KR20180057469A - 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 - Google Patents

메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 Download PDF

Info

Publication number
KR20180057469A
KR20180057469A KR1020170007187A KR20170007187A KR20180057469A KR 20180057469 A KR20180057469 A KR 20180057469A KR 1020170007187 A KR1020170007187 A KR 1020170007187A KR 20170007187 A KR20170007187 A KR 20170007187A KR 20180057469 A KR20180057469 A KR 20180057469A
Authority
KR
South Korea
Prior art keywords
formula
group
carbon atoms
metallocene
supported catalyst
Prior art date
Application number
KR1020170007187A
Other languages
English (en)
Other versions
KR102064411B1 (ko
Inventor
박종우
이혜경
김병석
전상진
정재엽
박희광
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780023096.5A priority Critical patent/CN109071699B/zh
Priority to PCT/KR2017/011190 priority patent/WO2018097472A1/ko
Priority to US16/088,610 priority patent/US10815322B2/en
Priority to EP17872934.9A priority patent/EP3421506B1/en
Publication of KR20180057469A publication Critical patent/KR20180057469A/ko
Application granted granted Critical
Publication of KR102064411B1 publication Critical patent/KR102064411B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/622Component covered by group C08F4/62 with an organo-aluminium compound
    • C08F4/6228Component covered by group C08F4/62 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 우수한 중합 활성을 갖는 신규의 메탈로센 화합물을 포함하는 담지 촉매 및 이를 이용하여 우수한 가공성 및 넓은 분자량 분포를 갖는 폴리프로필렌을 제조하는 방법에 관한 것이다.

Description

메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 {METALLOCENE SUPPORTED CATALYST AND METHOD FOR PREPARING POLYPROPYLENE USING THE SAME}
본 발명은 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 신규의 단일 메탈로센 화합물을 포함하는 담지 촉매 및 이를 이용하여 넓은 분자량 분포를 갖는 폴리프로필렌를 제조하는 방법, 이로부터 수득되는 폴리프로필렌에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제5,032,562호에는 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지시켜 중합 촉매를 제조하는 방법이 기재되어 있다. 이는 고분자량을 생성하는 티타늄(Ti) 계열의 지글러-나타 촉매와 저분자량을 생성하는 지르코늄(Zr) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산(bimodal distribution) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 중합체의 형상(morphology)이 나빠지는 단점이 있다.
미국 특허 제5,525,678호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가 동시에 중합될 수 있는 올레핀 중합용 촉매계를 사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야 하고, 담지 반응을 위해 담체를 여러 가지 화합물로 전처리해야 하는 단점이 있다.
미국 특허 제5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
대한민국 특허 출원 제2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링(fouling)을 유발하는 단점이 있다. 특히, 일반적인 폴리프로필렌 제조용 메탈로센 촉매는 벌크 중합에 적용되기 위하여 담지 과정을 거치는데, 담지의 과정이 까다롭고 담지가 잘 되지 않는 경우 공정상의 문제(fouling 등 )가 발생하게 된다.
일반적으로 메탈로센 담지 촉매는 매우 좁은 분자량 분포를 가지는 특징이 있다. 하지만, 가공성 등의 측면에서 불리한 면도 있기 때문에 넓은 분자량 분포를 요구하는 제품에서는 불리한 점이 있다. 이러한 문제를 해결하기 위해 서로 다른 분자량의 폴리프로필렌을 제공할 수 있는 메탈로센 촉매를 혼합하여 사용하는 방법 등이 소개되었으나, 아직까지 메탈로센 촉매를 이용하여 폴리프로필렌의 가공성을 충분히 개선할 수 있는 방법이 개발되지 못하고 있다. 이에, 단일 메탈로센 촉매로 중합한 폴리프로필렌의 분자량 분포를 조절하여 가공성을 향상시키는 연구가 필요한 실정이다.
본 발명은 우수한 기계적 물성, 가공성, 유동성, 결정성 등을 갖는 폴리프로필렌을 파울링(fouling) 없이 분말(powder) 형태의 고분자로서 높은 촉매 활성으로 제조할 수 있는 신규의 메탈로센 화합물을 포함하는 메탈로센 담지 촉매를 제공하고자 한다.
또한, 본 발명은 상기 메탈로센 담지 촉매를 사용하여 넓은 분자량 분포를 가지는 폴리프로필렌을 제조하는 방법을 제공하고자 한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물, 조촉매 화합물, 및 담체를 포함하는 메탈로센 담지 촉매가 제공된다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
R1 및 R2은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
R3 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알킬기이고;
A는 탄소, 실리콘 또는 게르마늄이고;
X은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
일례로, 상기 화학식 1의 R1 및 R2은 각각 t-부톡시메틸렌기, 메톡시메틸렌기, 에톡시메틸렌기, i-프로폭시메틸렌기, 또는 페녹시메틸렌기가 될 수 있다.
상기 메탈로센 화합물은 하기 구조식들 중 하나일 수 있다.
Figure pat00002
,
Figure pat00003
,
Figure pat00004
,
Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
, 또는
Figure pat00011
상기 담체는 실리카, 알루미나, 마그네시아, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있다.
또한, 상기 담체에는 하기 화학식 2, 화학식 3, 또는 화학식 4로 표시되는 화합물 중 1종 이상을 조촉매로 추가 담지시킬 수 있다.
[화학식 2]
-[Al(R5)-O]n-
상기 화학식 2에서,
R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 3]
J(R6)3
상기 화학식 3에서,
R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
여기서, 상기 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 가 될 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 상기 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법을 제공한다.
일례로, 상기 프로필렌의 중합은 25 내지 500 ℃의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행할 수 있으며, 상기 프로필렌의 중량에 대하여 30 내지 2,000 ppm의 수소(H2)기체 하에서 수행할 수 있다.
본 발명에 따르면, 우수한 기계적 물성, 가공성, 유동성, 결정성 등을 갖는 폴리프로필렌을 파울링(fouling) 없이 분말(powder) 형태의 고분자로서 높은 촉매 활성으로 제조할 수 있는 신규의 메탈로센 화합물을 포함하는 메탈로센 담지 촉매가 제공된다.
또한, 이러한 메탈로센 담지 촉매를 사용하면, 넓은 분자량 분포로 가공성이 우수한 폴리프로필렌이 매우 효과적으로 제조될 수 있다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 더욱 상세하게 설명한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물, 조촉매 화합물, 및 담체를 포함하는 메탈로센 담지 촉매를 제공한다.
[화학식 1]
Figure pat00012
상기 화학식 1에서,
R1 및 R2은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
R3 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알킬기이고;
A는 탄소, 실리콘 또는 게르마늄이고;
X은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
일례로, 상기 화학식 1의 R1 및 R2은 각각 t-부톡시메틸렌기, 메톡시메틸렌기, 에톡시메틸렌기, i-프로폭시메틸렌기, 또는 페녹시메틸렌기일 수 있다. R3 및 R4은 각각 메틸기(Me), 에틸기(Et), n-프로필기(n-Pr), n-부틸기(n-Bu), n-펜틸기(n-Pent), 또는 n-헥실기(n-Hex)일 수 있다. X는 서로 동일하거나 상이한 할로겐일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중 하나일 수 있다.
Figure pat00013
,
Figure pat00014
,
Figure pat00015
,
Figure pat00016
,
Figure pat00017
,
Figure pat00018
,
Figure pat00019
,
Figure pat00020
,
Figure pat00021
, 또는
Figure pat00022
상기 화학식 1의 메탈로센 화합물은 활성이 우수하고 분자량 분포가 넓은 폴리프로필렌을 중합할 수 있다.
특히, 본 발명은 효과적인 담지 반응을 유도할 수 있는 테더(tether)가 결합된 형태의 신규 촉매를 합성하였고, 테더(tether)의 영향으로 실리카(silica) 담지체에 MAO와 촉매를 각각 1 step씩 2 step만에 효과적으로 담지할 수 있다. 또한, 중합 과정 중 파울링(fouling) 없이 분말(powder) 형태의 고분자를 얻을 수 있으며, 폴리프로필렌 호모 중합시 단일 촉매만으로 넓은 분자량 분포의 폴리머 제조가 가능하다. 바람직한 일 구현예에 따르면, 분자량 분포(MWD) 측면에서 기존의 메탈로센 촉매로서는 구현이 어려운 약 5 정도의 넓은 분자량 분포를 갖는 것을 특징으로 한다. 따라서, 기존 메탈로센 촉매로서는 구현이 어려운 가공성이 뛰어난 폴리프로필렌을 제조할 수 있는 특징을 갖고 있다.
본 발명의 일 실시예에 따르면, 상기 화학식1의 메탈로센 화합물은 인덴 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적으로 예를 들어, 인덴 유도체를 n-BuLi와 같은 유기 리튬 화합물과 반응시켜 리튬염을 제조하고, 브릿지 화합물의 할로겐화 화합물을 혼합한 후, 이들 혼합물을 반응시켜 리간드 화합물을 제조한다. 상기 리간드 화합물 또는 이의 리튬염과 금속 전구체 화합물을 혼합하고 반응이 완결될 때까지 약 12 시간 내지 약 24 시간 전후로 반응시킨 후 반응물을 여과 및 감압 하에서 건조함으로써 상기 화학식 1로 표시되는 메탈로센 화합물을 수득할 수 있다. 상기 화학식 1의 메탈로센 화합물을 제조하는 방법은 후술하는 실시예에 구체화하여 설명한다.
상기 일 구현예에 따른 메탈로센 담지 촉매에서 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있다. 예컨대, 상기 담체는 실리카, 실리카-알루미나, 및 실리카-마그네시아로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
상기 담체 표면의 히드록시기(-OH)의 양은 가능하면 적을수록 좋으나 모든 히드록시기를 제거하는 것은 현실적으로 어렵다. 상기 히드록시기의 양은 담체의 제조방법 및 제조조건 및 건조 조건(온도, 시간, 건조 방법 등) 등에 의해 조절할 수 있으며, 0.1 내지 10 mmol/g이 바람직하고, 보다 바람직하게는 0.1 내지 1 mmol/g 이고, 더욱 바람직하게는 0.1 내지 0.5 mmol/g이다. 건조 후에 잔존하는 약간의 히드록시기에 의한 부반응을 줄이기 위해 담지에 참여하는 반응성이 큰 실록산기는 보존하면서 이 히드록시기를 화학적으로 제거한 담체를 이용할 수도 있다.
또한, 상기 담체에는 하기 화학식 2, 화학식 3, 또는 화학식 4로 표시되는 화합물 중 1종 이상을 조촉매로 추가 담지시킬 수 있다.
[화학식 2]
-[Al(R5)-O]n-
상기 화학식 2에서,
R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 3]
J(R6)3
상기 화학식 3에서,
R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 2로 표시되는 조촉매의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert-부틸알루미녹산 등을 들 수 있으며, 더욱 바람직한 화합물은 메틸알루미녹산을 들 수 있다.
상기 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
이러한 조촉매로는 바람직하게는 알루미녹산을 사용할 수 있으며, 더 바람직하게는 알킬알루미녹산인 메틸알루미녹산(MAO)을 사용할 수 있다. 또한, 상기 조촉매는 촉매 전구체인 메탈로센 화합물의 활성화가 충분히 진행될 수 있도록 적절한 함량으로 사용될 수 있다.
본 발명에 따른 메탈로센 담지 촉매는, 첫 번째 방법으로서 1) 상기 화학식 1로 표시되는 메탈로센 화합물과 상기 화학식 2 또는 화학식 3으로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 2) 상기 혼합물에 상기 화학식 4로 표시되는 화합물을 첨가하는 단계를 포함하는 방법으로 제조될 수 있다.
또한, 본 발명에 따른 메탈로센 담지 촉매는, 두 번째 방법으로서 상기 화학식 1로 표시되는 메탈로센 화합물과 상기 화학식 2로 표시되는 화합물을 접촉시키는 방법으로 제조될 수 있다.
상기 담지 촉매의 제조방법 중에서 첫 번째 방법의 경우에, 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 2 또는 화학식 3으로 표시되는 화합물의 몰 비율은 1/5,000 내지 1/2이 바람직하고, 더욱 바람직하게는 1/1,000 내지 1/10 이고, 가장 바람직하게는 1/500 내지 1/20 이다. 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 2 또는 화학식 3으로 표시되는 화합물의 몰 비율이 1/2을 초과하는 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고, 몰 비율이 1/5,000 미만인 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 5의 활성화제 간의 부반응으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. 또한, 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 4로 표시되는 화합물의 몰 비율은 1/25 내지 1 이 바람직하고, 더욱 바람직하게는 1/10 내지 1이고, 가장 바람직하게는 1/5 내지 1이다. 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 4로 표시되는 화합물의 몰 비율이 1을 초과하는 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 담지 촉매의 활성도가 떨어지는 문제가 있고, 몰 비율이 1/25 미만인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 담지 촉매의 단가가 경제적이지 못하거나 생성되는 중합체의 순도가 떨어지는 문제가 있다.
상기 담지 촉매의 제조방법 중에서 두 번째 방법의 경우에, 상기 화학식 1로 표시되는 메탈로센 화합물/화학식 2로 표시되는 화합물의 몰 비율은 1/10,000 내지 1/10이 바람직하며, 더욱 바람직하게는 1/5,000 내지 1/100이고, 가장 바람직하게는 1/3,000 내지 1/500이다. 상기 몰 비율이 1/10을 초과하는 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 담지 촉매의 활성도가 떨어지는 문제가 있고, 1/10,000 미만인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 담지 촉매의 단가가 경제적이지 못하거나 생성되는 중합체의 순도가 떨어지는 문제가 있다.
상기 담지 촉매의 제조시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있다.
또한, 상기 담지 촉매에서 상기 메탈로센 화합물과 조촉매 화합물을 담체에 담지시, 담체 100 중량부에 대하여 상기 메탈로센 화합물은 약 0.5 내지 약 20 중량부, 조촉매는 약 1 내지 약 1,000 중량부로 포함될 수 있다. 바람직하게는 상기 담체 100 중량부에 대해, 상기 메탈로센 화합물은 약 1 내지 약 15 중량부, 조촉매는 약 10 내지 약 500 중량부로 포함될 수 있으며, 가장 바람직하게는 상기 담체 100 중량부에 대해, 상기 메탈로센 화합물은 약 1 내지 약 100 중량부, 조촉매는 약 40 내지 약 150 중량부로 포함될 수 있다.
본 발명의 메탈로센 담지 촉매에서, 상기 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 폴리머 미세구조를 최적화할 수 있다.
상기 메탈로센 담지 촉매는 상술한 성분 이외에 본 발명이 속하는 기술분야에서 통상적으로 채용하는 첨가제 및 보조제 등을 추가로 포함할 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 상기 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법을 제공한다.
상술한 바와 같이, 상기 메탈로센 담지 촉매는 특정의 치환기를 갖는 인덴 리간드를 포함하는 화학식 1의 메탈로센 화합물을 포함하는 촉매를 사용하여 높은 촉매 활성으로 넓은 분자량 분포와 함께 가공성을 향상된 폴리프로필렌을 제공할 수 있다.
본 발명의 일 실시예에 따른 폴리프로필렌의 제조방법에서. 상기 화학식 1의 메탈로센 화합물을 포함하는 담지 촉매는 기존의 지글러-나타 촉매 또는 메탈로센 촉매보다 향상된 촉매 활성을 가지며, 메탈로센 화합물의 담지 조건이 변하더라도, 즉, 반응 온도, 반응 시간, 실리카 종류, 메탈로센 화합물의 담지량이 변경되더라도 향상된 활성으로 폴리프로필렌을 제조할 수 있다.
여기서, 상기 프로필렌의 중합은 약 25 내지 약 500 ℃의 온도 및 약 1 내지 약 100 kgf/cm2의 압력 하에서 약 1 내지 약 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 중합 반응 온도는 약 25 내지 약 200 ℃가 바람직하고, 약 50 내지 약 100 ℃가 보다 바람직하다. 또한, 상기 중합 반응 압력은 약 1 내지 약 70 kgf/cm2가 바람직하고, 약 5 내지 약 50 kgf/cm2가 보다 바람직하다. 상기 중합 반응 시간은 약 1 내지 약 5 시간이 바람직하다.
본 발명의 폴리프로필렌의 제조방법은 상기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매와, 프로필렌을 접촉시키는 것에 의하여 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 프로필렌의 중합은 수소 기체 하에서 수행될 수 있다.
이때, 상기 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화시키고 체인 이동 반응(chain transfer reaction)을 일으켜 분자량을 조절하는 역할을 한다. 본 발명의 메탈로센 화합물은 수소 반응성이 우수하며, 따라서, 중합 공정시 상기 수소 기체 사용량의 조절에 의해, 원하는 수준의 분자량과 용융 지수를 갖는 폴리프로필렌이 효과적으로 얻어질 수 있다.
상기 수소 기체는 프로필렌의 중량에 대하여, 약 30 내지 약 2,000 ppm, 또는 약 50 내지 약 1,500 ppm, 또는 약 50 내지 약 500 ppm 이 되도록 투입될 수 있다. 상기 수소 기체의 사용량을 조절하여, 충분한 촉매 활성을 나타내면서도 제조되는 폴리프로필렌의 분자량 분포 및 용융 지수(melt index, MI)를 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 폴리프로필렌을 제조할 수 있다. 보다 구체적으로, 본 발명의 메탈로센 촉매는 매우 우수한 수소 반응성을 갖고 있어 수소 기체의 사용량을 증가시킴에 따라 체인 이동 반응이 활성화되며, 이에 따라 분자량이 감소되고 용융 지수가 높은 폴리프로필렌을 수득할 수 있다.
상기 폴리프로필렌의 제조방법은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기 등을 이용하여, 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의해 수행될 수 있다.
본 발명에 따른 폴리프로필렌의 제조방법에 있어서, 상기 촉매는 올레핀계 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하다.
상기 폴리프로필렌의 제조 방법은 상술한 단계 외에 본 발명이 속하는 기술분야에서 통상적으로 채용하는 단계를 추가로 포함할 수 있다.
한편, 발명의 또다른 일 구현예에 따르면, 상술한 제조 방법에 의해 수득되는 폴리프로필렌을 제공한다.
전술한 바대로, 본 발명에 따르면 상기 신규한 메탈로센 화합물을 포함하는 촉매를 사용함으로써, 기존의 메탈로센 화합물을 사용하였을 경우에 비해 우수한 가공성 및 넓은 분자량 분포와 함께 높은 중합 활성을 갖는 폴리프로필렌을 수득할 수 있다. 특히, 본 발명은 인덴 기반의 안사-메탈로센 촉매에서 리간드의 특정 위치에 아릴 치환기를 도입하며, 상기 아릴 치환기에 탄소수 1 내지 20의 알콕시 등의 루이스 베이스(Lewis base) 특성을 갖는 작용기를 치환함으로써, 폴리프로필렌 중합에 적용시 매우 넓은 분자량 분포를 갖는 폴리프로필렌을 제조하는 것을 특징으로 한다.
상기 폴리프로필렌은 가공 온도가 낮고 투명성 및 유동성이 우수하여 이러한 특성이 요구되는 포장용기, 필름, 시트, 사출 성형품, 섬유 제품 등으로 이용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 메탈로센 화합물을 포함하는 촉매를 사용하여 프로필렌의 중합 공정을 수행하였을 때, 생성된 폴리프로필렌의 중량 평균 분자량(Mw)은 중합 공정시 투입하는 수소 사용량에 따라 중량 평균 분자량(Mw)이 약 30,000 내지 약 9,000,000 g/mol, 또는 약 80,000 내지 약 1,000,000 g/mol, 또는 약 10,000 내지 약 1,000,000 g/mol이 될 수 있다.
또한, 이렇게 제조된 상기 폴리프로필렌은 분자량 분포(Mw/Mn)가 약 10 이하, 예를 들어 약 1 내지 10, 바람직하게는 약 4 내지 6, 좀더 바람직하게는 약 4.5 내지 5.8이 될 수 있다. 상기와 같은 분자량 분포를 가짐으로써 투명도와 가공성이 뛰어나고 특히 폴리프로필렌 특유의 맛이나 냄새 문제가 적은 제품을 제조할 수 있다.
또한, 상기 폴리프로필렌의 자일렌 가용분(Xs)은 약 2.0 중량% 이하, 바람직하게는 약 1.5 중량%, 보다 바람직하게는 약 1.0 중량% 이하로 높은 입체 규칙도(tacticity)를 나타낸다. 자일렌 가용분은 상기 폴리프로필렌을 자일렌 중에 용해시키고, 냉각 용액으로부터 불용성 부분을 결정화시켜 결정된 냉각 자일렌 중에 가용성인 중합체의 함량(중량%)이다. 자일렌 가용분은 낮은 입체 규칙성의 중합체 사슬을 함유하는 것으로, 자일렌 가용분의 함량이 낮을수록 높은 입체 규칙도를 갖는다.
또한, 본 발명에 따라 제조된 폴리프로필렌에서, 입경이 75 ㎛ 이하인 미분 함량이 약 5.0 중량% 이하, 바람직하게는 약 3.0 중량%, 보다 바람직하게는 약 2.0 중량% 이하로 미분 발생이 적어, 미분에 의한 파울링 발생 및 이로 인한 공정 불안정성이 방지되며, 제품 가공 시 입자가 비산되는 문제점을 줄일 수 있다.
또한, 본 발명에 따라 제조된 폴리프로필렌은 높은 유동성을 나타낸다. 예를 들어, 본 발명에 따라 제조된 폴리프로필렌은 230 ℃, 2.16 kg에서 측정하였을 때, 약 1 g/10min 이상, 예를 들어 약 1 내지 약 2,500 g/10min, 바람직하게는 약 5 내지 약 1,500 g/10min 의 광범위한 용융 지수(melt index, MI)를 가지며, 중합 공정시 투입하는 수소 사용량에 따라 용융 지수의 조절이 가능하여 용도에 따라 적절한 용융 지수를 갖는 폴리프로필렌을 제조할 수 있다
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
<메탈로센 담지 촉매의 제조 실시예>
실시예 1
Figure pat00023
1-1 단계: 1-bromo-4-( tert -butoxymethyl) benzene 합성
Figure pat00024
H2SO4 (1.47 mL), 무수 MgSO4 (12.9 g, 107 mmol)을 CH2Cl2 (80 mL)에 넣고 상온에서 15 분간 교반하였다. 다른 플라스크에 4-bromobenzyl alcohol (5.0 g, 26.7 mmol), t-butanol (12.8 mL, 134 mmol)을 CH2Cl2 (30 mL)에 녹인 후에 위 혼합물을 첨가하였다. 이후에 혼합물을 상온에서 밤새 교반한 후 sat. NaHCO3를 첨가하였다. 무수 MgSO4로 수분을 제거하고 얻어진 용액을 감압 농축한 후 컬럼 크로마토그래피(column chromatography, E/H = 1/20)로 정제하여 1-bromo-4-(tert-butoxymethyl)benzene (5.9 g, 90%)를 흰색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.28 (9H, s), 4.39 (2H, s), 7.22 (2H,d), 7.44 (2H, d)
1-2 단계: 7-(4- tert -butoxymethyl)phenyl)-2-methyl-1 H -indene 합성
Figure pat00025
1-bromo-4-(tert-butoxymethyl)benzene (4.52 g, 18.6 mmol)을 아르곤(Ar) 하에서 무수 THF (20 mL)에 녹였다. 온도를 -78 ℃로 낮추고 n-부틸리튬 용액(n-BuLi, 2.5 M in hexane, 8.2 mL)를 첨가한 후 상온에서 30 분간 교반하였다. 온도를 다시 -78 ℃로 낮추고 trimethyl borate (6.2 mL, 55.6 mmol)을 가한 후 상온에서 밤새 교반하였다. 반응용액에 sat. NH4Cl를 가한 후 MTBE로 추출하였다. 무수 MgSO4를 가하고 여과하여 수분을 제거하였다. 용액을 감압 농축한 후 추가 정제 없이 다음 반응을 진행하였다.
위에서 얻어진 화합물과 7-bromo-2-methyl-1H-indene (3.87 g, 18.6 mmol), Na2CO3 (5.91 g, 55.8 mmol)을 톨루엔(40 mL), H2O (20 mL), EtOH (20 mL) 혼합 용매에 넣고 교반하였다. 위 용액에 Pd(PPh3)4 (1.07 g. 0.93 mmol)을 넣고 90 ℃에서 밤새 교반하였다. 반응이 종결된 후 MTBE와 물을 넣고 유기층을 분리하였다. 무수 MgSO4로 수분을 제거하고 얻어진 용액을 감압 농축한 후 컬럼 크로마토그래피(column chromatography, E/H = 1/30)로 정제하여 7-(4-tert-butoxymethyl)phenyl)-2-methyl-1H-indene (2.9 g, 53%)을 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.33 (9H, s), 2.14 (3H, s), 3.36 (2H, s), 4.50 (2H, s), 6.53 (1H, s), 7.11 - 7.45 (7H, m)
1-3 단계: bis(4-(4- tert - butoxymethyl )phenyl)-2-methyl-1 H - inden -1-yl)dimethylsilane 합성
Figure pat00026
7-(4-tert-butoxymethyl)phenyl)-2-methyl-1H-indene (2.88 g, 9.85 mmol)과 CuCN (44 mg, 0.49 mmol)을 아르곤(Ar) 하에서 톨루엔(18 mL)과 THF (2 mL)에 녹였다. 이 용액을 -30 ℃로 냉각하고 n-BuLi (2.5 M in hexane, 4.1 mL)를 서서히 투입하였다. 이 온도에서 약 20 분간 교반한 후 상온으로 온도를 올린 후 2.5 시간 교반하였다. 이 용액에 디클로로디메틸실란(dichlorodimethysilane, 0.59 mL, 4.89 mmol)을 투입하고 상온에서 밤새 교반하였다. 반응이 완결된 후 MTBE와 물을 투입하고 유기층을 분리하였다. 얻어진 유기층을 무수 MgSO4로 수분을 제거하고 농축 후 컬럼 크로마토그래피(column chromatography, hexane)로 정제하여 bis(4-(4-tert-butoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)dimethylsilane (2.95 g, 93%)를 흰색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): -0.20 (6H, s), 1.35 (18H, s), 2.19(3H, s), 2.25 (3H, s), 3.81 (2H, s), 4.53 (4H, s), 6.81 (2H, s), 7.18 - 7.52 (14H, m)
1-4 단계: dimetylsilanyl -bis(4-(4- tert - butoxymethyl )phenyl)-2-methyl-1 H -inden-1-yl)Zirconium dichloride 합성
Figure pat00027
bis(4-(4-tert-butoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)-dimethyl-silane (2.0 g, 3.12 mmol)를 아르곤(Ar) 하에 50 mL 쉬링크 플라스크(Schlenk flask)에 넣고 디에틸에테르(diethyl ether, 20 mL)를 주입하여 녹였다. 온도를 -78 ℃로 낮추고, n-BuLi (2.5 M in hexane, 2.7 mL)를 가한 후 상온에서 2 시간 동안 교반하였다. 용매를 진공 감압 증류하고 ZrCl4(THF)2 (1.18 g, 3.12 mmol)를 글로브 박스(globe box)에서 넣고, 온도를 -78 ℃로 낮췄다. 이 혼합물에 디에틸에테르(diethyl ether, 20 mL)를 가한 후 온도를 실온으로 올려 밤새 교반하였다. 용매를 감압 증류하고 CH2Cl2에 녹여 고체를 제거하였다. 용액을 감압 농축하여 얻어진 고체를 톨루엔(toluene), CH2Cl2로 세척하여 racemic rich 한 노란색의 고체 dimethylsilanyl-bis(4-(4-tert-butoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)Zirconium dichloride (260 mg, 10%, r/m 약 16/1)를 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.28 (18H, s), 1.33 (6H, s), 2.24 (6H, s), 4.46 (4H, s), 6.93 (2H, s), 7.08 - 7.65 (14H, m)
1-5 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 1-4 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 1-4 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃에서 4 시간 동안 진공 건조하였다.
실시예 2
Figure pat00028
2-1 단계: 1- bromo -4-( metoxymethyl )benzene 합성
Figure pat00029
DMSO (117 mL)/KOH (214 mmol, 12 g)를 플라스크에 넣고 4-bromobenzyl alcohol (53.5 mmol, 10.0 g)을 첨가한 후 1 시간 동안 상온에서 교반하였다. 상기 반응물에 MeI (107 mmol, 6.6 mL)를 첨가한 후 10 분간 교반하였다. 반응이 종료한 후 반응물을 H2O에 넣은 후 CH2Cl2로 추출하였다. 유기층을 무수 MgSO4로 건조한 후 진공 건조하여 1-bromo-4-methoxymethyl benzene (10.6 g, 99%)을 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 3.41 (3H, s), 4.39 (2H, s), 7.11 -7.53 (4H, m)
2-2 단계: 7-(4- metoxymethyl )phenyl)-2-methyl-1 H - indene 합성
Figure pat00030
1-bromo-4-(methoxymethyl)benzene (9.3 g, 46.3 mmol)을 아르곤(Ar) 하에서 무수 THF (40 mL)에 녹였다. 온도를 -78 ℃로 낮추고 n-부틸리튬 용액(n-BuLi, 2.5 M in hexane, 20.4 mL)를 첨가한 후 상온에서 30 분간 교반하였다. 온도를 다시 -78 ℃로 낮추고 trimethyl borate (15.5 mL, 139 mmol)을 가한 후 상온에서 밤새 교반하였다. 반응용액에 sat. NH4Cl를 가한 후 MTBE로 추출하였다. 무수 MgSO4를 가하고 여과하여 수분을 제거하였다. 용액을 감압 농축한 후 추가 정제 없이 다음 반응을 진행하였다.
위에서 얻어진 화합물과 7-bromo-2-methyl-1H-indene (9.63 g, 46.3 mmol), Na2CO3 (14.7 g, 139 mmol)을 톨루엔(80 mL), H2O (40 mL), EtOH (40 mL) 혼합 용매에 넣고 교반하였다. 위 용액에 Pd(PPh3)4 (1.07 g. 2.32 mmol)을 넣고 90 ℃에서 밤새 교반하였다. 반응이 종결된 후 MTBE와 물을 넣고 유기층을 분리하였다. 무수 MgSO4로 수분을 제거하고 얻어진 용액을 감압 농축한 후 컬럼 크로마토그래피(column chromatography, E/H = 1/30)로 정제하여 7-(4-(methoxymethyl)phenyl)-2-methyl-1H-indene (6.9 g, 60%)을 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 2.15 (3H, s), 3.35 (2H, s), 3.38 (3H, s), 4.48 (2H, s), 6.55 (1H, s), 7.05 - 7.44 (7H, m)
2-3 단계: bis(4-(4- metoxymethyl )phenyl)-2-methyl-1 H - inden -1-yl)dimethylsilane 합성
Figure pat00031
7-(4-metoxymethyl)phenyl)-2-methyl-1H-indene (4.21 g, 16.8 mmol)과 CuCN (75 mg, 0.84 mmol)을 아르곤(Ar) 하에서 톨루엔(36 mL)과 THF (4 mL)에 녹였다. 이 용액을 -30 ℃로 냉각하고 n-BuLi (2.5 M in hexane, 7.4 mL)를 서서히 투입하였다. 이 온도에서 약 20 분간 교반한 후 상온으로 온도를 올린 후 2.5 시간 교반하였다. 이 용액에 디클로로디메틸실란(dichlorodimethysilane, 1.01 mL, 8.4 mmol)을 투입하고 상온에서 밤새 교반하였다. 반응이 완결된 후 MTBE와 물을 투입하고 유기층을 분리하였다. 얻어진 유기층을 무수 MgSO4로 수분을 제거하고 농축 후 컬럼 크로마토그래피(column chromatography, hexane)으로 정제하여 bis(4-(4-metoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)dimethylsilane (4.21 g, 90%)를 흰색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): -0.21 (6H, s), 2.20 (3H, s), 2.23 (3H, s), 3.40 (6H, s), 3.82 (2H, s), 4.50 (4H, s), 6.79 (2H, s), 7.15 - 7.53 (14H, m)
2-4 단계: dimetylsilanyl -bis(4-(4- metoxymethyl )phenyl)-2-methyl-1 H -inden-1-yl)Zirconium dichloride 합성
Figure pat00032
bis(4-(4-metoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)-dimethyl-silane (3.0 g, 5.39 mmol)를 아르곤(Ar) 하에 50 mL 쉬링크 플라스크(Schlenk flask)에 넣고 디에틸에테르(diethyl ether, 30 mL)를 주입하여 녹였다. 온도를 -78 ℃로 낮추고, n-BuLi (2.5 M in hexane, 4.7 mL)를 가한 후 상온에서 2 시간 동안 교반하였다. 용매를 진공 감압 증류하고 ZrCl4(THF)2 (2.04 g, 5.39 mmol)를 글로브 박스(globe box)에서 넣고, 온도를 -78 ℃로 낮췄다. 이 혼합물에 디에틸에테르(diethyl ether, 30 mL)를 가한 후 온도를 실온으로 올려 밤새 교반하였다. 용매를 감압 증류하고 CH2Cl2에 녹여 고체를 제거하였다. 용액을 감압 농축하여 얻어진 고체를 톨루엔(toluene), CH2Cl2로 세척하여 racemic rich한 노란색의 고체 dimethylsilanyl-bis(4-(4-metoxymethyl)phenyl)-2-methyl-1H-inden-1-yl)Zirconium dichloride (425 mg, 11%, r/m 약 10/1)를 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.31 (6H, s), 2.22 (6H, s), 3.39 (6H, s), 4.43 (4H, s), 6.91 (2H, s), 7.09 - 7.64 (14H, m)
2-5 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 2-4 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 2-4 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃에서 4 시간 동안 진공 건조하였다.
비교예 1
Figure pat00033
3-1 단계: (6- t - 부톡시헥실 ) 디클로로메틸실란의 제조
100 mL의 트리클로로메틸실란 용액(약 0.21 mol, 헥산)에 100 mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14 mol, diethyl ether)을 -100 ℃ 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다.
상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하였다. 이로써, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다(수율 84 %).
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.76 (3H, s), 1.11 (2H, t), 1.18 (9H, s), 1.32 - 1.55 (8H, m), 3.33 (2H, t)
3-2 단계: (6- t - 부톡시헥실 )( 메틸 )-비스(2-메틸-4-(4- t -부틸)페닐인데닐)실란의 제조
2-메틸-4-tert-부틸페닐인덴(20.0 g, 76 mmol)을 톨루엔/THF=10/1 용액(230 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22 g)을 0 ℃에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 ℃에서 상기 혼합 용액에 (6-t-부톡시헥실)디클로로메틸실란(1.27 g)을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (6-t-부톡시헥실)(메틸)-비스(2-메틸-4-(4-t-부틸)페닐인데닐)실란을 얻었다.
1H NMR (500 MHz, CDCl3, 7.26 ppm): -0.20 - 0.03 (3H, s), 0.50 - 1.20 (4H, m), 1.20 - 1.31 (11H, m), 1.26 (9H, s), 1.40 - 1.62 (20H, m), 2.19 - 2.23 (6H, m), 3.30 - 3.34 (2H, m), 3.73 - 3.83 (2H, m), 6.89 - 6.91 (2H, m), 7.19 - 7.61 (14H, m)
3-3 단계: [(6- t - 부톡시헥실메틸실란 - 디일 )- 비스 (2- 메틸 -4-(4- t -부틸) 페닐인데닐 )] 지르코늄 디클로라이드의 제조
앞서 제조한 (6-t-부톡시헥실)(메틸)비스(2-메틸-4-(4-t-부틸)페닐)인데닐실란을 톨루엔/THF=5/1 용액(95 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22 g)을 -78 ℃에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 반응액에 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2NC5H6)Cl2(C4H8O)2]을 톨루엔(229 mL)에 용해시킨 후, -78 ℃에서 천천히 적가하고 상온에서 하루 동안 교반하였다. 반응액을 -78 ℃로 냉각시킨 후, HCl 에테르 용액(1 M, 183 mL)을 천천히 적가한 후, 0 ℃에서 1 시간 동안 교반하였다. 이후 여과하고 진공 건조한 다음, 헥산을 넣고 교반하여 결정을 석출시켰다. 석출된 결정을 여과 및 감압 건조하여 [(6-t-부톡시헥실메틸실란-디일)-비스(2-메틸-4-(4-t-부틸)페닐인데닐)] 지르코늄 디클로라이드(20.5 g, 총 61%)를 얻었다.
1H NMR (500 MHz, C6D6, 7.26 ppm): 1.20 (9H, s), 1.27 (3H, s), 1.34 (18H, s), 1.20 - 1.90 (10H, m), 2.25 (3H, s), 3.38 (2H, t), 7.00 (2H, s), 7.09 - 7.13 (2H, m), 7.38 (2H, d), 7.45 (4H, t), 7.58 (4H, d), 7.59 (2H, d), 7.65 (2H, d)
3-4 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 2-3 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 3-3 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃에서 4 시간 동안 진공 건조하였다.
비교예 2
Figure pat00034
4-1 단계: 디메틸비스(2-메틸-4페닐인데닐)실란의 제조
77 mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(49.5 mmol)에 n-부틸리튬 용액(2.5 M, 헥산 용매) 21.8 mL를 0 ℃에서 천천히 적가하고, 80 ℃에서 1 시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 0 ℃ 이하에서 디클로로디메틸실란 2.98 mL를 천천히 적가하고, 약 10 분 동안 교반한 뒤 80 ℃로 온도를 올려 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 61%의 수율로 얻었다(racemic:meso = 1:1).
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.02 (6H, s), 2.37 (6H, s), 4.00 (2H, s), 6.87 (2H, t), 7.38 (2H, t), 7.45 (2H, t), 7.57 (4H, d), 7.65 (4H, t), 7.75 (4H, d)
4-2 단계: [ 디메틸실란디일비스 (2- 메틸 -4- 페닐인데닐 )] 지르코늄 디클로라이드의 제조
240 mL의 디메틸비스(2-메틸-4-페닐인데닐)실란 에테르/헥산=1/1 용액(12.4 mmol)에 n-부틸리튬 용액(2.5 M in 헥산) 10.9 mL를 -78 ℃에서 천천히 적가하였다. 그 뒤, 상온에서 하루 동안 교반한 뒤 여과하고 진공 건조하여 연한 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)과 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄비스(테트라하이드로퓨란)을 쉬링크 플라스크(Schlenk flask)에 칭량(weighing)한 후, -78 ℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 붉은색의 용액을 여과 분리한 후 진공 건조하고 톨루엔/에테르 = 1/2 용액을 가하여 깨끗한 붉은 색 용액을 얻었다. HCl 에테르 용액(1M) 1.5 - 2 당량을 -78 ℃에서 천천히 적가한 후 상온에서 3 시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 촉매를 70%의 수율로 얻었다(racemic only).
1H NMR (500 MHz, C6D6, 7.24 ppm): 1.32 (6H, s), 2.24 (6H, s), 6.93 (2H, s), 7.10 (2H, t), 7.32 (2H, t), 7.36 (2H, d), 7.43 (4H, t), 7.60 (4H, d), 7.64 (2H, d)
4-3 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 3-2 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 4-2 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃에서 4 시간 동안 진공 건조하였다.
<실험예>
1) 프로필렌의 호모 중합
2 L 스테인레스 반응기를 65 ℃에서 진공건조한 후 냉각하고, 실온에서 트리에틸알루미늄 3.0 mmol을 넣고, 수소를 2 bar 넣고, 770 g의 프로필렌을 순차적으로 투입하였다.
이후 10분 동안 교반한 후, 상기 실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 각각의 담지 메탈로센 촉매 0.060 g을 TMA 처방된 헥산 20 mL에 녹여 질소 압력으로 반응기에 투입하였다. 이후 반응기 온도를 70 ℃까지 서서히 승온한 후 50 ppm 수소 투입량 및 35 kg/cm2 압력 조건 하에서 1 시간 동안 중합하였다. 반응 종료후 미반응된 프로필렌은 벤트하였다.
2) 중합체의 물성 측정 방법
(1) 촉매 활성: 단위 시간(h)을 기준으로 사용된 촉매 함량(촉매의 mmol 및 g)당 생성된 중합체의 무게(kg PP)의 비로 계산하였다.
(2) 용융지수(MFR, 2.16 kg): ASTM D1238에 따라 230 ℃에서 2.16 kg 하중으로 측정하였으며, 10 분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
(3) 중합체의 녹는점(Tm): 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로 중합체를 220 ℃까지 가열한 후 5 분 동안 그 온도를 유지하였고, 다시 20 ℃까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10 ℃/min으로 조절하였다.
(4) 중합체의 분자량 분포(MWD): nGPC를 이용한 방법으로 중합체의 중량평균분자량(Mw) 및 수평균분자량(Mn)을 측정하고, 중량평균분자량을 수평균분자량으로 나누어 분자량 분포(MWD)를 산측하였다.
3) 중합체의 물성 측정 결과
실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 각각의 메탈로센 담지 촉매를 사용한 호모 중합 공정 조건 및 생성된 폴리프로필렌의 물성 측정 결과를 하기 표 1에 나타내었다.
실시예 1 실시예 2 비교예 1 비교예 2
메탈로센 화합물
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
담지 촉매량 (mg) 40 40 60 240
수소 (ppm) 372 372 372 372
수율 (g) 103 101 428 78
활성 (kg/gCatㆍhr) 2.5 2.5 7.1 0.32
MFR 57 60 9.8 -
Tm (℃) 145.6 145.1 148.7 150.1
MWD 5.2 5.0 2.9 2.3
Conditions: C3(770 g), support (L203F), Temperature (70 ℃), polymerization time (1 hr)
상기 표 1에 나타낸 바와 같이, 본 발명에 따르면 폴리프로필렌 호모 중합시 단일 메탈로센 촉매를 사용하여도 넓은 분자량 분포를 갖는 폴리프로필렌을 제조할 수 있음을 알 수 있다. 특히, 이러한 넓은 분자량 분포를 갖는 폴리프로필렌은 가공성에 대해 우수한 효과가 기대된다.

Claims (9)

  1. 하기 화학식 1로 표시되는 메탈로센 화합물,
    조촉매 화합물, 및
    담체를 포함하는 메탈로센 담지 촉매:
    [화학식 1]
    Figure pat00039

    상기 화학식 1에서,
    R1 및 R2은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
    R3 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 알킬기이고;
    A는 탄소, 실리콘 또는 게르마늄이고;
    X은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
  2. 제1항에 있어서,
    상기 화학식 1의 R1 및 R2은 각각 t-부톡시메틸렌기, 메톡시메틸렌기, 에톡시메틸렌기, i-프로폭시메틸렌기, 또는 페녹시메틸렌기인 메탈로센 담지 촉매.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 구조식들 중 하나인 메탈로센 담지 촉매.
    Figure pat00040
    ,
    Figure pat00041
    ,
    Figure pat00042
    ,
    Figure pat00043
    ,
    Figure pat00044
    ,
    Figure pat00045
    ,
    Figure pat00046
    ,
    Figure pat00047
    ,
    Figure pat00048
    , 또는
    Figure pat00049

  4. 제1항에 있어서,
    상기 조촉매 화합물은 하기 화학식 2, 화학식 3, 또는 화학식 4로 표시되는 화합물 중 1종 이상을 포함하는 메탈로센 담지 촉매:
    [화학식 2]
    -[Al(R5)-O]n-
    상기 화학식 2에서,
    R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
    n은 2 이상의 정수이며;
    [화학식 3]
    J(R6)3
    상기 화학식 3에서,
    R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
    J는 알루미늄 또는 보론이며;
    [화학식 4]
    [E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
    상기 화학식 4에서,
    E는 중성 또는 양이온성 루이스 산이고;
    H는 수소 원자이며;
    Z는 13족 원소이고;
    A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
  5. 제1항에 있어서,
    상기 담체는 실리카, 알루미나, 마그네시아, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 메탈로센 담지 촉매.
  6. 제1항에 있어서,
    상기 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 인 메탈로센 담지 촉매.
  7. 제1항 내지 제6항 중 어느 한 항에 따라 제조되는 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법.
  8. 제7항에 있어서,
    상기 프로필렌의 중합은 25 내지 500 ℃의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행하는, 폴리프로필렌의 제조 방법.
  9. 제7항에 있어서,
    상기 프로필렌의 중량에 대하여 30 내지 2,000 ppm의 수소(H2) 기체 하에서 수행하는, 상기 폴리프로필렌의 제조방법.
KR1020170007187A 2016-11-22 2017-01-16 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 KR102064411B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780023096.5A CN109071699B (zh) 2016-11-22 2017-10-11 茂金属负载型催化剂和使用其制备聚丙烯的方法
PCT/KR2017/011190 WO2018097472A1 (ko) 2016-11-22 2017-10-11 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
US16/088,610 US10815322B2 (en) 2016-11-22 2017-10-11 Metallocene supported catalyst and method for preparing polypropylene using the same
EP17872934.9A EP3421506B1 (en) 2016-11-22 2017-10-11 Metallocene supported catalyst and method for producing polypropylene using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160155630 2016-11-22
KR20160155630 2016-11-22

Publications (2)

Publication Number Publication Date
KR20180057469A true KR20180057469A (ko) 2018-05-30
KR102064411B1 KR102064411B1 (ko) 2020-01-09

Family

ID=62300026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170007187A KR102064411B1 (ko) 2016-11-22 2017-01-16 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법

Country Status (4)

Country Link
US (1) US10815322B2 (ko)
EP (1) EP3421506B1 (ko)
KR (1) KR102064411B1 (ko)
CN (1) CN109071699B (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091420A1 (ko) * 2018-11-02 2020-05-07 주식회사 엘지화학 프로필렌 랜덤 공중합체
WO2020096307A1 (ko) * 2018-11-05 2020-05-14 주식회사 엘지화학 이성분계 섬유용 수지 조성물
WO2021101292A1 (ko) * 2019-11-20 2021-05-27 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
KR20210061954A (ko) * 2019-11-20 2021-05-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
US11414537B2 (en) 2018-11-05 2022-08-16 Lg Chem, Ltd. Resin composition for bi-component fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530448B1 (ko) * 2019-03-13 2023-05-08 주식회사 엘지화학 전이 금속 화합물 및 이를 포함하는 촉매 조성물
KR102488629B1 (ko) * 2019-06-13 2023-01-13 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
CN112745413B (zh) * 2019-10-30 2023-06-13 中国石油化工股份有限公司 一种茂金属聚丙烯的制备方法及装置
CN112194749B (zh) * 2020-09-22 2023-06-09 上海葛蓝化工科技有限公司 一种合成聚烯烃弹性体的茂金属催化剂、制备方法及应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR19990039714A (ko) 1997-11-14 1999-06-05 전원중 폴리프로필렌의 제조방법
DE19806918A1 (de) 1998-02-19 1999-08-26 Aventis Res & Tech Gmbh & Co Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
US7122498B2 (en) 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
DE60225595T2 (de) 2002-01-08 2009-04-16 Basell Polyolefine Gmbh Herstellung von siliziumverbrückten metallocenverbindungen
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
KR100579843B1 (ko) 2003-04-01 2006-05-12 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 그의 제조방법과 이를 이용한폴리올레핀의 제조방법
JP2004323419A (ja) 2003-04-24 2004-11-18 Chisso Corp 置換インデンおよび該置換インデンを用いたメタロセン化合物の製造方法
JP5409294B2 (ja) 2008-12-17 2014-02-05 日本ポリプロ株式会社 メタロセン錯体およびオレフィンの重合方法
KR101116701B1 (ko) 2010-03-08 2012-03-13 주식회사 엘지화학 담지 메탈로센 촉매, 이의 제조방법, 및 이를 이용한 폴리올레핀의 제조방법
KR101228582B1 (ko) 2010-12-29 2013-01-31 롯데케미칼 주식회사 폴리올레핀 제조용 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조방법
EP2722346A1 (en) 2012-10-18 2014-04-23 Borealis AG Polymerisation process and catalyst
KR101631702B1 (ko) 2013-05-10 2016-06-17 주식회사 엘지화학 올레핀 중합용 촉매 및 이를 이용한 폴리올레핀의 제조방법
CN105555811B (zh) 2013-09-30 2018-01-02 株式会社Lg化学 聚丙烯的制备方法和由此获得的聚丙烯
CN104610480B (zh) * 2013-11-05 2017-02-15 中国石油化工股份有限公司 一种负载化茂金属催化剂及其制备方法和应用
US9944665B2 (en) 2013-12-19 2018-04-17 Exxonmobil Chemical Patents Inc. Bridged bis(indenyl) transitional metal complexes, production, and use thereof
WO2015095188A1 (en) 2013-12-19 2015-06-25 Exxonmobil Chemical Patents Inc. Bridged bis(indenyl) transitional metal complexes, production, and use thereof
KR101653356B1 (ko) 2014-10-17 2016-09-01 주식회사 엘지화학 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091420A1 (ko) * 2018-11-02 2020-05-07 주식회사 엘지화학 프로필렌 랜덤 공중합체
KR20200050796A (ko) * 2018-11-02 2020-05-12 주식회사 엘지화학 프로필렌 랜덤 공중합체
US11339234B2 (en) 2018-11-02 2022-05-24 Lg Chem, Ltd. Propylene random copolymer
WO2020096307A1 (ko) * 2018-11-05 2020-05-14 주식회사 엘지화학 이성분계 섬유용 수지 조성물
US11414537B2 (en) 2018-11-05 2022-08-16 Lg Chem, Ltd. Resin composition for bi-component fiber
WO2021101292A1 (ko) * 2019-11-20 2021-05-27 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
KR20210061954A (ko) * 2019-11-20 2021-05-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
CN113614124A (zh) * 2019-11-20 2021-11-05 株式会社Lg化学 复合负载型茂金属催化剂以及使用其制备聚乙烯共聚物的方法

Also Published As

Publication number Publication date
CN109071699A (zh) 2018-12-21
EP3421506B1 (en) 2020-12-02
US10815322B2 (en) 2020-10-27
US20190106516A1 (en) 2019-04-11
EP3421506A1 (en) 2019-01-02
KR102064411B1 (ko) 2020-01-09
EP3421506A4 (en) 2019-05-29
CN109071699B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
KR102064411B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
EP2824107B1 (en) Ansa-metallocene compound and method for preparing supported catalyst using same
KR101653356B1 (ko) 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법
KR101593175B1 (ko) 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌
US8168556B2 (en) Racemoselective synthesis of ansa-metallocene compounds, ansa-metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo- and copolymers
JP7226892B2 (ja) 遷移金属化合物およびこれを含む触媒組成物
EP3034523B1 (en) Method for preparing propylene-1-butene copolymer
KR101760494B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
KR101737568B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20160072826A (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR101665076B1 (ko) 안사-메탈로센 화합물 및 이를 이용한 담지 촉매의 제조방법
JP2022528411A (ja) プロピレン-エチレンランダム共重合体
KR102050071B1 (ko) 프로필렌 중합용 혼성 담지 촉매 시스템 및 이를 이용한 프로필렌 중합체의 제조 방법
KR20190074798A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
JP2022517077A (ja) 遷移金属化合物、触媒組成物およびそれを用いたポリプロピレンの製造方法
WO2017142273A1 (ko) 고강성 및 에너지 절감 발포용 폴리프로필렌
KR101734427B1 (ko) 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20170094671A (ko) 프로필렌-알파올레핀 공중합체
KR20190078516A (ko) 메탈로센 담지 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR102157787B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR102412129B1 (ko) 호모 폴리프로필렌의 제조방법
KR20170009597A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20160054357A (ko) 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법
KR102418590B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리프로필렌의 제조 방법
WO2018097472A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant