KR102157787B1 - 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 - Google Patents

메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 Download PDF

Info

Publication number
KR102157787B1
KR102157787B1 KR1020160164336A KR20160164336A KR102157787B1 KR 102157787 B1 KR102157787 B1 KR 102157787B1 KR 1020160164336 A KR1020160164336 A KR 1020160164336A KR 20160164336 A KR20160164336 A KR 20160164336A KR 102157787 B1 KR102157787 B1 KR 102157787B1
Authority
KR
South Korea
Prior art keywords
metallocene
formula
supported catalyst
polypropylene
catalyst
Prior art date
Application number
KR1020160164336A
Other languages
English (en)
Other versions
KR20180064114A (ko
Inventor
박종우
이인선
김석환
전상진
안상은
박하나
정재엽
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160164336A priority Critical patent/KR102157787B1/ko
Publication of KR20180064114A publication Critical patent/KR20180064114A/ko
Application granted granted Critical
Publication of KR102157787B1 publication Critical patent/KR102157787B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 우수한 중합 활성을 갖는 신규의 메탈로센 화합물을 포함하는 담지 촉매 및 이를 이용하여 파울링 없이 높은 촉매 활성으로 폴리프로필렌을 제조하는 방법에 관한 것이다.

Description

메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 {METALLOCENE SUPPORTED CATALYST AND METHOD FOR PREPARING POLYPROPYLENE USING THE SAME}
본 발명은 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 신규의 단일 메탈로센 화합물을 포함하는 담지 촉매 및 이를 이용하여 파울링 없이 높은 촉매 활성으로 폴리프로필렌을 제조하는 방법, 이로부터 수득되는 폴리프로필렌에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제5,032,562호에는 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지시켜 중합 촉매를 제조하는 방법이 기재되어 있다. 이는 고분자량을 생성하는 티타늄(Ti) 계열의 지글러-나타 촉매와 저분자량을 생성하는 지르코늄(Zr) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산(bimodal distribution) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 중합체의 형상(morphology)이 나빠지는 단점이 있다.
미국 특허 제5,525,678호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가 동시에 중합될 수 있는 올레핀 중합용 촉매계를 사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야 하고, 담지 반응을 위해 담체를 여러 가지 화합물로 전처리해야 하는 단점이 있다.
미국 특허 제5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
대한민국 특허 출원 제2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링(fouling)을 유발하는 단점이 있다. 특히, 일반적인 폴리프로필렌 제조용 메탈로센 촉매는 벌크 중합에 적용되기 위하여 담지 과정을 거치는데, 담지의 과정이 까다롭고 담지가 잘 되지 않는 경우 공정상의 문제(fouling 등 )가 발생하게 된다.
이를 극복하고자, 활성을 향상시키고 파울링 등의 공정상 문제를 해결할 수 있는 여러 시도가 진행되고 있으나, 그 정도가 아직 미흡한 실정이다.
본 발명은 우수한 기계적 물성, 가공성, 유동성, 결정성 등을 갖는 폴리프로필렌을 파울링(fouling) 없이 분말(powder) 형태의 고분자로서 높은 촉매 활성으로 제조할 수 있는 신규의 메탈로센 화합물을 포함하는 메탈로센 담지 촉매를 제공하고자 한다.
특히, 본 발명의 담지 촉매는 안사-메탈로센 화합물의 다양한 담지 반응 조건이 변하더라도 모든 경우에 보다 향상된 활성을 나타낸다. 본 발명의 담지 촉매를 사용하여 폴리프로필렌을 제조할 경우 파울링이 없는 높은 활성의 폴리프로필렌 폴리머를 용이하게 제조할 수 있다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물, 조촉매 화합물, 및 담체를 포함하는 메탈로센 담지 촉매가 제공된다.
[화학식 1]
Figure 112016119021016-pat00001
상기 화학식 1에서,
R1 및 R2은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬로 치환된 탄소수 6 내지 20의 아릴이고;
R3는 탄소수 1 내지 20의 알킬기이고;
R4는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
A는 탄소, 실리콘 또는 게르마늄이고;
X은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
일례로, 상기 화학식 1의 R4t-부톡시메틸렌기, 메톡시메틸렌기, 에톡시메틸렌기, i-프로폭시메틸렌기, 또는 페녹시메틸렌기가 될 수 있다.
상기 메탈로센 화합물은 하기 구조식들 중 하나일 수 있다.
Figure 112016119021016-pat00002
,
Figure 112016119021016-pat00003
,
Figure 112016119021016-pat00004
,
Figure 112016119021016-pat00005
,
또는
Figure 112016119021016-pat00006
상기 담체는 실리카, 알루미나, 마그네시아, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있다.
또한, 상기 담체에는 하기 화학식 2, 화학식 3, 또는 화학식 4로 표시되는 화합물 중 1종 이상을 조촉매로 추가 담지시킬 수 있다.
[화학식 2]
-[Al(R5)-O]n-
상기 화학식 2에서,
R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 3]
J(R6)3
상기 화학식 3에서,
R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
여기서, 상기 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 가 될 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 상기 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법을 제공한다.
일례로, 상기 프로필렌의 중합은 25 내지 500 ℃의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행할 수 있으며, 상기 프로필렌의 중량에 대하여 30 내지 2,000 ppm의 수소(H2)기체 하에서 수행할 수 있다.
본 발명에 따르면, 우수한 기계적 물성, 가공성, 유동성, 결정성 등을 갖는 폴리프로필렌을 파울링(fouling) 없이 분말(powder) 형태의 고분자로서 높은 촉매 활성으로 제조할 수 있는 신규의 메탈로센 화합물을 포함하는 메탈로센 담지 촉매가 제공된다.
이러한 메탈로센 담지 촉매를 사용하면 기계적 물성, 가공성, 유동성이 우수한 폴리프로필렌이 매우 효과적으로 제조될 수 있다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 더욱 상세하게 설명한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물, 조촉매 화합물, 및 담체를 포함하는 메탈로센 담지 촉매을 제공한다.
[화학식 1]
Figure 112016119021016-pat00007
상기 화학식 1에서,
R1 및 R2은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬로 치환된 탄소수 6 내지 20의 아릴이고;
R3는 탄소수 1 내지 20의 알킬기이고;
R4는 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기이고;
A는 탄소, 실리콘 또는 게르마늄이고;
X은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
일례로, 상기 화학식 1의 R1 및 R2은 각각 4-(t-부틸)페닐기, 4-메틸페닐기, 2,5-디메틸페닐기, 3,5-디(t-부틸)페닐기, 1-나프틸기, 2-나프틸기, 페닐기일 수 있다. R3은 메틸기(Me), 에틸기(Et), n-프로필기(n-Pr), n-부틸기(n-Bu), n-펜틸기(n-Pent), 또는 n-헥실기(n-Hex)일 수 있으며, R4t-부톡시메틸렌기, 메톡시메틸렌기, 에톡시메틸렌기, i-프로폭시메틸렌기, 또는 페녹시메틸렌기일 수 있다. X는 서로 동일하거나 상이한 할로겐일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중 하나일 수 있다.
Figure 112016119021016-pat00008
,
Figure 112016119021016-pat00009
,
Figure 112016119021016-pat00010
,
Figure 112016119021016-pat00011
, 또는
Figure 112016119021016-pat00012
상기 화학식 1의 메탈로센 화합물은 고활성이고 파울링이 억제된 폴리프로필렌을 제조할 수 있다.
일반적으로 폴리프로필렌 중합용 메탈로센 촉매는 벌크(bulk) 중합에 적용되기 위해 담지 과정을 거치는데, 담지의 과정이 까다롭고 담지가 잘 되지않은 경우 공정상의 문제(fouling 등)가 발생하게 된다. 기존의 메탈로센 촉매는 공정상의 문제를 피하기 위하여 본 중합 이전에 선중합(pre-polymerization) 과정을 거치는 문제점이 있다.
이에 따라, 본 발명은 효과적인 담지 반응을 유도할 수 있는 테더(tether)가 결합된 형태의 신규 촉매를 합성하였으며, 촉매 골격 중 테더(tether)의 영향으로 실리카(silica) 담지체에 MAO와 촉매를 각각 1 step씩 2 step만에 효과적으로 담지할 수 있다. 또한, 중합 과정 중 파울링(fouling) 없이 분말(powder) 형태의 고분자를 얻을 수 있으며, 담지체에서 에칭(etching)되는 촉매가 없어 미분 발생이 거의 없다. 또한, 효과적인 담지 반응의 고활성의 담지 촉매 제조가 가능하다.
본 발명의 일 실시예에 따르면, 상기 화학식1의 메탈로센 화합물은 인덴 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적으로 예를 들어, 인덴 유도체를 n-BuLi와 같은 유기 리튬 화합물과 반응시켜 리튬염을 제조하고, 브릿지 화합물의 할로겐화 화합물을 혼합한 후, 이들 혼합물을 반응시켜 리간드 화합물을 제조한다. 상기 리간드 화합물 또는 이의 리튬염과 금속 전구체 화합물을 혼합하고 반응이 완결될 때까지 약 12시간 내지 약 24시간 전후로 반응시킨 후 반응물을 여과 및 감압 하에서 건조함으로써 상기 화학식 1로 표시되는 메탈로센 화합물을 수득할 수 있다. 상기 화학식 1의 메탈로센 화합물을 제조하는 방법은 후술하는 실시예에 구체화하여 설명한다.
상기 일 구현예에 따른 메탈로센 담지 촉매에서 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있다. 예컨대, 상기 담체는 실리카, 실리카-알루미나, 및 실리카-마그네시아로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
상기 담체 표면의 히드록시기(-OH)의 양은 가능하면 적을수록 좋으나 모든 히드록시기를 제거하는 것은 현실적으로 어렵다. 상기 히드록시기의 양은 담체의 제조방법 및 제조조건 및 건조 조건(온도, 시간, 건조 방법 등) 등에 의해 조절할 수 있으며, 0.1 내지 10 mmol/g이 바람직하고, 보다 바람직하게는 0.1 내지 1 mmol/g 이고, 더욱 바람직하게는 0.1 내지 0.5 mmol/g 이다. 건조 후에 잔존하는 약간의 히드록시기에 의한 부반응을 줄이기 위해 담지에 참여하는 반응성이 큰 실록산기는 보존하면서 이 히드록시기를 화학적으로 제거한 담체를 이용할 수도 있다.
또한, 상기 담체에는 하기 화학식 2, 화학식 3, 또는 화학식 4로 표시되는 화합물 중 1종 이상을 조촉매로 추가 담지시킬 수 있다.
[화학식 2]
-[Al(R5)-O]n-
상기 화학식 2에서,
R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 3]
J(R6)3
상기 화학식 3에서,
R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 2로 표시되는 조촉매의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert-부틸알루미녹산 등을 들 수 있으며, 더욱 바람직한 화합물은 메틸알루미녹산을 들 수 있다.
상기 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
이러한 조촉매로는 바람직하게는 알루미녹산을 사용할 수 있으며, 더 바람직하게는 알킬알루미녹산인 메틸알루미녹산(MAO)을 사용할 수 있다. 또한, 상기 조촉매는 촉매 전구체인 메탈로센 화합물의 활성화가 충분히 진행될 수 있도록 적절한 함량으로 사용될 수 있다.
본 발명에 따른 메탈로센 담지 촉매는, 첫 번째 방법으로서 1) 상기 화학식 1로 표시되는 메탈로센 화합물과 상기 화학식 2 또는 화학식 3으로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 2) 상기 혼합물에 상기 화학식 4로 표시되는 화합물을 첨가하는 단계를 포함하는 방법으로 제조될 수 있다.
또한, 본 발명에 따른 메탈로센 담지 촉매는, 두 번째 방법으로서 상기 화학식 1로 표시되는 메탈로센 화합물과 상기 화학식 2로 표시되는 화합물을 접촉시키는 방법으로 제조될 수 있다.
상기 담지 촉매의 제조방법 중에서 첫 번째 방법의 경우에, 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 2 또는 화학식 3으로 표시되는 화합물의 몰 비율은 1/5,000 내지 1/2이 바람직하고, 더욱 바람직하게는 1/1,000 내지 1/10 이고, 가장 바람직하게는 1/500 내지 1/20 이다. 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 2 또는 화학식 3으로 표시되는 화합물의 몰 비율이 1/2을 초과하는 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고, 몰 비율이 1/5,000 미만인 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 5의 활성화제 간의 부반응으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. 또한, 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 4로 표시되는 화합물의 몰 비율은 1/25 내지 1 이 바람직하고, 더욱 바람직하게는 1/10 내지 1 이고, 가장 바람직하게는 1/5 내지 1 이다. 상기 화학식 1로 표시되는 메탈로센 화합물/상기 화학식 4로 표시되는 화합물의 몰 비율이 1을 초과하는 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 담지 촉매의 활성도가 떨어지는 문제가 있고, 몰 비율이 1/25 미만인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 담지 촉매의 단가가 경제적이지 못하거나 생성되는 중합체의 순도가 떨어지는 문제가 있다.
상기 담지 촉매의 제조방법 중에서 두 번째 방법의 경우에, 상기 화학식 1로 표시되는 메탈로센 화합물/화학식 2로 표시되는 화합물의 몰 비율은 1/10,000 내지 1/10 이 바람직하며, 더욱 바람직하게는 1/5,000 내지 1/100 이고, 가장 바람직하게는 1/3,000 내지 1/500 이다. 상기 몰 비율이 1/10을 초과하는 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 담지 촉매의 활성도가 떨어지는 문제가 있고, 1/10,000 미만인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 담지 촉매의 단가가 경제적이지 못하거나 생성되는 중합체의 순도가 떨어지는 문제가 있다.
상기 담지 촉매의 제조시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있다.
또한, 상기 담지 촉매에서 상기 메탈로센 화합물과 조촉매 화합물을 담체에 담지시, 담체 100 중량부에 대하여 상기 메탈로센 화합물은 약 0.5 내지 약 20 중량부, 조촉매는 약 1 내지 약 1,000 중량부로 포함될 수 있다. 바람직하게는 상기 담체 100 중량부에 대해, 상기 메탈로센 화합물은 약 1 내지 약 15 중량부, 조촉매는 약 10 내지 약 500 중량부로 포함될 수 있으며, 가장 바람직하게는 상기 담체 100 중량부에 대해, 상기 메탈로센 화합물은 약 1 내지 약 100 중량부, 조촉매는 약 40 내지 약 150 중량부로 포함될 수 있다.
본 발명의 메탈로센 담지 촉매에서, 상기 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 폴리머 미세구조를 최적화할 수 있다.
상기 메탈로센 담지 촉매는 상술한 성분 이외에 본 발명이 속하는 기술분야에서 통상적으로 채용하는 첨가제 및 보조제 등을 추가로 포함할 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 상기 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법을 제공한다.
상술한 바와 같이, 상기 메탈로센 담지 촉매는 특정의 치환기를 갖는 인덴 리간드를 포함하는 화학식 1의 메탈로센 화합물을 포함하는 촉매를 사용하여 높은 촉매 활성으로 넓은 분자량 분포와 함께 가공성을 향상된 폴리프로필렌을 제공할 수 있다.
본 발명의 일 실시예에 따른 폴리프로필렌의 제조방법에서. 상기 화학식 1의 메탈로센 화합물을 포함하는 담지 촉매는 기존의 지글러-나타 촉매 또는 메탈로센 촉매보다 향상된 촉매 활성을 가지며, 메탈로센 화합물의 담지 조건이 변하더라도, 즉, 반응 온도, 반응 시간, 실리카 종류, 메탈로센 화합물의 담지량이 변경되더라도 향상된 활성으로 폴리프로필렌을 제조할 수 있다.
여기서, 상기 프로필렌의 중합은 약 25 내지 약 500 ℃의 온도 및 약 1 내지 약 100 kgf/cm2의 압력 하에서 약 1 내지 약 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 중합 반응 온도는 약 25 내지 약 200 ℃가 바람직하고, 약 50 내지 약 100 ℃가 보다 바람직하다. 또한, 상기 중합 반응 압력은 약 1 내지 약 70 kgf/cm2가 바람직하고, 약 5 내지 약 50 kgf/cm2가 보다 바람직하다. 상기 중합 반응 시간은 약 1 내지 약 5 시간이 바람직하다.
본 발명의 폴리프로필렌의 제조방법은 상기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매와, 프로필렌을 접촉시키는 것에 의하여 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 프로필렌의 중합은 수소 기체 하에서 수행될 수 있다.
이때, 상기 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화시키고 체인 이동 반응(chain transfer reaction)을 일으켜 분자량을 조절하는 역할을 한다. 본 발명의 메탈로센 화합물은 수소 반응성이 우수하며, 따라서, 중합 공정시 상기 수소 기체 사용량의 조절에 의해, 원하는 수준의 분자량과 용융 지수를 갖는 폴리프로필렌이 효과적으로 얻어질 수 있다.
상기 수소 기체는 프로필렌의 중량에 대하여, 약 30 내지 약 2,000 ppm, 또는 약 50 내지 약 1,500 ppm, 또는 약 50 내지 약 500 ppm 이 되도록 투입될 수 있다. 상기 수소 기체의 사용량을 조절하여, 충분한 촉매 활성을 나타내면서도 제조되는 폴리프로필렌의 분자량 분포 및 용융 지수(melt index, MI)를 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 폴리프로필렌을 제조할 수 있다. 보다 구체적으로, 본 발명의 메탈로센 촉매는 매우 우수한 수소 반응성을 갖고 있어 수소 기체의 사용량을 증가시킴에 따라 체인 이동 반응이 활성화되며, 이에 따라 분자량이 감소되고 용융 지수가 높은 폴리프로필렌을 수득할 수 있다.
상기 폴리프로필렌의 제조방법은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기 등을 이용하여, 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의해 수행될 수 있다.
본 발명에 따른 폴리프로필렌의 제조방법에 있어서, 상기 촉매는 올레핀계 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하다.
상기 폴리프로필렌의 제조 방법은 상술한 단계 외에 본 발명이 속하는 기술분야에서 통상적으로 채용하는 단계를 추가로 포함할 수 있다.
한편, 발명의 또다른 일 구현예에 따르면, 상술한 제조 방법에 의해 수득되는 폴리프로필렌을 제공한다.
전술한 바 대로, 본 발명에 따르면 상기 신규한 메탈로센 화합물을 포함하는 촉매를 사용함으로써, 기존의 메탈로센 화합물을 사용하였을 경우에 비해 우수한 가공성 및 파울링 없이 높은 중합 활성을 갖는 폴리프로필렌을 수득할 수 있다.
상기 폴리프로필렌은 가공 온도가 낮고 투명성 및 유동성이 우수하여 이러한 특성이 요구되는 포장용기, 필름, 시트, 사출 성형품, 섬유 제품 등으로 이용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 메탈로센 화합물을 포함하는 촉매를 사용하여 프로필렌의 중합 공정을 수행하였을 때, 생성된 폴리프로필렌의 중량 평균 분자량(Mw)은 중합 공정시 투입하는 수소 사용량에 따라 중량 평균 분자량(Mw)이 약 30,000 내지 약 9,000,000 g/mol, 또는 약 80,000 내지 약 1,000,000 g/mol, 또는 약 10,000 내지 약 1,000,000 g/mol이 될 수 있다.
또한, 이렇게 제조된 상기 폴리프로필렌은 분자량 분포(Mw/Mn)가 약 4 이하, 예를 들어 약 3.0 내지 4.0, 바람직하게는 약 3.0 내지 3.5가 될 수 있다. 상기와 같이 좁은 분자량 분포를 가짐으로써 투명도가 높고 특히 폴리프로필렌 특유의 맛이나 냄새 문제가 적은 제품을 제조할 수 있다.
또한, 상기 폴리프로필렌의 자일렌 가용분(Xs)은 약 2.0 중량% 이하, 바람직하게는 약 1.5 중량%, 보다 바람직하게는 약 1.0 중량% 이하로 높은 입체 규칙도(tacticity)를 나타낸다. 자일렌 가용분은 상기 폴리프로필렌을 자일렌 중에 용해시키고, 냉각 용액으로부터 불용성 부분을 결정화시켜 결정된 냉각 자일렌 중에 가용성인 중합체의 함량(중량%)이다. 자일렌 가용분은 낮은 입체 규칙성의 중합체 사슬을 함유하는 것으로, 자일렌 가용분의 함량이 낮을수록 높은 입체 규칙도를 갖는다.
또한, 본 발명에 따라 제조된 폴리프로필렌에서, 입경이 75 ㎛ 이하인 미분 함량이 약 5.0 중량% 이하, 바람직하게는 약 3.0 중량%, 보다 바람직하게는 약 2.0 중량% 이하로 미분 발생이 적어, 미분에 의한 파울링 발생 및 이로 인한 공정 불안정성이 방지되며, 제품 가공 시 입자가 비산되는 문제점을 줄일 수 있다.
또한, 본 발명에 따라 제조된 폴리프로필렌은 높은 유동성을 나타낸다. 예를 들어, 본 발명에 따라 제조된 폴리프로필렌은 230 ℃, 2.16 kg에서 측정하였을 때, 약 1 g/10min 이상, 예를 들어 약 1 내지 약 2,500 g/10min, 바람직하게는 약 5 내지 약 1,500 g/10min 의 광범위한 용융 지수(melt index, MI)를 가지며, 중합 공정시 투입하는 수소 사용량에 따라 용융 지수의 조절이 가능하여 용도에 따라 적절한 용융 지수를 갖는 폴리프로필렌을 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
<메탈로센 담지 촉매의 제조 실시예>
실시예 1
Figure 112016119021016-pat00013
1-1 단계: 1-bromo-4-( tert -butoxymethyl) benzene 합성
Figure 112016119021016-pat00014
H2SO4 (1.47 mL), 무수 MgSO4 (12.9 g, 107 mmol)을 CH2Cl2 (80 mL)에 넣고 상온에서 15 분간 교반하였다. 다른 플라스크에 4-bromobenzyl alcohol (5.0 g, 26.7 mmol), t-butanol (12.8 mL, 134 mmol)을 CH2Cl2 (30 mL)에 녹인 후에 위 혼합물을 첨가하였다. 이후에 혼합물을 상온에서 밤새 교반한 후 sat. NaHCO3를 첨가하였다. 무수 MgSO4로 수분을 제거하고 얻어진 용액을 감압 농축한 후 column chromatography (E/H = 1/20)으로 정제하여 1-bromo-4-(tert-butoxymethyl)benzene (5.9 g, 90%)를 흰색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.28 (9H, s), 4.39 (2H, s), 7.22 (2H,d), 7.44 (2H, d)
1-2 단계: bis(4-(4- tert -butyl)phenyl)-2-methyl-1 H - inden -1- yl )(4-(4- tert -butoxymethyl)phenyl)(methyl)silane 합성
Figure 112016119021016-pat00015
1-bromo-4-(tert-butoxymethyl)benzene (1.0 g, 4.11 mmol)을 아르곤(Ar) 하에서 diethyl ether (5 mL)에 녹였다. 온도를 -78 ℃로 낮추고 n-부틸리튬 용액(n-BuLi, 2.5 M in hexane, 1.7 mL)를 첨가한 후 상온에서 30 분간 교반하였다. 다른 플라스크에 MeSiCl3 (0.42 mL, 4.11 mmol)를 아르곤(Ar) 하에서 녹인후 온도를 -78 ℃로 낮췄다. 위에서 얻어진 용액을 천천히 MeSiCl3 용액에 첨가한 후 실온으로 서서히 온도를 올렸다. 실온에서 4 시간 동안 교반한 후 고체를 여과하여 제거하였다. 용액을 진공 건조한 후 추가 정제 없이 다음 반응을 진행하였다. 7-(4-tert-butyl)phenyl)-2-methyl-1H-indene (2.16 g, 8.22 mmol)과 CuCN (37 mg, 0.41 mmol)을 아르곤(Ar) 하에서 톨루엔(18 mL)과 THF (2 mL)에 녹였다. 이 용액을 -30 ℃로 냉각하고 n-BuLi (2.5 M in hexane, 3.5 mL)를 서서히 투입하였다. 이 온도에서 약 20 분간 교반한 후 상온으로 온도를 올린 후 2.5 시간 교반하였다. 이 용액에 위에서 얻어진 (4-(tert-butoxymethyl)phenyl)dichloro(methyl)silane를 투입하고 상온에서 밤새 교반하였다. 반응이 완결된 후 MTBE와 물을 투입하고 유기층을 분리하였다. 얻어진 유기층을 무수 MgSO4로 수분을 제거하고 농축 후 컬럼 크로마토 그래피(column chromatography, hexane)으로 정제하여 bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(4-(4-tert-butoxymethyl)phenyl)-(methyl)silane (2.2 g, 73%)를 노란색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): -0.10 - 0.91 (3H, m), 1.25 - 1.40 (27H, m), 1.92 - 2.38 (6H, m), 4.11 - 4.52 (4H, m), 6.44 - 7.91 (20H, m)
1-3 단계: 4-(4- tert - butoxymethyl )phenyl)( metyl ) silanyl -bis(4-(4- tert -butyl)phenyl)-2-methyl-1 H -inden-1-yl)Zirconium dichloride 합성
Figure 112016119021016-pat00016
bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(4-(4-tert-butoxymethyl)phenyl)(methyl)silane (1.0 g, 1.37 mmol)를 아르곤(Ar) 하에 50 mL 쉬링크 플라스크(Schlenk flask)에 넣고 디에틸에테르(diethyl ether, 10 mL)를 주입하여 녹였다. 온도를 -78 ℃로 낮추고, n-BuLi (2.5 M in hexane, 1.1 mL)를 가한 후 상온에서 2 시간 동안 교반하였다. 용매를 진공 감압 증류하고 ZrCl4(THF)2 (517 mg, 1.37 mmol)를 글로브 박스(globe box)에서 넣고, 온도를 -78 ℃로 낮췄다. 이 혼합물에 톨루엔(10 mL)를 가한 후 온도를 실온으로 올려 밤새 교반하였다. 용매를 감압 증류하고 헥산(hexane)으로 세척하여 노란색의 고체를 얻었다. 이 고체를 톨루엔에 녹여 실린지 필터(syringe filter) 후 여액을 감압 증류하고 고체를 헥산으로 세척하여 노란색의 4-(4-tert-butoxymethyl)phenyl)(metyl)silanyl-bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)Zirconium dichloride (225 mg, 18%, r/m > 10/1)를 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.33 - 1.34 (21H, m), 1.37 (9H, s), 1.96 (3H, s), 2.33 (3H, s), 4.59 (2H, s), 6.86 (1H, t), 7.02 (1H, s), 7.06 (1H, s), 7.17 (2H, m), 7.33 (1H, d), 7.41 - 7.47 (5H, m), 7.55 - 7.62 (6H, m), 7.73 (1H, s), 8.06 (2H, d)
1-4 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 1-3 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 1-3 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃ 에서 4 시간 동안 진공 건조하였다.
실시예 2
Figure 112016119021016-pat00017
2-1 단계: 1-bromo-4-methoxymethyl benzene 합성
Figure 112016119021016-pat00018
DMSO (117 mL)/KOH (12 g, 214 mmol)을 플라스크에 넣고 4-bromobenzyl alcohol (10.0 g, 53.5 mmol)을 첨가한 후 1 시간 동안 상온에서 교반하였다. 상기 반응물에 MeI(6.6 mL, 107 mmol)을 첨가한 후 10 분간 교반하였다. 반응이 종료한 후 반응물에 H2O에 넣은 후 CH2Cl2로 추출하였다. 유기층을 무수 MgSO4로 건조한 후 진공 건조하여 1-bromo-4-methoxymethyl benzene (10.6 g, 99%)을 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 3.41 (3H, s), 4.39 (2H, s), 7.11 - 7.53 (4H, m)
2-2 단계: (4-(methoxymethyl)phenyl)dichloro(methyl)silane 합성
Figure 112016119021016-pat00019
합성한 1-bromo-4-methoxymethyl benzene (4.14 g, 20.6 mmol)을 무수 THF (10 mL)에 녹여 아르곤 조건에서 충분히 교반 과정을 거친 마그네슘 터닝(1 g, 41.1 mmol)에 상온에서 주입하였다. 주입이 끝나면 1 시간 동안 리플럭스(reflux)하고 다시 상온으로 냉각하였다. 이 용액을 0 ℃로 냉각된 트리클로로메틸 실란 (4.8 mL, 41.1 mmol)과 THF (48 mL) 용액에 20 분간 주입하고 상온에서 16 시간 동안 교반하였다. 감압 증류하여 THF를 모두 제거하고 n-헥산 (50 mL)을 주입한 후 여과해 고체를 제거하고 액상을 모았다. 모은 액상에서 용매를 진공 건조하여 제거하고 (4-(methoxymethyl)phenyl)dichloro(methyl)silane (4.46 g, 92%, light yellow oil)을 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 2.63 (3H, s), 3.39 (3H, s), 4.42 (2H, s), 7.22 (2H, d), 7.49 (2H, d)
2-3 단계: bis(4-(4- tert -butyl)phenyl)-2-methyl-1 H - inden -1- yl )(4-(4-methoxymethyl)phenyl)(methyl)silane 합성
Figure 112016119021016-pat00020
4-(4-tert-butyl)phenyl)-2-methyl-1H-indene (5.3 g, 20 mmol)과 CuCN (0.09 g, 1.0 mmol)을 100 mL 쉬링크 플라스크(Schlenk flask)에 넣고, 아르곤(Ar) 하에서 무수 톨루엔(55 mL)과 무수 THF (5.5 mL)을 넣고 -25 ℃로 냉각하였다. n-BuLi (2.5 M in hexane, 21.0 mmol, 8.4 mL)를 천천히 주입하고, 주입이 끝나면 실온으로 승온한 뒤 실온에서 2 시간 동안 교반하였다. 이 용액에 위에서 얻어진 dichloro(4-(methoxymethyl)phenyl)(methyl)silane (10 mmol, 2.0 g)을 실온에서 반응물에 주입하고 16 시간 동안 교반하였다. 반응이 완결된 후 헥산과 H2O을 투입하고 유기층을 분리하였다. 얻어진 유기층을 무수 MgSO4로 수분을 제거하고 농축 후 컬럼 크로마토 그래피(column chromatography, hexane)으로 정제하여 bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(4-(4-methoxymethyl)phenyl)(methyl)silane (4.5 g, 65%)를 노란색의 고체로 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): -0.11 - 0.91 (3H, m), 1.29 - 1.43 (18H, m), 2.10 - 2.41 (6H, m), 3.36 - 3.44 (3H, m), 4.17 - 4.43 (4H, m), 6.67 - 7.52 (20H, m)
2-4 단계: 4-(4- methoxymethyl )phenyl)( metyl ) silanyl -bis(4-(4- tert -butyl)phenyl)-2-methyl-1 H -inden-1-yl)Zirconium dichloride 합성
Figure 112016119021016-pat00021
아르곤(Ar)dl 주입된 상태에서 bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(4-(4-methoxymethyl)phenyl)(methyl)silane (4.5 g, 6.5 mmol)를 500 mL 쉬링크 플라스크(Schlenk flask)에 투입하였다. 상기 플라스크에 무수 디에틸에테르(diethyl ether, 130 mL)를 넣고 -25 ℃로 냉각하였다. n-BuLi (2.5 M in hexane, 13.3 mmol, 5.3 mL)를 천천히 주입하고, 주입이 끝나면 실온으로 승온한 뒤 실온에서 2 시간 동안 교반하였다. 별개의 쉬링크 플라스크에 아르곤 조건 하에서 ZrCl4(THF)2 (2.5 g, 6.5 mmol)를 투입하고, -78 ℃로 냉각하였다. 상기 반응물을 ZrCl4(THF)2가 들어 있는 플라스크로 캐뉼라를 이용하여 투입하였다. 반응물을 실온으로 천천히 승온시킨 뒤 실온에서 16 시간 동안 교반하였다. 교반이 끝나면 여과하여 고체를 제거하고 감압 증류하여 용매를 제거하였다. 소량의 톨루엔(5 mL)를 주입하고 녹지 않는 고체를 여과하여 모은 뒤 헥산으로 세척하고 진공 건조하여 4-(4-methoxymethyl)phenyl)(metyl)silanyl-bis(4-(4-tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)Zirconium dichloride (0.8 g, 15%, 오렌지색 고체)를 얻었다.
1H NMR (500 MHz, CDCl3, 7.24 ppm): 1.36 - 1.39 (21H, m), 1.99 (3H, s), 2.36 (3H, s), 3.56 (3H, s), 4.62 (2H, s), 6.88 - 7.78 (18H, m), 8.12 (2H, d)
2-5 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 2-4 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 2-4 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃ 에서 4 시간 동안 진공 건조하였다.
비교예 1
Figure 112016119021016-pat00022
3-1 단계: (6- t -부톡시헥실)디클로로메틸실란의 제조
100 mL의 트리클로로메틸실란 용액(약 0.21 mol, 헥산)에 100 mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14 mol, diethyl ether)을 -100 ℃ 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다.
상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하였다. 이로써, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다(수율 84 %).
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.76(3H, s), 1.11(2H, t), 1.18(9H,s), 1.32~1.55(8H, m), 3.33(2H, t)
3-2 단계: (6- t - 부톡시헥실 )( 메틸 )-비스(2-메틸-4-(4- t -부틸)페닐인데닐)실란의 제조
2-메틸-4-tert-부틸페닐인덴(20.0 g, 76 mmol)을 톨루엔/THF=10/1 용액(230 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22 g)을 0 ℃에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 그 후, -78 ℃에서 상기 혼합 용액에 (6-t-부톡시헥실)디클로로메틸실란(1.27 g)을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 물을 가하여 유기층을 분리한 다음, 용매를 감압 증류하여 (6-t-부톡시헥실)(메틸)-비스(2-메틸-4-(4-t-부틸)페닐인데닐)실란을 얻었다.
1H NMR (500 MHz, CDCl3, 7.26 ppm): -0.20~0.03(3H, s), 0.50~1.20(4H, m), 1.20~1.31(11H, m), 1.26(9H, s), 1.40~1.62(20H, m), 2.19~2.23(6H, m), 3.30~3.34(2H, m), 3.73~3.83(2H, m), 6.89~6.91(2H, m), 7.19~7.61(14H, m)
3-3 단계: [(6- t - 부톡시헥실메틸실란 - 디일 )- 비스 (2- 메틸 -4-(4- t -부틸) 페닐인데닐 )] 지르코늄 디클로라이드의 제조
앞서 제조한 (6-t-부톡시헥실)(메틸)비스(2-메틸-4-(4-t-부틸)페닐)인데닐실란을 톨루엔/THF=5/1 용액(95 mL)에 용해시킨 후, n-부틸리튬 용액(2.5 M, 헥산 용매, 22 g)을 -78 ℃에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 반응액에 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2NC5H6)Cl2(C4H8O)2]을 톨루엔(229 mL)에 용해시킨 후, -78 ℃에서 천천히 적가하고 상온에서 하루 동안 교반하였다. 반응액을 -78 ℃로 냉각시킨 후, HCl 에테르 용액(1 M, 183 mL)을 천천히 적가한 후, 0 ℃에서 1 시간 동안 교반하였다. 이후 여과하고 진공 건조한 다음, 헥산을 넣고 교반하여 결정을 석출시켰다. 석출된 결정을 여과 및 감압 건조하여 [(6-t-부톡시헥실메틸실란-디일)-비스(2-메틸-4-(4-t-부틸)페닐인데닐)] 지르코늄 디클로라이드(20.5 g, 총 61%)를 얻었다.
1H NMR (500 MHz, C6D6, 7.26 ppm): 1.20(9H, s), 1.27(3H, s), 1.34(18H, s), 1.20~1.90(10H, m), 2.25(3H, s), 3.38(2H, t), 7.00(2H, s), 7.09-7.13(2H, m), 7.38(2H, d), 7.45(4H, t), 7.58(4H, d), 7.59(2H, d), 7.65(2H, d)
3-4 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 3-3 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 3-3 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃ 에서 4 시간 동안 진공 건조하였다.
비교예 2
Figure 112016119021016-pat00023
4-1 단계: 디메틸비스(2-메틸-4페닐인데닐)실란의 제조
77 mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(49.5 mmol)에 n-부틸리튬 용액(2.5 M, 헥산 용매) 21.8 mL를 0 ℃에서 천천히 적가하고, 80 ℃에서 1 시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 0 ℃ 이하에서 디클로로메틸실란 2.98 mL를 천천히 적가하고, 약 10 분 동안 교반한 뒤 80 ℃로 온도를 올려 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 61%의 수율로 얻었다(racemic:meso = 1:1).
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.02(6H, s), 2.37(6H, s), 4.00(2H, s), 6.87(2H, t), 7.38(2H, t), 7.45(2H, t), 7.57(4H, d), 7.65(4H, t), 7.75(4H, d)
4-2 단계: [ 디메틸실란디일비스 (2- 메틸 -4- 페닐인데닐 )] 지르코늄 디클로라이드의 제조
240 mL의 디메틸비스(2-메틸-4-페닐인데닐)실란 에테르/헥산=1/1 용액(12.4 mmol)에 n-부틸리튬 용액(2.5 M in 헥산) 10.9 mL를 -78 ℃에서 천천히 적가하였다. 그 뒤, 상온에서 하루 동안 교반한 뒤 여과하고 진공 건조하여 연한 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)과 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄비스(테트라하이드로퓨란)을 쉬링크 플라스크(schlenk flask)에 칭량(weighing)한 후, -78 ℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 붉은색의 용액을 여과 분리한 후 진공 건조하고 톨루엔/에테르 = 1/2 용액을 가하여 깨끗한 붉은 색 용액을 얻었다. HCl 에테르 용액(1M) 1.5~2 당량을 -78 ℃에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 촉매를 70%의 수율로 얻었다(racemic only).
1H NMR (500 MHz, C6D6, 7.24 ppm): 1.32(6H, s), 2.24(6H, s), 6.93(2H, s), 7.10(2H, t), 7.32(2H, t), 7.36(2H, d), 7.43(4H, t), 7.60(4H, d), 7.64(2H, d)
4-3 단계: 담지 촉매의 제조
다음과 같은 방법으로 실리카에 메틸알루미녹산을 담지한 이후에 상기 4-2 단계에서 수득된 메탈로센 화합물을 담지하여 담지 촉매를 제조하였다.
먼저, 실리카(3 g)을 아르곤 하에 250 mL의 쉬링크 플라스크(Schlenk flask)에 넣고 메틸알루미녹산(MAO, 23 mL, 30 mmol)을 상온에서 천천히 주입하여 95 ℃에서 18 시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)를 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하였다. 상기 4-2 단계에서 수득된 메탈로센 화합물(180 μmol)을 톨루엔(20 mL)에 녹인 후, 위 플라스크에 캐뉼라(cannula)를 이용하여 투입하고 톨루엔(5 mL)으로 세척하였다. 75 ℃에서 5 시간 동안 교반한 후, 상온으로 식히고 15 분 동안 방치한 후 상층부의 용매를 제거하였다. 톨루엔(25 mL)을 넣고 1 분 동안 교반하고 10 분 동안 방치한 후 상층부의 용매를 제거하는 것을 2 회 진행하였다. 동일한 방법으로 헥산(25 mL)을 넣고 1 분 동안 교반하고 20 분 동안 방치한 후 상층부의 용매를 제거하고 밤새 건조하였다. 추가적으로 45 ℃ 에서 4 시간 동안 진공 건조하였다.
<실험예>
1) 프로필렌의 호모 중합
2 L 스테인레스 반응기를 65 에서 진공건조한 후 냉각하고, 실온에서 트리에틸알루미늄 3.0 mmol을 넣고, 수소를 2 bar 넣고, 770 g의 프로필렌을 순차적으로 투입하였다.
이후 10분 동안 교반한 후, 상기 실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 각각의 담지 메탈로센 촉매 0.060 g을 TMA 처방된 헥산 20 mL에 녹여 질소 압력으로 반응기에 투입하였다. 이후 반응기 온도를 70 ℃까지 서서히 승온한 후 50 ppm 수소 투입량 및 35 kg/cm2 압력 조건 하에서 1 시간 동안 중합하였다. 반응 종료후 미반응된 프로필렌은 벤트하였다.
2) 중합체의 물성 측정 방법
(1) 촉매 활성: 단위 시간(h)을 기준으로 사용된 촉매 함량(촉매의 mmol 및 g)당 생성된 중합체의 무게(kg PP)의 비로 계산하였다.
(2) 용융지수(MFR, 2.16 kg): ASTM D1238에 따라 230℃에서 2.16 kg 하중으로 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
(3) 중합체의 녹는점(Tm): 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로 중합체를 220 ℃까지 가열한 후 5분 동안 그 온도를 유지하였고, 다시 20 ℃까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10 ℃/min으로 조절하였다.
3) 중합체의 물성 측정 결과
실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 각각의 메탈로센 담지 촉매를 사용한 호모 중합 공정 조건 및 생성된 폴리프로필렌의 물성 측정 결과를 하기 표 1에 나타내었다.
실시예 1 실시예 2 비교예 1 비교예 2
메탈로센 화합물
Figure 112016119021016-pat00024
Figure 112016119021016-pat00025
Figure 112016119021016-pat00026
Figure 112016119021016-pat00027
담지 촉매량 (mg) 20 30 60 240
수소 (ppm) 372 372 372 372
수율 (g 283 251 428 78
활성 (kg/gCatㆍhr) 14.1 8.4 7.1 0.32
MFR 22.4 18.7 9.8 -
Tm (℃) 150.2 150.0 148.7 150.1
Conditions: C3(770 g), support (L203F), Temperature (70 ), polymerization time (1 hr)
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 메탈로센 화합물을 담지 촉매로 사용한 실시예 1 내지 2는 폴리프로필렌 제조시 높은 활성 증대 효과를 나타내었다. 특히, 실시예 1 내지 2는 촉매 활성이 폴리프로필렌 호모 중합시 각각 14.1 kg/gCatㆍhr 및 8.4 kg/gCatㆍhr 으로 비교예 1 및 2와 대비하여 매우 우수하였다. 또한, 실시예 1 내지 2는 알킬 테더기가 도입된 비교예 1과 비교하여 높은 녹는점(Tm), 즉, 각각 150.2 ℃ 및 150.0 ℃을 나타내며 높은 입체규칙성의 폴리프로필렌을 제조할 수 있음을 알 수 있다.

Claims (9)

  1. 하기 구조식들 중 하나인 메탈로센 화합물,
    조촉매 화합물, 및
    담체를 포함하는 메탈로센 담지 촉매:
    Figure 112020082286114-pat00028
    ,
    Figure 112020082286114-pat00029
    ,
    Figure 112020082286114-pat00030
    ,
    Figure 112020082286114-pat00031
    , 또는
    Figure 112020082286114-pat00032
    .
  2. 삭제
  3. 삭제
  4. 제1항에 있어서,
    상기 조촉매 화합물은 하기 화학식 2, 화학식 3, 또는 화학식 4으로 표시되는 화합물 중 1종 이상을 포함하는 메탈로센 담지 촉매:
    [화학식 2]
    -[Al(R5)-O]n-
    상기 화학식 2에서,
    R5은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
    n은 2 이상의 정수이며;
    [화학식 3]
    J(R6)3
    상기 화학식 3에서,
    R6은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
    J는 알루미늄 또는 보론이며;
    [화학식 4]
    [E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
    상기 화학식 4에서,
    E는 중성 또는 양이온성 루이스 산이고;
    H는 수소 원자이며;
    Z는 13족 원소이고;
    A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
  5. 제1항에 있어서,
    상기 담체는 실리카, 알루미나, 마그네시아, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상인 메탈로센 담지 촉매.
  6. 제1항에 있어서,
    상기 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 인 메탈로센 담지 촉매.
  7. 제1항, 및 제4항 내지 제6항 중 어느 한 항에 따라 제조되는 메탈로센 담지 촉매의 존재 하에서, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조 방법.
  8. 제7항에 있어서,
    상기 프로필렌의 중합은 25 내지 500 ℃의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행하는, 폴리프로필렌의 제조 방법.
  9. 제7항에 있어서,
    상기 프로필렌의 중량에 대하여 30 내지 2,000 ppm의 수소(H2)기체 하에서 수행하는, 상기 폴리프로필렌의 제조방법.
KR1020160164336A 2016-12-05 2016-12-05 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법 KR102157787B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160164336A KR102157787B1 (ko) 2016-12-05 2016-12-05 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160164336A KR102157787B1 (ko) 2016-12-05 2016-12-05 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법

Publications (2)

Publication Number Publication Date
KR20180064114A KR20180064114A (ko) 2018-06-14
KR102157787B1 true KR102157787B1 (ko) 2020-09-18

Family

ID=62629393

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160164336A KR102157787B1 (ko) 2016-12-05 2016-12-05 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법

Country Status (1)

Country Link
KR (1) KR102157787B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471094B1 (ko) * 2018-11-02 2022-11-24 주식회사 엘지화학 프로필렌-에틸렌 공중합체 및 그의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054520A1 (en) * 2000-06-30 2005-03-10 Hart James R. Metallocenes and catalyst compositions derived therefrom
WO2014169017A1 (en) * 2013-04-11 2014-10-16 Exxonmobil Chemical Patents Inc. Process of producing polyolefins using metallocene polymerization catalysts and copolymers therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722346A1 (en) * 2012-10-18 2014-04-23 Borealis AG Polymerisation process and catalyst
US9771441B2 (en) * 2013-09-30 2017-09-26 Lg Chem, Ltd. Preparation method of a polypropylene and a polypropylene obtained therefrom
KR101738139B1 (ko) * 2013-11-06 2017-05-19 주식회사 엘지화학 폴리프로필렌
KR101723488B1 (ko) * 2014-12-24 2017-04-06 주식회사 엘지화학 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054520A1 (en) * 2000-06-30 2005-03-10 Hart James R. Metallocenes and catalyst compositions derived therefrom
WO2014169017A1 (en) * 2013-04-11 2014-10-16 Exxonmobil Chemical Patents Inc. Process of producing polyolefins using metallocene polymerization catalysts and copolymers therefrom

Also Published As

Publication number Publication date
KR20180064114A (ko) 2018-06-14

Similar Documents

Publication Publication Date Title
KR102064411B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR101685664B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101637026B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
JP7226892B2 (ja) 遷移金属化合物およびこれを含む触媒組成物
WO2015047030A1 (ko) 프로필렌-1-부텐 공중합체의 제조방법 및 이로부터 수득되는 프로필렌-1-부텐 공중합체
KR102024328B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR101737568B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR102338106B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR102050071B1 (ko) 프로필렌 중합용 혼성 담지 촉매 시스템 및 이를 이용한 프로필렌 중합체의 제조 방법
KR101659540B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
JP7214300B2 (ja) 遷移金属化合物、触媒組成物およびそれを用いたポリプロピレンの製造方法
KR102101878B1 (ko) 프로필렌 중합용 혼성 담지 촉매 시스템 및 이를 이용한 프로필렌 중합체의 제조 방법
KR102086767B1 (ko) 프로필렌-알파올레핀 공중합체
KR101734427B1 (ko) 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR102157787B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR20190078516A (ko) 메탈로센 담지 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR101653357B1 (ko) 고분자량 폴리올레핀 제조용 메탈로센 촉매 및 이의 제조방법
KR102035310B1 (ko) 폴리올레핀 제조용 촉매 시스템 및 폴리올레핀의 제조방법
US11731123B2 (en) Method of preparing supported metallocene catalyst and method of preparing polypropylene using catalyst prepared thereby
KR102412129B1 (ko) 호모 폴리프로필렌의 제조방법
KR102418590B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리프로필렌의 제조 방법
KR102389321B1 (ko) 신규한 메탈로센 촉매, 및 이를 포함하는 폴리올레핀 제조용 촉매 조성물
KR102023168B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
WO2018097472A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR20230072858A (ko) 폴리프로필렌 공중합체 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant