네트(300)에 대해 왕복운동을 한다.
이때, 상기 가동자(400)는 상기 마그넷코일(200)과, 가동자(400)의 왕복방향으로 이격되게 배치되어, 상기 가동자(400)의 왕복운동에 따라 상기 마그넷코일(200)과 가동자(400)의 간격이 가변됨이 바람직하다. 즉, 상기 가동자(400)와 마그넷코일(200)은 고정자(100)의 반경 방향으로 중첩되지 않게 배치될 수 있다.
종래의 경우, 가동자(400)와 마그넷코일(200)이 고정자(100)의 반경 방향으로 중첩될 수 밖에 없었고, 그에 따라 모터의 직경이 커질 수 밖에 없었다. 반면, 본 발명의 경우 가동자(400)와 마그넷코일(200)이 가동자(400)의 왕복방향으로 이격 배치되므로, 종래 대비 모터의 직경을 줄일 수 있다.
본 실시예에서, 상기 가동자(400)는 축방향 단면의 적어도 일부가 호(arc) 형상으로 이루어질 수 있다.
즉, 상기 가동자(400)는 원통형의 내측고정자(110)와 외측고정자(120) 사이에 형성된 원통형의 공극(130)에 삽입되게 중공의 원통형으로 이루어지거나, 축방향에서 바라봤을 때, 호 형상의 단면을 가지도록 형성되고 복수 구비되어 원주방향으로 이격 배치될 수 있다.
상기 가동자(400)는 공극(130)에 배치되고 자성체로 이루어져 상기 고정자(100) 및 마그네트(300)에 대해 왕복운동을 하는 가동코어(410)와, 비자성체로 이루어져 상기 가동코어(410)가 상기 마그네트(300)를 향해 공극(130)으로 노출되게 상기 가동코어(410)를 지지하는 중공의 연결부재(420)를 포함할 수 있다.
일 예로, 상기 연결부재(420)는 원통 형상으로 구비될 수 있으며, 상기 가동코어(410)은 연결부재(420)의 내측면 또는 외측면에 고정될 수 있다. 또한, 상기 연결부재(420)는 자속의 흐름에 영향을 주지 않도록 비자성체 재질로 형성될 수 있다.
상기와 같이 가동코어(410)가 공극(130)으로 노출되게 연결부재(420)에 고정되면, 마그네트(300)와 가동코어(410)의 자기적 공극을 최소한으로 줄일 수 있다.
본 실시예에서, 가동자(400)는 공극(130)으로 노출된 내측고정자(110) 또는 외측고정자(120)의 외측 표면 및 마그네트(300)와 간격을 두고 삽입되며, 이를 위해 가동자(400)의 크기는 공극(130)의 크기보다는 작게 형성되어야 한다.
즉, 가동자(400)의 내주면은 내측고정자(110)의 외주면 보다 큰 직경을 갖도록 형성되고, 가동자(400)의 외주면은 외측고정자(120)의 내주면 보다 작은 직경을 갖도록 형성될 수 있다.
본 실시예에 따른 왕복동 모터는 마그넷 코일(200)이 구비된 고정자(100)와 마그네트(300), 가동자(400) 사이에서 발생하는 왕복방향 중심력(centering force)에 의해 왕복운동을 하게 된다. 왕복방향 중심력이란 가동자(400)가 자기장 안에서 이동을 할 때 자기적 에너지(자기적 위치 에너지, 자기저항)가 낮은 쪽으로 저장하는 힘을 말하며, 이 힘은 자기적 스프링(magnetic spring)을 형성하게 된다.
따라서, 본 실시예에서는 가동자(400)가 마그넷 코일(200) 및 마그네트(300)에 의한 자기력에 의해 왕복운동을 할 때, 그 가동자(400)는 자기적 스프링에 의해 중심방향으로 복귀하려는 힘을 축적하고, 이 자기적 스프링에 축적된 힘으로 인해 가동자(400)가 공진하면서 지속적으로 왕복운동을 하게 된다.
이하, 상기와 같은 본 실시예에 따른 가동코어형 왕복동 모터의 동작 원리를 보다 구체적으로 설명하기로 한다.
먼저, 왕복동 모터의 마그넷코일(200)에 교번전류가 인가되면, 내측고정자(110)와 외측고정자(120) 사이에는 교번자속이 형성된다. 이 경우 가동자(400)는 자속 방향을 따라 양방향으로 움직이면서 지속적으로 왕복운동을 하게 된다.
이때, 왕복동 모터의 내부에는 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 스프링(Magnetic Resonance Spring)이 형성되어, 가동자(400)의 공진운동을 유도하게 된다.
도 4 내지 도 5는 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터의 동작을 설명하기 위해 보인 개략도이다.
예를 들어 도 4와 같이, 마그네트(300)가 외측 고정자(120)에 고정되고, 마그네트(300)에 의한 자속이 도면상의 시계방향으로 흐르는 상태에서, 마그넷코일(200)에 교번전류가 인가되면, 마그넷코일(200)에 의한 자속이 도면상의 시계방향으로 흐르게 되고, 마그넷코일(200)에 의한 자속과 마그네트(300)의 자속이 증자되는 도면의 오른쪽 방향(화살표 M1참조)으로 가동자(400)가 이동하게 된다.
이때, 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 에너지(즉, 자기적 위치 에너지 또는 자기적 저항)가 낮은 쪽인 도면의 좌측방향으로 복귀하려는 왕복중심력(Centering force)(F1)이 축적된다.
이러한 상태에서, 도 5와 같이 마그넷코일(200)에 인가되는 전류의 방향이 바뀌게 되면, 마그넷코일(200)에 의한 자속이 도면상의 반시계 방향으로 흐르게 되고, 마그넷코일(200)에 의한 자속과 마그네트(300)의 자속은 이전과 반대 방향, 즉 도면의 왼쪽방향으로 증자된다.
이때, 상기 축적된 왕복중심력(Centering force)(F1)과, 마그넷코일(200) 및 마그네트(300)의 자속에 의한 자기력에 의해 도면의 왼쪽 방향(화살표 M2 참조)으로 가동자(400)가 이동하게 하게 된다.
이 과정에서, 가동자(400)는 관성력과 자기력에 의해 마그네트(300)의 중심을 지나 도면의 좌측으로 더 이동하게 된다.
이때도 마찬가지로, 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 에너지가 낮은 쪽인 마그네트(300)의 중심방향 즉, 도면의 우측방향으로 복귀하려는 왕복중심력(Centering force)(F2)이 축적된다.
다시 도 4에서와 같이 마그넷코일(200)에 인가되는 전류의 방향이 바뀌게 되면, 상기 축적된 왕복중심력(Centering force)(F2)과, 마그넷코일(200) 및 마그네트(300)의 자속에 의한 자기력에 의해 마그네트(300)의 중심방향으로 가동자(400)가 이동하게 하게 된다. 이때도 역시, 가동자(400)는 관성력과 자기력에 의해 마그네트(300)의 중심을 지나 도면의 오른쪽 방향으로 더 이동하게 되고, 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 에너지가 낮은 쪽인 마그네트(300)의 중심방향 즉, 도면의 좌측방향으로 복귀하려는 왕복중심력(Centering force)(F1)이 축적되고, 이러한 방식으로 가동자(400)는 기계적 공진 스프링이 구비된 것과 같이 도면의 우측과 좌측을 번갈아 가면서 이동하는 왕복운동을 지속적으로 반복하게 된다.
이하, 도시하고 있지 않지만, 마그네트(300)가 내측고정자(110)에 고정된 경우 가동자의 공진 운동에 대해서도 설명하기로 한다.
마그네트(300)가 내측고정자(110)에 고정되고, 마그네트(300)에 의한 자속이 반시계방향으로 흐르는 상태에서, 마그넷코일(200)에 교번전류가 인가되어 마그넷코일(200)에 의한 자속이 시계방향으로 흐르면, 마그넷코일(200)에 의한 자속과 마그네트(300)의 자속이 증자되는 도면의 왼쪽 방향으로 가동자(400)가 이동하게 된다.
이때, 왕복중심력(Centering force)은 오른쪽 방향으로 축적된다.
이러한 상태에서, 마그넷코일(200)에 인가되는 전류의 방향이 바뀌게 되면, 마그넷코일(200)에 의한 자속이 반시계 방향으로 흐르게 되고, 마그넷코일(200)에 의한 자속과 마그네트(300)의 자속이 증자되는 도면의 우측방향으로 가동자(400)가 이동하게 된다.
이때, 오른쪽 방향으로 축적되었던 왕복중심력(Centering force)과, 마그넷코일(200) 및 마그네트(300)의 자속에 의한 자기력에 의해 마그네트(300)의 중심방향으로 가동자(400)가 이동하게 하게 된다.
이 과정에서, 가동자(400)는 관성력과 자기력에 의해 마그네트(300)의 중심을 지나 도면의 우측 방향으로 더 이동하게 된다.
이때도 마찬가지로, 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 좌측방향으로 복귀하려는 왕복중심력(Centering force)이 축적될 수 있으며, 이러한 방식으로 마그네트(300)가 내측고정자(110)에 고정된 상태에서도 가동자(400)는 기계적 공진 스프링이 구비된 것과 같이 도면의 우측과 좌측을 번갈아 가면서 이동하는 왕복운동을 지속적으로 반복하게 된다.
도 7은 본 발명의 일부 구성요소인 가동자의 일 예를 보인 사시도이고, 도 8은 본 발명의 일부 구성요소인 가동자의 일 예를 보인 부분 절개 사시도이고, 도 9는 본 발명의 일부 구성요소인 가동자의 다른 예를 보인 사시도이다.
도 7 내지 도 9를 참조하면, 상기 가동코어(410)는, 상기 연결부재(420)의 내측으로 노출되게 상기 연결부재(420)의 내주면(425)에 고정되거나, 상기 연결부재(420)의 외측으로 노출되게 상기 연결부재(420)의 외주면(426)에 고정될 수 있다.
전술한 바와 같이 연결부재(420)는 중공(428)을 형성하여, 내주면(425)과 외주면(426)을 구비한다.
이에 따라, 상기 가동코어(410)는 연결부재(420)의 내주면(425) 또는 외주면(426)에 고정될 수 있다.
일 예로, 상기 내측고정자(110)에 마그네트(300)가 고정된 경우, 가동코어(410)는 상기 마그네트(300)와 마주보도록 연결부재(420)의 내주면(425)에 고정될 수 있다.
다른 예로, 상기 외측고정자(120)에 마그네트(300)가 고정된 경우, 가동코어(410)는 상기 마그네트(300)와 마주보도록 연결부재(420)의 외주면(426)에 고정될 수 있다.
상기와 같이 가동코어(410)가 연결부재(420)의 내측 또는 외측으로 노출되면, 마그네트(300)와 가동코어(410)의 자기적 공극을 최소한으로 줄일 수 있다. 일반적으로, 모터의 자기적 스프링 강성은 공극의 크기가 작을수록 극대화된다. 따라서, 줄어든 자기적 공극에 비례하여 모터 스프링 강성을 높일 수 있다.
또한, 본 발명의 경우, 종래와 달리, 가동코어(410)의 이탈 방지를 위해 섬유 및 수지 등의 코팅층으로 가동코어(410)를 감쌀 필요가 없어 구조적으로 간편하고 제작이 용이하다.
본 발명의 경우, 코팅층(410)을 제거하더라고, 가동코어(410)의 고정력이 확보되어 가동코어(410)가 연결부재(420)에서 이탈되지 않을 수 있다.
또한, 본 발명의 경우, 가동부(400)의 중량을 최소한으로 줄일 수 있으며, 이로써 운전주파수를 증가시켜 고속 운전이 가능하다.
또한, 본 발명의 경우 요구되는 자기적 스프링 강성에 대해 종래 대비 마그네트(300)의 중량을 낮출 수 있어, 비용 절감까지 가능하다.
본 실시예에서, 상기 연결부재(420)는 내주면(425) 또는 외주면(426)에 내측으로 오목하게 형성된 매립홈(421,422)을 형성하고, 상기 가동코어(410)는 상기 매립홈(421,422)에 적어도 일부가 매립되어 고정될 수 있다.
상기 가동코어(410)는 일측면에 상기 연결부재(420)의 내주면(425) 또는 외주면(426)에 부착되어 고정될 수 있지만, 가동코어(410)의 일부 또는 전부가 매립홈(421,422)에 매립되어 고정될 수 있다.
다만, 가동코어(410)의 전부가 연결부재(420)에 매립된다 하더라도 상기 마그네트(300)와 마주보는 면은 공극(130)으로 노출된 상태이다.
상기와 같이 가동코어(410)의 일부 또는 전부가 연결부재(420)에 매립되면, 가동코어(410)와 연결부재(420)의 결합력이 향상되고, 가동자(400)의 왕복운동 과정에서 가동코어(410)가 연결부재(420)에서 이탈되는 것을 방지할 수 있다.
또한, 가동코어(410)의 일부 또는 전부가 연결부재(420)에 매립되면, 가동자(400)의 두께가 얇아지기 때문에, 가동자(400)가 배치되는 공극(130)의 크기를 작게 형성할 수 있다. 따라서, 작아진 공극(130)의 크기에 비례해서 가동자(400)의 자기적 스프링 강성은 높아질 수 있다.
또한, 상기와 같이 가동코어(410)의 일부 또는 전부가 연결부재(420)에 매립된 경우, 매립된 부분에는 상기 연결부재(420)의 내측으로 돌출된 적어도 하나 이상의 돌기를 형성할 수 있다. 상기와 같이 돌기가 형성되면, 가동코어(410)와 연결부재(410)의 결합력이 높아져, 가동코어(410)가 연결부재(420)에서 이탈되지 않고, 매립된 상태를 안정적으로 유지할 수 있다.
본 실시예에서, 상기 가동코어(410)는, 복수 구비되고, 상기 연결부재(420)의 원주방향을 따라 이격 배치될 수 있다.
일 예로, 가동코어(410)는 축 방향에서 바라봤을 때, 호(arc) 형상의 단면을 구비할 수 있다. 상기의 경우, 각각의 가동코어(410)가 연결부재(420)의 내주면(425) 또는 외주면(426)에 원주방향을 따라 이격 배치되면, 가동코어(410)들은 전체적으로 원통형을 이룬다.
상기와 같이, 가동코어(410)가 복수 구비되어 상기 연결부재(420)의 원주방향을 따라 이격 배치되면, 가동코어(410) 사이 마다 축방향과 나란하게 이음부(423)가 형성되어 연결부재(420)의 구조 강도가 향상되고, 가동코어(410) 역시 이음부(423)에 의해 보다 안정적으로 연결부재(420)에 안착 및 지지될 수 있다.
또한, 가동코어(410)를 연결부재(420)의 내주면(425) 또는 외주면(426)에 형성된 매립홈(421,422)에 보다 쉽게 끼울 수 있어 작업성이 향상될 수도 있다.
다른 예로, 상기 가동코어(410)는 단일체로 구비될 수 있으며, 이 경우에도 가동코어(410)는 중공을 갖는 원통의 형태를 취할 수 있다.
만약, 상기와 같이 상기 가동코어(410)가 상기 연결부재(420)의 원주방향을 따라 이격 배치되고, 마그네트(300) 역시 고정자(100)에 원주방향을 따라 이격 배치된 경우라면, 마그네트(300)의 개수와 가동코어(400)의 개수는 동일하게 구비될 수 있다.
또한, 마그네트(300)의 개수가 가동코어(400)의 개수의 N배(N은 자연수)만큼 구비되거나, 가동코어(400)의 개수가 마그네트(300)의 개수의 N배(N은 자연수)만큼 구비될 수 있다.
일 예로, 마그네트(300)의 개수가 12개라면, 가동코어(400)의 개수는 6개 구비될 수 있다.
이와 같이 마그네트(300)의 개수와 가동코어(400)의 개수를 설정하면, 가동자(400)에 편심력이 발생하지 않기 때문에 가동자(400)가 어느 방향으로든 회전하지 않고, 일직선을 유지하면서, 왕복운동 할 수 있다.
도 10은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도이다.
도 10을 참조하면, 상기 가동코어(410)는, 상기 연결부재(420)의 내측과 외측으로 노출되게 상기 연결부재(420)를 관통하여 고정될 수 있다.
상기와 같은 경우, 연결부재(420)에는 가동코어(410)가 통과하는 홀(424)이 형성될 수 있다.
상기와 같이 연결부재(420)의 내측과 외측에 가동코어(410)가 노출되면, 반경방향으로 가동코어(410)의 양측은 모두 공극(130)에 노출된 상태이다.
따라서, 가동자(400)와 마그네트(300) 및 고정자(100)의 자기적 공극은 생략된 연결부재(420)의 두께만큼 더욱 작아질 수 있고, 작아진 공극(130)의 크기에 비례해서 가동자(400)의 자기적 스프링 강성은 높아질 수 있다.
본 실시예에서, 상기 가동코어(410)는, 상기 연결부재(420)의 내측 또는 외측으로 노출된 노출면(411)은 상기 연결부재(420)의 내주면(425) 또는 외주면(426)과 일직선상에 위치할 수 있다.
즉, 가동코어(410)가 연결부재(420)의 내주면(425) 또는 외주면(426)에 매립된 경우, 가동코어(410)의 노출면(411)은 연결부재(420)의 내주면(425) 또는 외주면(426) 보다 돌출되거나 오목하게 들어가지 않고 내주면(425) 또는 외주면(426)과 일직선을 형성할 수 있다.
상기와 같이 가동코어(410)의 노출면(411)이 연결부재(420)의 내주면(425) 또는 외주면(426)과 일직선상에 위치하면, 가동코어(410)는 보다 안정적으로 연결부재(420)에 고정될 수 있다. 또한, 가동자(400)의 왕복운동 과정에서 가동코어(410)가 고정자(100) 또는 마그네트(300) 등과 충돌하는 것을 방지할 수 있다.
한편, 가동코어(410)가 연결부재(420)를 관통하는 경우에는, 연결부재(420)의 반경방향 두께가 가동코어(410)의 반경방향 두께와 동일하게 형성되어, 가동코어(410)의 내외측 노출면(411)이 연결부재(420)의 내주면(425) 및 외주면(426) 보다 돌출되거나 오목하게 들어가지 않고 내주면(425) 및 외주면(426)과 일직선을 형성할 수 있다.
본 실시예에서, 상기 가동코어(410)와 상기 연결부재(420)는 인서트 사출을 통해 일체로 형성될 수 있다.
즉, 가동코어(410)를 먼저 제작한 후, 연결부재(420)를 사출 성형할 때, 가동코어(410)를 금형에 넣고 연결부재(420)와 일체로 성형하는 것이다.
상기의 경우, 가동코어(410)를 연결부재(420)에 고정하는 작업이 생략될 수 있어, 작업성이 높아질 수 있다.
또한, 가동코어(410)와 연결부재(420)의 결합력이 향상되어 가동코어(410)가 연결부재(420)에서 이탈되는 것을 방지할 수 있다.
전술한 예에서, 상기 가동코어(410)와 상기 연결부재(420)는 인서트 사출을 통해 일체로 형성된다고 명시하였지만, 본 발명의 범위가 이에 한정되는 것은 아니며, 다양한 일체성형(cocuring) 방법으로 가동코어(410)와 연결부재(420)를 일체로 형성할 수 있다.
이 밖에도, 상기 가동코어(410)와 연결부재(420)는 각각 별도로 제작된 후, 별도의 조립 또는 부착공정을 통해 하나의 몸체로 구성될 수도 있다.
본 실시예에서, 상기 연결부재(420)의 재질은 유리섬유(glass fiber)를 포함할 수 있다.
일 예로, 연결부재(420)는 유리섬유만으로 제작될 수 있다. 다른 예로, 연결부재(420)는 유리섬유와 플라스틱과 혼합하여 제작될 수 있다.
유리섬유는 비자성체이면서 비전도성 재료이기 때문에, 유리섬유를 포함하는 재질로 연결부재(420)가 제작되면 연결부재(420)의 강성을 확보할 수 있고, 가동자(400)에서의 와류손실을 줄일 수 있다. 또한, 연결부재(420)의 사출성형이 가능하다.
이때, 유리섬유는 가열 및 양생(curing) 공정을 거쳐 가동코어(410)에 일체로 고정될 수 있다.
다시 도 7 내지 도 10을 참조하면, 상기 가동코어(410)는, 상기 가동코어(410)의 왕복방향과 나란하게 배치된 제1세그먼트(410a)를 상기 연결부재(420)의 원주방향을 따라 방사상으로 적층하여 형성될 수 있다.
일 예로, 상기 제1세그먼트(410a)는 두께가 얇은 사각 핀의 형태를 취할 수 있다.
상기와 같은 제1세그먼트(410a)는 연결부재(420)의 내주면(425) 또는 외주면(426)에 방사상으로 적층될 수 있다.
또한, 상기 제1세그먼트(410a)는 연결부재(420)의 내주면(425) 또는 외주면(426) 전체에 방사상으로 적층될 수 있고, 일부 구간에만 형성될 수 있다.
후자의 경우, 복수의 제1세그먼트(410a)가 연달아 적층된 제1세그먼트유닛이 연결부재(420)의 원주방향을 따라 일정 간격을 두고 이격 배치될 수 있다.
또한, 본 실시예에서, 상기 제1세그먼트(410a)는 전술한 내측코어블럭(110a) 및 외측코어블럭(120a)과 대응되게 배치될 수 있다.
상기와 같이 복수의 제1세그먼트(410a)를 방사상으로 적층하여 가동코어(410)를 구성하면, 와전류를 줄일 수 있다.
도 11은 본 발명의 일부 구성요소인 제1세그먼트의 일 예를 보인 사시도이고, 도 12는 본 발명의 일부 구성요소인 제1세그먼트의 다른 예를 보인 사시도이다.
도 11 내지 도 12를 참조하면, 상기 제1세그먼트(410a)는, 상기 연결부재(420)와 접촉된 적어도 하나의 측면에, 상기 연결부재(420)의 내측을 향해 돌출된 고정돌기(411a)를 형성할 수 있다.
일 예로, 상기 고정돌기(411a)는 제1세그먼트(410a)의 양측에 가동자(400)의 왕복방향과 나란하게 형성될 수 있다.
이때, 상기 연결부재(420)에는 상기 고정돌기(411a)가 끼워지는 고정홈이 형성될 수 있다.
다른 예로, 상기 제1세그먼트(410a)는 양측에 오목하게 고정홈(418a)을 형성하고, 상기 연결부재(420)에는 상기 제1세그먼트(410a)의 고정홈(418a)에 끼워지는 고정돌기가 형성될 수도 있다.
상기와 같이 제1세그먼트(410a)에 고정돌기(411a) 또는 고정홈(418a)이 형성되면, 제1세그먼트(410a)와 연결부재(410)의 결합력이 높아져, 제1세그먼트(410a)가 연결부재(420)에서 이탈되지 않고, 고정된 상태를 안정적으로 유지할 수 있다.
다시, 도 11을 참조하면, 상기 제1세그먼트(410a)에는, 적어도 하나 이상의 홀(412a)이 타공될 수 있다.
이때, 상기 연결부재(420)에는 상기 홀(412a)에 끼워지도록 원주 방향을 따라 돌기를 형성할 수도 있다.
상기와 같이 홀(412a)이 형성되면, 상기 제1세그먼트(410a)의 중량이 가벼워져 전체적으로 가동자(400)의 중량이 줄어들 수 있다.
또한, 연결부재(420)에 원주방향으로 형성된 돌기가 홀(412a)에 끼워지면서, 제1세그먼트(410a)의 정렬이 자동적으로 이루어질 수 있고, 나아가 제1세그먼트(410a)와 연결부재(420)의 결합력이 향상될 수 있다.
또한, 제1세그먼트(410a)와 연결부재(420)가 사출 성형된 경우에도 홀(412a)을 통해 연결부재(420)를 구성하는 플라스틱 일부가 침투하여, 제1세그먼트(410a)와 연결부재(420)의 결합력이 더욱 향상될 수 있다.
도 13 내지 도 14는 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도이다.
도 13 내지 도 14를 참조하면, 상기 제1세그먼트(410a)는 상기 연결부재(420)의 내측 또는 외측으로 노출된 노출면(413a)의 길이(D1)가 상기 연결부재(420)와 접촉하는 접촉면(414a)의 길이(D2)보다 짧게 형성될 수 있다.
이때, 제1세그먼트(410a)의 노출면(413a)과 접촉면(414a)의 길이(D1,D2)가 상이하게 구비되면, 제1세그먼트(410a)의 양측에는 경사면(415a)이 형성된다.
상기와 같이 연결부재(420)의 내측 또는 외측으로 노출된 노출면(413a)의 길이(D1)가 연결부재(420)와 접촉하는 접촉면(414a)의 길이(D2) 보다 짧게 형성되면, 제1세그먼트(410a)에 별도의 고정돌기 또는 고정홈을 형성하지 않더라도, 제1세그먼트(410a)와 연결부재(410)의 결합력이 높아져, 제1세그먼트(410a)가 연결부재(420)에서 이탈되지 않고, 고정된 상태를 안정적으로 유지할 수 있다.
도 15는 본 발명의 일부 구성요소인 제1세그먼트의 또 다른 예를 보인 사시도이고, 도 16은 본 발명의 일부 구성요소인 제1세그먼트가 적층된 상태를 보인 단면도이다.
도 15 내지 도 16을 참조하면, 상기 제1세그먼트(410a)는 적층방향과 나란하게 돌출된 돌기부(416a) 및 오목하게 요입된 홈부(417a)를 형성할 수 있다.
일 예로, 상기 돌기부(416a) 및 홈부(417a)는 상기 제1세그먼트(410a)를 적층하고, 펀칭(punching)작업하여 형성될 수 있다.
이 밖에도, 상기 제1세그먼트(410a)에는 다양한 형상의 요철(凹凸)을 형성할 수 있다.
상기와 같이, 제1세그먼트(410a)에 돌기부(416a) 및 홈부(417a)가 형성되면, 복수의 제1세그먼트(410a)를 적층시킬 때, 돌기부(416a)를 홈부(417a)에 끼우면서 적층할 수 있어, 적층 작업이 용이하게 진행될 수 있다.
또한, 제1세그먼트(410a)의 적층이 완료된 후에도 돌기부(416a)가 홈부(417a)에 끼워진 상태를 유지할 경우, 복수의 제1세그먼트(410a) 간의 결합력이 확보되어, 적층된 모양이 흐트러지지 않고, 적층된 상태를 견고하게 유지할 수 있다.
도 17은 본 발명의 일부 구성요소인 제1세그먼트가 방사적층되는 과정을 설명하는 개념도이다.
도 17을 참조하면, 상기 제1세그먼트(410a)는, 상호 나란하게 일직선으로 적층된 후, 곡률을 갖도록 가공하는 방식으로 방사적층이 이루어질 수 있다. 따라서, 제1세그먼트(410a)를 방사적층하는 작업이 보다 수월하게 이루어질 수 있다.
이때, 상기 제1세그먼트(410a)에 전술한 돌기부(416a) 및 홈부(417a)가 형성되면, 일직선으로 적층이 용이한 것은 물론, 복수의 제1세그먼트(410a) 간의 결합력이 확보된 상태이므로, 일직선으로 적층된 제1세그먼트(410a)가 일정 곡률을 갖도록 가공하는 작업이 용이하게 진행될 수 있다.
도 18 내지 도 19는 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 단면이다.
도 18을 참조하면, 가동코어(410)는, 상기 연결부재(420)의 내측 또는 외측으로 노출된 노출면에 접착제를 도포하여 복수 적층된 제1세그먼트(410a)를 연결할 수 있다.
상기와 같이 접착제를 통해 제1세그먼트(410a)가 서로 연결되면, 제1세그먼트(410a) 간의 결합력이 확보될 수 있다.
한편, 상기 1세그먼트(410a)를 일직선으로 적층시킨 후, 곡률을 갖도록 가공하는 방식으로 1세그먼트(410a)의 방사적층이 이루어질 경우에도, 복수 적층된 제1세그먼트(410a)의 내측면에 접착제를 도포하여 접착층(412)을 형성한 뒤, 곡률을 갖도록 가공할 경우, 제1세그먼트(410a) 간의 결합력이 확보된 상태에서 곡률 형성 작업이 진행되기 때문에, 결과적으로 제1세그먼트(410a)를 방사적층하는 작업이 보다 수월하게 이루어질 수 있다.
또한, 도 19를 참조하면, 상기 가동코어(410)는, 상기 연결부재(420)의 내측 또는 외측으로 노출된 노출면을 용접하여 복수 적층된 제1세그먼트(410a)를 연결할 수 있다.
상기와 같이 용접을 통해 제1세그먼트(410a)가 서로 연결되면, 제1세그먼트(410a) 간의 결합력이 확보될 수 있다.
한편, 상기 1세그먼트(410a)를 일직선으로 적층시킨 후, 곡률을 갖도록 가공하는 방식으로 1세그먼트(410a)의 방사적층이 이루어질 경우에도, 복수 적층된 제1세그먼트(410a)의 내측면을 용접하여 용접부(413)을 형성한 뒤, 곡률을 갖도록 가공할 경우, 제1세그먼트(410a) 간의 결합력이 확보된 상태에서 곡률 형성 작업이 진행되기 때문에, 결과적으로 제1세그먼트(410a)를 방사적층하는 작업이 보다 수월하게 이루어질 수 있다.
도 20은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도이고, 도 21은 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 부분 절개 사시도이며, 도 22 내지 도 23 역시 본 발명의 일부 구성요소인 가동자의 또 다른 예를 보인 사시도이다.
도 20 내지 도 23을 참조하면, 상기 가동코어(410)는, 상기 연결부재(420)의 원주방향과 나란하게 배치된 제2세그먼트(410b)를 상기 가동코어(410)의 왕복방향으로 적층하여 형성될 수 있다.
일 예로, 상기 제2세그먼트(410b)는 적어도 일부가 호(arc) 형상으로 이루어질 수 있고, 두께가 얇은 핀의 형태를 취할 수 있다.
상기와 같은 제2세그먼트(410b)는 연결부재(420)의 내주면 또는 외주면에 가동자(400)의 왕복방향으로 적층될 수 있다.
또한, 상기 제2세그먼트(410b)는 연결부재(420)의 내주면 또는 외주면 전체에 형성될 수 있고, 일부 구간에만 형성될 수도 있다.
후자의 경우, 복수의 제2세그먼트(410b)가 연속해서 적층된 제2세그먼트유닛은 연결부재(420)의 원주방향을 따라 일정간격을 두고 이격 배치될 수 있다.
다른 예로, 상기 상기 제2세그먼트(410b)는 원형으로 이루어질 수도 있다.
상기와 같이 복수의 제2세그먼트(410b)를 적층하여 가동코어(410)를 구성하면, 와전류를 줄일 수 있다.
도 24는 본 발명의 일부 구성요소인 제2세그먼트와 연결부재의 분리사시도이다.
도 24를 참조하면, 상기 제2세그먼트(410b)에는 적어도 하나 이상의 연결구(411b)가 타공되고, 상기 연결부재(420)에는 상기 제2세그먼트(410b)의 적층방향과 나란하게 연결돌기(427)를 형성하여, 상기 연결구(411b)에 상기 연결돌기(427)에 끼워지면서 제2세그먼트(410b)의 적층이 이루어질 수 있다.
먼저, 상기와 같이 제2세그먼트(410b)에 연결구(411b)가 타공되면, 제2세그먼트(410b)의 중량이 가벼워져 전체적으로 가동자(400)의 중량이 줄어들 수 있다.
또한, 제2세그먼트(410b)의 적층이 보다 용이하게 이루어질 수 있음은 물론, 제2세그먼트(410b)와 연결부재(420)의 결합력이 향상될 수 있다.
또한, 제2세그먼트(410b)와 연결부재(420)가 사출 성형된 경우에도 연결구(411b)를 통해 연결부재(420)를 구성하는 플라스틱 일부가 침투하여, 제2세그먼트(410b)와 연결부재(420)의 결합력이 더욱 향상될 수 있다.
도 25는 본 발명의 일부 구성요소인 제2세그먼트의 다른 예를 보인 사시도이고, 도 26은 본 발명의 일부 구성요소인 제2세그먼트가 적층된 상태를 보인 단면도이다.
도 25 내지 도 27을 참조하면, 상기 제2세그먼트(410b)는, 적층방향과 나란하게 돌출된 돌기부(412b) 및 요입된 홈부(413b)를 형성할 수 있다.
일 예로, 상기 돌기부(412b) 및 홈부(413b)는 상기 제2세그먼트(410b)를 적층하고, 펀칭(punching)작업하여 형성될 수 있다.
이 밖에도, 상기 제2세그먼트(410b)에는 다양한 형상의 요철(凹凸)을 형성할 수 있다.
상기와 같이, 제2세그먼트(410b)에 돌기부(412b) 및 홈부(413b)가 형성되면, 복수의 제2세그먼트(410b)를 적층시킬 때, 돌기부(412b)를 홈부(413b)에 끼우면서 적층할 수 있어, 적층 작업이 용이하게 진행될 수 있다.
또한, 제2세그먼트(410b)의 적층이 완료된 후에도 돌기부(412b)가 홈부(413b)에 끼워진 상태를 유지할 경우, 복수의 제2세그먼트(410b) 간의 결합력이 확보되어, 적층된 모양이 흐트러지지 않고, 적층된 상태를 견고하게 유지할 수 있다.
도 27은 본 발명의 일부 구성요소인 가동코어를 구성하는 제2세그먼트띠의 일 예를 보인 도면이고, 도 28은 본 발명의 일부 구성요소인 가동코어를 구성하는 제2세그먼트띠의 다른 예를 보인 도면이며, 도 29는 일부 구성요소인 가동코어를 구성하는 제2세그먼트링의 일 예를 보인 도면이다.
도 27 내지 도 28을 참조하면, 상기 가동코어(410)는, 호(arc)형상으로 이루어진 상기 제2세그먼트(410b)가 원형을 이루도록 연속해서 연결된 제2세그먼트링(410c)을 상기 가동자(410)의 왕복방향으로 적층하여 형성될 수 있다.
이때, 상기 제2세그먼트링(410c)을 구성하는 제2세그먼트(410b)는 서로 점접촉된 연결부(412c)를 형성하고, 각 제2세그먼트(410b) 사이에는 절개부(411c)가 형성될 수 있다.
상기와 같이, 원형의 제2세그먼트링(410c)을 적층하여 가동코어(410)를 구성할 경우, 절개부(411c)에 의해 제2세그먼트(410b) 사이 간격은 확보되면서, 한번에 원주방향 전체의 제2세그먼트(410b)를 적층시킬 수 있어 작업성이 향상될 수 있다.
또한, 제2세그먼트(410b) 간의 결합력 또한 확보될 수 있어 가동코어(410)의 구조적 강도가 향상될 수 있다.
본 실시예에서, 상기 제2세그먼트링(410c)은 제2세그먼트(410b)가 연속해서 연결된 제2세그먼트띠(410d)를 자른 후, 폐곡선을 이루도록 양측 단부를 연결하여 구비될 수 있다.
상기와 같이, 제2세그먼트링(410c)을 제2세그먼트띠(410d)로 제작할 경우, 길이재인 제2세그먼트띠(410d)를 타발 등의 작업으로 손쉽게 제작할 수 있어, 작업성이 향상되고 재료비가 절감될 수 있다.
도 30은 본 발명의 일부 구성요소인 가동코어가 제2세그먼트띠를 감아서 구성된 상태를 보인 사시도이다.
도 30을 참조하면, 상기 가동코어(410)는, 호(arc)형상으로 이루어진 상기 제2세그먼트(410b)가 연속해서 연결된 제2세그먼트띠(410d)를 상기 연결부재(420)에 나선형으로 감아서 형성될 수 있다.
이때, 상기 제2세그먼트띠(410d)를 구성하는 제2세그먼트(410b)는 서로 점접촉된 연결부(412d)를 형성하고, 각 제2세그먼트(410b) 사이에는 절개부(411d)가 형성될 수 있다.
상기와 같이, 제2세그먼트띠(410d)를 연결부재(420)에 나선형으로 권취하여 가동코어(410)를 구성할 경우, 길이재인 제2세그먼트띠(410d)를 타발 등의 작업으로 손쉽게 제작할 수 있고, 단순히 연결부재(420)에 나선형으로 권취하는 작업 만으로 원하는 두께만큼 제2세그먼트(410b)를 적층시킬 수 있어 작업성이 향상될 수 있다.
또한, 제2세그먼트(410b) 간의 결합력 또한 확보될 수 있어 가동코어(410)의 구조적 강도가 향상될 수 있다.
도 31은 본 발명의 일 실시예에 따른 가동코어형 왕복동 모터를 구비한 왕복동식 압축기의 종단면도이다.
도 31을 참조하면, 본 실시예에 의한 왕복동식 압축기(1)는, 내부공간을 갖는 케이스(10)와, 상기 케이스(10)의 내부공간에 배치되고, 가동자(400)가 왕복운동을 하는 왕복동모터(20)와, 상기 왕복동모터(20)의 가동자(400)에 결합되어 함께 왕복운동하는 피스톤(30)과, 상기 피스톤(30)이 삽입되어 압축공간(42)을 형성하는 실린더(40)와, 상기 압축공간(42)의 흡입측을 개폐하는 흡입밸브(31)와 및 상기 압축공간(42)의 토출측을 개폐하는 토출밸브(41)를 포함할 수 있다.
즉, 밀폐된 케이스(10)의 내부공간에 흡입관(11)이 연결되고, 흡입관(11)의 일측에는 후술할 실린더(40)의 압축공간(42)에서 압축된 냉매를 냉동사이클로 안내하는 토출관(12)이 연결된다. 이로써, 케이스(10)의 내부공간은 흡입되는 냉매가 채워져 흡입압을 형성하고, 압축공간(42)에서 토출되는 냉매는 토출관(12)을 통해 응축기를 향해 케이스(10)의 외부로 배출될 수 있다.
또한, 케이스(10)의 내부공간에는 프레임(50)이 설치되고, 프레임(50)의 일측면에는 왕복력을 발생시키는 동시에 후술할 피스톤(30)의 공진운동을 유도하는 왕복동 모터(20)가 고정 결합된다.
상기 왕복동 모터(20)의 안쪽에는 압축공간(42)이 구비되어 프레임(50)에 삽입되는 실린더(40)가 결합되고, 실린더(40)에는 그 실린더(40)에 왕복 가능하게 삽입되어 압축공간(42)의 체적을 가변시켜 냉매를 압축하는 피스톤(30)이 결합된다.
상기 피스톤(30)의 선단면에는 그 피스톤(30)의 흡입유로를 개폐하는 흡입밸브(31)가 결합되고, 실린더(40)의 선단면에는 그 실린더(40)의 압축공간(42)을 개폐하는 토출밸브(41)가 토출커버(60)에 수용되어 착탈 가능하게 결합된다.
그리고, 토출커버(60)는 토출공간(61)이 구비되어 실린더(40)에 고정 결합된다. 토출커버(60)의 토출공간(61)에는 토출밸브(41) 및 그 토출밸브(41)를 지지하는 밸브스프링(43)이 수용되고, 실린더(40)와 피스톤(30) 사이를 윤활하기 위한 가스베어링의 입구가 수용될 수 있다.
가스베어링(미도시)은 프레임(50)의 내주면과 실린더(40)의 외주면 사이에 형성되는 가스연통로와, 가스연통로의 중간에서 실린더(40)의 내주면으로 관통되는 복수 개의 미세 가스통공으로 이루어질 수 있다.
여기서, 왕복동 모터(20)는 앞서 설명한 도 1 내지 도 30과 같은 구성을 가지도록 형성되므로, 이에 대해서는 앞서 설명한 왕복동 모터를 참조하기로 한다.
다만, 본 실시예에서의 내측고정자(110)와 외측고정자(120)는 프레임(50)에 고정되고, 가동자(400)는 피스톤(30)과 연결된다. 따라서, 가동자(400)가 고정자(100) 및 마그네트(300)에 대해 왕복운동을 하게 되면 실린더(40)에 삽입된 피스톤(30)이 가동자(400)와 함께 양방향으로 왕복운동을 할 수 있다.
상기와 같은 본 실시예에 의한 왕복동식 압축기(1)는, 왕복동 모터(20)의 마그넷코일(200)에 교번전류가 인가되면 고정자(100) 및 마그네트(300)와 가동자(400) 사이에 교번자속이 형성되고, 마그넷코일(200)에 의한 자속과 마그네트(300)의 자속이 증자되는 방향으로 가동자(400) 및 이와 연결된 피스톤(30)이 움직이면서 지속적으로 왕복운동을 하게 된다.
이때, 왕복동 모터의 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 에너지가 낮은 방향으로 복귀하려는 왕복중심력(Centering force)이 축적된다.
이와 같은 상태에서, 마그넷코일(200)에 인가되는 전류의 방향이 바뀌게 되면, 상기 축적된 왕복중심력(Centering force)과, 마그넷코일(200) 및 마그네트(300)의 자속에 의한 자기력에 의해 가동자(400) 및 이와 연결된 피스톤(30)이 전과 반대 방향으로 이동하게 하게 되고, 이때에도, 왕복동 모터의 가동자(400)와 고정자(100) 및 마그네트(300) 사이에는 자기적 에너지가 낮은 방향으로 복귀하려는 왕복중심력(Centering force)이 축적된다.
이러한 방식으로 가동자(400) 및 피스톤(30)은 기계적 공진 스프링이 구비된 것과 같이 도면의 우측과 좌측을 번갈아 가면서 이동하는 왕복운동을 지속적으로 반복하게 된다.
이때, 왕복동 모터의 내부에서는 가동자(400)가 왕복운동을 하면서 가동자(400)와, 고정자(100) 및 마그네트(300) 사이에 자기적 공진스프링이 형성되어 가동자(400)와 피스톤(30)의 공진운동을 유도함으로써, 피스톤(30)이 압축공간(42)에서 발생되는 가스력을 이기면서 냉매를 압축할 수 있게 된다.
상기와 같은 본 실시예에 따른 왕복동식 압축기는 앞서 설명한 도 1내지 도 30의 왕복동 모터에 따른 작용 효과를 가지게 된다. 따라서, 이에 대해서는 앞서 설명한 왕복동 모터를 참조한다.
본 실시예의 왕복동식 압축기는 소형화되고 경량화된 왕복동 모터를 구비하여, 마찬가지로 소형화되고 경량화가 이루어질 수 있으며, 따라서, 압축기의 설치가 용이하고 유지 및 보수 또한 유리한 효과가 있다.
또한, 제작이 용이하고, 구조적 강성이 향상된 왕복동 모터를 구비하여, 마찬가지로, 압축기의 제작이 용이하고, 압축기의 구조적인 강성이 향상될 수 밖에 없다.
또한, 무엇보다 가동자의 무게를 줄이고, 가동자와 고정자 및 마그네트의 자기적 공극을 최소화하여, 모터의 고속운전이 가능하며, 모터 효율이 향상되기 때문에, 압축기의 효율도 높아지는 효과가 있다.
도 32는 본 발명의 다른 실시예에 따른 왕복동식 압축기의 가동자와 피스톤을 발췌하여 보인 단면도이고, 도 33은 본 발명의 또 다른 실시예에 왕복동식 압축기의 가동자와 피스톤을 발췌하여 보인단면도이다.
도 32를 참조하면, 상기 연결부재(420)는, 상기 가동코어(410)와 연결되는 제1연결부재(420a)와, 상기 제1연결부재(420a)와 상기 피스톤(30)을 연결하는 제2연결부재(420b)를 포함할 수 있다.
상기와 같이 연결부재(420)가 상기 제1연결부재(420a)와 제2연결부재(420b)로 구성되면, 제1연결부재(420a)와 가동코어(410)를 연결하고, 제2연결부재(420b)와 피스톤(30)을 연결한 뒤, 제1연결부재(420a)와 제2연결부재(420b)를 연결하는 공정에 의해 피스톤(30)과 가동코어(410)가 일체로 연결될 수 있다.
따라서, 가동코어(410)와 연결된 연결부재(420)에 곧 바로 피스톤(30)을 연결하는 방식에 비해, 보다 수월하게 가동코어(410)와 피스톤(30)을 연결할 수 있다.
본 실시예에서, 상기 제1연결부재(420a)와 제2연결부재(420b)는 이종의 재료로 이루어질 수 있다.
일 예로, 상기 제1연결부재(420a)는 유리섬유(Glass fiber) 재질로 이루어질 수 있고, 제2연결부재(420b)는 플라스틱 또는 유리섬유와 플라스틱을 혼합한 재질로 이루어질 수 있다.
유리섬유(Glass fiber)는 비자성체이면서 비전도성 재료이기 때문에, 유리섬유 재질로 제1연결부재(420a)가 제작되면 연결부재(420)의 강성을 확보할 수 있고, 가동자(400)에서의 와류손실을 줄일 수 있다. 이때, 유리섬유는 가열 및 양생(curing) 공정을 거쳐 가동코어(410)에 일체로 고정될 수 있다.
또한, 제2연결부재(420b)가 플라스틱을 포함하는 재질로 형성되면, 제2연결부재(420b)와 피스톤(30)이 일체로 사출 성형될 수 있고, 제2연결부재(420b)가 플라스틱과 유리섬유의 혼합 재료로 이루어질 경우, 사출성형이 가능한 것은 물론 제1연결부재(420a)와 마찬가지로 제2연결부재(420b)의 강성 또한 확보될 수 있다.
또한, 도 33을 참조하면, 상기 연결부재(420)와 상기 피스톤(30)은 인서트 사출을 통해 일체로 형성될 수 있다.
일 예로, 상기 연결부재(420)는 플라스틱 또는 플라스틱과 유리섬유의 혼합재질로 이루어질 수 있다.
종래의 경우, 가동자(400)에 마그네트(300)가 구비되어 자력 및 착자의 문제로 피스톤과 일체로 제작하기가 어려웠다.
반면, 본 발명의 경우 마그네트(300)가 고정자(100)에 고정되고, 가동자(400)에는 가동코어(410)만이 구비되므로, 피스톤(30)과 가동자(400)를 일체로 사출 성형할 수 있다.
이때, 상기 피스톤(30)에는 흡입밸브(31)가 형성된 선단의 반대편인 후단에 플랜지(32)를 형성할 수 있으며, 상기 플랜지(32)가 연결부재(420)에 매립되게, 인서트 사출이 이루어져, 피스톤(30)과 가동자(400)가 일체로 형성될 수 있다.
상기와 같이 피스톤(30)과 가동자(400)가 일체로 사출 성형되면, 가동자(400)와 피스톤(30)의 결합력이 확보되고, 가동자(400)와 피스톤(30)을 볼트 등으로 연결하기 위한 공정이 생략될 수 있어, 작업성이 높아질 수 있다. 또한, 볼트 등과 같은 부품의 생략으로 가동자(400)와 피스톤(30)에 가해지는 하중이 줄어들어 모터의 효율은 더욱 향상되고, 조립부의 생략으로 그로 인한 소음 및 진동은 저감되는 효과가 있다.
도 34는 본 발명의 또 다른 실시예에 왕복동식 압축기의 가동자와 피스톤과 머플러를 발췌하여 보인 단면도이다.
도 34를 참조하면, 상기 피스톤(30)은 내측에 머플러(70)를 구비하고, 상기 머플러(70)는 상기 연결부재(420)의 외측면에 유전가열을 통한 융착 방식 또는 본딩 방식으로 부착될 수 있다.
일반적으로, 압축기(1)에는, 상기 피스톤(30)에 연결되며, 상기 흡입관(11)을 통하여 흡입된 냉매로부터 발생되는 소음을 저감하기 위해 머플러(70)가 설치된다. 상기 흡입관(11)을 통하여 흡입된 냉매는 상기 머플러(70)를 거쳐 상기 피스톤(30)의 내부로 유동한다. 일 예로, 냉매가 머플러(70)를 통과하는 과정에서, 냉매의 유동소음이 저감될 수 있다.
상기와 같이, 연결부재(420)에 머플러(70)를 부착하면, 볼트 등과 같은 부품의 생략으로 가동자(400)에 가해지는 하중이 줄어들어 모터의 효율은 더욱 향상되고, 조립부의 생략으로 그로 인한 소음 및 진동은 저감되는 효과가 있다.
이때, 상기 머플러(70)에는 후단에 플랜지(71)를 형성할 수 있으며, 상기 플랜지(71)가 연결부재(420)의 외측면에 부착될 수 있다.
다른 예로, 상기 머플러(70)의 후단에 형성된 플랜지(71)가 연결부재(420)에 매립되게, 인서트 사출이 이루어져, 피스톤(30)뿐 아니라, 머플러(70)도 가동자(400)와 일체로 형성될 수 있다.
상기와 같이 머플러(70)와, 피스톤(30)과 가동자(400)가 일체로 사출 성형되면, 가동자(400)와 피스톤(30) 및 머플러(70)의 결합력은 더욱 확보되고, 가동자(400)와 머플러(70)를 볼트 등으로 연결하기 위한 공정이 생략될 수 있어, 작업성이 높아질 수 있다. 또한, 머플러(70)와, 피스톤(30)과 가동자(400)가 일체로 형성되기 때문에 공차관리에 유리하다. 또한, 유리한 공차관리로 인해 공극의 균일화가 가능하고, 가동자(400)가 고정자(100) 및 마그네트(300)로부터 받는 편심력을 최소한으로 줄일 수 있어, 가동자(400)가 회전하지 않고, 직선으로만 왕복운동 할 수 있다.
100 : 고정자 110 : 내측고정자
110a : 내측코어블럭 120 : 외측고정자
120a : 외측코어블럭 130 : 공극
200 : 마그넷코일 300 : 마그네트
400 : 가동자 410 : 가동코어
410a : 제1세그먼트 410b : 제2세그먼트
410c : 제2세그먼트링 410d : 제2세그먼트띠
420 : 연결부재 420a : 제1연결부재
420b : 제2연결부재

Claims (26)

  1. 내측고정자와, 일측이 상기 내측고정자의 일측과 연결되고 타측이 상기 내측고정자의 타측과 공극을 형성하도록 상기 내측고정자의 반경 방향 외측에 이격 배치되는 외측고정자를 포함하는 고정자;
    상기 내측고정자와 외측고정자 사이에 권취되는 마그넷코일;
    상기 공극으로 노출되게 상기 내측고정자 또는 외측 고정자 중 적어도 어느 하나에 고정되는 마그네트;
    상기 공극에 배치되고 자성체로 이루어져 상기 고정자 및 마그네트에 대해 왕복운동을 하는 가동코어 및, 비자성체로 이루어져 상기 가동코어가 상기 마그네트를 향해 공극으로 노출되게 상기 가동코어를 지지하는 중공의 연결부재를 포함하는 가동자;를 포함하는 것을 특징으로 하는 가동코어형 왕복동 모터.
  2. 제 1항에 있어서,
    상기 내측고정자와 외측고정자는, 각각, 일측이 서로 연결되고 타측이 이격되어 공극을 형성하는 내측코어블럭과 외측코어블럭을 방사상으로 적층하여 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  3. 제 1항에 있어서,
    상기 가동코어는, 상기 연결부재의 내측으로 노출되게 상기 연결부재의 내주면에 고정되거나, 상기 연결부재의 외측으로 노출되게 상기 연결부재의 외주면에 고정된 것을 특징으로 하는 가동코어형 왕복동 모터.
  4. 제 3항에 있어서,
    상기 연결부재는 내주면 또는 외주면에 내측으로 오목하게 형성된 매립홈을 형성하고, 상기 가동코어는 상기 매립홈에 적어도 일부가 매립된 것을 특징으로 하는 가동코어형 왕복동 모터.
  5. 제 3항에 있어서,
    상기 가동코어는, 복수 구비되고, 상기 연결부재의 원주방향을 따라 이격 배치된 것을 특징으로 하는 가동코어형 왕복동 모터.
  6. 제 3항에 있어서,
    상기 가동코어는, 상기 연결부재의 내측과 외측으로 노출되게 상기 연결부재를 관통하여 고정된 것을 특징으로 하는 가동코어형 왕복동 모터.
  7. 제 3항에 있어서,
    상기 가동코어는, 상기 연결부재의 내측 또는 외측으로 노출된 노출면이 상기 연결부재의 내주면 또는 외주면과 일직선상에 위치하는 것을 특징으로 하는 가동코어형 왕복동 모터.
  8. 제 3항에 있어서,
    상기 가동코어와 상기 연결부재는 인서트 사출을 통해 일체로 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  9. 제 3항에 있어서,
    상기 연결부재의 재질은 유리섬유(glass fiber)를 포함하는 것을 특징으로 하는 가동코어형 왕복동 모터.
  10. 제 3항에 있어서,
    상기 가동코어는, 상기 가동코어의 왕복방향과 나란하게 배치된 제1세그먼트를 상기 연결부재의 원주방향을 따라 방사상으로 적층하여 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  11. 제 10항에 있어서,
    상기 제1세그먼트는, 상기 연결부재와 접촉된 적어도 하나의 측면에, 상기 연결부재의 내측을 향해 돌출된 고정돌기를 형성한 것을 특징으로 하는 가동코어형 왕복동 모터.
  12. 제 10항에 있어서,
    상기 제1세그먼트에는, 적어도 하나 이상의 홀이 타공된 것을 특징으로 하는 가동코어형 왕복동 모터.
  13. 제 10항에 있어서,
    상기 제1세그먼트는, 상기 연결부재의 내측 또는 외측으로 노출된 노출면의 길이가 상기 연결부재와 접촉하는 접촉면의 길이보다 짧게 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  14. 제 10항에 있어서,
    상기 제1세그먼트는, 적층방향과 나란하게 돌출된 돌기부 및 요입된 홈부를 형성한 것을 특징으로 하는 가동코어형 왕복동 모터.
  15. 제 10항에 있어서,
    가동코어는, 상기 연결부재의 내측 또는 외측으로 노출된 노출면에 접착제를 도포하여 복수 적층된 제1세그먼트를 연결하는 것을 특징으로 하는 가동코어형 왕복동 모터.
  16. 제 10항에 있어서,
    상기 가동코어는, 상기 연결부재의 내측 또는 외측으로 노출된 노출면을 용접하여 복수 적층된 제1세그먼트를 연결하는 것을 특징으로 하는 가동코어형 왕복동 모터.
  17. 제 3항에 있어서,
    상기 가동코어는, 상기 연결부재의 원주방향과 나란하게 배치된 제2세그먼트를 상기 가동코어의 왕복방향으로 적층하여 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  18. 제 17항에 있어서,
    상기 제2세그먼트는 호(arc) 형상으로 이루어진 것을 특징으로 하는 가동코어형 왕복동 모터.
  19. 제 17항에 있어서,
    상기 제2세그먼트에는 적어도 하나 이상의 연결구가 타공되고, 상기 연결부재에는 상기 제2세그먼트의 적층방향과 나란하게 연결돌기를 형성하여, 상기 연결구에 상기 연결돌기가 끼워지면서 제2세그먼트의 적층이 이루어지는 것을 특징으로 하는 가동코어형 왕복동 모터.
  20. 제 17항에 있어서,
    상기 제2세그먼트는, 적층방향과 나란하게 돌출된 돌기부 및 요입된 홈부를 형성한 것을 특징으로 하는 가동코어형 왕복동 모터.
  21. 제 17항에 있어서,
    상기 가동코어는, 호(arc)형상으로 이루어진 상기 제2세그먼트가 원형을 이루도록 연속해서 연결된 제2세그먼트링을 상기 가동코어의 왕복방향으로 적층하여 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  22. 제 17항에 있어서,
    상기 가동코어는, 호(arc)형상으로 이루어진 상기 제2세그먼트가 연속해서 연결된 제2세그먼트띠를 상기 연결부재에 나선형으로 감아서 형성된 것을 특징으로 하는 가동코어형 왕복동 모터.
  23. 내부공간을 갖는 케이스;
    상기 케이스의 내부공간에 배치되고, 가동자가 왕복운동을 하는 왕복동모터;
    상기 왕복동 모터의 가동자에 결합되어 함께 왕복운동하는 피스톤;
    상기 피스톤이 삽입되어 압축공간을 형성하는 실린더;
    상기 압축공간의 흡입측을 개폐하는 흡입밸브; 및
    상기 압축공간의 토출측을 개폐하는 토출밸브;를 포함하고,
    상기 왕복동 모터는 제1항 내지 제22항 중 선택된 어느 한 항의 가동코어형 왕복동 모터로 이루어진 것을 특징으로 하는 왕복동식 압축기.
  24. 제 23항에 있어서,
    상기 연결부재는:
    상기 가동코어와 연결되는 제1연결부재;
    상기 제1연결부재와 상기 피스톤을 연결하는 제2연결부재;를 포함하는 것을 특징으로 하는 왕복동식 압축기.
  25. 제23항에 있어서,
    상기 연결부재와 상기 피스톤은 인서트 사출을 통해 일체로 형성된 것을 특징으로 하는 왕복동식 압축기.
  26. 제 23항에 있어서,
    상기 피스톤은 내측에 머플러를 구비하고, 상기 머플러는 상기 연결부재의 외측면에 유전가열을 통한 융착 방식 또는 본딩 방식으로 부착된 것을 특징으로 하는 왕복동식 압축기.
KR1020170003723A 2017-01-10 2017-01-10 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기 KR20180082249A (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020170003723A KR20180082249A (ko) 2017-01-10 2017-01-10 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기
PCT/KR2017/014967 WO2018131810A1 (en) 2017-01-10 2017-12-18 Movable core-type reciprocating motor and reciprocating compressor having the same
CN201890000438.1U CN210157068U (zh) 2017-01-10 2018-01-08 可动芯式往复电机及具备其的往复式压缩机
PCT/KR2018/000377 WO2018131859A1 (ko) 2017-01-10 2018-01-08 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기
EP18150600.7A EP3346584B1 (en) 2017-01-10 2018-01-08 Movable core-type reciprocating motor and reciprocating compressor having the same
US15/865,684 US10819173B2 (en) 2017-01-10 2018-01-09 Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
US15/866,727 US10811920B2 (en) 2017-01-10 2018-01-10 Moving core-type reciprocating motor and reciprocating compressor having the same
EP18150923.3A EP3346585B1 (en) 2017-01-10 2018-01-10 Moving core-type reciprocating motor and reciprocating compressor having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170003723A KR20180082249A (ko) 2017-01-10 2017-01-10 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기

Publications (1)

Publication Number Publication Date
KR20180082249A true KR20180082249A (ko) 2018-07-18

Family

ID=60937658

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170003723A KR20180082249A (ko) 2017-01-10 2017-01-10 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기

Country Status (5)

Country Link
US (2) US10819173B2 (ko)
EP (2) EP3346584B1 (ko)
KR (1) KR20180082249A (ko)
CN (1) CN210157068U (ko)
WO (2) WO2018131810A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102018073558A2 (pt) * 2018-11-14 2020-06-02 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Motor linear, compressor de um equipamento de refrigeração, equipamento de refrigeração e estator aplicável em um motor linear
JP7277169B2 (ja) * 2019-02-20 2023-05-18 住友重機械工業株式会社 極低温冷凍機用リニア圧縮機

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992265B2 (ja) * 1997-04-29 1999-12-20 エルジー電子株式会社 圧縮機用モータのマグネット配設構造
JP3508523B2 (ja) * 1997-12-19 2004-03-22 三菱電機株式会社 鉄心可動型リニア振動子及びリニア圧縮機
KR100480086B1 (ko) * 1998-01-12 2005-06-08 엘지전자 주식회사 리니어 압축기의 흡입손실 저감구조
BR9900330A (pt) * 1998-01-12 2000-03-28 Lg Eletronics Inc Estrutura para acoplamento de silenciador para compressor linear.
JP3945916B2 (ja) * 1998-09-04 2007-07-18 三洋電機株式会社 可動鉄心型リニアモータ
JP2000116100A (ja) * 1998-09-29 2000-04-21 Sanyo Electric Co Ltd リニアモータ
JP2002010610A (ja) * 2000-06-22 2002-01-11 Sanyo Electric Co Ltd リニアモータ
JP2002034225A (ja) * 2000-07-19 2002-01-31 Sanyo Electric Co Ltd 磁石可動型リニアモータ
BRPI0111077B1 (pt) * 2001-03-24 2016-10-18 Lg Eletronics Inc conjunto de impulsor de motor com induzido oscilante
KR100394242B1 (ko) * 2001-05-16 2003-08-09 주식회사 엘지이아이 왕복동식 모터의 마그네트 고정장치
JP2003250256A (ja) * 2001-09-26 2003-09-05 Shinko Electric Co Ltd リニアアクチュエータ
KR100421388B1 (ko) * 2001-10-22 2004-03-09 엘지전자 주식회사 왕복동식 모터의 고정자 적층구조 및 그 방법
US6838789B2 (en) * 2001-10-26 2005-01-04 Lg Electronics Inc. Reciprocating motor
EP1463186B8 (en) * 2001-12-03 2013-01-09 Sinfonia Technology Co., Ltd. Linear actuator
KR100477111B1 (ko) * 2002-02-01 2005-03-17 삼성전자주식회사 리니어 압축기
JP3927089B2 (ja) * 2002-07-16 2007-06-06 日本電産サンキョー株式会社 リニアアクチュエータ、それを用いたポンプ装置並びにコンプレッサー装置
KR100539813B1 (ko) 2002-11-29 2006-01-11 엘지전자 주식회사 리니어 모터용 스테이터 조립 구조 및 그 제작 방법
KR100492612B1 (ko) 2003-03-11 2005-06-03 엘지전자 주식회사 왕복동식 압축기의 윤활유 공급 장치
KR100550536B1 (ko) * 2003-06-04 2006-02-10 엘지전자 주식회사 리니어 압축기
JP4612350B2 (ja) * 2004-07-21 2011-01-12 日本電産サーボ株式会社 環状コイル式リニアモータ及びこれを利用したシリンダ式コンプレッサー並びにポンプ
US7242118B2 (en) 2003-07-31 2007-07-10 Japan Servo Co., Ltd. Toroidal-coil linear stepping motor, toroidal-coil linear reciprocating motor, cylinder compressor and cylinder pump using these motors
JP2005150305A (ja) * 2003-11-13 2005-06-09 Smc Corp 電磁アクチュエータ
KR100548293B1 (ko) * 2003-12-30 2006-02-02 엘지전자 주식회사 왕복동식 모터의 마그네트 고정 구조
KR100613516B1 (ko) * 2004-11-03 2006-08-17 엘지전자 주식회사 리니어 압축기
KR100690656B1 (ko) * 2004-12-22 2007-03-09 엘지전자 주식회사 왕복동식 압축기
JP3792245B1 (ja) * 2005-03-30 2006-07-05 シャープ株式会社 リニア駆動装置
JP4745768B2 (ja) * 2005-05-06 2011-08-10 エルジー エレクトロニクス インコーポレイティド リニア圧縮機
KR100673460B1 (ko) * 2005-05-11 2007-01-24 엘지전자 주식회사 리니어 압축기
JP4558796B2 (ja) * 2005-07-29 2010-10-06 株式会社ダイヤメット 往復動型サイクル機関の外側固定子および往復動型サイクル機関
EP2322799B1 (en) * 2008-08-07 2014-04-23 LG Electronics Inc. Linear compressor
JP5527066B2 (ja) * 2010-07-12 2014-06-18 シンフォニアテクノロジー株式会社 可動磁石型リニアアクチュエータ
WO2012119302A1 (zh) * 2011-03-07 2012-09-13 浙江博望科技发展有限公司 铁氧体三相永磁电机
KR101397083B1 (ko) * 2011-09-06 2014-06-30 엘지전자 주식회사 왕복동 모터 및 이를 구비한 왕복동식 압축기
JP5862145B2 (ja) * 2011-09-19 2016-02-16 日本電産株式会社 モータおよびモータの製造方法
CN104251196B (zh) * 2013-06-28 2016-10-05 Lg电子株式会社 线性压缩机
CN104251193A (zh) * 2013-06-28 2014-12-31 Lg电子株式会社 线性压缩机
US9853529B2 (en) * 2014-04-29 2017-12-26 Ishwar Ram Singh Linear induction generator using magnetic repulsion
US10476364B2 (en) * 2016-06-15 2019-11-12 Asm Technology Singapore Pte Ltd Magnet assembly mounting arrangement for an electromagnetic motor
KR102608386B1 (ko) * 2016-06-23 2023-11-30 엘지전자 주식회사 왕복동 모터 및 이를 구비한 왕복동식 압축기

Also Published As

Publication number Publication date
EP3346585A3 (en) 2018-10-10
US20180198337A1 (en) 2018-07-12
EP3346584B1 (en) 2022-05-18
US20180198357A1 (en) 2018-07-12
CN210157068U (zh) 2020-03-17
EP3346585A2 (en) 2018-07-11
EP3346584A1 (en) 2018-07-11
WO2018131810A1 (en) 2018-07-19
EP3346585B1 (en) 2022-03-02
US10811920B2 (en) 2020-10-20
WO2018131859A1 (ko) 2018-07-19
US10819173B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
JP3802491B2 (ja) 往復動式モータ
US7994661B2 (en) Dual linear electrodynamic system and method
EP2719896B1 (en) Reciprocating compressor
CN110291704B (zh) 横向磁通往复电机及包括该横向磁通往复电机的往复压缩机
CN107546948B (zh) 横向磁通型往复式电机及具备其的往复式压缩机
US11131296B2 (en) Transverse flux type reciprocating motor and reciprocating compressor having a transverse flux type reciprocating motor
JP2016025841A (ja) リニア圧縮機及びリニアモータ
KR101982850B1 (ko) 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기
CN210183197U (zh) 横向磁通型线性马达和具有所述马达的线性压缩机
CN210246582U (zh) 可动铁芯型往复式电机和压缩机
EP3346584B1 (en) Movable core-type reciprocating motor and reciprocating compressor having the same
US6770990B2 (en) Reciprocating motor
KR102608386B1 (ko) 왕복동 모터 및 이를 구비한 왕복동식 압축기
JP2001090660A (ja) リニア圧縮機
KR20180093412A (ko) 횡자속형 왕복동 모터 및 이를 구비한 왕복동식 압축기
KR20080065095A (ko) 왕복동식 압축기의 리니어 모터
KR20040091360A (ko) 왕복동식 모터 및 이를 적용한 왕복동식 압축기
KR20180093411A (ko) 리니어 압축기
JP2014521300A (ja) リニアエンジンを備える圧縮機
KR20060086671A (ko) 리니어 압축기의 리니어 모터

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal