KR20180038461A - 세포독성 벤조다이아제핀 유도체의 제조 방법 - Google Patents

세포독성 벤조다이아제핀 유도체의 제조 방법 Download PDF

Info

Publication number
KR20180038461A
KR20180038461A KR1020187005041A KR20187005041A KR20180038461A KR 20180038461 A KR20180038461 A KR 20180038461A KR 1020187005041 A KR1020187005041 A KR 1020187005041A KR 20187005041 A KR20187005041 A KR 20187005041A KR 20180038461 A KR20180038461 A KR 20180038461A
Authority
KR
South Korea
Prior art keywords
formula
compound
reagent
reacting
salt
Prior art date
Application number
KR1020187005041A
Other languages
English (en)
Other versions
KR102660070B1 (ko
Inventor
보두앵 제라드
마나미 시즈카
마이클 루이스 밀러
리차드 에이. 실바
Original Assignee
이뮤노젠 아이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이뮤노젠 아이엔씨 filed Critical 이뮤노젠 아이엔씨
Publication of KR20180038461A publication Critical patent/KR20180038461A/ko
Application granted granted Critical
Publication of KR102660070B1 publication Critical patent/KR102660070B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • A61K31/55171,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

본 발명은 인돌리노벤조다이아제핀 이량체 화합물 및 이의 합성 전구물질의 신규한 제조 방법에 관한 것이다.

Description

세포독성 벤조다이아제핀 유도체의 제조 방법
관련 출원에 대한 참조
본 출원은 35 U.S.C. §119(e)하에, 2016년 4월 26일 출원된 미국 가특허출원 제 62/327,973호, 및2015년 7월 21일 출원된 미국 가특허출원 제 62/195,023호의 출원일의 이익을 주장한다. 상기 참고 출원 각각의 모든 내용들은 본 출원에 참고로 포함된다.
발명의 분야
본 발명은 세포독성 인돌리노벤조다이아제핀 유도체의 신규한 제조 방법에 관한 것이다.
발명의 배경
하나의 이민 작용기 및 하나의 아민 작용기를 가지는 인돌리노벤조다이아제핀 이량체의 세포-결합제 접합체는 두 개의 이민 작용기를 가지는 선행 벤조다이아제핀 유도체에 비해 훨씬 더 높은 생체내 치료 지수 (최소 유효량에 대한 최대 내량의 비율)를 보임이 밝혀진 바 있다. 예를 들어, WO2012/128868를 참고하라. 하나의 이민 작용기 및 하나의 아민 작용기를 보유한 인돌리노벤조다이아제핀 이량체를 제조하는 선행 기술의 방법은 두 개의 이민 작용기를 가지는 인돌리노벤조다이아제핀 이량체의 부분 환원을 수반한다. 부분 환원 단계는 일반적으로 완전히 환원된 부산물 및 미반응 출발 재료를 형성시키고, 이는 번잡한 정제 단계를 필요로 하며 수율을 저하시킨다.
그러므로, 대규모 제작 공정에 보다 효과적이고 적절한 인돌리노벤조다이아제핀 이량체의 개선된 제조 방법의 필요성이 존재한다.
발명의 요약
본 발명은 인돌리노벤조다이아제핀 이량체 화합물 및 이의 합성 전구물질의 다양한 제조 방법을 제공한다. 선행 기술의 방법에 비해, 본 발명의 방법들은 번잡한 정제 단계를 필요로하지 않으면서 보다 높은 수율로 원하는 이량체 화합물을 생성할 수 있다. 이러한 방법들은 대규모 제작 공정에 보다 적절하다.
제 1 구체예에서, 본 발명은 화학식 (2d)의 화합물,
Figure pct00001
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (1d)의 화합물을 알코올 보호 시약과 반응시킴으로써, 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입시키는 단계를 포함하고,
Figure pct00002
여기서 P1은 알코올 보호 그룹이고; R100은 (C1-C3)알콕시이다.
제 2 구체예에서, 본 발명은 화학식 (3d)의 화합물,
Figure pct00003
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00004
여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시이다.
제 3 구체예에서, 본 발명은 화학식 (4d)의 화합물,
Figure pct00005
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (3d)의 화합물을
Figure pct00006
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00007
여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시이다.
제 4 구체예에서, 본 발명은 화학식 (5d)의 화합물,
Figure pct00008
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4d)의 화합물을
Figure pct00009
이민 환원제와 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 5 구체예에서, 본 발명은 화학식 (6d)의 화합물,
Figure pct00010
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5d)의 화합물을
Figure pct00011
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 6 구체예에서, 본 발명은 화학식 (7d)의 화합물,
Figure pct00012
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (6d)의 일차 알코올 화합물과 반응시키는 단계를 포함하고,
Figure pct00013
여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시이다.
제 7 구체예에서, 본 발명은 화학식 (7d")의 화합물,
Figure pct00014
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5d")의 화합물을
Figure pct00015
알코올 탈보호 시약 및 할로겐화 시약과 반응시키는 단계를 포함하고, 여기서 P1’은 산 분해성 알코올 보호 그룹이고; X2’은 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
제 8 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00016
또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (7d)의 화합물을
Figure pct00017
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00018
여기서 R100은 (C1-C3)알콕시이고; 그리고, X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임).
제 9 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00019
또는 이의 약제학적으로 허용가능한 염의 형성 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00020
화학식 (2d)의 화합물을 형성하는 단계,
Figure pct00021
;
(2) 화학식 (2d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계,
Figure pct00022
;
(3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00023
화학식 (4d)의 화합물을 형성하는 단계,
Figure pct00024
;
(4) 화학식 (4d)의 화합물을 이민 환원제와 반응시켜 화학식 (5d)의 화합물을 형성하는 단계,
Figure pct00025
;
(5) 화학식 (5d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (6d)의 화합물을 형성하는 단계,
Figure pct00026
;
(6) 화학식 (6d)의 화합물을 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약과 반응시켜, 화학식 (7d)의 화합물을 형성하는 단계;
Figure pct00027
; 및
(7) 화학식 (7d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00028
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1 및 X2는 각각 독립적으로 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시이다.
제 10 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00029
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00030
화학식 (2d")의 화합물을 형성하는 단계,
Figure pct00031
;
(2) 화학식 (2d")의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d")의 화합물을 형성하는 단계,
Figure pct00032
;
(3) 화학식 (3d”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00033
화학식 (4d")의 화합물을 형성하는 단계,
Figure pct00034
;
(4) 화학식 (4d")의 화합물을 이민 환원제와 반응시켜 화학식 (5d")의 화합물을 형성하는 단계,
Figure pct00035
;
(5) 화학식 (5d”)의 화합물을 알코올 탈보호 시약 및 할로겐화 시약과 반응시켜 화학식 (7d”)의 화합물을 형성하는 단계,
Figure pct00036
;
(6) 화학식 (7d”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00037
화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X2’은 -Br 또는 -I이고; 그리고 나머지 변수들은 상기 제 9 구체예에 기재된 바와 같다.
제 11 구체예에서, 본 발명은 화학식 (9d)의 화합물,
Figure pct00038
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4d)의 화합물을
Figure pct00039
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 12 구체예에서, 본 발명은 화학식 (10d)의 화합물,
Figure pct00040
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (9d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고,
Figure pct00041
여기서 X2는 -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임)이고; 그리고 R100은 (C1-C3)알콕시이다.
제 13 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00042
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10d)의 화합물을
Figure pct00043
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00044
여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이며: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임); P3는 H 또는 P2이고; P2는 아민 보호 그룹이며; R100은 (C1-C3)알콕시이다.
제 14 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00045
또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (11d)의 화합물을
Figure pct00046
아민 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P2는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 15 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00047
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00048
화학식 (2d)의 화합물을 형성하는 단계,
Figure pct00049
;
(2) 화학식 (2d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계,
Figure pct00050
;
(3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00051
화학식 (4d)의 화합물을 형성하는 단계,
Figure pct00052
;
(4) 화학식 (4d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (9d)의 화합물을 형성하는 단계,
Figure pct00053
(5) 화학식 (9d)의 화합물을 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약과 반응시켜, 화학식 (10d)의 화합물을 형성하는 단계,
Figure pct00054
;
(6) 화학식 (10d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00055
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00056
; 그리고
(7) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임); P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 16 구체예에서, 본 발명은 화학식 (12d)의 화합물,
Figure pct00057
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (1d)의 화합물을
Figure pct00058
할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, 설포네이트 에스터, 또는 활성화 에스터이고 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터이고); 그리고 R100은 (C1-C3)알콕시이다.
제 17 구체예에서, 본 발명은 화학식 (10d')의 화합물,
Figure pct00059
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (12d)의 화합물을
Figure pct00060
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00061
여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; 그리고 R100은 (C1-C3)알콕시이다.
제 18 구체예에서, 본 발명은 화학식 (7d')의 화합물,
Figure pct00062
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10d')의 화합물,
Figure pct00063
또는 이의 염을 이민 환원제와 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; 그리고 R100은 (C1-C3)알콕시이다.
제 19 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00064
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜,
Figure pct00065
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00066
;
(2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00067
화학식 (10d')의 화합물을 형성하는 단계,
Figure pct00068
;
(3) 화학식 (10d')의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00069
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00070
; 그리고
(4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 20 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00071
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
Figure pct00072
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00073
;
(2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00074
화학식 (10d')의 화합물을 형성하는 단계,
Figure pct00075
;
(3) 화합물 (10d’)을 이민 환원 시약과 반응시켜 화합물 (7d’)을 형성하는 단계,
Figure pct00076
,
(4) 화학식 (7d’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00077
화학식 (Id’)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터이고); 그리고 R100은 (C1-C3)알콕시이다.
제 21 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00078
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
Figure pct00079
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00080
;
(2) 화학식 (12d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00081
화학식 (7d1')의 화합물을 형성하는 단계,
Figure pct00082
;
(3) 화학식 (7d1’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00083
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00084
; 그리고
(4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 22 구체예에서, 본 발명은 화학식 (13d)의 화합물,
Figure pct00085
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 염소화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00086
여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
제 23 구체예에서, 본 발명은 화학식 (14d)의 화합물,
Figure pct00087
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (13d)의 화합물을
Figure pct00088
알코올 탈보호 시약과 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
제 24 구체예에서, 본 발명은 화학식 (15d)의 화합물:
Figure pct00089
또는 이의 염의 제조 방법으로서, 상기 방법은 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00090
,
X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, X4는 설포네이트 에스터)이고; 그리고 R100은 (C1-C3)알콕시이다.
제 25 구체예에서, 본 발명은 화학식 (20d)의 화합물,
Figure pct00091
또는 이의 염의 제조 방법으로서, 상기 방법은 브롬화 시약 또는 아이오다이드화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00092
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
제 26 구체예에서, 본 발명은 화학식 (16d)의 화합물:
Figure pct00093
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (15d)의 화합물을
Figure pct00094
화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00095
,
X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, X4는 설포네이트 에스터)이고; 그리고 R100은 (C1-C3)알콕시이다.
제 27 구체예에서, 본 발명은 화학식 (16d)의 화합물,
Figure pct00096
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20d)의 화합물을
Figure pct00097
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00098
,
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
제 28 구체예에서, 본 발명은 화학식 (16d)의 화합물,
Figure pct00099
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (14d)의 화합물을
Figure pct00100
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00101
,
여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
제 29 구체예에서, 본 발명은 화학식 (18d)의 화합물:
Figure pct00102
,
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16d)의 화합물을:
Figure pct00103
화학식 (d1)의 환원된 단량체와 반응시키는 단계를 포함하고:
Figure pct00104
,
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 30 구체예에서, 본 발명은 화학식 (17d)의 화합물:
Figure pct00105
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (15d)의 화합물을
Figure pct00106
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00107
,
여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, X4는 설포네이트 에스터)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 31 구체예에서, 본 발명은 화학식 (17d)의 화합물,
Figure pct00108
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (14d)의 화합물을
Figure pct00109
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00110
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 32 구체예에서, 본 발명은 화학식 (17d)의 화합물:
Figure pct00111
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20d)의 화합물을
Figure pct00112
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00113
,
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 33 구체예에서, 본 발명은 화학식 (17d’)의 화합물:
Figure pct00114
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16d)의 화합물을
Figure pct00115
이민 환원제와 반응시키는 단계를 포함하고, 여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
제 34 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00116
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (17d)의 화합물을:
Figure pct00117
화학식 (a1)의 단량체와 반응시키는 단계를 포함하고:
Figure pct00118
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 35 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00119
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00120
,
또는 이의 염과 반응시켜 화학식 (15d)의 화합물:
Figure pct00121
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15a)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00122
,
화학식 (16d)의 화합물:
Figure pct00123
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00124
화학식 (18d)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터(바람직하게는, 설포네이트 에스터)이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 36 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00125
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00126
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00127
,
화학식 (16d)의 화합물:
Figure pct00128
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00129
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 37 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00130
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약을 화학식 (14d)의 화합물:
Figure pct00131
,
또는 이의 염과 반응시켜, 화학식 (20d)의 화합물:
Figure pct00132
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00133
,
화학식 (16d)의 화합물:
Figure pct00134
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00135
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 38 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00136
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00137
,
또는 이의 염과 반응시켜, 화학식 (15d)의 화합물:
Figure pct00138
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00139
,
화학식 (17d)의 화합물:
Figure pct00140
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00141
화학식 (18d)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터(바람직하게는, 설포네이트 에스터)이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 39 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00142
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00143
,
또는 이의 염을, 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00144
,
화학식 (17d)의 화합물:
Figure pct00145
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00146
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 40 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00147
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 브롬화 또는 아이오드화 시약을 화학식 (14d)의 화합물:
Figure pct00148
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00149
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00150
,
화학식 (17d)의 화합물:
Figure pct00151
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00152
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 41 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00153
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00154
,
또는 이의 염과 반응시켜, 화학식 (15d)의 화합물:
Figure pct00155
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00156
,
화학식 (16d)의 화합물:
Figure pct00157
,
또는 이의 염을 형성하는 단계;
(3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물;
Figure pct00158
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00159
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고 (바람직하게는, 설포네이트 에스터); P1은 알코올 보호 그룹이고; P2는 아민 보호 그룹임이고; 그리고 R100은 (C1-C3)알콕시이다.
제 42 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00160
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00161
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00162
,
화학식 (16d)의 화합물:
Figure pct00163
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물:
Figure pct00164
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00165
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 43 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00166
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 브롬화 또는 아이오드화 시약을 화학식 (14A)의 화합물:
Figure pct00167
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00168
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00169
,
화학식 (16d)의 화합물을 형성하는 단계:
Figure pct00170
,
(3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물:
Figure pct00171
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00172
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 34 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (IA)의 화합물을:
Figure pct00173
,
환원제와 반응시켜, 화학식 (IB)의 화합물을 형성하는 단계:
Figure pct00174
; 그리고
(2) 화학식 (IB)의 화합물을 화학식 (L1)의 화합물과 반응시켜,
Figure pct00175
,
화학식 (Id)의 화합물을 형성하는 단계, 여기서 E는 -OH, 할라이드 또는 또는 -C(=O)E이고 이는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
본 발명의 방법에 기재된 화합물들 또한 본 발명에 포함된다.
도면의 간단한 설명
도 1-13은 본 발명의 방법들에 관한 예시 반응식들을 보여준다.
발명의 상세한 설명
이제 본 발명의 특정 구체예들을 참고하여 상세히 설명할 것이며, 이러한 예들은 수반하는 구조 및 화학식으로 설명된다. 본 발명을 수많은 구체예들과 관련하여 기재하게 되지만, 이러한 구체예들은 본 발명을 이들 구체예들에 제한하고자 하는 것이 아님을 이해하여야 할 것이다. 그와 반대로, 본 발명은 본 발명의 사상 및 범위에 속하는 모든 변형예, 균등예, 및 대안예들을 청구범위에 정의된 바와 같이 포괄하고자 하는 것으로 이해되어야 한다. 해당 분야의 숙련된 기술자는 것들과 유사하거나 균등한 많은 방법들 및 재료들을 알고 있을 것이며, 이들은 본 발명의 실시에서 사용될 수 있다.
본 명세서에 기재된 임의의 구체예들은 명확하게 배제하거나 부적절하지 않는 한, 본 발명의 하나 이상의 다른 구체예들과 조합될 수 있음을 이해하여야 한다. 구체예들의 조합은 복수의 종속항들을 통해 청구범위에 기재된 특정 조합들에 제한되지 않는다.
정의
본 명세서에서 사용 시 “알킬”은 1 내지 20개 탄소 원자들의 포화 선형 또는 분지형-사슬 일가 탄화수소 라디칼을 지칭한다. 알킬의 예들에는, 메틸, 에틸, 1-프로필, 2-프로필, 1-뷰틸, 2-메틸-1-프로필, -CH2CH(CH3)2), 2-뷰틸, 2-메틸-2-프로필, 1-펜틸, 2-펜틸 3-펜틸, 2-메틸-2-뷰틸, 3-메틸-2-뷰틸, 3-메틸-1-뷰틸, 2-메틸-1-뷰틸, 1-헥실), 2-헥실, 3-헥실, 2-메틸-2-펜틸, 3-메틸-2-펜틸, 4-메틸-2-펜틸, 3-메틸-3-펜틸, 2-메틸-3-펜틸, 2,3-다이메틸-2-뷰틸, 3,3-다이메틸-2-뷰틸, 1-헵틸, 1-옥틸, 등이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 알킬은 1 내지 10개의 탄소 원자들을 가진다. 더욱 바람직하게, 알킬은 1 내지 4개의 탄소 원자들을 가진다.
아릴”은 모체의 방향족 고리 시스템의 하나의 탄소 원자로부터 하나의 수소 원자를 제거함으로써 유도되는 6-18개 탄소 원자들의 일가의 방향족 탄화수소 라디칼을 의미한다. 일부 아릴 그룹은 “Ar”과 같은 예시 구조들로 나타낸다. 아릴은 포화, 부분적 불포화 고리, 또는 방향족 카보사이클릭 또는 헤테로사이클릭 고리에 접합된 방향족 고리를 포함하는 바이사이클릭 라디칼들을 포함한다. 전형적 아릴 그룹에는, 벤젠 (페닐), 치환된 벤젠, 나프탈렌, 안트라센, 인덴일, 인단일, 1,2-다이하이드로나프탈렌, 1,2,3,4-테트라하이드로나프틸, 등으로부터 유도된 라디칼들이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 아릴은 페닐 그룹이다.
용어 “할로” 또는 “할로겐”은 F, Cl, Br 또는 I를 지칭한다. 한 구체예에서, 할로겐은 Br 또는 I이다.
용어 “화합물” 또는 “세포독성 화합물,” “세포독성 이량체” 및 “세포독성 이량체 화합물”은 호환적으로 사용된다. 이들은 본 발명에서 구조 또는 화학식 또는 그의 임의의 유도체가 개시된 화합물 또는 이의 구조 또는 화학식 또는 그의 유도체가 참고로 포함 된 화합물을 포함하고자 한다. 이 용어는 또한, 본 발명에 개시된 모든 구조식들의 화합물의 입체이성질체, 기하 이성질체, 호변이성질체, 용매화합물, 대사산물, 염 (예컨대, 약제학적으로 허용가능한 염) 및 전구약물, 그리고 전구약물 염을 포함한다. 이 용어는 또한 전술한 것의 임의의 용매화합물, 수화물, 및 다형체를 포함한다. 본 출원에 기재된 발명의 특정 양태들에서 “입체이성질체,” “기하 이성질체,” “호변이성질체,” “용매화합물,” “대사산물,” “염” “전구약물,” “전구약물 염,” “접합체,” “접합체 염,” “용매화합물,” “수화물,” 또는 “다형체”에 관한 구체적인 언급은 이러한 다른 형태들을 언급하지 않고 용어 “화합물”이 사용되는 발명의 다른 양태들에서 이러한 형태들의 생략을 의도하는 것으로 해석되어서는 안된다.
주어진 그룹의 용어 “전구물질”은 임의의 탈보호, 화학적 변형, 또는 커플링 반응에 의해 그 그룹을 생성할 수 있는 임의의 그룹을 지칭한다.
용어 “키랄”은 거울상 파트너의 비-중첩성을 가지는 분자를 지칭하는 반면, 용어 "아키랄”은 거울상 파트너 상에 중첩가능한 분자를 지칭한다.
용어 “입체이성질체”는 동일한 화학적 구성 및 연결성을 가지지만, 하나의 결합에 대한 회전에 의해 상호전환될 수 없는, 공간에서의 상이한 원자 배향을 가지는 화합물을 지칭한다.
부분입체이성질체”는 둘 또는 그 이상의 카이랄성 중심을 가지며 그 분자들이 서로의 거울상이 아닌 입체이성질체를 지칭한다. 부분입체이성질체들은 상이한 물리적 성질, 예컨대. 녹는점, 끓는점, 분광 성질, 및 반응성을 가진다. 부분입체이성질체들의 혼합물은 고 분해능 분석 절차들, 가령, 결정화, 전기영동 및 크로마토그래피하에 분리될 수 있다.
광학이성질체”는 서로 포개어질 수 없는 거울상인, 한 화합물의 두 개의 입체이성질체를 지칭한다.
본 출원에서 사용되는 입체화학적 정의들 및 규약들은 일반적으로 S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; 및 Eliel, E. and Wilen, S., “Stereochemistry of Organic Compounds,” John Wiley & Sons, Inc., New York, 1994를 따른다. 본 발명의 화합물들은 비대칭 또는 카이랄 중심을 함유할 수 있으며, 그리하여 상이한 입체이성질체 형태들로 존재할 수 있다. 부분입체이성질체, 광학이성질체 및 회전장애이성질체, 뿐만 아니라 이의 혼합물, 가령, 라세미 혼합물을 비롯한 (그러나 이에 제한되는 것은 아님) 본 발명의 화합물의 모든 입체이성질체 형태들은, 본 발명의 일부를 형성하는 것으로 한다. 많은 유기 화합물은 광학적 활성 형태들로 존재한다, , 이들은 평면 편광 평면에 대해 회전하는 능력을 가진다. 광학적 활성 화합물을 설명함에 있어서, 접두사 D 및 L, 또는 R 및 S는, 약 그 카이랄 중심(들)에 대한 분자의 절대 구조를 표시하기 위해 사용된다. 접두사 d 및 l 또는 (+) 및 (-)는 화합물에 의한 평면 편광 회전 기호를 지정하기 위해 사용되며, (-) 또는 1은 화합물이 좌회전성임을 의미한다. (+) 또는 d가 앞에 붙어있는 화합물은 우회전성이다. 주어진 화학적 구조에 있어서, 이들 입체이성질체는 서로 거울상인 것을 제외하고 동일하다. 특정 입체이성질체는 또한 거울상 이성질체로 지칭될 수도 있으며, 이러한 이성질체들의 혼합물은 종종 광학이성질체 혼합물로 불린다. 광학이성질체의 50:50 혼합물은 라세미 혼합물 또는 라세미체로 지칭되며, 이는 화학적 반응 또는 공정에서 입체선택성 또는 입체특이성이 전혀 없었던 경우에 발생할 수 있다. 용어 “라세미 혼합물” 및 “라세미체”는 두 개의 광학이성질체 화학종들의 등몰 혼합물을 지칭하며, 광학적 활성이 없다.
용어 “호변이성질체” 또는 “호변이성질체 형태”는 낮은 에너지 장벽을 통해 상호전환가능한, 상이한 에너지의 구조 이성질체를 지칭한다. 예를 들어, 양성자 호변이성질체 (또한 양성자성 호변이성질체로도 공지됨)는 양성자의 이동을 통한 상호전환, 가령, 케토-엔올 및 이민-엔아민 이성질체화를 포함한다. 원자가 호변이성질체는 결합하는 전자들 중 일부의 재구성에 의한 상호전환을 포함한다.
본 명세서에서 사용 시, 용어 “이민 환원 시약”은 이민 작용기를 아민 작용기로 환원시킬 수 있는 시약을 지칭한다. 특정 구체예들에서, 이민 환원 시약은 하이드라이드 환원 시약이다. 이러한 이민 환원 시약의 예들에는, 보로하이드라이드 (예컨대, 소듐 보로하이드라이드, 소듐 트라이아세톡시 보로하이드라이드, 소듐 사이아노보로하이드라이드, 리튬 보로하이드라이드 (LiBH4), 포타슘 보로하이드라이드 (KBH4)), 수소 기체, 및 리튬 알루미늄 하이드라이드, 암모늄 포르메이트, 보란, 9-bora바이사이클로[3.3.1]노네인 (9-BBN), 다이아이소뷰틸알루미늄 하이드라이드 (DIBAL), 및 소듐 비스(2-메톡시에톡시)알루미늄하이드라이드 (Red-Al)가 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 이민 환원 시약은 소듐 트라이아세톡시 보로하이드라이드이다.
용어 “보호 그룹” 또는 “보호 모이어티”는 그 화합물, 이의 유도체, 또는 이의 접합체 상의 다른 작용기와는 반응하지만 특정 작용기를 차단 또는 보호하기 위해 통상적으로 사용되는 치환기를 지칭한다. 예를 들어, “아민 보호 그룹” 또는 “아미노-보호 모이어티”는 화합물에서 아미노 작용기를 차단 또는 보호하는, 아미노 그룹에 부착되는 치환기이다. 이러한 그룹은 해당 분야에 널리 공지이며 (예를 들어 P. Wuts and T. Greene, 2007, Protective Groups in Organic Synthesis, Chapter 7, J. Wiley & Sons, NJ 참고) 카바메이트, 가령, 메틸 및 에틸 카바메이트, FMOC, 치환된 에틸 카바메이트, 1,6-β-제거 (또한 “자체 희생성”의 용어로도 쓰임)에 의해 끊어지는 카바메이트, 요소, 아마이드, 펩티드, 알킬 및 아릴 유도체가 그 예이다. 적절한 아미노-보호 그룹에는, 아세틸렌, 트라이플루오로아세틸, t-뷰톡시카르보닐 (BOC), 벤질옥시카르보닐 (CBZ) 및 9-플루오렌일메틸렌옥시카르보닐 (Fmoc), 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 또는 2, 2,2,2-트라이클로로에톡시카르보닐이 포함되나 이에 제한되는 것은 아니다. 보호 그룹 및 이의 사용에 관한 일반적인 설명에 관하여, P. G.M. Wuts & T. W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, 2007을 참고하라.
알코올 보호 그룹” 또는 “알코올-보호 모이어티”는 화합물 내 알코올 작용기를 차단 또는 보호하는, 알코올 그룹에 부착되는 치환기이다. 이러한 그룹은 해당 분야에 널리 공지이다 (예를 들어 P. Wuts and T. Greene, 2007, Protective Groups in Organic Synthesis, Chapter 2, J. Wiley & Sons, NJ 참고). 적절한 알코올 보호 그룹에는, 피발로일, 메톡심에틸, 2-메톡시에톡시메틸, p-메톡시벤질, 3,4-다이메톡시벤질, 2,6-다이메톡시벤질, 다이페닐메틸, 벤질옥시메틸, 2,2,2-트라이클로로에톡시카르보닐, 테트라하이드로퓨란일, 테트라하이드로피란일, 벤질, 벤조일, 파라-페닐벤조일, 2,4,6-트라이메틸벤조일, 파라-브로모벤조일, 파라-나이트로벤조일, 피콜리노일, 니코티노일, 5-다이벤조수베릴, 트리틸/트라이페닐메틸, 또는 트라이스(4-tert-뷰틸페닐)메틸 및 다양한 실릴 보호 그룹 (예를 들어, 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸)이 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 알코올 보호 그룹은 입체장애(sterically hindered)이다. 특정 구체예들에서, 알코올 보호 그룹은 바람직하게 메톡심에틸, 테트라하이드로피란일, 2-메톡시에톡시메틸, p-메톡시벤질, 벤질옥시메틸, 또는 2,2,2-트라이클로로에톡시카르보닐이다. 더욱 바람직하게, 알코올 보호 그룹은 2,2,2-트라이클로로에톡시카르보닐이다. 특정 구체예들에서, 알코올 보호 그룹은 실릴 보호 그룹, 바람직하게, 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 더욱 바람직하게, 알코올 보호 그룹은 tert-뷰틸다이메틸실릴이다.
본 명세서에서 사용 시 “알코올 보호 시약”은 알코올 그룹 상에 알코올 보호 그룹을 도입시키는 시약을 지칭한다.
산 분해성 알코올 보호 그룹”은 산성 조건하에서 안정하지 않아 알코올 보호 그룹을 방출하여 유리 알코올을 형성하는 알코올 보호 그룹이다. 산 분해성 알코올 보호 그룹의 예들에는, 아세테이트, 알릴, 메톡심에틸, 테트라하이드로퓨란일, 테트라하이드로피란일, 5-다이벤조수베릴, 1-에톡시에틸, 1-메틸-1메톡실에틸, 2-(페닐셀레닐)에틸, 트리틸/트라이페닐메틸, 트라이스(4-tert-뷰틸페닐)메틸, 및 다양한 실릴 보호 그룹 (예를 들어, 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이에틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸)이 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 알코올 보호 그룹은 실릴 보호 그룹, 바람직하게, 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 더욱 바람직하게, 알코올 보호 그룹은 tert-뷰틸다이메틸실릴이다.
본 명세서에서 사용 시, 용어 “알코올 탈보호 시약”은 알코올 보호 그룹을 끊어 유리 알코올을 형성할 수 있는 시약을 지칭한다. 이러한 시약은 해당 분야에 널리 공지이다 (예를 들어 P. Wuts and T. Greene, 2007, Protective Groups in Organic Synthesis, Chapter 2, J. Wiley & Sons, NJ 참고). 이러한 알코올 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 수소 플루오라이드 또는 이의 용매화합물, 수소 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 트라이플루오로아세틱 애시드, 피리디늄 p-톨루엔설포네이트, p-톨루엔설폰산 (p-TsOH), 포름산(formic acid), 과요오드산이 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 알코올 탈보호 시약은 염산 또는 테트라-n-뷰틸암모늄 플루오라이드 (TBAF)이다. 특정 구체예들에서, 알코올 탈보호제는 하이드로겐 플루오라이드-피리딘 (HF-피리딘)이다.
본 명세서에서 사용 시, “아민 탈보호 그룹”은 아민 보호 그룹을 끊어 유리 아민을 형성할 수 있는 시약을 지칭한다. 이러한 시약은 해당 분야에 널리 공지이다 (예를 들어 P. Wuts and T. Greene, 2007, Protective Groups in Organic Synthesis, Chapter 7, J. Wiley & Sons, NJ 참고). 이러한 아민 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드가 포함되나 이에 제한되는 것은 아니다.
본 명세서에서 사용 시, “알코올 활성화제”는 하이드록실 그룹의 반응성을 증가시킴으로써 하이드록실 그룹을 보다 우수한 이탈 그룹이 되게 하는 시약을 지칭한다. 이러한 알코올 활성화제들의 예들에는, p-톨루엔설포닐 클로라이드, 싸이오닐 클로라이드, 트라이플릭 무수물, 메실 클로라이드, 메실 무수물, 트라이페닐포스핀, 아실 클로라이드, 4-다이메틸아미노피리딘, 및 기타가 포함된다. 특정 구체예들에서, 알코올 활성화제는 싸이오닐 클로라이드이다. 특정 구체예에서, 알코올 활성화제는 트라이페닐포스핀이다.
본 명세서에서 사용 시 어구 “약제학적으로 허용가능한 염”은, 본 발명의 화합물의 약제학적으로 허용가능한 유기 또는 무기 염을 지칭한다. 예시적인 염에는, 설페이트, 시트레이트, 아세테이트, 옥살레이트, 클로라이드, 브로마이드, 아이오다이드, 나이트레이트, 바이설페이트, 포스페이트, 산 포스페이트, 아이소니코티네이트, 락테이트, 살리실레이트, 산 시트레이트, 타르트레이트, 올레이트, 탄네이트, 판토테네이트, 바이타르트레이트, 아스코르베이트, 석시네이트, 말레이트(maleate), 겐티시네이트, 푸마레이트, 글루코네이트, 글루쿠로네이트, 사카레이트, 포르메이트, 벤조에이트, 글루타메이트, 메테인설포네이트 “메실레이트,” 에테인설포네이트, 벤젠설포네이트, p-톨루엔설포네이트, 파모에이트 (, 1,1’-메틸렌-비스-(2-하이드록시-3-나프토에이트)) 염, 알칼리 금속 (예컨대, 소듐 및 포타슘) 염, 알칼리 토금속 (예컨대, 마그네슘) 염, 및 암모늄 염이 포함되나 이에 제한되는 것은 아니다. 약제학적으로 허용가능한 염은 또 다른 분자, 가령, 아세테이트 이온, 석시네이트 이온 또는 다른 반대 이온의 혼입(inclusion)을 포함할 수 있다. 반대 이온은 모체 화합물 상의 전하를 안정화시키는 임의의 유기 또는 무기 모이어티일 수 있다. 더욱이, 약제학적으로 허용가능한 염은 그 구조에 하나 초과의 하전된 원자를 가질 수 있다. 다중 하전된 원자들이 약제학적으로 허용가능한 염의 일부인 경우들은 다수의 반대 이온들을 가질 수 있다. 그러므로, 약제학적으로 허용가능한 염은 하나 이상의 하전된 원자들 및/또는 하나 이상의 반대 이온을 가질 수 있다.
본 발명의 화합물이 염기인 경우, 원하는 약제학적으로 허용가능한 염은 해당 분야에서 이용가능한 임의의 적절한 방법, 예를 들어, 무기 산, 가령, 염산, 브롬화수소산, 황산, 질산, 메테인설폰산, 인산 등, 또는 유기 산, 가령, 아세트산, 말레산, 석신산, 만델산, 퓨마르산, 말론산, 피루브산, 옥살산, 글리콜산, 살리실산, 피라노시딜산, 가령, 글루쿠론산 또는 갈락투론산, 알파 하이드록시 산, 가령, 시트르산 또는 타르타르산, 아미노 산, 가령, 아스파르트산 또는 글루탐산, 방향족 산, 가령, 벤조산 또는 신남산, 설폰산, 가령, p-톨루엔설폰산 또는 에테인설폰산, 등으로 유리 염기를 처리함으로써 제조될 수 있다.
본 발명의 화합물이 산인 경우, 원하는 약제학적으로 허용가능한 염은 임의의 적절한 방법, 예를 들어, 무기 또는 유기 염기, 가령, 아민 (1차, 2차 또는 3차), 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물, 등으로 유리 산을 처리함으로써 제조될 수 있다. 적절한 염의 구체적인 예들에는, 아미노산, 가령, 글리신 및 아르기닌, 암모니아, 1차, 2차 및 3차 아민, 및 사이클릭 아민, 가령, 피페리딘, 모르폴린 및 피페라진으로부터 유도된 유기 염, 및 소듐, 칼슘, 포타슘, 마그네슘, 망간, 철, 구리, 아연, 알루미늄 및 리튬으로부터 유도된 무기 염이 포함되나, 이에 제한되는 것은 아니다.
어구 “약제학적으로 허용가능한”은 그 물질 또는 조성물이 한 제형을 포함하는, 및/또는 함께 포유동물에 처리되는 다른 성분들과 화학적으로 및/또는 독물학상으로 상용가능하여야 함을 나타낸다.
용어 “이탈 그룹”은 친핵성 치환 또는 변위 동안 떨어져나가는 하전된 또는 하전되지 않은 모이어티의 그룹을 지칭한다. 이러한 이탈 그룹은 해당 분야에 널리 공지되어 있으며, 할로겐, 에스터, 알콕시, 하이드록실, 토실레이트, 트라이플레이트, 메실레이트, 나이트릴, 아자이드, 카바메이트, 다이설파이드, 싸이오에스터, 싸이오에터 및 다이아조늄 화합물을 포함하나 이에 제한되는 것은 아니다.
본 명세서에서 사용 시, 용어 “할로겐화 시약”은 알코올 그룹을 할라이드 그룹으로 전환시키는 시약을 지칭한다. “브롬화 시약” 알코올 그룹을 브로마이드 그룹으로 전환시키는 시약이다. “아이오드화 시약(iodinating reagent)”은 알코올 그룹을 아이오다이드 그룹으로 전환시키는 시약이다. “염소화 시약”은 알코올 그룹을 클로라이드 그룹으로 전환시키는 시약이다. 예시적인 브롬화 시약에는, 브롬, 브롬화수소산, 카본 테트라브로마이드, 포스포러스 트라이브로마이드, 및 포타슘 브로마이드가 포함되나 이에 제한되는 것은 아니다. 예시적인 아이오드화 시약에는, 아이오드화수소산, 아이오딘, 카본 테트라아이오다이드, 포스포러스 트라이아이오다이드, 소듐 아이오다이드, 또는 포타슘 아이오다이드이 포함되나 이에 제한되는 것은 아니다. 예시적인 염소화 시약에는, 카본 테트라클로라이드, 메테인설폰일 클로라이드, 설퓨릴 클로라이드, 싸이오닐 클로라이드, 사이아뉴릭 클로라이드, N-클로로숙신이미드, 포스포러스(V) 옥시클로라이드, 포스포러스 펜타클로라이드, 및 포스포러스 트라이클로라이드가 포함되나 이에 제한되는 것은 아니다. 특정 구체예에서, 염소화 시약은 메테인설폰일 클로라이드이다.
본 명세서에서 사용 시, "설폰화 시약”은 알코올 그룹을 설포네이트 에스터 그룹으로 전환시키는 시약을 지칭한다. 바람직하게, 설폰화 시약은 설포닉 무수물, 가령 메테인설포닉 무수물, 또는 설포닉 클로라이드, 가령 메테인설폰일 클로라이드 (MsCl)이다.
본 명세서에서 사용 시, “활성화 에스터”는 하이드록실 또는 아민 그룹에 의해 용이하게 대체되는 에스터 그룹을 지칭한다. 예시적인 활성화 에스터에는, 나이트로페닐 (예컨대, 2 또는 4-나이트로페닐) 에스터, 다이나이트로페닐 (예컨대, 2,4-다이나이트로페닐) 에스터, 설포-테트라플루오로페닐 (예컨대, 4-설포-2,3,5,6-테트라플루오로페닐) 에스터, 펜타플루오로페닐 에스터, 나이트로피리딜 (예컨대, 4-나이트로피리딜) 에스터, 트라이플루오로아세테이트, 및 아세테이트가 포함되나 이에 제한되는 것은 아니다.
본 명세서에서 사용 시, “에스터화 시약”은 알코올 그룹을 에스터 그룹으로 전환시키는 시약을 지칭한다. 예시적인 에스터화 시약은, 나이트로벤조이드 애시드 (예컨대, 2 또는 4-나이트로벤조익 애시드), 다이나이트로벤조이드 애시드 (예컨대, 2,4-다이나이트로벤조익 애시드), 설포-테트라플루오로벤조이드 애시드 (예컨대, 4-설포-2,3,5,6-테트라플루오로벤조익 애시드), 펜타플루오로벤조익 애시드, 나이트로피리딘 카복실릭 애시드 (예컨대, 4-나이트로-2-피리딘 카복실릭 애시드, 트라이플루오로아세틱 애시드, 및 아세트산, 또는 아실 클로라이드, 산 무수물 또는 그밖의 다른 이의 활성화 카복실릭 애시드 유도체를 포함하나 이에 제한되는 것은 아니다.
본 발명의 방법
본 발명은 하나의 이민 작용기 및 하나의 아민 작용기를 가지는 인돌리노벤조다이아제핀 이량체 화합물의 신규한 제조 방법을 제공한다. 해당 분야에 공지된 방법들에 비해, 본 발명의 방법은 원하는 이량체 화합물을 보다 높은 수율로 그리고 HPLC 정제를 사용하지 않고 제조할 수 있다.
제 1 구체예에서, 본 발명은 화학식 (2d)의 화합물,
Figure pct00176
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (1d)의 화합물을 알코올 보호 시약과 반응시킴으로써, 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입시키는 단계를 포함하고,
Figure pct00177
여기서 P1은 알코올 보호 그룹이고; R100은 (C1-C3)알콕시이다.
또한 제 1 구체예에서 화학식 (2A)의 화합물,
Figure pct00178
또는 이의 염의 제조 방법을 제공하며, 이 방법은 화학식 (1A)의 화합물을 알코올 보호 시약과 반응시킴으로써, 화학식 (1A)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입시키는 단계를 포함하고,
Figure pct00179
여기서 P1은 알코올 보호 그룹이다.
상기 기재된 화학식 (2d) 또는 (2A)의 화합물의 제조 방법에 관한 한 특정 구체예에서, 알코올 보호 그룹은 입체 장애이다.
또 다른 특정 구체예에서, 알코올 보호 그룹은 피발로일, 메톡심에틸, 2-메톡시에톡시메틸, p-메톡시벤질, 3,4-다이메톡시벤질, 2,6-다이메톡시벤질, 다이페닐메틸, 벤질옥시메틸, 2,2,2-트라이클로로에톡시카르보닐, 테트라하이드로퓨란일, 테트라하이드로피란일, 벤질, 벤조일, 파라-페닐벤조일, 2,4,6-트라이메틸벤조일, 파라-브로모벤조일, 파라-나이트로벤조일, 피콜리노일, 니코티노일, 5-다이벤조수베릴, 트리틸/트라이페닐메틸, 또는 트라이스(4-tert-뷰틸페닐)메틸이다. 바람직하게, 알코올 보호 그룹은 메톡심에틸, 테트라하이드로피란일, 2-메톡시에톡시메틸, p-메톡시벤질, 벤질옥시메틸, 또는 2,2,2-트라이클로로에톡시카르보닐이다. 보다 더욱 바람직하게, 알코올 보호 그룹은 2,2,2-트라이클로로에톡시카르보닐이다.
또 다른 특정 구체예에서, 알코올 보호 그룹은 실릴 보호 그룹이다. 예를 들어, 실릴 보호 그룹은 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸이다. 바람직하게, 실릴 보호 그룹은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 더욱 바람직하게, 실릴 보호 그룹은 tert-뷰틸다이메틸실릴이다.
실릴 보호 그룹은 염기의 존재하에 화학식 (1d) 또는 (1A)의 화합물을 R3-Cl, R3-Br, R3-I 또는 R3-OSO2CF3 (집합적으로 알코올 보호 시약)와 반응시킴으로써 도입될 수 있는데, 여기서 R3는 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴 또는 [2-(트라이메틸실릴)에톡시]메틸이다. 특정 구체예들에서, 화학식 (1d) 또는 (1A)의 화합물에 대한 알코올 보호 시약의 몰비는 0.8-1.2, 1 내지 5, 1 내지 2, 1 내지 1.5, 1 내지 1.4, 1 내지 1.3, 1 내지 1.2, 또는 1 내지 1.1이다. 특정 구체예에서, 화학식 (1d) 또는 (1A)의 화합물에 대해 2 몰 당량 미만의 알코올 보호 시약이 사용된다. 바람직하게, 화학식 (1d) 또는 (1A)의 화합물에 대해 1.5, 1.4, 1.3, 1.2, 1.1 또는 1.0 몰 당량의 알코올 보호 시약이 사용된다.
한 구체예에서, 염기는 비-친핵성 염기일 수 있다. 비-친핵성 염기의 예들에는, 이미다졸, 트라이에틸아민, 다이아이소프로필에틸아민, 피리딘, 2,6-루티딘, 1,8-다이아자바이사이클로운덱-7-엔, 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 비-친핵성 염기는 이미다졸이다. 몰 과량의 염기가 사용될 수 있다. 특정 구체예들에서, 화학식 (1d) 또는 (1A)의 화합물에 대해 2 몰 당량 초과의 염기 (예컨대¸ 비-친핵성 염기)가 사용된다.
또 다른 구체예에서, 화학식 (1d) 또는 (1A)의 화합물과 R3-Cl, R3-Br, R3-I 또는 R3-OSO2CF3간의 반응이 실릴 보호 그룹의 도입을 용이하게 하는 촉매의 존재하에 실시된다. 해당 분야에 공지된 임의의 적절한 촉매들 (예를 들어, P. Wuts 및 T. Greene, 2007, Protective Groups in Organic Synthesis, Chapter 2, J. Wiley & Sons, NJ 참고)이 이 반응에서 사용될 수 있다. 예시적인 촉매들은, 4-다이메틸아미노피리딘 (DMAP), 1,1,3,3-테트라메틸구아니딘 및 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU)을 포함하나, 이에 제한되는 것은 아니다.
임의의 적절한 유기 용매들이 제 1 구체예의 방법들을 위해 사용될 수 있다. 예시적인 용매들에는, DMF, CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포하되나 이에 제한되는 것은 아니다. 특정 구체예들에서, DMF가 용매로 사용된다.
또다른 특정 구체예에서, 비-친핵성 염기의 존재하에 (1d) 또는 (1A)의 화합물을 TBSCl과 반응시키는 단계를 포함하는, 화학식 (2d) 또는 (2A)의 화합물 제조 방법을 제공한다. 한 구체예에서, 염기는 이미다졸 또는 DIPEA이다. 한 특정 구체예에서, 염기는 이미다졸이다. 또다른 특정 구체예에서, 염기는 DIPEA이다.
제 2 구체예에서, 본 발명은 화학식 (3d)의 화합물,
Figure pct00180
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00181
여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 2 구체예에서 화학식 (3A)의 화합물,
Figure pct00182
또는 이의 염의 제조 방법을 제공하며, 이 방법은 화학식 (2A)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고,
Figure pct00183
여기서 P1 및 R100은 제 1 구체예에 정의된 바와 같고, 그리고 X1은 다음으로 구성된 그룹으로부터 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터.
상기 화학식 (3d) 또는 (3A)의 화합물 제조 방법에 관한 한 특정 구체예에서, X1은 -Br, -I 또는 설포네이트 에스터이다.
상기 화학식 (3d) 또는 (3A)의 화합물 제조 방법에 관한 한 특정 구체예에서, X1은 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 바람직하게, X1은 메실레이트이다.
또 다른 특정 구체예에서, 제 2 구체예의 방법은 화학식 (2d) 또는 (2A)의 화합물을 할로겐화 시약과 반응시키는 단계를 포함한다. 예시적인 할로겐화 시약에는, 브롬, 브롬화수소산, 카본 테트라브로마이드, 포스포러스 트라이브로마이드, 포타슘 브로마이드, 아이오드화수소산, 아이오딘, 카본 테트라아이오다이드, 포스포러스 트라이아이오다이드, 소듐 아이오다이드, 또는 포타슘 아이오다이드가 포함되나 이에 제한되는 것은 아니다.
또한 또 다른 특정 구체예에서, 제 2 구체예의 방법은 화학식 (2d) 또는 (2A)의 화합물을 설폰화 시약과 반응시키는 단계를 포함한다. 바람직하게, 설폰화 시약은 설포닉 무수물, 가령 메테인설포닉 무수물, 또는 설포닉 클로라이드, 가령 메테인설폰일 클로라이드 (MsCl)이다.
특정 구체예에서, 화학식 (2d) 또는 (2A)의 화합물과 설폰화 시약 간의 반응은 염기의 존재하에 실시될 수 있다. 한 구체예에서, 염기는 비-친핵성 염기이다. 예시적인 비-친핵성 염기에는, 트라이에틸아민, 이미다졸, 트라이에틸아민, 다이아이소프로필에틸아민, 피리딘, 2,6-루티딘, 다이메틸포름아마이드, 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU), 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 염기는 트라이에틸아민 또는 다이아이소프로필에틸아민이다.
임의의 적절한 유기 용매들이 제 2 구체예의 방법에서 사용될 수 있다. 한 구체예에서, 용매는 다이클로로메테인이다.
제 3 구체예에서, 본 발명은 화학식 (4d)의 화합물,
Figure pct00184
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (3d)의 화합물을
Figure pct00185
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00186
여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 3 구체예에서 화학식 (4A)의 화합물,
Figure pct00187
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (3A)의 화합물을
Figure pct00188
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00189
,
여기서 P1은 알코올 보호 그룹이고; 그리고 X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터.
제 3 구체예의 방법에 관한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다.
화학식 (4d) 또는 (4A)의 화합물의 제조 방법에 관한 한 특정 구체예에서, 화학식 (3d) 또는 (3A)의 화합물은 염기의 존재하에서 화학식 (a1)의 단량체 화합물과 반응된다. 임의의 적절한 염기가 사용될 수 있다. 예시적인 염기들에는, 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드가 포함되나 이에 제한되는 것은 아니다. 한 구체예에서, 염기는 포타슘 카보네이트이다.
임의의 적절한 용매들이 제 3 구체예의 방법에서 사용될 수 있다. 한 구체예에서, 용매는 다이메틸아세트아마이드 (DMA)이다.
한 특정 구체예에서, 상기 기재된 화학식 (4d) 또는 (4A)의 화합물의 제조 방법은 DMA에서의 포타슘 카보네이트의 존재하에서 화학식 (3d) 또는 (3A)의 화합물을 (a1)의 단량체 화합물과 반응시키는 단계를 포함한다. 한 구체예에서, 반응은 포타슘 아이오다이드의 존재하에서 수행된다.
제 4 구체예에서, 본 발명은 화학식 (5d)의 화합물,
Figure pct00190
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4d)의 화합물을
Figure pct00191
이민 환원제와 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 4 구체예에서 화학식 (5A)의 화합물,
Figure pct00192
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4A)의 화합물을,
Figure pct00193
이민 환원제와 반응시키는 단계를 포함하고, 여기서 변수들은 상기 제 3 구체예에 기재된 바와 같다.
상기 기재된 화학식 (5d) 또는 (5A)의 화합물의 제조 방법에 관한 한 특정 구체예에서, 이민 환원 시약은 하이드라이드 환원 시약이다.
또 다른 특정 구체예에서, 이민 환원 시약은 소듐 보로하이드라이드, 소듐 트라이아세톡시 보로하이드라이드, 소듐 사이아노보로하이드라이드, 리튬 알루미늄 하이드라이드, 수소 기체, 암모늄 포르메이트, 보란, 9-보라바이사이클로[3.3.1]노네인 (9-BBN), 다이아이소뷰틸알루미늄 하이드라이드 (DIBAL), 리튬 보로하이드라이드 (LiBH4), 포타슘 보로하이드라이드 (KBH4), 또는 소듐 비스(2-메톡시에톡시)알루미늄하이드라이드 (Red-Al)이다. 바람직하게, 이민 환원 시약은 소듐 트라이아세톡시 보로하이드라이드 (NaBH(OAc)3)이다.
임의의 적절한 용매들이 제 4 구체예의 방법에서 사용될 수 있다. 한 구체예에서, 용매는 다이클로로에테인이다.
제 5 구체예에서, 본 발명은 화학식 (6d)의 화합물,
Figure pct00194
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5d)의 화합물을
Figure pct00195
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 5 구체예에서 화학식 (6A)의 화합물,
Figure pct00196
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5A)의 화합물을,
Figure pct00197
알코올 탈보호 시약과 반응시키는 단계를 포함하고, 여기서 변수들은 상기 제 4 구체예에 기재된 바와 같다.
상기 기재된 화학식 (6d) 또는 (6A)의 화합물의 제조 방법에 관한 특정 구체예에서, 알코올 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 하이드로겐 플루오라이드 또는 이의 용매화합물, 하이드로겐 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 트라이플루오로아세틱 애시드, 피리디늄 p-톨루엔설포네이트, p-톨루엔설폰산 (p-TsOH), 포름산, 또는 과요오드산이다. 바람직하게, 알코올 탈보호 시약은 염산 또는 테트라-n-뷰틸암모늄 플루오라이드이다. 보다 특정한 구체예에서, 알코올 탈보호 시약은 수성 염화수소산이다.
임의의 적절한 용매들이 상기 탈보호 반응에서 사용될 수 있다. 한 구체예에서, 용매는 THF이다.
제 6 구체예에서, 본 발명은 화학식 (7d)의 화합물,
Figure pct00198
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (6d)의 일차 알코올 화합물과 반응시키는 단계를 포함하고,
Figure pct00199
여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 6 구체예에서 화학식 (7A)의 화합물,
Figure pct00200
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (6A)의 일차 알코올 화합물과 반응시키는 단계를 포함하고,
Figure pct00201
여기서 X2는 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 나머지 변수들은 상기 제 5 구체예에 기재된 바와 같다.
상기 화학식 (7d) 또는 (7A)의 화합물 제조 방법에 관한 한 특정 구체예에서, X2는 -Br, -I 또는 설포네이트 에스터이다.
상기 화학식 (7d) 또는 (7A)의 화합물 제조 방법에 관한 한 특정 구체예에서, X2는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 바람직하게, X2는 메실레이트이다.
또 다른 특정 구체예에서, 제 6 구체예의 방법은 화학식 (6d) 또는 (6A)의 화합물을 할로겐화 시약과 반응시키는 단계를 포함한다. 예시적인 할로겐화 시약에는, 브롬, 브롬화수소산, 카본 테트라브로마이드, 포스포러스 트라이브로마이드, 포타슘 브로마이드, 아이오드화수소산, 아이오딘, 카본 테트라아이오다이드, 포스포러스 트라이아이오다이드, 소듐 아이오다이드, 또는 포타슘 아이오다이드가 포함되나 이에 제한되는 것은 아니다.
또한 또 다른 특정 구체예에서, 제 6 구체예의 방법은 화학식 (6d) 또는 (6A)의 화합물을 설폰화 시약과 반응시키는 단계를 포함한다. 바람직하게, 설폰화 시약은 설포닉 무수물, 가령, 메테인설포닉 무수물, 또는 설포닉 클로라이드, 가령, 메테인설폰일 클로라이드 (MsCl)이다.
한 구체예에서, 화학식 (6d) 또는 (6A)의 화합물과 설폰화 시약 간의 반응은 염기의 존재하에 실시된다. 한 구체예에서, 염기는 비-친핵성 염기이다. 예시적인 비-친핵성 염기에는, 트라이에틸아민, 이미다졸, 트라이에틸아민, 다이아이소프로필에틸아민, 피리딘, 2,6-루티딘, 다이메틸포름아마이드, 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU), 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 염기는 트라이에틸아민 또는 다이아이소프로필에틸아민이다.
임의의 적절한 용매들이 상기 제 6 구체예에 기재된 반응들에서 사용될 수 있다. 한 구체예에서, 용매는 다이클로로메테인이다. 또 다른 구체예에서, 용매는 DMF이다. 또한 또 다른 구체예에서, 용매는 다이클로로메테인과 DMF의 혼합물이다.
제 7 구체예에서, 본 발명은 화학식 (7d")의 화합물,
Figure pct00202
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5d")의 화합물을
Figure pct00203
알코올 탈보호 시약 및 할로겐화 시약과 반응시키는 단계를 포함하고, 여기서 P1’은 산 분해성 알코올 보호 그룹이고; X2’은 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 7 구체예에서 화학식 (7A”)의 화합물,
Figure pct00204
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (5A”)의 화합물을,
Figure pct00205
알코올 탈보호 시약 및 할로겐화 시약과 반응시키는 단계를 포함하고, 여기서 P1’은 산 분해성 알코올 보호 그룹이고; X2’은 -Br 또는 -I이고; 그리고 나머지 변수들은 제 6 구체예에 상기 기재한 것과 같다.
제 7 구체예의 방법은 제 5 구체예에 기재된 알코올 탈보호 단계와 제 6 구체예에 기재된 생성 알코올의 할로겐화 반응을 하나의 단계로 조합한다.
제 7 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (7d”)의 화합물은 다음 화학식으로 나타내어지며:
Figure pct00206
,
이 방법은 화학식 (5d”)의 화합물을 알코올 탈보호 시약 및 브롬화 시약과 반응시키는 단계를 포함한다.
제 7 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (7A’”)의 화합물은 다음 화학식으로 나타내어지며:
Figure pct00207
,
이 방법은 화학식 (5A”)의 화합물을,
Figure pct00208
,
알코올 탈보호 시약 및 할로겐화 시약과 반응시키는 단계를 포함한다.
제 7 구체예에 기재된 방법에 관한 한 구체예에서, 산 분해성 알코올 보호 그룹은 아세테이트, 알릴, 메톡심에틸, 테트라하이드로퓨란일, 테트라하이드로피란일, 5-다이벤조수베릴, 1-에톡시에틸, 1-메틸-1메톡실에틸, 2-(페닐셀레닐)에틸, 트리틸/트라이페닐메틸, 또는 트라이스(4-tert-뷰틸페닐)메틸이다.
또 다른 구체예에서, 산 분해성 알코올 보호 그룹은 실릴 보호 그룹이다. 예시적인 실릴 보호 그룹에는, 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이에틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 실릴 보호 그룹은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 더욱 바람직하게, 실릴 보호 그룹은 tert-뷰틸다이메틸실릴이다.
한 구체예에서, 알코올 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 하이드로겐 플루오라이드 또는 이의 용매화합물, 하이드로겐 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 피리디늄 p-톨루엔설포네이트, 포름산, 과요오드산, 트라이플루오로아세틱 애시드, 또는 .p-톨루엔설폰산 (p-TsOH)이다. 바람직하게, 알코올 탈보호 시약은 아세트산이다.
또한 또 다른 구체예에서, 브롬화 시약은 HBr이다.
한 특정 구체예에서, 제 7 구체예의 방법은 화학식 (5d”)의 화합물을 아세트산과 HBr의 혼합물과 반응시켜 화학식 (7d”)의 화합물을 제공하는 단계를 포함한다.
또 다른 특정 구체예에서, 제 7 구체예의 방법은 화학식 (5A”)의 화합물을 아세트산과 HBr의 혼합물과 반응시켜 화학식 (7A”)의 화합물을 제공하는 단계를 포함한다.
제 8 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00209
또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (7d)의 화합물을
Figure pct00210
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00211
여기서 R100은 (C1-C3)알콕시이고; 그리고, X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터.
또한 제 8 구체예에서 화학식 (IA)의 화합물,
Figure pct00212
또는 이의 약제학적으로 허용가능한 염의 제조 방법이 제공되며, 상기 방법은 화학식 (7A)의 화합물을
Figure pct00213
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00214
여기서 R100은 (C1-C3)알콕시이고; 그리고, X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터.
제 8 구체예의 방법에 관한 한 구체예에서, X2는 -Br, -I, 또는 설포네이트 에스터이다.
제 8 구체예의 방법에 관한 한 구체예에서, 화학식 (7d) 또는 (7A)의 화합물은 염기의 존재하에 화학식 (a1)의 단량체 화합물과 반응된다. 염기의 예들에는, 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드가 포함되나 이에 제한되는 것은 아니다. 한 구체예에서, 염기는 포타슘 카보네이트이다.
임의의 적절한 용매들이 상기 제 8 구체예의 방법들에서 사용될 수 있다. 한 구체예에서, 용매는 DMF이다. 또 다른 구체예에서, 용매는 DMA이다.
제 9 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00215
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00216
화학식 (2d)의 화합물을 형성하는 단계,
Figure pct00217
;
(2) 화학식 (2d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계,
Figure pct00218
;
(3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00219
화학식 (4d)의 화합물을 형성하는 단계,
Figure pct00220
;
(4) 화학식 (4d)의 화합물을 이민 환원제와 반응시켜 화학식 (5d)의 화합물을 형성하는 단계,
Figure pct00221
;
(5) 화학식 (5d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (6d)의 화합물을 형성하는 단계,
Figure pct00222
;
(6) 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약을 화학식 (6d)의 화합물과 반응시켜, 화학식 (7d)의 화합물을 형성하는 단계,
Figure pct00223
; 그리고
(7) 화학식 (7d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00224
화학식 (Id')의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 9 구체예에서 화학식 (IA)의 화합물:
Figure pct00225
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1A)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00226
화학식 (2A)의 화합물을 형성하는 단계,
Figure pct00227
;
(2) 화학식 (2A)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3A)의 화합물을 형성하는 단계,
Figure pct00228
;
(3) 화학식 (3A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00229
화학식 (4A)의 화합물을 형성하는 단계,
Figure pct00230
;
(4) 화학식 (4A)의 화합물을 이민 환원제와 반응시켜 화학식 (5A)의 화합물을 형성하는 단계,
Figure pct00231
;
(5) 화학식 (5A)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (6A)의 화합물을 형성하는 단계,
Figure pct00232
;
(6) 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 에스터화 시약을 화학식 (6A)의 화합물과 반응시켜, 화학식 (7A)의 화합물을 형성하는 단계,
Figure pct00233
; 그리고
(7) 화학식 (7A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00234
화학식 (IA)의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; 그리고 X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이다: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터.
제 9 구체예의 방법에 관한 한 구체예에서, X1 및 X2는 각각 독립적으로 -Br, -Cl 또는 설포네이트 에스터이다.
제 9 구체예의 방법에서 각 단계에 대한 반응 조건 및 시약은 제 1, 제 2, 제 3, 제 4, 제 5, 제 6 및/또는 제 8 구체예 또는 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 10 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00235
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00236
화학식 (2d")의 화합물을 형성하는 단계,
Figure pct00237
;
(2) 화학식 (2d")의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d")의 화합물을 형성하는 단계,
Figure pct00238
;
(3) 화학식 (3d”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00239
화학식 (4d")의 화합물을 형성하는 단계,
Figure pct00240
;
(4) 화학식 (4d")의 화합물을 이민 환원제와 반응시켜 화학식 (5d")의 화합물을 형성하는 단계,
Figure pct00241
;
(5) 화학식 (5d”)의 화합물을 알코올 탈보호 시약 및 할로겐화 시약과 반응시켜 화학식 (7d”)의 화합물을 형성하는 단계,
Figure pct00242
;
(6) 화학식 (7d”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00243
화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X2’은 -Br 또는 -I이고; 그리고 나머지 변수들은 상기 제 9 구체예에 기재된 바와 같다.
또한 제 10 구체예에서 화학식 (IA)의 화합물:
Figure pct00244
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1A)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00245
화학식 (2A")의 화합물을 형성하는 단계,
Figure pct00246
;
(2) 화학식 (2A")의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3A")의 화합물을 형성하는 단계,
Figure pct00247
;
(3) 화학식 (3A”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00248
화학식 (4A")의 화합물을 형성하는 단계,
Figure pct00249
;
(4) 화학식 (4A")의 화합물을 이민 환원제와 반응시켜 화학식 (5A")의 화합물을 형성하는 단계,
Figure pct00250
;
(5) 화학식 (5A”)의 화합물을 알코올 탈보호 시약 및 할로겐화 시약과 반응시켜 화학식 (7A”)의 화합물을 형성하는 단계,
Figure pct00251
;
(6) 화학식 (7A”)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00252
화학식 (IA)의 화합물을 형성하는 단계, 여기서 X2’은 -Br 또는 -I이고; 그리고 나머지 변수들은 상기 제 9 구체예에 기재된 바와 같다.
제 10 구체예의 방법들에 관한 조건 및 시약은 상기 제 1, 제 2, 제 3, 제 4, 제 7 및/또는 제 8 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 11 구체예에서, 본 발명은 화학식 (9d)의 화합물,
Figure pct00253
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4d)의 화합물을
Figure pct00254
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 11 구체예에서 (9A)의 화합물:
Figure pct00255
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (4A)의 화합물을,
Figure pct00256
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
제 11 구체예의 방법들에 관한 한 특정 구체예에서, 알코올 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 하이드로겐 플루오라이드 또는 이의 용매화합물, 하이드로겐 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 피리디늄 p-톨루엔설포네이트, 포름산, 과요오드산, 트라이플루오로아세틱 애시드, 또는 p-톨루엔설폰산 (p-TsOH)이다. 보다 구체적으로, 알코올 탈보호 시약은 염산 또는 테트라-n-뷰틸암모늄 플루오라이드이다.
제 12 구체예에서, 본 발명은 화학식 (10d)의 화합물,
Figure pct00257
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (9d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고,
Figure pct00258
여기서 X2는 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 12 구체예에서 화학식 (10A)의 화합물:
Figure pct00259
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (9A)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고,
Figure pct00260
여기서 X2는 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이다.
제 12 구체예의 방법에 관한 특정 구체예에서, X2는 -Br, -I, 또는 설포네이트 에스터이다.
제 12 구체예의 방법에 관한 특정 구체예에서, X2는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 바람직하게, X2는 메실레이트이다.
또 다른 특정 구체예에서, 제 12 구체예에 기재된 방법은 화학식 (9d) 또는 (9A)의 화합물을 할로겐화 시약과 반응시키는 단계를 포함한다. 예시적인 할로겐화 시약에는, 브롬, 브롬화수소산, 카본 테트라브로마이드, 포스포러스 트라이브로마이드, 포타슘 브로마이드, 아이오드화수소산, 아이오딘, 카본 테트라아이오다이드, 포스포러스 트라이아이오다이드, 소듐 아이오다이드, 또는 포타슘 아이오다이드가 포함되나 이에 제한되는 것은 아니다.
또한 또 다른 특정 구체예에서, 제 12 구체예의 방법은 화학식 (9d) 또는 (9A)의 화합물을 설폰화 시약과 반응시키는 단계를 포함한다. 바람직하게, 설폰화 시약은 설포닉 무수물, 가령, 메테인설포닉 무수물, 또는 설포닉 클로라이드, 가령, 메테인설폰일 클로라이드 (MsCl)이다.
한 구체예에서, 화학식 (9d) 또는 (9A)의 화합물과 설폰화 시약 간의 반응은 염기의 존재하에 실시된다. 한 구체예에서, 염기는 비-친핵성 염기이다. 예시적인 비-친핵성 염기에는, 트라이에틸아민, 이미다졸, 트라이에틸아민, 다이아이소프로필에틸아민, 피리딘, 2,6-루티딘, 다이메틸포름아마이드, 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU), 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 염기는 트라이에틸아민 또는 다이아이소프로필에틸아민이다.
제 13 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00261
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10d)의 화합물을
Figure pct00262
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00263
여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이며: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; P3는 H 또는 P2이고; P2는 아민 보호 그룹이며; R100은 (C1-C3)알콕시이다. 한 구체예에서, X2는 -Br, -I, 또는 설포네이트 에스터이다.
또한 제 13 구체예에서 화학식 (18A)의 화합물:
Figure pct00264
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10A)의 화합물을
Figure pct00265
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00266
여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이며: -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터; 그리고 P3는 H 또는 P2이고; 그리고 P2는 아민 보호 그룹이다. 한 구체예에서, X2는 -Br, -I, 또는 설포네이트 에스터이다.
제 13 구체예의 방법에 관한 특정 구체예에서, P3는 H이고 (10d) 또는 (10A)의 화합물은 (d1)의 단량체 화합물과 반응하여 각각 (Id’) 또는 (IA)의 화합물을 형성한다:
Figure pct00267
;
Figure pct00268
.
또 다른 특정 구체예에서, P3는 P2로 나타내어지는 아민 보호 그룹이고; 단량체 화합물은 화학식 (c1)으로 나타내어지며:
Figure pct00269
;
화학식 (18d) 또는 (18A)의 화합물은 각각 화학식 (11d) 또는 (11A)로 나타내어진다,
Figure pct00270
;
Figure pct00271
.
임의의 적절한 아민 보호 그룹이 상기 제 13 구체예의 방법에서 사용될 수 있다. 한 구체예에서, 아민 보호 그룹은 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 또는 2, 2,2,2-트라이클로로에톡시카르보닐이다.
한 특정 구체예에서, 화학식 (10d) 또는 (10A)의 화합물은 염기의 존재하에 화학식 (d1) 또는 (c1)의 단량체 화합물과 반응된다. 염기의 예들에는, 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드가 포함되나 이에 제한되는 것은 아니다.
임의의 적절한 용매들이 상기 반응에서 사용될 수 있다. 한 구체예에서, 용매는 DMF이다.
제 14 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00272
또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (11d)의 화합물을
Figure pct00273
아민 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P2는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 14 구체예에서 화학식 (IA)의 화합물:
Figure pct00274
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (11d)의 화합물을
Figure pct00275
아민 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P2는 아민 보호 그룹이다.
임의의 적절한 아민 탈보호 시약이 상기 방법에서 사용될 수 있다. 한 구체예에서, 아민 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드이다.
제 15 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00276
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00277
화학식 (2d)의 화합물을 형성하는 단계,
Figure pct00278
;
(2) 화학식 (2d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계,
Figure pct00279
;
(3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00280
화학식 (4d)의 화합물을 형성하는 단계,
Figure pct00281
;
(4) 화학식 (4d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (9d)의 화합물을 형성하는 단계,
Figure pct00282
(5) 화학식 (9d)의 화합물을 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약과 반응시켜, 화학식 (10d)의 화합물을 형성하는 단계,
Figure pct00283
;
(6) 화학식 (10d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00284
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00285
; 그리고
(7) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 15 구체예에 화학식 (IA)의 화합물:
Figure pct00286
또는 이의 약제학적으로 허용가능한 염의 제조 방법이 포함되며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1A)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
Figure pct00287
화학식 (2A)의 화합물을 형성하는 단계,
Figure pct00288
;
(2) 화학식 (2A)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3A)의 화합물을 형성하는 단계,
Figure pct00289
;
(3) 화학식 (3A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00290
화학식 (4A)의 화합물을 형성하는 단계,
Figure pct00291
;
(4) 화학식 (4A)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (9A)의 화합물을 형성하는 단계;
Figure pct00292
(5) 화학식 (9A)의 화합물을 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약과 반응시켜, 화학식 (10A)의 화합물을 형성하는 단계,
Figure pct00293
;
(6) 화학식 (10A)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00294
화학식 (18A)의 화합물을 형성하는 단계,
Figure pct00295
; 그리고
(7) 화학식 (18A)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (IA)의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 15 구체예의 방법에 관한 한 특정 구체예에서, X1 및 X2는 각각 독립적으로 -Br, -I 또는 설포네이트 에스터이다.
제 15 구체예의 방법에 관한 한 특정 구체예에서, P3는 H이고 (10d) 또는 (10A)의 화합물은 (d1)의 단량체 화합물과 반응하여 각각 (Id’) 또는 (IA)의 화합물을 형성한다.
제 15 구체예의 방법에 관한 또 다른 특정 구체예에서, P3는 P2이고; 단량체 화합물은 화학식 (c1)로 나타내어지며:
Figure pct00296
;
화학식 (18d) 또는 (18A)의 화합물은 각각 화학식 (11d) 또는 (11A)로 나타내어진다:
Figure pct00297
;
Figure pct00298
여기서 P2는 아민 보호 그룹이다.
제 15 구체예의 방법에 관한 조건 및 시약은 상기 제 1, 제 2, 제 3, 제 11, 제 12, 제 13, 및/또는 제 14 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 16 구체예에서, 본 발명은 화학식 (12d)의 화합물,
Figure pct00299
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (1d)의 화합물을
Figure pct00300
할로겐화 시약 또는 설폰화 시약과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 16 구체예에서 화학식 (12A)의 화합물:
Figure pct00301
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (1A)의 화합물을,
Figure pct00302
할로겐화 시약 또는 설폰화 시약과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이다.
제 16 구체예의 방법에 관한 한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다. 특정 구체예에서, X1은 -Br 또는 -I이다. 또 다른 특정 구체예에서, X1은 설포네이트 에스터, 바람직하게는 메실레이트이다. 또다른 특정 구체예에서, X1은 -Cl이다.
또 다른 특정 구체예에서, 할로겐화 시약은 알코올 활성화제의 존재하에 화학식 (1d) 또는 (1A)의 화합물의 일차 알코올과 반응한다. 한 구체예에서, 알코올 활성화제는 싸이오닐 클로라이드이다.
또 다른 특정 구체예에서, 할로겐화 시약은 리튬 브로마이드, 소듐 브로마이드, 포타슘 브로마이드, 포타슘 아이오다이드, 또는 소듐 아이오다이드이다. 또 다른 특정 구체예에서, 할로겐화 시약은 카본 테트라클로라이드/트라이페닐포스핀, 메테인설폰일 (메실) 클로라이드/리튬 클로라이드, 또는 메테인설폰일 (메실) 클로라이드/피리딘이다.
또한 또 다른 특정 구체예에서, 제 16 구체예의 방법들은 싸이오닐 클로라이드의 존재하에 화학식 (1d) 또는 (1A)의 화합물을 LiBr과 반응시키는 단계를 포함한다.
임의의 적절한 용매들이 상기 제 16 구체예의 방법들에서 사용될 수 있다. 예시적인 용매들에는, DMF, CH2Cl2, THF, 다이클로로에테인 등이 포함되나 이에 제한되는 것은 아니다.
제 17 구체예에서, 본 발명은 화학식 (10d')의 화합물,
Figure pct00303
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (12d)의 화합물을
Figure pct00304
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00305
여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 17 구체예에서 화학식 (10A’)의 화합물,
Figure pct00306
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (12A)의 화합물을,
Figure pct00307
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00308
여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이다.
또한 제 17 구체예에서 화학식 (7d1’)의 화합물,
Figure pct00309
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (12d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 17 구체예에서 화학식 (7A1’)의 화합물,
Figure pct00310
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (12A)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
화학식 (7d1’) 또는 (7A1’)에 관한 특정 구체예에서, P3는 H이다. 또 다른 특정 구체예에서, P3는 본 명세서에 기재된 아민 보호 그룹이다.
제 17 구체예의 방법에 관한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다. 또다른 특정 구체예에서, X1은 설포네이트 에스터이다. 더욱 특정한 구체예에서, X1은 메실레이트이다.
한 특정 구체예에서, 화학식 (12d) 또는 (12A)의 화합물은 염기의 존재하에 화학식 (a1)의 단량체 화합물과 반응된다. 적절한 염기의 예들에는, 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드가 포함되나 이에 제한되는 것은 아니다. 한 구체예에서, 염기는 포타슘 카보네이트이다.
또 다른 특정 구체예에서, 화학식 (12d) 또는 (12A)의 화합물은 염기의 존재하에 화학식 (d1)의 단량체 화합물과 반응된다. 적절한 염기의 예들에는, 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드가 포함되나 이에 제한되는 것은 아니다. 한 구체예에서, 염기는 포타슘 카보네이트이다.
제 17 구체예의 방법을 위해, 임의의 적절한 용매들이 사용될 수 있다. 한 구체예에서, 용매는 DMF이다.
또 다른 특정 구체예에서, 화학식 (a1) 또는 (d1)의 단량체 화합물에 대한 과량의 몰 당량의 화학식 (12d) 또는 (12A)의 화합물이 반응에서 사용된다.
제 18 구체예에서, 본 발명은 화학식 (7d')의 화합물,
Figure pct00311
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10d')의 화합물
Figure pct00312
또는 이의 염을, 이민 환원제와 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 18 구체예에서 화학식 (7A’)의 화합물,
Figure pct00313
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (10A')의 화합물,
Figure pct00314
또는 이의 염을, 이민 환원제와 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터 또는 활성화 에스터이다.
제 18 구체예의 방법에 관한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다. 또다른 특정 구체예에서, X1은 설포네이트 에스터이다. 바람직하게, X1은 메실레이트이다.
제 18 구체예의 방법에 관한 또다른 특정 구체예에서, 이민 환원 시약은 하이드라이드 환원 시약이다. 더욱 특정한 구체예에서, 이민 환원 시약은 소듐 보로하이드라이드, 소듐 트라이아세톡시 보로하이드라이드, 소듐 사이아노보로하이드라이드, 리튬 알루미늄 하이드라이드, 수소 기체, 암모늄 포르메이트, 보란, 9-보라바이사이클로[3.3.1]노네인 (9-BBN), 다이아이소뷰틸알루미늄 하이드라이드 (DIBAL), 리튬 보로하이드라이드 (LiBH4), 포타슘 보로하이드라이드 (KBH4), 또는 소듐 비스(2-메톡시에톡시)알루미늄하이드라이드 (Red-Al)이다. 더더욱 구체적으로, 이민 환원 시약은 소듐 트라이아세톡시 보로하이드라이드 (NaBH(OAc)3)이다.
임의의 적절한 용매들이 제 18 구체예의 방법에서 사용될 수 있다. 한 구체예에서, 용매는 다이클로로에테인이다.
제 19 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00315
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜,
Figure pct00316
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00317
;
(2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00318
화학식 (10d')의 화합물을 형성하는 단계,
Figure pct00319
;
(3) 화학식 (10d')의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00320
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00321
; 그리고
(4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 19 구체예에서 화학식 (IA)의 화합물,
Figure pct00322
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (1A)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜,
Figure pct00323
화학식 (12A)의 화합물을 형성하는 단계,
Figure pct00324
;
(2) 화학식 (12A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00325
화학식 (10A')의 화합물을 형성하는 단계,
Figure pct00326
;
(3) 화학식 (10A')의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00327
화학식 (18A)의 화합물을 형성하는 단계,
Figure pct00328
; 그리고
(4) 화학식 (11A)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (IA)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이다.
제 19 구체예의 방법에 관한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다.
제 19 구체예의 방법에 관한 한 특정 구체예에서, P3는 H이고 (10d) 또는 (10A)의 화합물은 (d1)의 단량체 화합물과 반응하여 각각 (Id’) 또는 (IA)의 화합물을 형성한다.
제 19 구체예의 방법에 관한 또 다른 특정 구체예에서, P3는 P2이고; 단량체 화합물은 화학식 (c1)로 나타내어지며:
Figure pct00329
;
화학식 (18d) 또는 (18A)의 화합물은 각각 화학식 (11d) 또는 (11A)로 나타내어진다:
Figure pct00330
;
Figure pct00331
여기서 P2는 아민 보호 그룹이다.
제 19 구체예의 방법에 관한 조건 및 시약은 상기 제 16, 제 17, 제 13, 및/또는 제 14 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 20 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00332
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
Figure pct00333
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00334
;
(2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00335
화학식 (10d')의 화합물을 형성하는 단계,
Figure pct00336
;
(3) 화합물 (10d’)을 이민 환원 시약과 반응시켜 화합물 (7d’)을 형성하는 단계,
Figure pct00337
,
(4) 화학식 (7d’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00338
화학식 (Id’)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 20 구체예에서 (IA)의 화합물,
Figure pct00339
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 제 2 에스터화 시약을 화학식 (1A)의 화합물과 반응시켜,
Figure pct00340
화학식 (12A)의 화합물을 형성하는 단계,
Figure pct00341
;
(2) 화학식 (12A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00342
화학식 (10A')의 화합물을 형성하는 단계,
Figure pct00343
;
(3) 화합물 (10A’)을 이민 환원 시약과 반응시켜 화합물 (7A’)을 형성하는 단계,
Figure pct00344
,
(4) 화학식 (7A’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00345
화학식 (IA’)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이다.
제 20 구체예의 방법에 관한 특정 구체예에서, X1은 -Br, -I, 또는 설포네이트 에스터이다.
제 20 구체예의 방법에 관한 조건 및 시약은 상기 제 16, 제 17, 제 18, 및/또는 제 8 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 21 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00346
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
Figure pct00347
화학식 (12d)의 화합물을 형성하는 단계,
Figure pct00348
;
(2) 화학식 (12d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00349
화학식 (7d1')의 화합물을 형성하는 단계,
Figure pct00350
;
(3) 화학식 (7d1’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00351
화학식 (18d)의 화합물을 형성하는 단계,
Figure pct00352
; 그리고
(4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id’)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이다.
또한 제 21 구체예에서 화학식 (IA)의 화합물,
Figure pct00353
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1A)의 화합물과 반응시켜,
Figure pct00354
화학식 (12A)의 화합물을 형성하는 단계,
Figure pct00355
;
(2) 화학식 (12A)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
Figure pct00356
화학식 (7A1')의 화합물을 형성하는 단계,
Figure pct00357
;
(3) 화학식 (7A1’)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00358
화학식 (18A)의 화합물을 형성하는 단계,
Figure pct00359
; 그리고
(4) P3가 아민 보호 그룹일 때, 화학식 (18A)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (IA)의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이다.
제 21 구체예의 방법에 관한 한 구체예에서, P3는 H이다.
제 21 구체예의 방법에 관한 또 다른 구체예에서, X1은 -Br, -Cl, 또는 설포네이트 에스터이다.
제 21 구체예의 방법에 관한 조건 및 시약은 상기 제 16, 제 17, 제 18, 제 8 및/또는 제 14 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 22 구체예에서, 본 발명은 화학식 (13d)의 화합물,
Figure pct00360
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 염소화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00361
여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 22 구체예에서 화학식 (13A)의 화합물,
Figure pct00362
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 염소화 시약을 화학식 (2A)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00363
여기서 P1은 알코올 보호 그룹이고; 그리고 X3는 -Cl이다.
제 22 구체예의 방법들에 관한 또 다른 특정 구체예에서, 알코올 보호 그룹은 피발로일, 메톡심에틸, 2-메톡시에톡시메틸, p-메톡시벤질, 3,4-다이메톡시벤질, 2,6-다이메톡시벤질, 다이페닐메틸, 벤질옥시메틸, 2,2,2-트라이클로로에톡시카르보닐, 테트라하이드로퓨란일, 테트라하이드로피란일, 벤질, 벤조일, 파라-페닐벤조일, 2,4,6-트라이메틸벤조일, 파라-브로모벤조일, 파라-나이트로벤조일, 피콜리노일, 니코티노일, 5-다이벤조수베릴, 트리틸/트라이페닐메틸, 또는 트라이스(4-tert-뷰틸페닐)메틸이다. 바람직하게, 알코올 보호 그룹은 메톡심에틸, 테트라하이드로피란일, 2-메톡시에톡시메틸, p-메톡시벤질, 벤질옥시메틸, 또는 2,2,2-트라이클로로에톡시카르보닐이다. 보다 더욱 바람직하게, 알코올 보호 그룹은 2,2,2-트라이클로로에톡시카르보닐이다.
또 다른 특정 구체예에서, 알코올 보호 그룹은 실릴 보호 그룹이다. 예를 들어, 실릴 보호 그룹은 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸이다. 바람직하게, 실릴 보호 그룹은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 더욱 바람직하게, 실릴 보호 그룹은 tert-뷰틸다이메틸실릴이다.
한 구체예에서, 염기가 사용된다. 염기는 비-친핵성 염기일 수 있다. 비-친핵성 염기의 예들에는, 트라이에틸아민, 이미다졸, 다이아이소프로필에틸아민 (DIPEA), 피리딘, 2,6-루티딘, 다이메틸포름아마이드, 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU), 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 비-친핵성 염기는 피리딘이다.
임의의 적절한 유기 용매들이 제 22 구체예의 방법들을 위해 사용될 수 있다. 예시적인 용매들에는, DMF, CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포하되나 이에 제한되는 것은 아니다. 특정 구체예들에서, DMF가 용매로 사용된다.
제 23 구체예에서, 본 발명은 화학식 (14d)의 화합물,
Figure pct00364
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (13d)의 화합물을
Figure pct00365
알코올 탈보호 시약과 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 23 구체예에서 화학식 (14A)의 화합물,
Figure pct00366
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (13A)의 화합물을
Figure pct00367
알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 X3는 -Cl이다.
제 23 구체예의 방법들에 관한 또 다른 특정 구체예에서, 알코올 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 하이드로겐 플루오라이드 또는 이의 용매화합물, 하이드로겐 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 트라이플루오로아세틱 애시드, 피리디늄 p-톨루엔설포네이트, p-톨루엔설폰산 (p-TsOH), 포름산, 또는 과요오드산이다. 바람직하게, 알코올 탈보호 시약은 하이드로겐 플루오라이드 피리딘이다.
제 24 구체예에서, 본 발명은 화학식 (15d)의 화합물:
Figure pct00368
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00369
,
여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 24 구체예에서 화학식 (15A)의 화합물,
Figure pct00370
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 설폰화 시약을 화학식 (14A)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00371
,
여기서 X3는 -Cl이고; 그리고 X4는 설포네이트 에스터 또는 활성화 에스터이다.
제 24 구체예의 방법에 관한 특정 구체예에서, X4는 설포네이트 에스터이다.
제 24 구체예의 방법에 관한 또 다른 특정 구체예에서, 설폰화 시약은 메테인설폰일 무수물, 메테인설폰일 클로라이드, p-톨루엔설포닐 클로라이드, 4-브로모벤젠설폰일 클로라이드, 또는 트라이플루오로메테인설폰일 무수물이다.
제 24 구체예의 방법에 관한 또 다른 특정 구체예에서, 설포네이트 에스터는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 바람직하게, 설포네이트 에스터는 메실레이트이다.
제 24 구체예의 방법에 관한 또 다른 구체예에서, 염기가 사용된다. 염기는 비-친핵성 염기일 수 있다. 비-친핵성 염기의 예들에는, 트라이에틸아민, 이미다졸, 다이아이소프로필에틸아민, 피리딘, 2,6-루티딘, 다이메틸포름아마이드, 1,8-다이아자바이사이클로[5.4.0]운덱-7-엔 (DBU), 또는 테트라메틸피페리딘이 포함되나 이에 제한되는 것은 아니다. 바람직하게, 비-친핵성 염기는 다이아이소프로필에틸아민이다.
제 25 구체예에서, 본 발명은 화학식 (20d)의 화합물:
Figure pct00372
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 브롬화 또는 아이오드화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00373
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 25 구체예에서 화학식 (20A)의 화합물:
Figure pct00374
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 브롬화 또는 아이오드화 시약을 화학식 (14A)의 화합물과 반응시키는 단계를 포함하고,
Figure pct00375
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
제 25 구체예의 방법에 관한 한 특정 구체예에서, 브롬화 또는 아이오드화 시약은 브롬, 브롬화수소산, 카본 테트라브로마이드, 포스포러스 트라이브로마이드, 포타슘 브로마이드, 아이오드화수소산, 아이오딘, 카본 테트라아이오다이드, 포스포러스 트라이아이오다이드, 소듐 아이오다이드, 또는 포타슘 아이오다이드이다.
제 26 구체예에서, 본 발명은 화학식 (16d)의 화합물:
Figure pct00376
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (15d)의 화합물을
Figure pct00377
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00378
,
여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 26 구체예에서 화학식 (16A)의 화합물,
Figure pct00379
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (15A)의 화합물을
Figure pct00380
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00381
,
여기서 X3는 -Cl이고; 그리고 X4는 설포네이트 에스터 또는 활성화 에스터이다.
제 26 구체예의 방법에 관한 특정 구체예에서, X4는 설포네이트 에스터이다.
제 26 구체예의 방법에 관한 한 구체예에서, 염기가 사용된다. 특정 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드이다. 바람직하게, 염기는 포타슘 카보네이트이다.
임의의 적절한 유기 용매들이 제 26 구체예의 방법들을 위해 사용될 수 있다. 예시적인 용매들에는, DMF, CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포하되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 다이메틸아세트아마이드가 용매로 사용된다.
제 27 구체예에서, 본 발명은 화학식 (16d)의 화합물,
Figure pct00382
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20d)의 화합물을
Figure pct00383
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00384
,
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 27 구체예에서 화학식 (16A)의 화합물,
Figure pct00385
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20A)의 화합물을
Figure pct00386
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00387
,
여기서 X3는 -Cl이고; 그리고 X5는 -Br 또는 -I이다.
제 27 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (20d) 또는(20A)의 화합물은 염기의 존재하에 화학식 (a1)의 단량체 화합물과 반응된다. 임의의 적절한 염기가 사용될 수 있다. 한 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드이다. 더욱 구체적으로, 염기는 포타슘 카보네이트이다.
제 27 구체예의 방법에 관한 한 구체예에서, 화학식 (a1)의 단량체 화합물과 화학식 (20d) 또는 (20A)의 화합물의 반응들을 위해 임의의 적합한 용매가 사용될 수 있다. 한 특정 구체예에서, 반응은 극성 비양자성 용매에서 수행된다. 더욱 구체적으로, 이러한 비양자성 용매는 다이메틸아세트아마이드이다.
제 28 구체예에서, 본 발명은 화학식 (16d)의 화합물,
Figure pct00388
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (14d)의 화합물을
Figure pct00389
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00390
,
여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 28 구체예에 화학식 (16A)의 화합물,
Figure pct00391
,
또는 이의 염의 제조 방법이 포함되며, 상기 방법은 화학식 (14A)의 화합물을
Figure pct00392
화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00393
,
여기서 X3는 -Cl이다.
제 28 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 알코올 활성화제의 존재하에 화학식 (a1)의 단량체와 반응된다. 한 구체예에서, 알코올 활성화제는 트라이알킬포스핀, 트라이아릴포스핀, 또는 트라이헤테로아릴포스핀이다. 특정 구체예에서, 알코올 활성화제는 트라이메틸포스핀, 트라이뷰틸포스핀, 트라이(o-톨릴)포스핀, 트라이(m-톨릴)포스핀, 트라이(p-톨릴)포스핀, 트라이(2-피리딜)포스핀, 트라이(3-피리딜)포스핀, 트라이(4-피리딜)포스핀, 또는 [4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실)페닐] 다이페닐포스핀이다. 또 다른 구체예에서, 알코올 활성화제는 포스핀-유사 시약, 가령, (트라이뷰틸포스포란일리덴)아세토나이트릴, (사이아노메틸렌)트라이뷰틸포스포란 (CMBP), 또는 (사이아노메틸렌)트라이메틸포스포란 (CMMP) 일 수 있다. 보다 특정한 구체예에서, 알코올 활성화제는 트라이페닐포스핀이다. 한 구체예에서, 알코올 활성화제는 중합체-결합된 또는 중합체-담지된, 가령 중합체-결합된 또는 중합체-담지된 트라이알킬 포스핀, 트라이아릴포스핀 (예컨대, 트라이페닐포스핀), 또는 트라이헤테로아릴포스핀일 수 있다.
제 28 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 아조다이카르복실레이트의 존재하에 화학식 (a1)의 단량체와 반응된다. 한 구체예에서, 아조다이카르복실레이트는 다음으로 구성된 그룹으로부터 선택된다: 다이에틸 아조다이카르복실레이트 (DEAD), 다이아이소프로필 아조다이카르복실레이트 (DIAD), 1,1’-(아조다이카르보닐)다이피페리딘 (ADDP), 다이tert뷰틸 아조다이카르복실레이트 (DTAD), 1,6-다이메틸-1,5,7-헥사하이드로-1,4,6,7-테트라조신-2,5-다이온 (DHTD) , 다이-(4-클로로벤질)아조다이카르복실레이트 (DCAD), 아조다이카르복실릭 다이모르폴라이드, N,N,N',N'- 테트라메틸아조다이카르복스아마이드 (TMAD), N,N,N',N'- 테트라아이소프로필아조다이카르복스아마이드 (TIPA), 4,4′-아조피리딘, 비스 (2,2,2-트라이클로로에틸) 아조다이카르복실레이트, o-(tert-뷰틸다이메틸실릴)-N-토실하이드록실아민, 다이-(4-클로로벤질)아조다이카르복실레이트, 사이클릭 1,6-다이메틸-1,5,7-헥사하이드로-1,4,6,7-테트라조신-2,5-다이온 (DHTD), 다이메틸 아세틸렌다이카르복실레이트 (DMAD), 다이--메톡시에틸 아조다이카르복실레이트, 다이-(4-클로로벤질)아조다이카르복실레이트 및 비스(4,4,5,5,6,6,7,7,8,8,9,9,9-트라이데카플루오로노닐) 아조다이카르복실레이트. 보다 구체적으로, 아조다이카르복실레이트는 DIAD이다. 한 구체예에서, 아조다이카르복실레이트는 중합체-결합된 또는 중합체 담지된, 가령, 중합체-담지된 알킬아조다이카르복실레이트 (예컨대, 중합체-결합된 DEAD, DIAD, DTAD 또는 ADDP)이다.
또한 제 28 구체예의 방법에 관한 또 다른 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 트라이페닐포스핀 및 아조다이카르복실레이트의 존재하에 화학식 (a1)의 단량체와 반응된다. 한 구체예에서, 아조다이카르복실레이트는 다음으로 구성된 그룹으로부터 선택된다: 다이에틸 아조다이카르복실레이트 (DEAD), 다이아이소프로필 아조다이카르복실레이트 (DIAD), 1,1’-(아조다이카르보닐)다이피페리딘 (ADDP), 및 다이tert뷰틸 아조다이카르복실레이트 (DTAD). 보다 구체적으로, 아조다이카르복실레이트는 DIAD이다.
제 29 구체예에서, 본 발명은 화학식 (18d)의 화합물:
Figure pct00394
,
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16d)의 화합물을:
Figure pct00395
화학식 (d1)의 환원된 단량체와 반응시키는 단계를 포함하고:
Figure pct00396
,
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 29 구체예에서 화학식 (18A)의 화합물,
Figure pct00397
,
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16A)의 화합물을:
Figure pct00398
화학식 (d1)의 환원된 단량체와 반응시키는 단계를 포함하고:
Figure pct00399
,
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이다.
제 29 구체예의 방법에 관한 한 구체예에서, 화학식 (16d) 또는 (16A)의 화합물과 화학식 (d1)의 환원된 단량체 간의 반응은 염기의 존재하에 실시된다. 특정 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드이다. 바람직하게, 염기는 포타슘 카보네이트이다.
임의의 적절한 유기 용매들이 제 29 구체예의 방법들을 위해 사용될 수 있다. 한 구체예에서, 용매는 극성 비양자성 용매이다. 예시적인 용매들에는, 다이메틸포름아마이드 (DMF), CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 다이메틸포름아마이드 또는 다이메틸아세트아마이드가 용매로 사용된다.
제 29 구체예의 특정 구체예에서, 화학식 (16d) 또는 (16A)의 화합물은 P3가 H인 화학식 (d1)의 환원된 단량체와 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다:
Figure pct00400
;
Figure pct00401
.
제 29 구체예의 또 다른 특정 구체예에서, P3는 아민 보호 그룹이다. 임의의 적절한 아민 보호 그룹이 상기 방법에서 사용될 수 있다. 한 구체예에서, 아민 보호 그룹은 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 또는 2, 2,2,2-트라이클로로에톡시카르보닐이다.
P3가 아민 보호 그룹일 때, 화학식 (18d) 또는 (18A)의 화합물은 아민 탈보호 시약과 추가로 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다.
적절한 아민 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택된 아민 탈보호 시약이 포함되나 이에 제한되는 것은 아니다.
제 30 구체예에서, 본 발명은 화학식 (17d)의 화합물:
Figure pct00402
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (15d)의 화합물을
Figure pct00403
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00404
,
여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다. 한 구체예에서, X4는 활성화 에스터이다.
또한 제 30 구체예에 화학식 (17A)의 화합물,
Figure pct00405
또는 이의 염의 제조 방법이 포함되며, 상기 방법은 화학식 (15A)의 화합물을
Figure pct00406
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00407
,
여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; 그리고 P3는 H 또는 아민 보호 그룹이다. 한 구체예에서, X4는 활성화 에스터이다.
제 30 구체예의 방법에 관한 한 구체예에서, 염기가 사용된다. 특정 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드이다. 바람직하게, 염기는 포타슘 카보네이트이다.
임의의 적절한 유기 용매들이 제 30 구체예의 방법들을 위해 사용될 수 있다. 예시적인 용매들에는, DMF, CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포하되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 다이메틸아세트아마이드가 용매로 사용된다.
제 30 구체예의 특정 구체예에서, P3는 H이고 화학식 (15d) 또는 (15A)의 화합물은 화학식 (d1)의 단량체 화합물과 반응되어, 각각 화학식 (17d’) 또는(17A’)의 화합물을 형성한다.
Figure pct00408
;
Figure pct00409
.
제 30 구체예의 또 다른 특정 구체예에서, P3는 아민 보호 그룹이고 상기 방법은 화학식 (17d) 또는 (17A)의 화합물을 아민 탈보호 시약과 반응시켜 각각 화학식 (17d’) 또는 (17A’)의 화합물을 형성하는 단계를 추가로 포함한다.
적절한 아민 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택된 아민 탈보호 시약이 포함되나 이에 제한되는 것은 아니다.
제 31 구체예에서, 본 발명은 화학식 (17d)의 화합물,
Figure pct00410
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (14d)의 화합물을
Figure pct00411
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00412
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 31 구체예에 화학식 (17A)의 화합물,
Figure pct00413
또는 이의 염의 제조 방법이 포함되며, 상기 방법은 화학식 (14A)의 화합물을
Figure pct00414
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00415
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이다.
제 31 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 알코올 활성화제의 존재하에 화학식 (d1)의 단량체와 반응된다. 특정 구체예에서, 알코올 활성화제는 트라이메틸포스핀, 트라이뷰틸포스핀, 트라이(o-톨릴)포스핀, 트라이(m-톨릴)포스핀, 트라이(p-톨릴)포스핀, 트라이(2-피리딜)포스핀, 트라이(3-피리딜)포스핀, 트라이(4-피리딜)포스핀, 또는 [4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-헵타데카플루오로데실)페닐] 다이페닐포스핀이다. 또 다른 구체예에서, 알코올 활성화제는 포스핀-유사 시약, 가령, (트라이뷰틸포스포란일리덴)아세토나이트릴, (사이아노메틸렌)트라이뷰틸포스포란 (CMBP), 또는 (사이아노메틸렌)트라이메틸포스포란 (CMMP) 일 수 있다. 보다 특정한 구체예에서, 알코올 활성화제는 트라이페닐포스핀이다. 한 구체예에서, 알코올 활성화제는 중합체-결합된 또는 중합체-담지된, 가령 중합체-결합된 또는 중합체-담지된 트라이알킬 포스핀, 트라이아릴포스핀 (예컨대, 트라이페닐포스핀), 또는 트라이헤테로아릴포스핀일 수 있다.
제 31 구체예의 방법에 관한 한 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 아조다이카르복실레이트의 존재하에 화학식 (d1)의 단량체와 반응된다. 한 구체예에서, 아조다이카르복실레이트는 다음으로 구성된 그룹으로부터 선택된다: 다이에틸 아조다이카르복실레이트 (DEAD), 다이아이소프로필 아조다이카르복실레이트 (DIAD), 1,1’-(아조다이카르보닐)다이피페리딘 (ADDP), 다이tert뷰틸 아조다이카르복실레이트 (DTAD), 1,6-다이메틸-1,5,7-헥사하이드로-1,4,6,7-테트라조신-2,5-다이온 (DHTD) , 다이-(4-클로로벤질)아조다이카르복실레이트 (DCAD), 아조다이카르복실릭 다이모르폴라이드, N,N,N',N'- 테트라메틸아조다이카르복스아마이드 (TMAD), N,N,N',N'- 테트라아이소프로필아조다이카르복스아마이드 (TIPA), 4,4′-아조피리딘, 비스 (2,2,2-트라이클로로에틸) 아조다이카르복실레이트, o-(tert-뷰틸다이메틸실릴)-N-토실하이드록실아민, 다이-(4-클로로벤질)아조다이카르복실레이트, 사이클릭 1,6-다이메틸-1,5,7-헥사하이드로-1,4,6,7-테트라조신-2,5-다이온 (DHTD), 다이메틸 아세틸렌다이카르복실레이트 (DMAD), 다이-(4-메톡시에틸 아조다이카르복실레이트, 다이-(4-클로로벤질)아조다이카르복실레이트 및 비스(4,4,5,5,6,6,7,7,8,8,9,9,9-트라이데카플루오로노닐) 아조다이카르복실레이트. 보다 구체적으로, 아조다이카르복실레이트는 DIAD이다. 한 구체예에서, 아조다이카르복실레이트는 중합체-결합된 또는 중합체 담지된, 가령, 중합체-담지된 알킬아조다이카르복실레이트 (예컨대, 중합체-결합된 DEAD, DIAD, DTAD 또는 ADDP)이다.
또한 제 31 구체예의 방법에 관한 또 다른 특정 구체예에서, 화학식 (14d) 또는 (14A)의 화합물은 트라이페닐포스핀 및 아조다이카르복실레이트의 존재하에 화학식 (d1)의 단량체와 반응된다. 한 구체예에서, 아조다이카르복실레이트는 다음으로 구성된 그룹으로부터 선택된다: 다이에틸 아조다이카르복실레이트 (DEAD), 다이아이소프로필 아조다이카르복실레이트 (DIAD), 1,1’-(아조다이카르보닐)다이피페리딘 (ADDP), 및 다이tert뷰틸 아조다이카르복실레이트 (DTAD). 보다 구체적으로, 아조다이카르복실레이트는 DIAD이다.
제 32 구체예에서, 본 발명은 화학식 (17d)의 화합물:
Figure pct00416
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20d)의 화합물을
Figure pct00417
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00418
,
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 32 구체예에서 화학식 (17A)의 화합물:
Figure pct00419
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (20A)의 화합물을
Figure pct00420
화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
Figure pct00421
,
여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 32 구체예의 방법에 관한 한 구체예에서, 화학식 (20d) 또는 (20A)의 화합물은 염기의 존재하에 화학식 (d1)의 단량체 화합물과 반응된다. 임의의 적절한 염기가 사용될 수 있다. 한 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드이다. 더욱 구체적으로, 염기는 포타슘 카보네이트이다.
제 32 구체예의 방법에 관한 또 다른 구체예에서, 화학식 (d1)의 단량체 화합물과 화학식 (20d) 또는 (20A)의 화합물의 반응들을 위해 임의의 적합한 용매가 사용될 수 있다. 한 특정 구체예에서, 반응은 극성 비양자성 용매에서 수행된다. 더욱 구체적으로, 이러한 비양자성 용매는 다이메틸아세트아마이드이다.
제 32 구체예의 특정 구체예에서, P3는 H이고 화학식 (20d) 또는 (20A)의 화합물은 화학식 (d1)의 단량체 화합물과 반응되어, 각각 화학식 (17d’) 또는(17A’)의 화합물을 형성한다.
Figure pct00422
;
Figure pct00423
.
제 32 구체예의 또 다른 특정 구체예에서, P3는 아민 보호 그룹이고, 그리고 상기 방법은 화학식 (17d) 또는 (17A)의 화합물을 아민 탈보호 시약과 반응시켜 각각 화학식 (17d’) 또는 (17A’)의 화합물을 형성하는 단계를 추가로 포함한다.
적절한 아민 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택된 아민 탈보호 시약이 포함되나 이에 제한되는 것은 아니다.
제 33 구체예에서, 본 발명은 화학식 (17d’)의 화합물:
Figure pct00424
,
또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16d)의 화합물을
Figure pct00425
이민 환원제와 반응시키는 단계를 포함하고, 여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 33 구체예에 화학식 (17A')의 화합물:
Figure pct00426
,
또는 이의 염의 제조 방법이 포함되고, 상기 방법은 화학식 (16A)의 화합물을
Figure pct00427
이민 환원제와 반응시키는 단계를 포함하고, 여기서 X3는 -Cl이다.
제 33 구체예의 방법에 관한 한 특정 구체예에서, 이민 환원제는 하이드라이드 환원제이다. 적절한 하이드라이드 환원제들의 예들에는, 소듐 보로하이드라이드, 소듐 트라이아세톡시 보로하이드라이드, 소듐 사이아노보로하이드라이드, 리튬 알루미늄 하이드라이드, 수소 기체, 암모늄 포르메이트, 보란, 9-보라바이사이클로[3.3.1]노네인 (9-BBN), 다이아이소뷰틸알루미늄 하이드라이드 (DIBAL), 리튬 보로하이드라이드 (LiBH4), 포타슘 보로하이드라이드 (KBH4), 또는 소듐 비스(2-메톡시에톡시)알루미늄하이드라이드 (Red-Al)가 포함되나 이에 제한되는 것은 아니다. 한 특정 구체예에서, 하이드라이드 환원제는 소듐 트라이아세톡시 보로하이드라이드 (NaBH(OAc)3)이다.
제 34 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00428
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (17d)의 화합물을:
Figure pct00429
화학식 (a1)의 단량체와 반응시키는 단계를 포함하고:
Figure pct00430
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 34 구체예에서 화학식 (18A)의 화합물,
Figure pct00431
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 화학식 (17A)의 화합물을:
Figure pct00432
화학식 (a1)의 단량체와 반응시키는 단계를 포함하고:
Figure pct00433
여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이다.
제 34 구체예의 방법에 관한 한 구체예에서, 화학식 (17d) 또는 (17A)의 화합물과 화학식 (a1)의 단량체 간의 반응은 염기의 존재하에 실시된다. 특정 구체예에서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘하이드라이드이다. 바람직하게, 염기는 포타슘 카보네이트이다.
임의의 적절한 유기 용매들이 제 34 구체예의 방법들을 위해 사용될 수 있다. 한 구체예에서, 용매는 극성 비양자성 용매이다. 예시적인 용매들에는, 다이메틸포름아마이드 (DMF), CH2Cl2, 다이클로로에테인, THF, 다이메틸아세트아마이드, 등이 포함되나 이에 제한되는 것은 아니다. 특정 구체예들에서, 다이메틸포름아마이드 또는 다이메틸아세트아마이드가 용매로 사용된다.
제 34 구체예의 특정 구체예에서, 화학식 (17d) 또는 (17A)의 화합물은 P3가 H인 화학식 (a1)의 단량체와 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다.
제 34 구체예의 또 다른 특정 구체예에서, P3는 아민 보호 그룹이다. 임의의 적절한 아민 보호 그룹이 상기 방법에서 사용될 수 있다. 한 구체예에서, 아민 보호 그룹은 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 또는 2, 2,2,2-트라이클로로에톡시카르보닐이다.
P3가 아민 보호 그룹일 때, 화학식 (18d) 또는 (18A)의 화합물은 아민 탈보호 시약과 추가로 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다.
적절한 아민 탈보호 시약의 예들에는, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택된 아민 탈보호 시약이 포함되나 이에 제한되는 것은 아니다.
제 35 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00434
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00435
,
또는 이의 염과 반응시켜 화학식 (15d)의 화합물:
Figure pct00436
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15a)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00437
,
화학식 (16d)의 화합물:
Figure pct00438
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00439
화학식 (18d)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다. 한 구체예에서, X4는 설포네이트 에스터이다.
또한 제 35 구체예에 화학식 (18A)의 화합물,
Figure pct00440
또는 이의 약제학적으로 허용가능한 염의 제조 방법이 포함되며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14A)의 화합물:
Figure pct00441
,
또는 이의 염과 반응시켜 화학식 (15A)의 화합물:
Figure pct00442
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00443
,
화학식 (16A)의 화합물:
Figure pct00444
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16A)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00445
화학식 (18A)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; 그리고 P3는 H 또는 아민 보호 그룹이다. 한 구체예에서, X4는 설포네이트 에스터이다.
제 35 구체예의 방법에 관한 조건 및 시약은 상기 제 24, 제 26, 및/또는 제 29 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 36 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00446
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00447
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00448
,
화학식 (16d)의 화합물:
Figure pct00449
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00450
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 36 구체예에서 화학식 (18A)의 화합물,
Figure pct00451
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14A)의 화합물:
Figure pct00452
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00453
,
화학식 (16A)의 화합물:
Figure pct00454
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (16A)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00455
화학식 (18A)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 36 구체예의 방법에 관한 조건 및 시약은 상기 제 28, 및/또는 제 29 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 37 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00456
또는 이의 약제학적으로 허용가능한 염의 제조 방법이 포함되며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약을 화학식 (14d)의 화합물과 반응시켜:
Figure pct00457
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00458
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00459
,
화학식 (16d)의 화합물:
Figure pct00460
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00461
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 37 구체예에서 화학식 (18A)의 화합물,
Figure pct00462
또는 이의 약제학적으로 허용가능한 염의 제조 방법이 포함되며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약을 화학식 (14A)의 화합물:
Figure pct00463
,
또는 이의 염과 반응시켜 화학식 (20A)의 화합물:
Figure pct00464
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20A)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00465
,
화학식 (16A)의 화합물:
Figure pct00466
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (16A)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
Figure pct00467
화학식 (18A)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 37 구체예의 방법에 관한 조건 및 시약은 상기 제 25, 제 27, 및/또는 제 29 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 35, 36, 및 37 구체예의 방법에 관한 한 특정 구체예에서, P3는 H이고 화학식 (16d) 또는 (16A)의 화합물은 화학식 (d1)의 환원된 단량체와 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다:
Figure pct00468
;
Figure pct00469
.
제 35, 36 및 37 구체예의 방법에 관한 또 다른 특정 구체예에서, P3는 아민 보호 그룹이고 상기 방법은 화학식 (18d) 또는 (18A)의 화합물을 아민 탈보호 시약과 반응시켜 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성하는 단계를 추가로 포함한다.
제 38 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00470
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00471
,
또는 이의 염과 반응시켜, 화학식 (15d)의 화합물:
Figure pct00472
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00473
,
화학식 (17d)의 화합물:
Figure pct00474
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00475
화학식 (18d)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다. 한 구체예에서, X4는 설포네이트 에스터이다.
또한 제 38 구체예에서 화학식 (18A)의 화합물의 제조 방법이 제공되며,
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14A)의 화합물:
Figure pct00476
,
또는 이의 염과 반응시켜 화학식 (15A)의 화합물:
Figure pct00477
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15A)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00478
,
화학식 (17A)의 화합물:
Figure pct00479
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17A)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00480
화학식 (18A)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; 그리고 P3는 H 또는 아민 보호 그룹이다. 한 구체예에서, X4는 설포네이트 에스터이다.
제 38 구체예의 방법에 관한 조건 및 시약은 상기 제 25, 제 30, 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 39 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00481
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00482
,
또는 이의 염을, 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00483
,
화학식 (17d)의 화합물:
Figure pct00484
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00485
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 39 구체예에서 화학식 (18A)의 화합물,
Figure pct00486
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14A)의 화합물:
Figure pct00487
,
또는 이의 염을, 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00488
,
화학식 (17A)의 화합물:
Figure pct00489
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (17A)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00490
화학식 (18A)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 39 구체예의 방법에 관한 조건 및 시약은 상기 제 31, 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 40 구체예에서, 본 발명은 화학식 (18d)의 화합물,
Figure pct00491
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 브롬화 또는 아이오드화 시약을 화학식 (14d)의 화합물:
Figure pct00492
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00493
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00494
,
화학식 (17d)의 화합물:
Figure pct00495
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00496
화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 40 구체예에서 화학식 (18A)의 화합물,
Figure pct00497
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 브롬화 또는 아이오드화 시약을 화학식 (14A)의 화합물:
Figure pct00498
,
또는 이의 염과 반응시켜 화학식 (20A)의 화합물:
Figure pct00499
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20A)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
Figure pct00500
,
화학식 (17A)의 화합물:
Figure pct00501
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17A)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00502
화학식 (18A)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P1은 알코올 보호 그룹이고; 그리고 P3는 H 또는 아민 보호 그룹이다.
제 40 구체예의 방법에 관한 조건 및 시약은 상기 제 25, 제 32, 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 38, 39 및 40 구체예의 방법에 관한 한 특정 구체예에서, P3는 H이고 화학식 (17d) 또는 (17A)의 화합물은 화학식 (a1)의 단량체와 반응되어 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성한다.
제 38, 39 및 40 구체예의 방법에 관한 또 다른 특정 구체예에서, P3는 아민 보호 그룹이고 그리고 상기 방법은 화학식 (18d) 또는 (18A)의 화합물을 아민 탈보호 시약과 반응시켜 각각 화학식 (Id’) 또는 (IA)의 화합물을 형성하는 단계를 추가로 포함한다.
제 41 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00503
또는 이의 약제학적으로 허용되는 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
Figure pct00504
,
또는 이의 염과 반응시켜, 화학식 (15d)의 화합물:
Figure pct00505
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00506
,
화학식 (16d)의 화합물:
Figure pct00507
,
또는 이의 염을 형성하는 단계;
(3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물:
Figure pct00508
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00509
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; P2는 아민 보호 그룹임이고; 그리고 R100은 (C1-C3)알콕시이다. 한 구체예에서, X4는 설포네이트 에스터이다.
또한 제 41 구체예에서 화학식 (IA)의 화합물,
Figure pct00510
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 설폰화 시약 또는 에스터화 시약을 화학식 (14A)의 화합물:
Figure pct00511
,
또는 이의 염과 반응시켜 화학식 (15A)의 화합물:
Figure pct00512
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (15A)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00513
,
화학식 (16d)의 화합물:
Figure pct00514
,
또는 이의 염을 형성하는 단계;
(3) 화학식 (16A)의 화합물을 이민 환원제와 반응시켜 화학식 (17A’)의 화합물:
Figure pct00515
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17A')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00516
,
화학식 (IA)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고; P1은 알코올 보호 그룹이고; 그리고 P2는 아민 보호 그룹이다. 한 구체예에서, X4는 설포네이트 에스터이다.
제 41 구체예의 방법에 관한 조건 및 시약은 상기 제 24, 제 26, 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 42 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00517
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14d)의 화합물:
Figure pct00518
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00519
,
화학식 (16d)의 화합물:
Figure pct00520
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물:
Figure pct00521
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시이다.
또한 제 42 구체예에서 화학식 (IA)의 화합물:
Figure pct00523
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (14A)의 화합물:
Figure pct00524
,
또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00525
,
화학식 (16A)의 화합물:
Figure pct00526
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (16A)의 화합물을 이민 환원제와 반응시켜 화학식 (17A’)의 화합물:
Figure pct00527
,
또는 이의 염을 형성하는 단계; 그리고
(3) 화학식 (17A')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00528
,
화학식 (IA)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; 그리고 P1은 알코올 보호 그룹이다.
제 42 구체예의 방법에 관한 조건 및 시약은 상기 제 28, 제 33, 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 43 구체예에서, 본 발명은 화학식 (Id’)의 화합물,
Figure pct00529
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약을 화학식 (14d)의 화합물:
Figure pct00530
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00531
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00532
,
화학식 (16d)의 화합물을 형성하는 단계:
Figure pct00533
,
(3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d’)의 화합물:
Figure pct00534
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00535
,
화학식 (Id’)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고, 그리고 R100은 (C1-C3)알콕시이다.
또한 제 43 구체예에서 화학식 (IA)의 화합물:
Figure pct00536
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 할로겐화 시약을 화학식 (14A)의 화합물:
Figure pct00537
,
또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
Figure pct00538
,
또는 이의 염을 형성하는 단계;
(2) 화학식 (20A)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
Figure pct00539
,
화학식 (16A)의 화합물을 형성하는 단계:
Figure pct00540
,
(3) 화학식 (16A)의 화합물을 이민 환원제와 반응시켜 화학식 (17A’)의 화합물:
Figure pct00541
,
또는 이의 염을 형성하는 단계; 그리고
(4) 화학식 (17A')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
Figure pct00542
,
화학식 (IA)의 화합물을 형성하는 단계; 여기서 X3는 -Cl이다.
제 43 구체예의 방법에 관한 조건 및 시약은 상기 제 25, 제 27, 제 33 및/또는 제 34 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
상기 제 35, 제 36, 제 37, 제 38, 제 39, 제 40, 제 41, 제 42 및 제 43 구체예들의 방법에 관한 한 구체예에서, 화합물 (14d) 또는 이의 염은 다음 단계들을 포함하는 방법으로 제조된다:
(1) 염소화 시약을 화학식 (2d)의 화합물과 반응시켜:
Figure pct00543
화학식 (13d)의 화합물,
Figure pct00544
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (13d)의 화합물을 알코올 탈보호 시약과 반응시켜, 화학식 (14d)의 화합물 또는 이의 염을 형성하는 단계, 여기서 X3는 -Cl이고; 그리고 P1는 알코올 보호 그룹이다.
상기 제 35, 제 36, 제 37, 제 38, 제 39, 제 40, 제 41, 제 42 및 제 43 구체예들의 방법에 관한 또 다른 구체예에서, 화합물 (14A) 또는 이의 염은 다음 단계들을 포함하는 방법으로 제조된다:
(1) 염소화 시약을 화학식 (2A)의 화합물과 반응시켜:
Figure pct00545
화학식 (13A)의 화합물,
Figure pct00546
,
또는 이의 염을 형성하는 단계; 그리고
(2) 화학식 (13A)의 화합물을 알코올 탈보호 시약과 반응시켜, 화학식 (14A)의 화합물 또는 이의 염을 형성하는 단계.
상기 화학식 (14d) 또는 (14A)의 화합물의 제조 방법에 관한 조건 및 시약은 상기 제 22 및/또는 제 23 구체예(들) 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
상기 방법에 관한 또 다른 구체예에서, 화학식 (2d)의 화합물은 화학식 (1d)의 화합물을 알코올 보호 시약과 반응시켜 제조된다.
상기 방법에 관한 또 다른 구체예에서, 화학식 (2A)의 화합물은 화학식 (1A)의 화합물을 알코올 보호 시약과 반응시켜 제조된다.
상기 화학식 (2d) 또는 (2A)의 화합물의 제조 방법에 관한 조건 및 시약은 상기 제 1 구체예 및 본 출원에 기재된 임의의 특정 구체예들에 기재된 바와 같다.
제 44 구체예에서, 본 발명은
Figure pct00547
또는 이의 약제학적으로 허용가능한 염의 제조 방법을 제공하며, 상기 방법은 다음 단계들을 포함한다:
(1) 화학식 (IA)의 화합물을:
Figure pct00548
,
환원제와 반응시켜, 화학식 (IB)의 화합물을 형성하는 단계:
Figure pct00549
; 그리고
(2) 화학식 (IB)의 화합물을 화학식 (L1)의 화합물과 반응시켜,
Figure pct00550
(L1),
화학식 (Id)의 화합물을 형성하는 단계, 여기서 E는 -OH, 할라이드 또는 또는 -C(=O)E이고 이는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시이다.
나이트로 (-NO2) 그룹을 아민 (-NH2) 그룹으로 전환시킬 수 있는 임의의 환원 시약이 단계 (1)에서 사용될 수 있다. 한 구체예에서, 환원 시약은 다음으로 구성된 그룹으로부터 선택된다: 수소 기체, 소듐 하이드로설파이트, 소듐 설파이드, 염화 주석(stanneous chloride), 티타늄 (II) 클로라이드, 아연, 철 및 사마륨 아이오다이드. 특정 구체예에서, 환원 시약은 Fe/NH4Cl 또는 Zn/NH4Cl이다.
제 44 구체예의 방법에 관한 한 특정 구체예에서, E는 -OH이고 화학식 (IB)의 화합물과 화학식 (L1)의 화합물의 반응은 활성화제의 존재하에 실시된다.
한 구체예에서, 활성화제는 카르보다이이미드, 우라늄(uronium), 활성 에스터, 포스포늄, 2-알킬-1-알킬카르보닐-1,2-다이하이드로퀴놀린, 2-알콕시-1-알콕시카르보닐-1,2-다이하이드로퀴놀린, 또는 알킬클로로포르메이트이다. 특정 구체예에서, 활성화제는 카르보다이이미드이다. 더욱 특정한 구체예에서, 활성화제는 다이사이클로헥실카르보다이이미드 (DCC), 1-에틸-3-(3-다이메틸아미노프로필)카르보다이이미드 (EDC), 또는 다이아이소프로필카르보다이이미드 (DIC)이다. 또 다른 특정 구체예에서, 활성화제는 N-에톡시카르보닐-2-에톡시-1,2-다이하이드로퀴놀린이다.
상기 기재된 방법들에 관한 한 구체예에서, R100은 메톡시이다.
본 발명의 방법은 또한 상기 기재된 방법들 (예컨대, 제 1, 제 2, 제 3, 제 4, 제 5, 제 6, 제 7, 제 8, 제 9, 제 10, 제 11, 제 12, 제 13, 제 14, 제 15, 제 16, 제 17, 제 18, 제 19, 제 20, 제 21, 제 22, 제 23, 제 24, 제 25, 제 26, 제 27, 제 28, 제 29, 제 30, 제 31, 제 32, 제 33, 제 34, 제 35, 제 36, 제 37, 제 38, 제 39, 제 40, 제 41, 제 42, 및 제 44 구체예의 방법들)의 임의의 조합일 수 있다. 예를 들어, 제 1 및 제 2 구체예들의 방법들의 조합, 제 1, 제 2, 및 제 3 구체예들의 방법들의 조합, 제 4 및 제 5 구체예들의 방법들의 조합, 제 4, 제 5 및 제 6 구체예들의 방법들의 조합, 제 6 및 제 8 구체예들의 방법들의 조합, 제 13 및 제 14 구체예들의 방법들의 조합, 제 13, 제 14 및 제 15 구체예들의 방법들의 조합, 및 제 17 및 제 18 구체예들의 방법들의 조합 또한 본 발명에 포함된다. 하기 임의의 특정 구체예들에 기재된 변수 정의들은 상기 방법들의 임의의 조합에도 또한 적용된다.
본 발명의 방법들에서 본 명세서에 기재된 반응들은 임의의 적절한 용매(들)에서 실시될 수 있다. 한 구체예에서, 용매는 유기 용매이다. 예시적인 유기 용매들에는, 다이클로로메테인, 다이클로로에테인, DMF, DMA, 아세톤, 아세토나이트릴, THF, DMSO, 에틸 아세테이트 등, 또는 이의 조합이 포함되나 이에 제한되는 것은 아니다.
본 발명의 방법들에서 본 명세서에 기재된 반응들은 임의의 적절한 온도에서 실시될 수 있다. 한 구체예에서, 반응은 실온에서 실시될 수 있다. 또 다른 구체예에서, 반응은 저온, 가령, 0℃에서 실시될 수 있다. 또한 또 다른 구체예에서, 반응은 상승된 온도, 가령, 약 40℃, 약 50 ℃ 등에서 실시될 수 있다.
특정 구체예에서, 화학식 (Id’) 및 (IA)의 인돌리노벤조다이아제핀 이량체 화합물은 하기 도시된 반응식 1-10에 따라 제조될 수 있으며, 여기서 L’은 화학식 (Id’)에서는
Figure pct00551
이고; 그리고 화학식 (IA)에서는 -NO2이다. 한 구체예에서, R100은 -OMe이다.
Figure pct00552
Figure pct00553
Figure pct00554
Figure pct00555
Figure pct00556
Figure pct00557
Figure pct00558
Figure pct00559
Figure pct00560
Figure pct00561
Figure pct00562
Figure pct00563
본 발명의 화합물
본 발명은 또한 본 명세서에 기재된 신규한 화합물들을 제공한다. 특정 구체예들에서, 본 발명의 화합물들은 화학식 (1d), (1A), (2d), (2A), (2d”), (2A”), (3d), (3A), (3d”), (3A”), (4d), (4A), (4d”), (4A”), (5d), (5A), (5d”), (5A”), (6d), (6A), (7d), (7A), (7d’), (7A’), (7d1’), (7A1’), (7d”), (7A”), (7d”’), (7A”’), (9d), (9A), (10d), (10A), (10d’), (10A’), (11d), (11A), (12d), (12A), (13d), (13A), (14d), (14A), (15d), (15A), (16d), (16A), (17d), (17A), (17d’), (17A’), (18d), (18A), (20d), (20A), (c1), (d1), (Id’), (IA), 및 (IB)의 화합물들이며, 여기서 변수들은 상기 기재된 바와 같다.
화학식 (1d), (2d), (2d”), (3d), (3d”), (4d), (4d”), (5d), (5d”), (6d), (7d), (7d’), (7d1’), (7d”), (7d”’), (9d), (10d), (10d’), (11d), (12d), (13d), (14d), (15d), (16d), (17d), (17d’), (18d), (20d), 또는 (Id’)의 화합물에 관한 제 1 특정 구체예에서, R100은 -OMe이다.
화학식 (2d), (3d), (4d), (5d), (13d), (2A), (3A), (4A), (5A), (13A)의 화합물에 관한 제 2 특정 구체예에서, P1은 실릴 보호 그룹이고; 그리고 나머지 변수들은 제 1 내지 제 44 구체예들 또는 상기 제 1 특정 구체예에 기재된 바와 같다. 더욱 구체적으로, 실릴 보호 그룹은 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸이다. 보다 더욱 구체적으로, 실릴 보호 그룹은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 또 다른 보다 더욱 특정한 구체예에서, 실릴 보호 그룹은 tert-뷰틸다이메틸실릴이다.
화학식 (3d), (3d”), (7d’), (7d1’), (12d), (10d’),(3A), (3A”), (7A’), (7A1’),(12A), 또는 (10A’)의 화합물에 관한 제 3 특정 구체예에서, X1은 설포네이트 에스터이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 또는 제 2 특정 구체예에 기재된 바와 같다. 더욱 구체적으로, 설포네이트 에스터는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 보다 더욱 구체적으로, 설포네이트 에스터는 메실레이트이다.
화학식 (3d), (3d”), (7d’), (7d1’), (12d), (10d’),(3A), (3A”), (7A’), (7A1’),(12A), 또는 (10A’)의 화합물에 관한 제 4 특정 구체예에서, X1은 -Br 또는 -I이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 또는 제 2 특정 구체예에 기재된 바와 같다. 더욱 구체적으로, X1은 -Br이다.
화학식 (7d), (10d), (7A), 또는 (10A)의 화합물에 관한 제 5 특정 구체예에서, X2는 설포네이트 에스터이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 특정 구체예에 기재된 바와 같다. 더욱 구체적으로, 설포네이트 에스터는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 보다 더욱 구체적으로, 설포네이트 에스터는 메실레이트이다.
화학식 (7d") 또는 (7A")의 화합물에 관한 제 6 특정 구체예에서, X2'은 -Br 또는 -I이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 특정 구체예에 기재된 바와 같다.
화학식 (2d”), (3d”), (4d”), (5d”), (2A”), (3A”), (4A”), 또는 (5A”)의 화합물에 관한 제 7 특정 구체예에서, P1’은 아세테이트, 알릴, 메톡시메틸, 테트라하이드로퓨라닐, 테트라하이드로피라닐, 5-다이벤조수베릴, 1-에톡시에틸, 1-메틸-1-메톡실에틸, 2-(페닐셀레닐)에틸, 트라이틸/트라이페닐메틸, 또는 트라이스(4-tert-부틸페닐)메틸이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예 또는 제 1, 제 3, 또는 제 4 특정 구체예에 기재된 바와 같다. 또 다른 특정 구체예에서, P1’은 실릴 보호 그룹이고; 나머지 변수들은ㄹ 상기 제 1 내지 제 44 구체예 또는 제 1, 제 3, 또는 제 4 특정 구체예에 기재된 바와 같다. 더욱 특정한 구체예에서, P1’은 실릴 보호 그룹은 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이에틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸이다. 보다 더욱 구체적으로, P1’은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴이다. 또 다른 더욱 특정한 구체예에서, P1’은 tert-뷰틸다이메틸실릴이다.
화학식 (13d), (14d), (15d), (16d), (17d), (17d’), (20d), (13A), (14A), (15A), (16A), (17A), (17A’), 또는 (20A)의 화합물에 관한 제 8 특정 구체예에서, X3는 염소이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 또는 제 2 특정 구체예에 기재된 바와 같다.
화학식 (15d) 또는 (15A)의 화합물에 관한 제 9 특정 구체예에서, X4는 설포네이트 에스터이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 또는 제 8 특정 구체예에 기재된 바와 같다. 더욱 구체적으로, 설포네이트 에스터는 메실레이트, 토실레이트, 브로실레이트, 또는 트라이플레이트이다. 보다 더욱 구체적으로, 설포네이트 에스터는 메실레이트이다.
화학식 (c1), (11d) 또는 (11A)의 화합물에 관한 제 10 특정 구체예에서, P2는 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, , 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 및 2, 2,2,2-트라이클로로에톡시카르보닐에서 선택된 아민 보호 그룹이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예 및 제 1 특정 구체예에 기재된 바와 같다.
화학식 (d1), (7d1’), (17d), (18d), (7A1’), (17A) 또는 (18A)의 화합물에 관한 제 11 특정 구체예에서, P3는 H 또는 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, , 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 또는 2, 2,2,2-트라이클로로에톡시카르보닐에서 선택된 아민 보호 그룹이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예 및 제 1 또는 제 8 특정 구체예에 기재된 바와 같다.
화학식 (20d) 또는 (20A)의 화합물에 관한 제 12 특정 구체예에서, X5는 -Br이고; 그리고 나머지 변수들은 상기 제 1 내지 제 44 구체예들 또는 제 1 또는 제 8 특정 구체예에 기재된 바와 같다.
본 출원 및 이에 수반되는 실시예에서 언급된 모든 참고문헌들은 전체가 모두 참고로 명확하게 포함된다.
실시예
본 발명을 이제 비-제한적 실시예들을 참고하여 설명할 것이다. 달리 언급이 없는 한, 모든 백분율, 비율, 부분 은 중량 기준이다. 모든 시약들을 뉴저지의 Aldrich Chemical Co.사 또는 다른 시판 공급업체로부터 구입하였다. Bruker 400 MHz 기구에서 핵 자기 공명 (1H NMR) 스펙트럼을 얻었다. Bruker Daltonics Esquire 3000 기구에서 질량 스펙트럼을 얻었으며, 전기분사 이온화법을 사용하는 Agilent 6120 싱글 쿼드로폴 MS와 함께 Agilent 1260 Infinity LC로 LCMS를 얻었으며 UPLC는 싱글 쿼드로폴 MS ZsprayTM 를 구비한 Waters, Acquity 시스템에서 얻었다 (컬럼: Acquity BEH C18, 2.1 x 50 mm, 1.7 μm, 방법: 2.5 분, 유속 0.8 mL/분, 용매 A: 물, 용매 B: MeCN, 2.0 분간 5 내지 95%의 MeCN 및 0.5분간 95% MeCN).
다음과 같은 용매들, 시약, 보호 그룹, 모이어티 및 기타 명칭들이 괄호에 표기된 약어들로 지칭될 수 있다:
Me =메틸; Et =에틸; Pr =프로필; i-Pr =아이소프로필; Bu =뷰틸; t-Bu =tert-뷰틸; Ph =페닐, 및 Ac =아세틸렌
AcOH 또는 HOAc = 아세트산
ACN 또는 CH3CN = 아세토나이트릴
Ala = 알라닌
Ar = 아르곤
aq = 수성
Bn =벤질
Boc 또는 BOC = tert-뷰톡시카르보닐
CBr4 = 카본테트라브로마이드
Cbz 또는 Z = 벤질옥시카르보닐
DCM 또는 CH2Cl2 = 다이클로로메테인
DCE = 1,2-다이클로로에테인
DMAP = 4-다이메틸아미노피리딘
DI 수 = 탈이온수
DIBAL = 다이아이소뷰틸알루미늄 하이드라이드
DIEA 또는 DIPEA = N,N-다이아이소프로필에틸아민
DMA = N,N-다이메틸아세트아마이드
DMF = N,N-다이메틸포름아마이드
DMSO = 다이메틸 설폭사이드
DTT = 다이싸이오쓰레이톨
EDC = 1-에틸-3-(3-다이메틸아미노프로필)카르보다이이미드
EEDQ = N-에톡시카르보닐-2-에톡시-1,2-다이하이드로퀴놀린
ESI 또는 ES = 전기분사 이온화법
EtOAc = 에틸아세테이트
Gly = 글리신
g = 그램
h = 시간
HATU = N,N,N’N’-테트라메틸-O-(7-아자벤조트라이아졸-1-일)우로늄 헥사포스페이트
HPLC = 고-성능 액체 크로마토그래피
HOBt 또는 HOBT = 1-하이드록시벤조트라이아졸
LAH = 리튬 알루미늄 하이드라이드
LC =액체크로마토그래피
LCMS = 액체 크로마토그래피 질량 분광분석법
min = 분
mg = 밀리그램
mL = 밀리리터
mmol = 밀리몰
μg = 마이크로그램
μL = 마이크로리터
μmol = 마이크로몰
Et = 에틸
MeOH = 메탄올
MeI = 메틸아이오다이드
MS = 질량 분광분석법
MsCl = 메테인설폰일 클로라이드 (메실 클로라이드)
Ms2O = 메테인설포닉 무수물
MTBE = 메틸 tert-뷰틸 에터
NaBH(OAc)3 = 소듐 트라이아세톡시보로하이드라이드
NHS = N-하이드록시석신아마이드
NMR = 핵 자기 공명 분광법
PPh3 = 트라이페닐포스핀
PTLC = 분취 얇은 막 크로마토그래피
rac = 라세미 혼합물
Rf = 머무름 지수
RPHPLC 또는 RP-HPLC = 역상 고-성능 액체 크로마토그래피
RT 또는 rt = 실온 (주위, 약 25 ºC)
sat 또는 sat’d = 포화
STAB = 소듐 트라이아세톡시보로하이드라이드 (NaBH(OAc)3)
TBSCl 또는 TBDMSCl = tert-뷰틸다이메틸실릴 클로라이드
TBS = tert-뷰틸다이메틸실릴
TCEP·HCl = 트라이스(2-카르복시에틸)포스핀 하이드로클로라이드 염
TEA = 트라이에틸아민 (Et3N)
TFA = 트라이플루오로아세틱 애시드
THF = 테트라하이드로퓨란
TLC = 얇은 막 크로마토그래피
실시예 1.
Figure pct00564
(S)-2-(((벤질옥시)카르보닐)아미노)프로파노익 애시드 (5 g, 22.40 mmol) 및 (S)-tert-뷰틸 2-아미노프로파노에이트 하이드로클로라이드 (4.48 g, 24.64 mmol)를 무수 DMF (44.8 mL)에 용해시켰다. EDC·HCl (4.72 g, 24.64 mmol), HOBt (3.43 g, 22.40 mmol), 및 DIPEA (9.75 mL, 56.0 mmol)를 추가하였다. 반응을 실온에서 하룻밤동안 아르곤 하에 교반하였다. 반응 혼합물을 다이클로로메테인으로 희석한 다음, 포화 암모늄 클로라이드, 포화 소듐 바이카보네이트, 물, 및 염수로 헹구었다. 유기층을 소듐 설페이트를 통해 건조시키고 농축시켰다. 미정제 오일을 실리카 겔 크로마토그래피 (헥세인/에틸 아세테이트)로 정제하여 화합물 2a를 수득하였다 (6.7 g, 85% 수율). 1H NMR (400 MHz, CDCl3): δ 7.38-7.31 (m, 5H), 6.53-6.42 (m, 1H), 5.42-5.33 (m, 1H), 5.14 (s, 2H), 4.48-4.41 (m, 1H), 4.32-4.20 (m, 1H), 1.49 (s, 9H), 1.42 (d, 3H, J = 6.8 Hz), 1.38 (d, 3H, J = 7.2 Hz).
Figure pct00565
화합물 2a (6.7 g, 19.12 mmol)를 메탄올 (60.7 mL)과 물 (3.03 mL)에 용해시켰다. 용액을 아르곤으로 5분간 퍼지시켰다. 탄소 담지 팔라듐 (습윤, 10%) (1.017 g, 0.956 mmol)을 서서히 추가하였다. 반응을 수소 분위기하에 하룻밤동안 교반하였다. 용액을 셀라이트를 통해 여과시키고, 메탄올로 헹군 다음 농축시켰다. 이를 메탄올 및 아세토나이트릴과 공비혼합하였으며 생성된 오일을 곧바로 고진공하에 두어, 화합물 2b를 제공하였으며 (4.02 g, 97% 수율), 이를 다음 단계에서 곧바로 사용하였다. 1H NMR (400 MHz, CDCl3): δ 7.78-7.63 (m, 1H), 4.49-4.42 (m, 1H), 3.55-3.50 (m, 1H), 1.73 (s, 2H), 1.48 (s, 9H), 1.39 (d, 3H, J = 7.2 Hz), 1.36 (d, 3H, J = 6.8 Hz).
Figure pct00566
화합물 2b (4.02 g, 18.59 mmol) 및 모노 메틸아디페이트 (3.03 mL, 20.45 mmol)를 무수 DMF (62.0 mL)에 용해시켰다. EDC·HCl (3.92 g, 20.45 mmol), HOBt (2.85 g, 18.59 mmol) 및 DIPEA (6.49 mL, 37.2 mmol)를 추가하였다. 혼합물을 하룻밤 실온에서 교반하였다. 반응을 다이클로로메테인/메탄올 (150 mL, 5:1)로 희석하고 포화 암모늄 클로라이드, 포화 소듐 바이카보네이트, 및 염수로 헹구었다. 이를 소듐 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 이 화합물을 아세토나이트릴 (5x)과 공비혼합한 다음, 고 진공의 35 °C에서 펌핑하여 화합물 2c가 제공되었다 (6.66 g, 100% 수율). 이러한 미정제 재료를 다음 단계에서 정제없이 사용하였다. 1H NMR (400 MHz, CDCl3): δ 6.75 (d, 1H, J = 6.8 Hz), 6.44 (d, 1H, J = 6.8 Hz), 4.52-4.44 (m, 1H), 4.43-4.36 (m, 1H), 3.65 (s, 3H), 2.35-2.29 (m, 2H), 2.25-2.18 (m, 2H), 1.71-1.60 (m, 4H), 1.45 (s, 9H), 1.36 (t, 6H, J = 6.0 Hz).
Figure pct00567
화합물 2c (5.91 g, 16.5 mmol)를 실온의 TFA (28.6 mL, 372 mmol) 및 탈이온수 (1.5 mL)에서 세 시간 동안 교반하였다. 반응 혼합물을 아세토나이트릴로 농축시키고 고 진공에 두어, 미정제 화합물 2d가 점착성 고체 (5.88 g, 100% 수율)로 제공되었다. 1H NMR (400 MHz, CDCl3): δ 7.21 (d, 1H, J = 6.8 Hz), 6.81 (d, 1H, J = 7.6 Hz), 4.69-4.60 (m, 1H), 4.59-4.51 (m, 1H), 3.69 (s, 3H), 2.40-2.33 (m, 2H), 2.31-2.24 (m, 2H), 1.72-1.63 (m, 4H), 1.51-1.45 (m, 3H), 1.42-1.37 (m, 3H).
Figure pct00568
화합물 2d (5.6 g, 18.52 mmol)를 무수 다이클로로메테인 (118 mL) 및 무수 메탄올 (58.8 mL)에 용해시켰다. (5-아미노-1,3-페닐렌)다이메탄올 (2.70 g, 17.64 mmol) 및 EEDQ (8.72 g, 35.3 mmol)를 추가하고 반응을 실온에서 하룻밤 교반하였다. 용매를 농축시키고 에틸 아세테이트를 추가하였다. 생성된 슬러리를 여과시키고, 에틸 아세테이트로 헹구고 진공/N2하에 건조시켜, 화합물 2e가 제공되었다 (2.79 g, 36% 수율). 1H NMR (400 MHz, DMSO-d6): δ 9.82 (s, 1H), 8.05, (d, 1H, J = 9.2 Hz), 8.01 (d, 1H, J = 7.2 Hz), 7.46 (s, 2H), 6.95 (3, 1H), 5.21-5.12 (m, 2H), 4.47-4.42 (m, 4H), 4.40-4.33 (m, 1H), 4.33-4.24 (m, 1H), 3.58 (s, 3H), 2.33-2.26 (m, 2H), 2.16-2.09 (m, 2H), 1.54-1.46 (m, 4H), 1.30 (d, 3H, J = 7.2 Hz), 1.22 (d, 3H, J = 4.4 Hz).
Figure pct00569
다이올 2e (1.0 g, 2.286 mmol)를 무수 DMF (7.6 mL)에 용해시켰다. TBSCl (0.482 g, 3.20 mmol) 및 이미다졸 (0.467 g, 6.86 mmol)을 추가하고 반응을 실온에서 2 hr 동안 교반하였다.반응을 포화 암모늄 클로라이드로 퀀칭하고, 물과 EtOAc로 희석시켰다. 수성층을 EtOAc로 추출하고, 조합된 유기층들을 물과 염수로 헹구고, 소듐 설페이트를 통해 건조시키고 여과시키고 농축시켰다. 미정제 잔부를 실리카 겔 플래쉬 크로마토그래피 (DCM/MeOH)로 정제하여 화합물 2f를 수득하였다 (360 mg, 28% 수율). LCMS (8 분 방법, 40-98%) = 2.35 분. 측정된 질량 (ESI+): 574.4 (M+Na)+.
Figure pct00570
화합물 2f (360 mg, 0.652 mmol)를 무수 다이클로로메테인 (6.52 mL)에 용해시키고 아세톤/얼음조에서 냉각시켰다. 트라이에틸아민 (227 μL, 1.631 mmol) 및 메테인설포닉 무수물 (146 mg, 0.816 mmol)을 추가하였다. 반응을 -10 °C의 아세톤/얼음조에서 1 hr 동안 교반하였다. 반응을 저온 EtOAc로 희석시키고 얼음물로 퀀칭하였다. 유기층을 얼음물로 헹군 다음, 소듐 설페이트 및 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켜, 미정제 화합물 2g가 솜털같은 고체로 제공되었다 (390 mg, 95% 수율). LCMS (8 분 방법, 40-98%) = 2.81 분; 5.86 분 (8 분 방법, 5-98%). 측정된 질량 (ESI-): 628.0 (M-H)-.
Figure pct00571
메실레이트 2g (390 mg, 0.619 mmol) 및 IGN 단량체 A (264 mg, 0.897 mmol)를 무수 DMA (7.47 mL)에 용해시켰다. 포타슘 카보네이트 (207 mg, 1.495 mmol) 및 포타슘 아이오다이드 (51.4 mg, 0.310 mmol)를 추가하고 반응을 실온에서 하룻밤 교반하였다. 반응을 물로 침전시키고 여과시키고 여과찌꺼기를 물로 헹구었다. 고체를 DCM에 재용해시키고, 물로 헹구고, 마그네슘 설페이트를 통해 건조시키고 농축시켜, 미정제 화합물 2h가 제공되었다 (568 mg, 111% 수율). 생성물을 추가 정제 없이 계속 사용하였다. LCMS (8 분 방법, 5-98%) = 6.23 분. 측정된 질량 (ESI+): 827.8 (M+H)+.
Figure pct00572
화합물 2 h (0.513 g, 0.619 mmol)에 DCE (7.74 mL)에 용해시켰다. NaBH(OAc)3 (0.276 g, 1.239 mmol)를 추가하고 혼합물을 실온에서 1.5 h 동안 교반하였다. 반응을 DCM으로 희석시키고, 포화 암모늄 클로라이드로 퀀칭하고 염수로 헹구었다. 유기층을 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켜 화합물 2i가 제공되었다. LCMS (15 분 방법) = 9.93 분.
Figure pct00573
화합물 2i (514 mg, 0.619 mmol)를 THF (3.44 mL)에 용해시켰다. 5 M 수성 HCl (1.24 mL, 6.19 mmol)을 실온에서 추가하고 반응을 1 h 동안 교반하였다. 반응 혼합물을 DCM/MeOH (20:1)로 희석시키고 유기층을 포화 소듐 바이카보네이트, 염수로 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여 화합물 2j가 제공되었다 (210 mg, 47% 수율). LCMS (8 분 방법, 5-98%) = 4.56 분. 측정된 질량 (ESI+): 715.8 (M+H)+.
Figure pct00574
화합물 2j (210 mg, 0.293 mmol)를 DCM (3.95 mL) 및 DMF (500 μL)에 용해시키고 -10 °C로 냉각시켰다 (얼음-아세톤조). TEA (57.2 μL, 0.411 mmol) 및 메테인설포닉 무수물 (46.6 mg, 0.260 mmol)을 추가하고 반응을 Ar 하에 3h 동안 교반하였다. 반응을 -5 °C에서 저온수로 퀀칭하고 EtOAc로 희석시켰다. 수성층을 저온 EtOAc (2×)로 추출하고 조합된 유기층을 저온수 (2×)로 헹구었다. 유기층을 무수 소듐/마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 미정제 생성물 2k를 고 진공에서 펌핑하고 정제없이 다음 단계에서 사용하였다. LCMS (8 분 방법, 5-98%) = 5.06 분. 측정된 질량 (ESI-): 791.8 (M-H)-.
Figure pct00575
화합물 2k (233 mg, 0.293 mmol)를 DMA (1.95 mL)에 용해시켰다. IGN 단량체 A (103 mg, 0.352 mmol) 및 포타슘 카보네이트 (60.7 mg, 0.440 mmol)를 실온에서 추가하고 반응을 하룻밤 교반하였다. DI수를 반응 혼합물에 추가하고 생성된 고체를 여과시키고 물로 헹구었다. 고체를 DCM/MeOH (20:1)에 재용해시키고, 물로 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다 (44 mg, 15% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 2.
Figure pct00576
DCE (10 mL) 및 DMF (4 mL)에서의 IGN 단량체 A (1.0 g, 3.4 mmol)의 용액에 소듐 트라이아세톡시보로하이드라이드 (1.1 g, 5.1 mmol, 1.5 당량)를 추가하고 반응을 출발 재료가 완성될 때까지 교반하였다. 실온에서 2 h 후 출발 재료 완성시, 반응을 sat. 암모늄 클로라이드 (10 mL)로 퀀칭한 다음, 층들이 분리되었다. 수성층을 다이클로로메테인 (10 mL)으로 한 번 추출하고 조합된 유기층들을 물 (2 x 10 mL) 및 염수 (10 mL)로 헹구었다. 유기층을 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하여 백색/갈색 분말이 제공되었다. 분말을 EtOAc (2 x 10 mL)로 헹구고 진공하에 건조시켜, 환원된 IGN 단량체 A가 백색 고체로 제공되었으며 (0.87 g, 2.9 mmol, 87% 수율) 다음 단계에서 추가 정제 없이 사용되었다. UPLCMS (2.5 분 방법) = 1.34 분. 측정된 질량 (ESI+): 297.4 (M+H)+. 1H NMR (400 MHz, DMSO-d 6): δ 9.44 (s, 1H), 8.20 (d, J = 8.1 Hz, 1H), 7.30 - 7.23 (m, 2H), 7.22 - 7.12 (m, 1H), 7.01 (td, J = 7.4, 1.1 Hz, 1H), 6.21 (s, 1H), 6.17 (d, J = 6.6 Hz, 1H), 4.37 (tdd, J = 10.1, 4.4, 1.9 Hz, 1H), 3.70 (s, 3H), 3.58 - 3.39 (m, 2H), 3.31 - 3.15 (m, 2H), 2.88 (dd, J = 16.9, 4.4 Hz, 1H).
Figure pct00577
DCM (81 mL) 및 DMF (64.9 mL)에서의 2e (5.53 g, 12.6 mmol)의 용액을 0 oC까지 냉각시킨 다음 DIPEA (6.13 mL, 37.9 mmol, 3.0 당량)를 추가한 후, DCM (15 mL) / DMF (1 mL)에서의 메테인설포닉 무수물 (5.06 g, 29.1 mmol, 2.3 당량) 용액을 적가하였다. 반응을 1 h 동안 교반한 후, 저온수로 퀀칭하였다. 물과 염수로 헹군 후, 용액을 마그네슘 설페이트를 통해 건조시키고, 여과시키고, 용매를 진공하에 제거하여 오렌지색 오일이 제공되었으며, 이를 다이에틸 에터에서 배산(triturate)시켜, 비스 메실레이트 2 m이 제공되었다 (6.4 g, 10.8 mmol, 85% 수율). LCMS (8 분 방법) = 4.019 분. 측정된 질량 (ESI+): 594.8 (M+H)+. 이러한 미정제 재료를 다음 단계에서 추가 정제없이 사용하였다.
Figure pct00578
DMF (7 mL)에서의 2 m (0.52 g, 0.88 mmol) 및 IGN 단량체 A (0.18 g, 0.61 mmol, 0.7 당량)의 용액에 포타슘 카보네이트 (0.24 g, 1.75 mmol, 2.0 당량)를 추가하였으며 반응을 실온에서 12 h 동안 교반하였다. 반응을 물 (30 mL)로 퀀칭시키고 DCM (3 x 15 mL)로 추출하였다. 유기층들이 조합되고, 물 (3 x 60 mL), 염수 (60 mL)로 이를 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하여 미정제 황색 오일이 제공되었다. 이 재료를 실리카 겔 크로마토그래피 (100/0 내지 65/35의 DCM/(MeCN/MeOH (4/1))로 정제하여, 원하는 생성물 2n이 제공되었다 (0.09 g, 0.12 mmol, 13% 수율). UPLCMS (2.5 분 방법) = 1.46 분. 측정된 질량 (ESI+): 792.6 (M+H)+.
Figure pct00579
DMF (0.48 mL, 6.2 mmol)에서의 2n (0.05 g, 0.06 mmol)의 용액에 포타슘 카보네이트 (0.02 g, 0.12 mmol, 2.0 당량), 그 후 환원된 IGN 단량체 A (0.02 g, 0.07 mmol, 1.1 당량)를 추가하였다. 반응을 실온에서 12 h 동안 교반하였다. 반응을 물로 퀀칭하고 생성된 고체를 여과시키고 물로 헹구었다. 고체를 DCM/MeOH (20:1)에 재용해시키고, 물로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다(0.03 g, 0.04 mmol, 55% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+. 1H NMR (400 MHz, DMSO-d 6, 물 부가물의 혼합물로서 기록됨): δ 10.10 (d, J = 3.7 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.21 - 8.10 (m, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.78 (dt, J = 8.5, 1.8 Hz, 2H), 7.43 - 7.13 (m, 7H), 7.16 - 6.98 (m, 2H), 6.49 (s, 1H), 6.36 (d, J = 13.1 Hz, 0.4H), 6.16 (d, J = 6.2 Hz, 0.4H), 5.80 (s, 0.4H), 5.67 (s, 0.4H), 5.57 (d, J = 5.6 Hz, 0.4H), 5.35 - 5.09 (m, 2H), 5.03 (t, J = 5.9 Hz, 2H), 4.81 - 4.72 (m, 0.4H), 4.60 (dt, J = 9.7, 5.0 Hz, 0.2H), 4.51 - 4.36 (m, 2H), 4.39 - 4.23 (m, 1H), 4.17 (td, J = 9.7, 2.9 Hz, 0.4H), 3.93 (s, 0.4H), 3.83 - 3.74 (m, 5H), 3.62 (s, 2H), 3.75 - 3.44 (m, 2H), 3.32 (d, J = 11.6 Hz, 1H), 3.19 - 3.07 (m, 1H), 2.95 (dd, J = 17.1, 4.3 Hz, 1H), 2.38 - 2.29 (m, 1H), 2.18 (m, 1H), 1.56 (m, J = 3.9 Hz, 4H), 1.41 - 1.31 (m, 3H), 1.30 - 1.14 (m, 3H).
실시예 3.
Figure pct00580
DMF (11 mL)에서의 2 m (0.88 g, 1.47 mmol)의 용액에 환원된 IGN 단량체 A (0.26 g, 0.88 mmol, 0.6 당량), 그 후 포타슘 카보네이트 (0.41 mg, 2.95 mmol, 2.0 당량)를 추가하였다. 반응을 12 h 동안 교반한 후, 반응을 물 (50 mL)과 EtOAc (30 mL)로 희석시켰다. 수성층을 EtOAc (3 x 10 mL)로 추출하였다. 조합된 유기층들을 염수 (20 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 제거하고 미정제 혼합물을 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여, 원하는 생성물 2k가 제공되었다(0.11 g, 0.14 mmol, 10% 수율). LCMS (8 분 방법) = 5.013 분. 측정된 질량 (ESI+): 794.3 (M+H)+.
Figure pct00581
DMF (2 mL)에서의 2k (0.11 g, 0.14 mmol)의 용액에 포타슘 카보네이트 (0.04 g, 0.29 mmol, 2.0 당량)를 추가하였다. IGN 단량체 A (0.04 g, 0.14 mmol, 1.0 당량)를 추가하고, 반응을 rt에서 12 h 동안 교반하였다. 반응을 물 (10 mL)로 퀀칭시키고 생성된 고체를 여과시키고 물로 헹구었다. 고체를 DCM/MeOH (20:1)에 재용해시키고, 물(10 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다 (0.08 g, 0.09 mmol, 59% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 4.
Figure pct00582
DCE (2 mL)에서의 2n (0.1 g, 0.13 mmol)의 용액에 소듐 트라이아세톡시보로하이드라이드 (0.03g , 0.13 mmol, 1.0 당량)를 추가하고 반응을 rt에서 2 h 동안 교반하였다. 반응을 포화 암모늄 클로라이드 (2 mL)로 퀀칭하고 층들이 분리되었다. 수성층을 DCM (5 mL)으로 추출하고 조합된 유기층들을 물, 염수로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 미정제 황색 고체를 실리카 겔 크로마토그래피 (EtOAc/MeOH (95/5))를 사용하여 정제하여, 원하는 환원 생성물 2k가 수득되었다 (0.035 g, 0.044 mmol, 35% 수율). LCMS (8 분 방법) = 5.021 분. 측정된 질량 (ESI+): 794.3 (M+H)+.
Figure pct00583
DMF (1.0 mL)에서의 2k (0.035 g, 0.044 mmol)의 용액에 포타슘 카보네이트 (0.013 g, 0.09 mmol, 2.0 당량)를 추가하였다. IGN 단량체 A (0.013 g, 0.04 mmol, 1.0 당량)를 추가하고 반응을 실온에서 12 h 동안 교반하였다. 반응을 물 (10 mL)로 퀀칭하고 생성된 고체를 여과시키고 물로 헹구었다. 고체를 DCM/MeOH (20:1, 20 mL)에 재용해시키고, 물(20 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다 (0.017 g, 0.01 mmol, 38% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분). 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 5.
Figure pct00584
DMF (100 mL)에서의 2f (8.8 g, 16.0 mmol)의 용액에 피리딘 (4.51 g, 55.8 mmol, 3.5 당량)를 추가하였다. 반응을 0 oC로 냉각시킨 다음 메테인설폰일 클로라이드 (2.5 mL, 31.9 mmol, 2.0 당량)를 적가하고 반응을 2 h 동안 교반하였다. 혼합물을 sat. 소듐 바이카보네이트 (30 mL)로 퀀칭시키고, EtOAc를 추가하고 층들이 분리되었다. 수성층을 EtOAc (3 x 50 mL)로 추출하고 조합된 유기층들을 물, 염수로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 제거하고 미정제 백색 고체 2o를 정제없이 다음 단계에서 사용하였다 (6.2 g, 10.9 mmol, 68%). UPLCMS (2.5 분 방법) = 1.96 분. 측정된 질량 (ESI+): 570.7 (M+H)+.
Figure pct00585
THF (36.6 mL)에서의 2o (1.7 g, 2.98 mmol)의 용액에 DIPEA (2.1 mL, 11.9 mmol, 4.0 당량), 그 후, HF-피리딘 (0.84 mL, 6.0 mmol, 2.0 당량)을 추가하였다. 반응을 실온에서 3 h 동안 교반하였다. 반응을 sat. 소듐 바이카보네이트 (20 mL)로 퀀칭한 다음, 층들이 분리되었다. 수성층을 EtOAc (3 x 10 mL)로 추출하였다. 조합된 유기층들을 염수 (30 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하여, 미정제 백색 오일이 제공되었으며, 이를 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여, 원하는 생성물 2p가 백색 고체로 제공되었다 (0.75 g, 1.6 mmol, 55% 수율). UPLCMS (2.5 분 방법) = 1.23 분. 측정된 질량 (ESI+): 456.4 (M+H)+.
Figure pct00586
DCM (10 mL) 및 DMF (2 mL)에서의 2p (0.65 g, 1.43 mmol)의 용액에 DIPEA (0.51 mL, 2.85 mmol, 2.0 당량)를 추가하고 반응을 0 oC로 냉각시켰다. DCM (2 mL)에서의 메테인설포닉 무수물 (0.3 g, 1.71 mmol)의 용액을 서서히 추가하였다. 반응이 30분 후 완료되고, 물 (20 mL)로 퀀칭되고, 층들이 추출되고, 수성층을 DCM (2 x 10 mL)로 헹구었다. 유기층들이 조합되고, 이를 물 (20 mL), 염수 (10 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하여, 원하는 생성물 2q (0.76 g, 1.42 mmol, 100% 수율)가 제공되었으며, 이는 미정제상태로 다음 단계에서 추가 정제 없이 사용되었다. UPLCMS (2.5 분 방법) = 1.37 분. 측정된 질량 (ESI+): 534.4 (M+H)+.
Figure pct00587
DMA (13 mL)에서의 2q (0.76 g, 1.42 mmol)의 용액에 포타슘 카보네이트 (0.59 g, 4.27 mmol), 그 후, DMA (1 mL)에서의 IGN 단량체 A (0.5 g, 1.71 mmol) 용액을 추가하였다. 반응을 실온에서 12 h 동안 교반하였다. 반응을 물 (30 mL)로 퀀칭시키고 혼합물을 10 분간 교반하였다. 고체를 여과시킨 다음, DCM/MeOH (9/1, 20 mL)에 용해시키고 염수 (10 mL)로 헹구었다. 유기층이 분리되었으며 이를 마그네슘 설페이트를 통해 건조시키고, 여과시키고 진공에서 농축시켜, 미정제 황색 고체 2r이 제공되었으며 (0.76 g, 1.04 mmol, 73% 수율), 이는 다음 단계에서 미정제 상태로 추가 정제 없이 사용되었다. UPLCMS (2.5 분 방법) = 1.55 분. 측정된 질량 (ESI+): 732.9 (M+H)+.
Figure pct00588
DMA (10 mL)에서의 2r (0.26 g, 0.36 mmol)의 용액에 포타슘 아이오다이드 (0.06 g, 0.355 mmol, 1.0 당량), 환원된 IGN 단량체 A (0.1 g, 0.37 mmol, 1.05 당량) 및 포타슘 카보네이트 (0.15 g, 1.06 mmol, 3.0 당량)를 추가하였다. 반응을 40 oC까지 가온시키고, 4 h 동안 교반하였다. 반응을 물 (20 mL)로 퀀칭시키고 혼합물을 10 분간 교반하였다. 생성된 고체를 여과시켰다. 고체를 DCM/MeOH (20:1, 20 mL)에 재용해시키고, 물(20 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다(0.097 g, 0.097 mmol, 28% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 6.
Figure pct00589
DCE (10 mL)에서의 2r (0.76 g, 1.04 mmol)의 용액에 DMF (3.0 mL)를 추가한 후, 0 oC에서 소듐 트라이아세톡시보로하이드라이드 (0.33 g, 1.56 mmol)를 추가하였다. 반응을 실온에서 4 h 동안 교반하였다. 반응을 sat. 암모늄 클로라이드 (20 mL)로 퀀칭하고 층들이 분리되었다. 수성층을 DCM (3 x 10 mL)으로 추출하고 조합된 유기층들을 물 (10 mL), 염수 (10 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시키고 용매를 진공에서 제거하여, 원하는 미정제 재료 2s가 오일로 제공되었으며 (0.65 g, 0.88 mmol, 85% 수율), 이는 다음 단계에서 추가 정제 없이 사용되었다. UPLCMS (2.5 분 방법) = 1.80 분. 측정된 질량 (ESI+): 735.3 (M+H)+.
Figure pct00590
DMA (15 mL)에서의 2s (0.65 g, 0.88 mmol)의 용액에 포타슘 카보네이트 (0.25 g, 1.78 mmol, 2.0 당량), 그 후 포타슘 아이오다이드 (0.073 g, 0.44 mmol, 0.5 당량)를 추가하였으며, DMA (2 mL)에서의 IGN 단량체 A (0.29 g, 0.974 mmol, 1.1 당량)의 용액을 실온에서 반응 혼합물에 추가하였다. 반응을 40 oC에서 5 h 동안 가열하였다. 반응을 물 (30 mL)로 퀀칭시킨 다음, 고체를 여과시켰다. 고체를 DCM/MeOH (20:1, 30 mL)에 재용해시키고, 물(20 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부 (0.78 g)를 RPHPLC (ACN/H2O)로 정제하여, 2l가 제공되었다 (0.43 g, 0.43 mmol, 49% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 7.
Figure pct00591
DMA (3 mL)에서의 2q (0.14 g, 0.27 mmol)의 용액에 포타슘 카보네이트 (0.11 g, 0.81 mmol), 그 후 DMA (1 mL)에서의 환원된 IGN 단량체 A (0.084 g, 0.28 mmol)의 용액을 추가하였다. 반응을 실온에서 12 h 동안 교반하였다. 반응을 물 (20 mL)로 퀀칭시키고 혼합물을 10 분간 교반하였다. 고체를 여과시킨 다음, DCM/MeOH (9/1, 20 mL)에 용해시키고 염수 (10 mL)로 헹구었다. 유기층이 분리되었으며, 이를 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하였다. 미정제 재료를 DCM (MeOH/EtOAc, 1/4)을 사용하여 실리카 겔 크로마토그래피로 정제하여, 원하는 생성물 2s가 제공되었다 (0.08 g, 0.11 mmol, 40% 수율). UPLCMS (2.5 분 방법) = 1.63 분. 측정된 질량 (ESI+): 735.2 (M+H)+.
Figure pct00592
DMA (2 mL)에서의 2s (0.06 g, 0.09 mmol)의 용액에 포타슘 카보네이트 (0.025 g, 0.18 mmol), 그 후 포타슘 아이오다이드 (0.007 g, 0.044 mmol)를 추가하였다. DMA (1 mL)에서의 IGN 단량체 A (0.03 g, 0.097 mmol) 용액을 실온에서 반응 혼합물에 추가하였다. 반응을 40 ºC에서 5 h 동안 가열하였다. 반응을 냉각시키고 물 (20 mL)로 퀀칭시키고, 고체를 여과시켰다. 고체를 DCM/MeOH (20:1, 20 mL)에 재용해시키고, 물(10 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부 (0.07 g)를 RPHPLC (ACN/H2O)로 정제하여, 2l가 제공되었다 (0.035 g, 0.035 mmol, 51% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 8.
Figure pct00593
THF (9 mL)에서의 2 h (0.85 g, 1.027 mmol)의 용액에 DIPEA (0.54 mL, 3.1 mmol, 3.0 당량), 그 후, HF-피리딘 (0.3 mL, 2.053 mmol, 2.0 당량)을 실온에서 추가하였다. 반응을 실온에서 3 h 동안 교반하였다. 반응을 sat. 소듐 바이카보네이트 (10 mL)로 퀀칭하고, 층들이 분리되었으며 수성층을 DCM (3 x 10 mL)으로 추출하였다. 조합된 유기층들을 염수 (10 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하여 미정제 생성물이 고체로 제공되었으며, 이를 EtOAc로 헹구어 원하는 생성물 2t가 제공되었다 (0.64 g, 0.89 mmol, 87% 수율). UPLCMS (2.5 분 방법) = 1.36 분. 측정된 질량 (ESI+): 714.6 (M+H)+.
Figure pct00594
다이클로로메테인 (3 mL)에서의 2t (0.23 g, 0.322 mmol)의 용액에 DIPEA (0.11 ml, 0.644 mmol, 2.0 당량)를, 그 후 메테인설포닉 무수물 (0.084 g, 0.48 mmol, 1.5 당량)을 0 oC DCM (1 mL)에서의 용액으로서 추가하였다. 반응을 1 h 동안 교반하였다. 반응을 물 (3 mL)로 퀀칭하고, DCM (3 mL)으로 희석시켰다. 층들이 분리되고 유기층을 염수 (3 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하고 미정제 재료 2n (0.25 g, 0.31 mmol, 98% 수율)을 다음 단계에서 추가 정제 없이 사용하였다. UPLCMS (2.5 분 방법) = 1.45 분. 측정된 질량 (ESI+): 792.5 (M+H)+.
Figure pct00595
DMF (0.2 ml)에서의 2n (0.02 g, 0.027 mmol)의 용액에 포타슘 카보네이트 (0.007g, 0.053 mmol, 2.0 당량), 그 후 환원된 IGN 단량체 A (0.009g, 0.029 mmol, 1.1 당량)를 추가하고 반응을 실온에서 18 h 동안 교반하였다.물 (3 mL)을 반응 혼합물에 추가하고 생성된 고체를 여과시켰다. 고체를 DCM/MeOH (20:1, 5 mL)에 재용해시키고, 물(5 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다 (0.005 g, 0.005 mmol, 19% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 9.
Figure pct00596
THF (2 mL)에서의 2t (0.02 g, 0.031 mmol)의 용액에 DIPEA (0.016 mL, 0.092 mmol, 3.0 당량), 그 후, THF (0.5 mL)에서의 다이브로모트라이페닐포스포란 (0.03 g, 0.062 mmol, 2.0 당량)을 추가하였다. 반응을 실온에서 12 h 동안 교반하였다. 반응을 용매를 증발시켜 반응을 중단시킨 다음, 미정제 재료를 실리카 겔 크로마토그래피로 정제하여 2u가 제공되었다 (0.006 g, 0.007 mmol, 25% 수율). UPLCMS (2.5 분 방법) = 1.56 분. 측정된 질량 (ESI+): 778.2 (M+H)+.
Figure pct00597
DMA (1 mL)에서의 2u (0.006 g, 7.73 μmol)의 용액에 환원된 IGN 단량체 A (0.003 g, 9.27 μmol), 그 후 포타슘 카보네이트 (0.002 g, 0.015 mmol)를 추가하고, 반응을 실온에서 18 h 동안 교반하였다. 물(3 mL)을 반응 혼합물에 추가하고 생성된 고체를 여과시키고 물로 헹구었다. 고체를 DCM/MeOH (20:1, 5 mL)에 재용해시키고, 물(5 mL)로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (ACN/H2O)로 정제하여 2l가 제공되었다 (0.001 g, 0.001 mmol, 13% 수율). LCMS (8 분 방법, 5-98%) = 5.4 분. 측정된 질량 (ESI+): 991.7 (M+H)+.
실시예 10.
Figure pct00598
DCM (40 mL) 및 DMF (5 mL)에서의 (5-나이트로-1,3-페닐렌)다이메탄올 3a (4.0 g, 21.84 mmol)의 용액에 DIPEA (3.86 mL, 21.84 mmol, 1.0 당량), 그 후 TBSCl (3.29 g, 21.84 mmol, 1.0 당량)을 DMF (5 mL)에서의 용액으로 추가하였다. 반응을 0 oC에서 1 h 동안 교반하였다. 반응을 sat. 암모늄 클로라이드 (20 mL)로 퀀칭하고 층들이 분리되었다. 수성층을 DCM (2 x 20 mL)으로 추출하고 조합된 유기층들이 조합되고, 물 (2 x 50 mL), 염수로 이를 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하여 미정제 황색 오일이 제공되었다. 미정제 생성물을 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여 원하는 생성물 3b가 제공되었다 (3.69 g, 12.41 mmol, 57% 수율). UPLCMS (2.5 분 방법) = 1.96 분. 측정된 질량 (ESI+): 298.5 (M+H)+.
Figure pct00599
DMF (50 mL)에서의 3b (2.0 g, 6.72 mmol)의 용액에 피리딘 (1.6 ml, 20.17 mmol, 3.0 당량), 그 후 메테인설폰일 클로라이드 (1.1 mL, 13.45 mmol, 2.0 당량)를 0 oC에서 추가하였다. 반응을 rt으로 가온하였으며 3 h 동안 교반하였다. 반응을 sat. 소듐 바이카보네이트 (20 mL)로 퀀칭하고 층들이 분리되었다. 수성층을 EtOAc (3 x 30 mL)로 추출하였다. 조합된 유기층들을 물 (2 x 100 mL), 염수 (100 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하고 미정제 재료 3c (2.0g, 6.7 mmol, 94% 수율)를 다음 단계에서 미정제 상태로 사용하였다. UPLCMS (2.5 분 방법) = 2.22 분. 측정된 질량 (ESI+): 316.7 (M+H)+.
Figure pct00600
THF (38.9 mL)에서의 3c (2.0 g, 6.33 mmol)의 용액에 DIPEA (5.5 mL, 31.6 mmol, 5.0 당량), 그 후 HF-피리딘 (2.7 mL, 19.0 mmol, 3.0 당량)을 추가하였으며 반응을 실온에서 2 h 동안 교반하였다. 그 후 반응을 sat. 소듐 바이카보네이트 (100 mL)로 퀀칭하였다. 층들이 분리되었으며 그 후 수성층을 EtOAc (3 x 20 mL)로 추출하였다. 그 후 조합된 유기층들을 물 (30 mL), 염수 (30 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 과량의 용매를 진공에서 제거하여 원하는 생성물 3d가 제공되었다 (1.1g, 5.46 mmol, 86% 수율). UPLCMS (2.5 분 방법) = 1.31 분. 측정된 질량 (ESI+): 202.4 (M+H)+.
Figure pct00601
DCM (10 mL)에서의 3d (1.0 g, 4.96 mmol)의 용액에 0 oC에서 DIPEA (2.6 mL, 14.9 mmol, 3.0 당량)를 추가한 다음, DCM에서의 메테인설포닉 무수물 (1.1 g, 6.45 mmol, 1.3 당량)의 용액을 반응 혼합물에 추가하였다. 반응을 1 h 동안 교반하였다. 반응을 물 (10 mL)로 퀀칭시키고 층들이 분리되었으며 수성층을 DCM (2 x 20 mL)으로 추출하였다. 조합된 유기층들을 sat. 소듐 바이카보네이트 (10 mL), 염수 (20 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하고 미정제 재료 3e (1.3 g, 4.65 mmol, 94% 수율)를 다음 단계에서 추가 정제 없이 사용하였다. UPLCMS (2.5 분 방법) = 1.51 분. 측정된 질량 (ESI+): 280.6 (M+H)+.
Figure pct00602
DMA (13.4 mL)에서의 3e (0.4 g, 1.43 mmol) 및 포타슘 카보네이트 (0.6 g, 4.29 mmol, 3.0 당량)의 용액에 DMA (2 mL)에서의 IGN 단량체 A (0.46 g, 1.57 mmol, 1.1 당량)의 용액을 실온에서 추가하였으며 반응을 5 h 동안 교반하였다. 반응을 물 (30 mL)로 퀀칭시키고 층들이 분리되었으며 수성층을 EtOAc (3 x 30 mL)으로 추출하였다. 그 후 조합된 유기층들을 물 (30 mL), 염수 (30 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 용매를 진공에서 제거하였다. 미정제 오일을 DCM / MeOH를 사용하는 실리카 겔 크로마토그래피를 통해 정제하여, 화합물 3f가 제공되었다 (0.37g, 0.77 mmol, 54% 수율). UPLCMS (2.5 분 방법) = 1.69 분. 측정된 질량 (ESI+): 478.3 (M+H)+.
Figure pct00603
DMA (3.0 mL)에서의 3f (0.11 g, 0.23 mmol)의 용액에 포타슘 카보네이트 (0.095 g, 0.69 mmol, 3.0 당량), 그 후 포타슘 아이오다이드 (0.02 g, 0.11 mmol, 0.5 당량)를 추가하였다. DMA (1 mL)에서의 환원된 IGN 단량체 A (0.07 g, 0.25 mmol, 1.1 당량)의 용액을 추가하였다. 그 후 반응을 35 ℃에서 5 h 동안 부드럽게 가열하였다. 반응을 물로 퀀칭하고 고체를 여과시켰다. 고체를 DCM/MeOH (20:1)에 재용해시키고, 물로 헹구고, 마그네슘 설페이트로 건조시키고, 여과시키고 농축시켰다. 미정제 잔부 (0.13 g)를 RPHPLC (ACN/H2O)로 정제하여, 3g가 제공되었다 (0.063 g, 0.085 mmol, 36% 수율). UPLCMS (2.5 분 방법) = 1.79 분. 측정된 질량 (ESI+): 738.3 (M+H)+. 1H NMR (400 MHz, DMSO-d 6, 물 부가물의 혼합물로서 기록됨) 1H NMR (400 MHz, DMSO-d6): δ 8.43 - 8.36 (m, 2H), 8.27 (d, J = 8.1 Hz, 1H), 8.13 - 8.02 (m, 2H), 7.44 - 7.14 (m, 6H), 7.14 - 6.99 (m, 2H), 6.79 (s, 0.5H), 6.56 (s, 0.5H), 6.50 (d, J = 2.2 Hz, 1H), 6.39 (d, J = 6.9 Hz, 1H), 6.17 (d, J = 6.8 Hz, 0.5H), 5.69 (s, 0.5H), 5.59 (d, J = 5.7 Hz, 0.5H), 5.47 - 5.27 (m, 4H), 5.03 (t, J = 6.1 Hz, 0.5H), 4.77 (dd, J = 9.1, 6.8 Hz, 0.5H), 4.61 (dt, J = 9.7, 5.1 Hz, 0.15H), 4.50 - 4.39 (m, 0.5H), 4.27 (dd, J = 10.9, 4.2 Hz, 0.5H), 4.16 (td, J = 9.6, 2.9 Hz, 0.5H), 3.95 (s, 0.5H), 3.89 - 3.76 (m, 6H), 3.76 - 3.44 (m, 4H), 3.20 - 3.08 (m, 1H), 2.96 (dd, J = 17.0, 4.4 Hz, 1H).
실시예 11.
Figure pct00604
DMA (15.1 mL)에서의 3e (0.45 g, 1.61 mmol)의 용액에 포타슘 카보네이트 (0.67 g, 4.83 mmol, 3.0 당량), 그 후 DMA (2 mL)에서의 환원된 IGN 단량체 A (0.5 g, 1.69 mmol, 1.1 당량)의 용액을 추가하였다. 반응을 실온에서 5 h 동안 교반하였다. 반응을 물 (30 mL)로 퀀칭시키고 혼합물을 10 분간 교반하였다. 고체를 여과시킨 다음, DCM/MeOH (9/1, 30 mL)에 용해시키고 염수 (20 mL)로 헹구었다. 유기층이 분리되었으며, 이를 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하였다. 미정제 재료를 헥세인/EtOAc를 사용하여 실리카 겔 크로마토그래피로 정제하여, 화합물 3 h (0.28 g, 0.58 mmol, 36% 수율)가 무색 오일로 제공되었다. UPLCMS (2.5 분 방법) = 1.82 분. 측정된 질량 (ESI+): 480.3 (M+H)+.
Figure pct00605
DMA (10 mL)에서의 3 h (0.27 g, 0.56 mmol)의 용액에 포타슘 카보네이트 (0.16 g, 1.12 mmol, 2.0 당량), 그 후 포타슘 아이오다이드 (0.05 g, 0.28 mmol, 0.05 당량)를 추가하였다. DMA (2 mL)에서의 IGN 단량체 A (0.18 g, 0.62 mmol, 1.1 당량) 용액을 실온에서 반응 혼합물에 추가하였다. 반응을 그 후 40 oC에서 3 h 동안 교반하였다. 반응을 물 (20 mL)로 퀀칭하고 고체를 여과시키고 물로 헹구었다. 미정제 황색 고체를 DCM/MeOH (9/1, 30 mL)에 용해시킨 다음, 물 (10 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에서 제거하여 미정제 황색 고체가 제공되었다. 미정제 생성물을 DCM/MeOH (0% 내지 5% MeOH/DCM)를 사용하는 실리카 겔 크로마토그래피로 정제하여 생성물 3g가 황색 분말로 제공되었다 (0.35 g, 0.48 mmol, 86% 수율). UPLCMS (2.5 분 방법) = 1.79 분 (2.5 분 방법). 측정된 질량 (ESI+): 738.4 (M+H)+.
실시예 12.
Figure pct00606
DCE (2 mL)에서의 3f (0.15 g, 0.31 mmol)의 용액에 소듐 트라이아세톡시보로하이드라이드 (0.067 g, 0.31 mmol, 1.0 당량)를 추가하고 반응을 실온에서 1h 동안 교반하였다. 반응을 sat. 암모늄 클로라이드 (1 mL)로 퀀칭한 다음 층들이 분리되었다. 수성층을 DCM (3 x 10 mL)으로 추출하고 조합된 유기층들이 조합되고, 염수 (20 mL)로 이를 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 용매를 진공에서 제거하였다. 미정제 갈색 오일을 실리카 겔 크로마토그래피로 정제하여, 원하는 생성물 3 h가 제공되었다 (0.08 g, 0.16 mmol, 52% 수율). UPLCMS (2.5 분 방법) = 1.80 분. 측정된 질량 (ESI+): 480.5 (M+H)+.
Figure pct00607
DMA (2 mL)에서의 3 h (0.07g, 0.16 mmol)의 용액에 포타슘 카보네이트 (0.07 g, 0.47 mmol, 3.0 당량), 그 후 포타슘 아이오다이드 (0.013 g, 0.08 mmol, 0.05 당량)를 추가한 다음, DMA (0.5 mL)에서의 IGN 단량체 A (0.05 g, 0.17 mmol, 1.1 당량)의 용액을 실온에서 반응 혼합물에 추가하였다. 반응을 실온에서 12 h 동안 교반하였다. 물 (20 mL)을 혼합물에 추가하고 혼합물을 10 분간 교반하였으며 그 시점에서 고체를 여과시켰다. 고체를 DCM (10 mL)에 용해시킨 다음, 염수 (10 mL)로 헹구었다. 유기층을 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 제거하여, 황색 오일을 수득하였다 (0.09 g, 0.12 mmol, 80% 수율). UPLCMS (2.5 분 방법) = 1.79 분 (2.5 분 방법). 측정된 질량 (ESI+): 738.5 (M+H)+.
실시예 13.
Figure pct00608
DCM (33 mL)에서의 3b (1.00 g, 3.4 mmol)의 용액에 DIPEA (1.781 ml, 10.09 mmol, 3.0 당량), 그 후 0 oC에서의 메테인설포닉 무수물 (0.703 g, 4.03 mmol, 1.2 당량) 용액을 추가하였다. 반응을 1 h 동안 교반하였다. 용매를 증발시켜, 미정제 생성물 3j (1.2 g, 3.2 mmol, 95% 수율)가 제공되었으며, 이는 다음 단계에서 추가 정제 없이 사용되었다. UPLCMS (2.5 분 방법) = 2.04 분. 측정된 질량 (ESI+): 376.5 (M+H)+.
Figure pct00609
DMF (26 mL)에서의 3j (1.24 g, 3.30 mmol)의 용액에 실온에서 12h 동안 포타슘 카보네이트 (0.91 g, 6.60 mmol, 2.0 당량), 그 후 IGN 단량체 A (0.97 g, 3.30 mmol, 1.0 당량)를 추가하였다. 반응을 물 (60 mL)로 퀀칭하였으며 고체를 여과시킨 다음 DCM/MeOH (20/1, 20 mL)에 용해시켰다. 유기층을 염수로 헹구고, 마그네슘 설페이트를 통해 건조시키고 여과시켰다. 용매를 진공에거 제거하고 미정제 재료를 실리카 겔 크로마토그래피를 통해 정제하여 원하는 생성물 3k가 제공되었다 (1.3 g, 2.27 mmol, 69% 수율). UPLCMS (2.5 분 방법) = 2.12 분 (2.5 분 방법). 측정된 질량 (ESI+): 574.4 (M+H)+.
Figure pct00610
3k (0.63 g, 1.1 mmol)를 무수 DCE (11 mL)에 용해시켰다. 소듐 트라이아세톡시보로하이드라이드 (0.70 g, 3.3 mmol, 3.0 당량)를 추가하였으며 반응 혼합물을 1 h 동안 실온에서 교반하였다. 혼합물을 sat. 암모늄 클로라이드 (10 mL)로 퀀칭하였다. 층들이 분리되었으며 수성층을 DCM (2 x 20 mL)으로 추출하였다. 조합된 유기층들을 염수 (20 mL)로 헹구고, 무수 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켜 3l가 수득되었다 (0.58 g, 1.0 mmol, 92% 수율). UPLCMS (8.0 분 방법) = 7.797 분 (8.0 분 방법). 측정된 질량 (ESI+): 576.3 (M+H)+.
Figure pct00611
3l (0.58 g, 1.0 mmol)의 용액을 무수 THF (5 mL)에 용해시키고 5 M 수성 염산 용액 (2.01 mL, 10.07 mmol)을 추가하였다. 혼합물을 실온에서 2 h 동안 교반하였다. 반응을 sat. 소듐 바이카보네이트 (5 mL)로 퀀칭시키고 층들이 분리되었으며 수성층을 DCM (2 x 10 mL)으로 추출하였다. 조합된 유기층들을 염수 (20 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고 농축시켜, 밝은 오렌지색 고체가 제공되었다. 생성된 고체를 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여, 화합물 3 m 이 제공되었다 (0.33 g, 0.71 mmol, 71% 수율). UPLCMS (8.0 분 방법) = 5.166 분. 측정된 질량 (ESI+): 462.1 (M+H)+.
Figure pct00612
3 m (0.1 g, 0.22 mmol)를 무수 DCM (1.5 mL)과 물 (0.7 mL)에 용해시켰다. 반응을 0 oC로 냉각시키고 트라이에틸아민 (0.12 mL, 0.88 mmol) 및 메테인설포닉 무수물 (0.08 g, 0.44 mmol)을 추가하였다. 반응을 0 oC에서 1 h 동안 교반하였다. 반응 혼합물을 에틸 아세테이트 (20 mL)로 희석시키고, 물 (2 x 20 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 화합물을 먼저 실리카 겔 크로마토그래피 (DCM/EtOAc)로 정제한 후, RPPHPLC (MeCN/물)로 추가 정제하여, 원하는 생성물 3n (0.041 g, 0.076 mmol, 34% 수율)이 제공되었다. 측정된 질량 (ESI+): 540.3 (M+H)+.
Figure pct00613
화합물 3n (0.041 g, 0.076 mmol) 및 IGN 단량체 A (0.027 g, 0.091 mmol)를 무수 DMA (0.5 mL)에 용해시켰다. 포타슘 카보네이트 (0.012 g, 0.091 mmol) 및 포타슘 아이오다이드 (0.006 g, 0.038 mmol)를 추가하였으며 혼합물을 12 h 동안 교반하였다. 물 (5 mL)를 반응 혼합물에 추가하였다. 고체를 여과시킨 다음, DCM (20 mL)에 재용해시키고 물 (10 mL)로 헹구었다. 마그네슘 설페이트를 통해 건조, 여과 및 농축시킨 후, 고체를 RPHPLC (ACN/H2O)로 정제하여, 3g가 제공되었다 (0.012 g, 0.016 mmol, 21% 수율). UPLCMS (2.5 분 방법) = 1.79 분. 측정된 질량 (ESI+): 738.5 (M+H)+.
Figure pct00614
화합물 3g (0.017 g, 0.023 mmol)를 무수 THF (1 mL), 무수 MeOH (0.5 mL) 및 물 (0.1 mL)에 용해시켰다. 암모늄 클로라이드 (0.012 g, 0.23 mmol, 10.0 당량) 및 철 (0.006 g, 0.115 mmol, 5.0 당량)을 추가하였다. 혼합물을 60 oC에서 2 h 동안 교반하였다. 반응 혼합물을 실온으로 냉각시키고 셀라이트를 통해 여과시키고 20% MeOH/DCM (10 mL)로 헹구었다. 여과액을 농축시키고 미정제 생성물을 실리카 겔 크로마토그래피 (DCM/MeOH)로 정제하여, 화합물 3o가 백색 고체로 제공되었다 (0.012 g, 0.018 mmol, 76% 수율). UPLCMS (2.5 분 방법) = 1.84 분. 측정된 질량 (ESI+): 708.5 (M+H)+. 1H NMR (400 MHz, DMSO-d6, 물 부가물의 혼합물로 기록됨, T = 330 K): δ 8.26 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.03 (d, J = 4.5 Hz, 1H), 7.49 (s, 1H), 7.42 - 7.33 (m, 2H), 7.36 - 7.08 (m, 4H), 7.09 - 6.95 (m, 2H), 6.76 - 6.64 (m, 3H), 6.47 (s, 1H), 6.15 (d, J = 6.5 Hz, 1H), 5.11 (m, 2H), 4.98 (m, 2H), 4.58 (dt, J = 9.9, 4.7 Hz, 1H), 4.47 - 4.36 (m, 1H), 3.87 (m, 1H), 3.76 (s, 3H). 3.71 - 3.46 (m, 4H), 3.39 - 3.28 (m, 1H), 2.93 (dd, J = 16.8, 4.7 Hz, 1H).
실시예 14.
Figure pct00615
화합물 2p (0.03 g, 0.066 mmol, 1.0 당량) 및 IGN 단량체 A (0.021 g, 0.072 mmol, 1.1 당량)를 THF (0.65 mL) 및 DMF (0.3 mL)에 용해시켰다. 트라이페닐포스핀을 추가하고 (0.021 g, 0.079 mmol, 1.2 당량), 그, 후 DIAD (0.015 mL, 0.079 mmol, 1.2 당량)를 서서히 추가하였다. 반응을 rt에서 아르곤하에 2 h 동안 교반하였다. 반응 혼합물을 농축시키고 물 (~2 mL)을 추가하여 생성물을 배산시켰다. 침전물을 여과시키고 잔부 고체를 물로 세척하였다. 미정제 잔부룰 RPHPLC (C18 컬럼, MeCN/물, 농도구배, 40% 내지 60%)로 정제하여, 화합물 2r이 백색의 솜털같은(fluffy) 고체로 제공되었다 (0.015 g, 0.02 mmol, 31% 수율). UPLCMS (2.5 분 방법) = 1.62 분. 측정된 질량 (ESI+) = 732.9 (M+H)+.
실시예 15.
Figure pct00616
화합물 2p (0.03g, 0.066 mmol, 1.0 당량) 및 환원된 IGN 단량체 A (0.02g, 0.072 mmol, 1.1 당량)를 THF (0.66 mL) 및 DMF (0.1 mL)에 용해시켰다. 트라이페닐포스핀 (0.021 g, 0.079 mmol, 1.2 당량)을 추가하고, 그, 후 DIAD (0.015 mL, 0.079 mmol, 1.2 당량)를 서서히 추가하였다. 반응 혼합물을 rt에서 아르곤하에 2 h 동안 교반하였다. 반응 혼합물을 DCM으로 희석하고 물 (2x)로 헹구었다. 유기층을 마그네슘 설페이트를 통해 건조시키고, 여과시키고 농축시켰다. 미정제 잔부를 RPHPLC (C18 컬럼, MeCN/물, 농도구배, 40% 내지 65%)로 정제하여 2s가 백색의 솜털같은 고체로 산출되었다 (0.017 g, 0.02 mmol, 35% 수율). UPLCMS (2.5 분 방법) = 1.71 분. 측정된 질량 (ESI+) = 735.4 (M+H)+.
실시예 16.
Figure pct00617
화합물 3d (0.03 g, 0.149 mmol, 1.0 당량) 및 IGN 단량체 A (0.046 g, 0.156 mmol, 1.05 당량)를 THF (1.5 mL) 및 DMF (0.3 mL)에 용해시켰다. 트라이페닐포스핀을 추가하고 (0.047 g, 0.179 mmol, 1.2 당량), 그, 후 DIAD (0.032 mL, 0.164 mmol, 1.1 당량)를 서서히 추가하였다. 반응을 rt에서 아르곤하에 12 h 동안 교반하였다. 반응 혼합물을 농축시키고 물 (~2 mL)을 추가하여 생성물을 배산시켰다. 침전물을 여과시키고 잔부 고체를 물로 헹구었다. 미정제 잔부를 실리카 겔 크로마토그래피 (헥세인/EtOAc)로 정제하여 화합물 3f가 백색 황색 고체로 제공되었다 (0.013 g, 0.027 mmol, 18% 수율). UPLCMS (2.5 분 방법) = 1.80 분. 측정된 질량 (ESI+) = 478.4 (M+H)+.
실시예 17.
Figure pct00618
화합물 3d (0.03 g, 0.149 mmol, 1.0 당량) 및 환원된 IGN 단량체 A (0.046 g, 0.156 mmol, 1.05 당량)를 다이THF (1.5 mL)에 용해시켰다. 트라이페닐포스핀을 추가하고 (0.047 g, 0.179 mmol, 1.2 당량), 그, 후 DIAD (0.032 mL, 0.164 mmol, 1.1 당량)를 서서히 추가하였다. 반응을 rt에서 아르곤하에 2 h 동안 교반하였다. 반응 혼합물을 농축시키고 톨루엔 (2 x)과 함께 공증발시켰다. 미정제 잔부를 실리카 겔 크로마토그래피 (헥세인/EtOAc)로 정제하여 화합물 3h가 오렌지 황색 고체로 제공되었다 (0.055 g, 0.115 mmol, 77% 수율). UPLCMS (2.5 분 방법) = 1.90 분. 측정된 질량 (ESI+) = 480.5 (M+H)+.
실시예 18.
Figure pct00619
DCM (1 mL)에서의 2d (0.024 g, 0.078 mmol, 1.1 당량)의 용액에 EEDQ (0.019 g, 0.078 mmol, 1.1 당량)를 추가하였다. 반응을 5 분간 교반하고 MeOH (0.1 mL), 그 후 DCM (1 mL)에서의 3o (0.05 g, 0.071 mmol)의 용액을 추가하였다. 반응을 rt에서 2 h 동안 또는 출발 재료가 완성될 때까지 교반하였다. 반응을 농축시켜 백색 침전물이 형성되었으며, 여기에 MTBE (5 mL)를 추가하고 생성된 혼합물을 실온에서 30분간 교반하였다. 고체를 여과시켜, 화합물 2l가 제공되었으며, 그 후 이를 RPHPLC (C18 컬럼, MeCN/물)로 정제하여, 2l가 제공되었다 (0.023 g, 0.023 mmol, 33% 수율). UPLCMS (2.5 분 방법) = 1.75 분. 측정된 질량 (ESI+) = 993.2 (M+H)+.
실시예 19.
Figure pct00620
DMA (1 mL)에서의 2p (0.05 g, 0.110 mmol, 1.0 당량)의 용액에, 카본 테트라브로마이드 (0.044 g, 0.132 mmol, 1.2 당량), 그 후 트라이페닐포스핀 (0.043 g, 0.164 mmol, 1.5 당량)을 추가하고, 반응을 실온에서 2 h 동안 교반하였다. 용매를 제거하여, 백색 고체가 제공되었으며, 이를 MTBE로 배산시키고 고체를 여과시켜, 화합물 2v (0.03 g, 0.058 mmol, 57 % yield, 52% purity)가 제공되었으며, 이는 추가 정제 없이 다음 단계에서 사용되었다. UPLCMS (2.5 분 방법) = 1.59 분. 측정된 질량 (ESI+) = 518.2 (M+H)+.
Figure pct00621
DMA (0.5 mL)에서의 2v (0.03 g, 0.043 mmol, 1.0 당량)의 용액에 포타슘 카보네이트 (0.012 g, 0.087 mmol, 2.0 당량), 그 후 IGN 단량체 A (0.013 g, 0.046 mmol, 1.05 당량)를 추가하였다. 반응 혼합물을 실온에서 4 h 동안 교반하였다. 반응 혼합물을 물 (5 ml)로 희석시키고 고체를 여과시켰다. 고체를 DCM/MeOH (9/1, 2 mL)에 용해시켰다. 유기층을 물 (10 mL), 염수 (10 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시켰다. 여과 및 용매 제거 후, 미정제 생성물을 RPHPLC (C18 컬럼, MeCN/물)로 정제하여 2r가 제공되었다 (0.011 g, 0.015 mmol, 35% 수율). UPLCMS (2.5 분 방법) = 1.62 분. 측정된 질량 (ESI+) = 733.2 (M+H)+.
실시예 20.
Figure pct00622
DCM (100 mL) 및 DMF (1 ml)에서의 화합물 2v (14.7 g, 0.052 mol, 1.0 당량, 문헌에 기재된 바와 같이 제조, 참고: Beilstein J. Org. Chem. 2014, 10, 535-543)의 슬러리에, SOCl2 (12.6 g, 0.104 mol, 2.0 당량)를 한 부분으로 채웠다. 생성된 용액을 35 oC에서 하룻밤 교반하여, 걸쭉한 황갈색(thick tan) 슬러리를 생성하였다. 슬러리를 여과시키고 고체를 건조시켜, 7.5 g이 회백색 고체로 제공되었다. NMR은 Boc 보호 그룹의 절단을 나타냈다. 짙은 여과액을 고체 소듐 카보네이트 (10.6 g, 0.1 mol)로 채운 후, 소듐 바이카보네이트를 추가 첨가하여 pH ~6-7로 완충시켰다. 생성된 용액에 Boc2O (12.7 g,0.058 mol, 1.1 당량)를 추가하고 0.5 h 동안 교반하였다. 여과된 고체 (7.5 g)를 반응 혼합물에 추가한 후, Boc2O (6.5 g, 0.030 mol, 1.7 당량) (pH~ 6)를 추가하고, rt에서 하룻밤 동안 계속하여 교반하였다. 그 후 sat. 소듐 바이카보네이트 (10 mL)를 추가하여 pH 6~7이 되게 하였다. 추가 Boc2O (9.3 g, 42.6 mmol), 및 DMAP (0.2 g, 1.63 mmol)를 추가하고 계속하여 하룻밤동안 교반하였다. 짙은 반응을 여과시켜, 일부 침전물을 제거하였다. DCM층을 1 N HCl로 헹구어 운-Boc(un-Boc) 생성물을 제거하였으며, 이를 염기화시키고 DCM으로 추출하여 3.0 g의 무색 크리스피(crispy) 고체 (운-Boc 생성물)를 회수하였다. DCM층을 염수로 헹구고 짙은 슬러리로 농축시켰다. 미정제 생성물을 실리카 겔 크로마토그래피(EtOAc/헥세인)로 정제하여 2w가 옅은 갈색 고체로 제공되었다 (9.5 g, 0.031 mmol, 62% 수율). 1H NMR (400 MHz, CDCl3): δ 7.84 (m, 2H), 7.75 (m, 1H), 6.60 (s, 1H, NH), 4.58 (s, 2H), 3.91 (s, 3H), 1.53 (s, 9H).
Figure pct00623
LAH/THF (0.6M, 60 mL, 1.15 당량)의 용액을 rt에서 30분간 교반한 다음 아세톤-건식 얼음조를 이용하여 -65 oC로 냉각시켰다. 화합물 2w (9.3 g, 0.031 mol, 1.0 당량)를 서서히 부분부분 추가하여 (Ti ~­60oC), 황갈색 슬러리가 생성되었으며, 이를 4 h 동안 교반하였다. 반응을 물 (1.3 mL), 15% NaOH (1.3 mL), 및 물 (4 mL)로 퀀칭하고 20 분간 (Ti ~5oC) 교반하였다. 반응을 여과시키고 에틸 아세테이트 (~90 mL)로 헹구었다. 여과액을 염수로 헹구고, 농축시켜, 2x (8.0 g, 0.029 mol, 93% 수율)가 갈색 오일로 산출되었다. 1H NMR (400 MHz, CDCl3) : δ 7.45 (s, 1H), 7.40 (s, 1H), 7.10 (s, 1H), 6.60 (s, 1H, NH), 4.75 (s, 2H), 4.50 (s, 2H), 1.53 (s, 9H).
Figure pct00624
화합물 2x (8.0 g, 0.029 mol, 1.0 당량)를 DCM (20 mL)에 용해시키고 얼음-수조에서 냉각시켰다. 4 N HCl/다이옥세인 (15 mL, 1.5 당량)을 추가하고 생성된 혼합물을 50 oC에서 1 h 동안 가열한 다음, rt로 냉각시켰다. 슬러리를 농축시키고 용매를 헵테인으로 바꾸었다. 슬러리를 여과시키고 헥세인으로 헹구고, 오븐 (60 oC)에서 건조시켜, 2y (5.4 g, 0.026 mol, 88% 수율)가 밝은 갈색 고체로 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 7.45 (s, 1H), 7.25 (s, 2H), 4.76 (s, 2H), 4.52 (s, 2H).
Figure pct00625
DCM (25 mL)에서의 2d (0.969 g, 3.20 mmol, 1.1 당량)의 용액에 실온에서 EEDQ (0.79 g, 3.2 mmol, 1.1 당량)를 추가하였다. 8분 후, MeOH (5 mL)에서의 2y (0.5 g, 2.91 mmol, 1.0 당량), DIPEA (0.51 mL, 2.91 mmol, 1.0 당량)의 용액을 1분에 걸쳐 적가하였다. 반응을 2 h 동안 교반하였다. 반응 혼합물을 물 (30 mL)로 퀀칭시키고, 층들이 분리되었으며 수성층을 DCM (2 x 20 mL)으로 추출하였다. 조합된 유기층들을 sat. 소듐 바이카보네이트 (20 mL), 염수 (20 mL)로 헹구고, 마그네슘 설페이트를 통해 건조시키고, 여과시키고 최소량의 용매가 남도록 농축시켰다. 생성된 백색 고체를 MBTE로 희석시키고 여과시켜, 원하는 생성물 2p가 백색 고체로 제공되었다 (0.64 g, 1.40 mmol, 48% 수율). UPLCMS (2.5 분 방법) = 1.30 분. 측정된 질량 (ESI+) = 456.3 (M+H)+.

Claims (81)

  1. 화학식 (2d)의 화합물,
    Figure pct00626

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (1d)의 화합물을 알코올 보호 시약과 반응시킴으로써, 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입시키는 단계를 포함하고,
    Figure pct00627

    여기서 P1은 알코올 보호 그룹이고; R100은 (C1-C3)알콕시인 방법.
  2. 화학식 (3d)의 화합물,
    Figure pct00628

    또는 이의 염의 제조 방법으로서, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
    Figure pct00629

    여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시인 방법.
  3. 화학식 (4d)의 화합물,
    Figure pct00630

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (3d)의 화합물을
    Figure pct00631

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00632

    여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시인 방법.
  4. 화학식 (5d)의 화합물,
    Figure pct00633

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (4d)의 화합물을
    Figure pct00634

    이민 환원제와 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  5. 화학식 (6d)의 화합물,
    Figure pct00635

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (5d)의 화합물을
    Figure pct00636

    알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  6. 화학식 (7d)의 화합물,
    Figure pct00637

    또는 이의 염의 제조 방법으로서, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (6d)의 일차 알코올 화합물과 반응시키는 단계를 포함하고,
    Figure pct00638

    여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시인 방법.
  7. 화학식 (7d")의 화합물,
    Figure pct00639

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (5d')의 화합물을
    Figure pct00640

    알코올 탈보호 시약 및 할로겐화 시약과 반응시키는 단계를 포함하고, 여기서 P1'은 산 분해성 알코올 보호 그룹이고; X2'은 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  8. 화학식 (Id')의 화합물,
    Figure pct00641

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (7d)의 화합물을
    Figure pct00642

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00643

    여기서 R100은 (C1-C3)알콕시이고; 그리고, X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹인 방법: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임).
  9. 화학식 (Id')의 화합물,
    Figure pct00644

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
    Figure pct00645

    화학식 (2d)의 화합물을 형성하는 단계,
    Figure pct00646
    ;
    (2) 화학식 (2d)의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계,
    Figure pct00647
    ;
    (3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00648

    화학식 (4d)의 화합물을 형성하는 단계,
    Figure pct00649
    ;
    (4) 화학식 (4d)의 화합물을 이민 환원제와 반응시켜 화학식 (5d)의 화합물을 형성하는 단계,
    Figure pct00650
    ;
    (5) 화학식 (5d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (6d)의 화합물을 형성하는 단계,
    Figure pct00651
    ;
    (6) 화학식 (6d)의 화합물을 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약과 반응시켜, 화학식 (7d)의 화합물을 형성하는 단계,
    Figure pct00652
    ; 그리고
    (7) 화학식 (7d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00653

    화학식 (Id')의 화합물을 형성하는 단계; 여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X1 및 X2는 각각 독립적으로 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시임.
  10. 화학식 (Id')의 화합물,
    Figure pct00654

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
    Figure pct00655

    화학식 (2d")의 화합물을 형성하는 단계,
    Figure pct00656
    ;
    (2) 화학식 (2d")의 화합물을 할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시켜, 화학식 (3d")의 화합물을 형성하는 단계,
    Figure pct00657
    ;
    (3) 화학식 (3d")의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00658

    화학식 (4d")의 화합물을 형성하는 단계,
    Figure pct00659
    ;
    (4) 화학식 (4d")의 화합물을 이민 환원제와 반응시켜 화학식 (5d")의 화합물을 형성하는 단계,
    Figure pct00660
    ;
    (5) 화학식 (5d")의 화합물을 알코올 탈보호 시약 및 할로겐화 시약과 반응시켜 화학식 (7d")의 화합물을 형성하는 단계,
    Figure pct00661
    ;
    (6) 화학식 (7d")의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00662

    화학식 (Id')의 화합물을 형성하는 단계, 여기서 P1은 알코올 보호 그룹이고; X1은 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, -Br, -I, 설포네이트 에스터); X2'은 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시임.
  11. 화학식 (9d)의 화합물,
    Figure pct00663

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (4d)의 화합물을
    Figure pct00664

    알코올 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  12. 화학식 (10d)의 화합물,
    Figure pct00665

    또는 이의 염의 제조 방법으로서, 상기 방법은 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (9d)의 화합물과 반응시키는 단계를 포함하고,
    Figure pct00666

    여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이고: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임); 그리고 R100은 (C1-C3)알콕시인 방법.
  13. 화학식 (18d)의 화합물,
    Figure pct00667

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (10d)의 화합물을
    Figure pct00668

    화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00669

    여기서 X2는 다음으로 구성된 그룹에서 선택된 이탈 그룹이며: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, X2는 -Br, -I, 또는 설포네이트 에스터임); P3는 H 또는 P2이고; P2는 아민 보호 그룹이며; R100은 (C1-C3)알콕시인 방법.
  14. 화학식 (Id')의 화합물,
    Figure pct00670

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (11d)의 화합물을,
    Figure pct00671

    아민 탈보호 시약과 반응시키는 단계를 포함하고; 여기서 P2는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  15. 화학식 (Id')의 화합물,
    Figure pct00672

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (1d)의 화합물의 일차 알코올 중 하나에 알코올 보호 그룹을 도입하여,
    Figure pct00673

    화학식 (2d)의 화합물을 형성하는 단계,
    Figure pct00674
    ;
    (2) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (2d)의 화합물과 반응시켜, 화학식 (3d)의 화합물을 형성하는 단계;
    Figure pct00675
    ;
    (3) 화학식 (3d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00676

    화학식 (4d)의 화합물을 형성하는 단계,
    Figure pct00677
    ;
    (4) 화학식 (4d)의 화합물을 알코올 탈보호 시약과 반응시켜 화학식 (9d)의 화합물을 형성하는 단계,
    Figure pct00678

    (5) 제 2 할로겐화 시약, 제 2 설폰화 시약 또는 제 2 에스터화 시약을 화학식 (9d)의 화합물과 반응시켜, 화학식 (10d)의 화합물을 형성하는 단계,
    Figure pct00679
    ;
    (6) 화학식 (10d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
    Figure pct00680

    화학식 (18d)의 화합물을 형성하는 단계,
    Figure pct00681
    ,
    (7) P3가 아민 보호 그룹일 때; 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜 화학식 (Id')의 화합물을 형성하는 단계,
    여기서 P1은 알코올 보호 그룹이고; X1 및 X2는 각각 독립적으로 다음으로 구성된 그룹에서 선택된 이탈 그룹아며: -Br, -I, -Cl, 설포네이트 에스터, 및 활성화 에스터 (바람직하게는, -Br, -I, 설포네이트 에스터); P2 는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  16. 화학식 (12d)의 화합물,
    Figure pct00682
    ,
    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (1d)의 화합물을
    Figure pct00683

    할로겐화 시약, 설폰화 시약 또는 에스터화 시약과 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터이고); 그리고 R100은 (C1-C3)알콕시인 방법.
  17. 화학식 (10d')의 화합물,
    Figure pct00684

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (12d)의 화합물을
    Figure pct00685

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00686

    여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  18. 화학식 (7d')의 화합물,
    Figure pct00687
    ,
    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (10d')의 화합물
    Figure pct00688

    또는 이의 염을 이민 환원제와 반응시키는 단계를 포함하고, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터 (바람직하게는, X1은 -Br, -I, 설포네이트 에스터임)이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  19. 화학식 (Id')의 화합물,
    Figure pct00689

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
    Figure pct00690

    화학식 (12d)의 화합물을 형성하는 단계,
    Figure pct00691
    ;
    (2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00692

    화학식 (10d')의 화합물을 형성하는 단계,
    Figure pct00693
    ;
    (3) 화학식 (10d')의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
    Figure pct00694

    화학식 (18d)의 화합물을 형성하는 단계,
    Figure pct00695
    ; 그리고
    (4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id')의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  20. 화학식 (Id')의 화합물,
    Figure pct00696

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
    Figure pct00697

    화학식 (12d)의 화합물을 형성하는 단계,
    Figure pct00698
    ;
    (2) 화학식 (12d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00699

    화학식 (10d')의 화합물을 형성하는 단계,
    Figure pct00700
    ;
    (3) 화합물 (10d')을 이민 환원 시약과 반응시켜 화합물 (7d')을 형성하는 단계,
    Figure pct00701
    ,
    (4) 화학식 (7d')의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00702

    화학식 (Id')의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터이고 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터이고); 그리고 R100은 (C1-C3)알콕시임.
  21. 화학식 (Id')의 화합물,
    Figure pct00703

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 할로겐화 시약, 설폰화 시약 또는 에스터화 시약을 화학식 (1d)의 화합물과 반응시켜,
    Figure pct00704

    화학식 (12d)의 화합물을 형성하는 단계,
    Figure pct00705
    ;
    (2) 화학식 (12d)의 화합물을 화학식 (d1)의 단량체 화합물과 반응시켜,
    Figure pct00706

    화학식 (7d1')의 화합물을 형성하는 단계,
    Figure pct00707
    ;
    (3) 화학식 (7d1')의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00708

    화학식 (18d)의 화합물을 형성하는 단계,
    Figure pct00709
    ; 그리고
    (4) P3가 아민 보호 그룹일 때, 화학식 (18d)의 화합물을 아민 탈보호 시약과 반응시켜, 화학식 (Id')의 화합물을 형성하는 단계, 여기서 X1은 -Br, -I, -Cl, 설포네이트 에스터, 또는 활성화 에스터 (바람직하게는, X1은 -Br, -I, 또는 설포네이트 에스터임)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  22. 화학식 (13d)의 화합물,
    Figure pct00710

    또는 이의 염의 제조 방법으로서, 상기 방법은 염소화 시약을 화학식 (2d)의 화합물과 반응시키는 단계를 포함하고,
    Figure pct00711

    여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  23. 화학식 (14d)의 화합물,
    Figure pct00712

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (13d)의 화합물을
    Figure pct00713

    알코올 탈보호 시약과 반응시키는 단계를 포함하고, 여기서 P1은 알코올 보호 그룹이고; X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시인 방법
  24. 청구항 23에 있어서, 알코올 보호 그룹은 실릴 보호 그룹임을 특징으로 하는 방법.
  25. 청구항 24에 있어서, 실릴 보호 그룹은 다이메틸아이소프로필실릴, 다이에틸아이소프로필실릴, 다이메틸헥실실릴, 트라이메틸실릴, 트라이아이소프로필실릴, 트라이벤질실릴, 트라이페닐실릴, 2-노르보닐다이메틸실릴, tert-뷰틸다이메틸실릴, tert-뷰틸다이페닐실릴, 2-트라이메티에틸실릴 (TEOC), 또는 [2-(트라이메틸실릴)에톡시]메틸임을 특징으로 하는 방법.
  26. 청구항 25에 있어서, 실릴 보호 그룹은 트라이에틸실릴, 트라이아이소프로필실릴, 또는 tert-뷰틸다이메틸실릴임을 특징으로 하는 방법.
  27. 청구항 26에 있어서, 실릴 보호 그룹은 tert-뷰틸다이메틸실릴임을 특징으로 하는 방법.
  28. 청구항 23-27 중 어느 한 항에 있어서, 알코올 탈보호 시약은 테트라-n-뷰틸암모늄 플루오라이드, 트라이스(다이메틸아미노)설포늄 다이플루오로트라이메틸실리케이트, 하이드로겐 플루오라이드 또는 이의 용매화합물, 하이드로겐 플루오라이드 피리딘, 실리콘 테트라플루오라이드, 헥사플루오로실리식 애시드, 세슘 플루오라이드, 염산, 아세트산, 트라이플루오로아세틱 애시드, 피리디늄 p-톨루엔설포네이트, p-톨루엔설폰산 (p-TsOH), 포름산, 과요오드산임을 특징으로 하는 방법.
  29. 청구항 28에 있어서, 알코올 탈보호제는 하이드로겐 플루오라이드 피리딘임을 특징으로 하는 방법.
  30. 화학식 (15d)의 화합물:
    Figure pct00714

    또는 이의 염의 제조 방법으로서, 상기 방법은 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
    Figure pct00715

    X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, X4는 설포네이트 에스터)이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  31. 화학식 (20d)의 화합물:
    Figure pct00716

    또는 이의 염의 제조 방법으로서, 상기 방법은 브롬화 시약 또는 아이오드화 시약을 화학식 (14d)의 화합물과 반응시키는 단계를 포함하고,
    Figure pct00717

    여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  32. 화학식 (16d)의 화합물:
    Figure pct00718
    ,
    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (15d)의 화합물을
    Figure pct00719

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00720
    ,
    X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, X4는 설포네이트 에스터)이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  33. 화학식 (16d)의 화합물:
    Figure pct00721
    ,
    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (20d)의 화합물을
    Figure pct00722

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00723
    ,
    여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  34. 화학식 (16d)의 화합물:
    Figure pct00724
    ,
    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (14d)의 화합물을
    Figure pct00725

    화학식 (a1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00726
    ,
    여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  35. 화학식 (18d)의 화합물:
    Figure pct00727

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (16d)의 화합물을:
    Figure pct00728

    화학식 (d1)의 환원된 단량체와 반응시키는 단계를 포함하고:
    Figure pct00729

    여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  36. 화학식 (17d)의 화합물:
    Figure pct00730

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (15d)의 화합물을
    Figure pct00731

    화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00732
    ,
    여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, 설포네이트 에스터)이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  37. 화학식 (17d)의 화합물:
    Figure pct00733

    또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (14d)의 화합물을
    Figure pct00734

    화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00735

    여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  38. 청구항 37에 있어서, 화학식 (14d)의 화합물은 알코올 활성화제의 존재하에 화학식 (d1)의 단량체와 반응됨을 특징으로 하는 방법.
  39. 청구항 38에 있어서, 알코올 활성화제는 트라이페닐포스핀임을 특징으로 하는 방법.
  40. 청구항 37-39 중 어느 한 항에 있어서, 화학식 (14d)의 화합물은 아조다이카르복실레이트의 존재하에 화학식 (d1)의 단량체와 반응됨을 특징으로 하는 방법.
  41. 청구항 40에 있어서, 아조다이카르복실레이트는 다음으로 구성된 그룹으로부터 선택됨을 특징으로 하는 방법: 다이에틸 아조다이카르복실레이트 (DEAD), 다이아이소프로필 아조다이카르복실레이트 (DIAD), 1,1'-(아조다이카르보닐)다이피페리딘 (ADDP), 및 다이tert뷰틸 아조다이카르복실레이트 (DTAD).
  42. 청구항 37-41 중 어느 한 항에 있어서, 화학식 (14d)의 화합물은 P3가 H인 화학식 (d1)의 단량체 화합물과 반응되어, 화학식 (17d')의 화합물을 형성함을 특징으로 하는 방법:
    Figure pct00736
    .
  43. 청구항 37-41 중 어느 한 항에 있어서, 여기서 P3는 아민 보호 그룹임을 특징으로 하는 방법.
  44. 청구항 43에 있어서, 상기 방법은 화학식 (17d)의 화합물을 아민 탈보호 시약과 반응시켜 화학식 (17d')의 화합물을 형성하는 단계를 추가로 포함함을 특징으로 하는 방법:
    Figure pct00737
    .
  45. 청구항 44에 있어서, 아민 탈보호 시약은, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택됨을 특징으로 하는 방법.
  46. 화학식 (17d)의 화합물:
    Figure pct00738

    또는 이의 염의 제조 방법으로서, 상기 방법은 화학식 (20d)의 화합물을
    Figure pct00739

    화학식 (d1)의 단량체 화합물과 반응시키는 단계를 포함하고,
    Figure pct00740
    ,
    여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  47. 화학식 (17d')의 화합물,
    Figure pct00741
    ,
    또는 이의 염의 제조 방법을 제공하며, 상기 방법은 화학식 (16d)의 화합물을
    Figure pct00742

    이민 환원제와 반응시키는 단계를 포함하고, 여기서 X3는 -Cl이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  48. 화학식 (18d)의 화합물,
    Figure pct00743

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 화학식 (17d)의 화합물을:
    Figure pct00744

    화학식 (a1)의 단량체와 반응시키는 단계를 포함하고:
    Figure pct00745

    여기서 X3는 -Cl이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시인 방법.
  49. 청구항 48에 있어서, 화학식 (17d)의 화합물은 염기의 존재하에 화학식 (a1)의 단량체 화합물과 반응됨을 특징으로 하는 방법.
  50. 청구항 49에 있어서, 염기는 소듐 카보네이트, 포타슘 카보네이트, 세슘 카보네이트, 소듐 하이드라이드, 또는 포타슘 하이드라이드임을 특징으로 하는 방법.
  51. 청구항 50에 있어서, 염기는 포타슘 카보네이트임을 특징으로 하는 방법.
  52. 청구항 48-51 중 어느 한 항에 있어서, 화학식 (17d)의 화합물은 극성 비양자성 용매의 존재하에 화학식 (a1)의 단량체 화합물과 반응됨을 특징으로 하는 방법.
  53. 청구항 52에 있어서, 극성 비양자성 용매는 다이메틸포름아마이드 또는 다이메틸아세트아마이드임을 특징으로 하는 방법.
  54. 청구항 48-53 중 어느 한 항에 있어서, 화학식 (17d)의 화합물은 P3가 H인 화학식 (a1)의 단량체와 반응되어, 화학식 (Id')의 화합물을 형성함을 특징으로 하는 방법:
    Figure pct00746
    .
  55. 청구항 48-53 중 어느 한 항에 있어서, 여기서 P3는 아민 보호 그룹임을 특징으로 하는 방법.
  56. 청구항 55에 있어서, 아민 보호 그룹은 2-트라이메틸실릴에틸,(2-페닐-2-트라이메틸실릴)에틸, 트라이아이소프로필실록시, 2-(트라이메틸실릴)에톡심에틸, 알릴옥시카르보닐, 9-플루오렌일메톡시카르보닐, 2-(트라이메틸실릴)에톡시카르보닐, 및 2, 2,2,2-트라이클로로에톡시카르보닐로 구성된그룹에서 선택됨을 특징으로 하는 방법.
  57. 청구항 55 또는 56에 있어서, 화학식 (18d)의 화합물은 아민 탈보호 시약과 추가로 반응되어 화학식 (Id')의 화합물을 형성함을 특징으로 하는 방법:
    Figure pct00747
    .
  58. 청구항 57에 있어서, 아민 탈보호 시약은, 테트라-n-뷰틸암모늄 플루오라이드, 아세트산, 하이드로겐 플루오라이드 피리딘, 세슘 플루오라이드, 피페리딘, 모르폴린, 또는 트라이플루오로아세틱 애시드로 구성된 그룹으로부터 선택됨을 특징으로 하는 방법.
  59. 화학식 (18d)의 화합물,
    Figure pct00748

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
    Figure pct00749
    ,
    또는 이의 염과 반응시켜 화학식 (15d)의 화합물:
    Figure pct00750
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (15d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00751
    ,
    화학식 (16d)의 화합물:
    Figure pct00752
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
    Figure pct00753

    화학식 (18d)의 화합물,또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터(바람직하게는, 설포네이트 에스터)이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  60. 화학식 (18d)의 화합물,
    Figure pct00754

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (14d)의 화합물:
    Figure pct00755
    ,
    또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00756
    ,
    화학식 (16d)의 화합물:
    Figure pct00757
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (2) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
    Figure pct00758

    화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  61. 화학식 (18d)의 화합물,
    Figure pct00759

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 할로겐화 시약을 화학식 (14d)의 화합물:
    Figure pct00760
    ,
    또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
    Figure pct00761
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00762
    ,
    화학식 (16d)의 화합물:
    Figure pct00763
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (3) 화학식 (16d)의 화합물을 화학식 (d1)의 환원된 단량체와 반응시켜:
    Figure pct00764

    화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P3는 H 또는 아민 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  62. 화학식 (18d)의 화합물,
    Figure pct00765

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
    Figure pct00766
    ,
    또는 이의 염과 반응시켜 화학식 (15d)의 화합물:
    Figure pct00767
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (15d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
    Figure pct00768
    ,
    화학식 (17d)의 화합물:
    Figure pct00769
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00770

    화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계;
    여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터 (바람직하게는, 설포네이트 에스터)이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  63. 화학식 (18d)의 화합물,
    Figure pct00771

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (14d)의 화합물:
    Figure pct00772
    ,
    또는 이의 염을, 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
    Figure pct00773
    ,
    화학식 (17d)의 화합물:
    Figure pct00774
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (2) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00775

    화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  64. 화학식 (18d)의 화합물,
    Figure pct00776

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 브롬화 또는 아이오드화 시약을 화학식 (14d)의 화합물:
    Figure pct00777
    ,
    또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
    Figure pct00778
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (20d)의 화합물을 화학식 (d1)의 환원된 단량체 화합물과 반응시켜,
    Figure pct00779
    ,
    화학식 (17d)의 화합물:
    Figure pct00780
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (3) 화학식 (17d)의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00781

    화학식 (18d)의 화합물, 또는 이의 약제학적으로 허용가능한 염을 형성하는 단계, 여기서 X3는 -Cl이고; X5는 -Br 또는 -I이고; P1은 알코올 보호 그룹이고; P3는 H 또는 아민 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  65. 청구항 62, 63 또는 64 중 어느 한 항에 있어서, 화학식 (17d)의 화합물은 P3가 H인 화학식 (a1)의 단량체와 반응되어, 화학식 (Id')의 화합물을 형성함을 특징으로 하는 방법:
    Figure pct00782
    .
  66. 청구항 62-65 중 어느 한 항에 있어서, 여기서 P3는 아민 보호 그룹임을 특징으로 하는 방법.
  67. 청구항 66에 있어서, 화학식 (18a)의 화합물은 아민 탈보호 시약과 추가로 반응되어 화학식 (Id')의 화합물을 형성함을 특징으로 하는 방법:
    Figure pct00783
    .
  68. 화학식 (Id')의 화합물,
    Figure pct00784

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 설폰화 시약 또는 에스터화 시약을 화학식 (14d)의 화합물:
    Figure pct00785
    ,
    또는 이의 염과 반응시켜, 화학식 (15d)의 화합물:
    Figure pct00786
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (15d)의 화합물을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00787
    ,
    화학식 (16d)의 화합물:
    Figure pct00788
    ,
    또는 이의 염을 형성하는 단계;
    (3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d')의 화합물:
    Figure pct00789
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00790
    ,
    화학식 (Id')의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; X4는 설포네이트 에스터 또는 활성화 에스터이고 (바람직하게는, 설포네이트 에스터); P1은 알코올 보호 그룹이고; P2는 아민 보호 그룹임이고; 그리고 R100은 (C1-C3)알콕시임.
  69. 화학식 (Id')의 화합물,
    Figure pct00791

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (14d)의 화합물:
    Figure pct00792
    ,
    또는 이의 염을, 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00793
    ,
    화학식 (16d)의 화합물:
    Figure pct00794
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d')의 화합물:
    Figure pct00795
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (3) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00796
    ,
    화학식 (Id')의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  70. 화학식 (Id')의 화합물,
    Figure pct00797

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 할로겐화 시약을 화학식 (14d)의 화합물:
    Figure pct00798
    ,
    또는 이의 염과 반응시켜 화학식 (20d)의 화합물:
    Figure pct00799
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (20d)의 화합물 또는 이의 염을 화학식 (a1)의 단량체 화합물과 반응시켜,
    Figure pct00800
    ,
    화학식 (16d)의 화합물:
    Figure pct00801
    ,
    (3) 화학식 (16d)의 화합물을 이민 환원제와 반응시켜 화학식 (17d')의 화합물:
    Figure pct00802
    ,
    또는 이의 염을 형성하는 단계; 그리고
    (4) 화학식 (17d')의 화합물을 화학식 (a1)의 단량체와 반응시켜:
    Figure pct00803
    ,
    화학식 (Id')의 화합물을 형성하는 단계; 여기서 X3는 -Cl이고; P1은 알코올 보호 그룹이고; 그리고 R100은 (C1-C3)알콕시임.
  71. 청구항 59-70 중 어느 한 항에 있어서, 화학식 (14d)의 화합물 또는 이의 염은 다음 단계를 포함하는 방법에 의해 제조됨을 특징으로 하는 방법:
    (1) 염소화 시약을 화학식 (2d)의 화합물과 반응시켜:
    Figure pct00804

    화학식 (13d)의 화합물,
    Figure pct00805
    ,
    또는 이의 염을 형성하는 단계;
    (2) 화학식 (13d)의 화합물을 알코올 탈보호 시약과 반응시켜, 화학식 (14d)의 화합물 또는 이의 염을 형성하는 단계.
  72. 청구항 71에 있어서, 화학식 (2d)의 화합물은 화학식 (1d)의 화합물을 알코올 보호 시약과 반응시켜 제조됨을 특징으로 하는 방법.
    Figure pct00806
    .
  73. 화학식 (Id')의 화합물,
    Figure pct00807

    또는 이의 약제학적으로 허용가능한 염의 제조 방법으로서, 상기 방법은 다음 단계들을 포함하는 방법:
    (1) 화학식 (IA)의 화합물을:
    Figure pct00808
    ,
    환원제와 반응시켜, 화학식 (IB)의 화합물을 형성하는 단계:
    Figure pct00809
    ; 그리고
    (2) 화학식 (IB)의 화합물을 화학식 (L1)의 화합물과 반응시켜,
    Figure pct00810
    ,
    화학식 (Id)의 화합물을 형성하는 단계, 여기서 E는 -OH, 할라이드 또는 -C(=O)E이고 이는 활성화 에스터이고; 그리고 R100은 (C1-C3)알콕시임.
  74. 청구항 73에 있어서, E는 -OH이고 화학식 (IB)의 화합물과 화학식 (L1)의 화합물의 반응은 활성화제의 존재하에 실시됨을 특징으로 하는 방법.
  75. 청구항 74에 있어서, 활성화제는 카르보다이이미드, 우라늄(uronium), 활성 에스터, 포스포늄, 2-알킬-1-알킬카르보닐-1,2-다이하이드로퀴놀린, 2-알콕시-1-알콕시카르보닐-1,2-다이하이드로퀴놀린, 또는 알킬클로로포르메이트임을 특징으로 하는 방법.
  76. 청구항 74에 있어서, 활성화제는 카르보다이이미드임을 특징으로 하는 방법.
  77. 청구항 76에 있어서, 염기는 다이사이클로헥실카르보다이이미드 (DCC), 1-에틸-3-(3-다이메틸아미노프로필)카르보다이이미드 (EDC), 또는 다이아이소프로필카르보다이이미드 (DIC)임을 특징으로 하는 방법.
  78. 청구항 74에 있어서, 활성화제는 N-에톡시카르보닐-2-에톡시-1,2-다이하이드로퀴놀린 (EEDQ)임을 특징으로 하는 방법.
  79. 청구항 73-78 중 어느 한 항에 있어서, 환원제는 다음으로 구성된 그룹으로부터 선택됨을 특징으로 하는 방법: 수소 기체, 소듐 하이드로설파이트, 소듐 설파이드, 염화 주석(stanneous chloride), 티타늄 (II) 클로라이드, 아연, 철 및 사마륨 아이오다이드.
  80. 청구항 79에 있어서, 환원제는 Fe/NH4Cl 또는 Zn/NH4Cl임을 특징으로 하는 방법.
  81. 청구항 1-80 중 어느 한 항에 있어서, R100은 메톡시임을 특징으로 하는 방법.
KR1020187005041A 2015-07-21 2016-07-21 세포독성 벤조다이아제핀 유도체의 제조 방법 KR102660070B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562195023P 2015-07-21 2015-07-21
US62/195,023 2015-07-21
US201662327973P 2016-04-26 2016-04-26
US62/327,973 2016-04-26
PCT/US2016/043406 WO2017015496A1 (en) 2015-07-21 2016-07-21 Methods of preparing cytotoxic benzodiazepine derivatives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247012991A Division KR20240055903A (ko) 2015-07-21 2016-07-21 세포독성 벤조다이아제핀 유도체의 제조 방법

Publications (2)

Publication Number Publication Date
KR20180038461A true KR20180038461A (ko) 2018-04-16
KR102660070B1 KR102660070B1 (ko) 2024-04-24

Family

ID=

Also Published As

Publication number Publication date
IL276630B (en) 2021-06-30
EP3325483B1 (en) 2019-10-02
AU2023201339A1 (en) 2023-04-06
RU2018105752A3 (ko) 2019-12-30
WO2017015502A8 (en) 2017-03-02
EP3325482A1 (en) 2018-05-30
EP4163284A1 (en) 2023-04-12
EP3778602A1 (en) 2021-02-17
AU2016297087B2 (en) 2021-02-18
IL256860B (en) 2020-08-31
IL286788B2 (en) 2024-01-01
CY1122553T1 (el) 2021-01-27
ES2933376T3 (es) 2023-02-06
AU2016297607A1 (en) 2018-02-08
JP2021035958A (ja) 2021-03-04
DK3325483T3 (da) 2020-01-20
EP4286387A2 (en) 2023-12-06
CN108026103A (zh) 2018-05-11
KR20180038460A (ko) 2018-04-16
IL276631B (en) 2021-10-31
PT3325482T (pt) 2020-09-24
IL256860A (en) 2018-03-29
IL305279A (en) 2023-10-01
CN108290895B (zh) 2021-03-19
IL256861B (en) 2020-08-31
IL294651B2 (en) 2024-02-01
HK1252323A1 (zh) 2019-05-24
US11420982B2 (en) 2022-08-23
RU2018105609A3 (ko) 2020-04-30
AU2016297087A1 (en) 2018-02-08
US20190112320A1 (en) 2019-04-18
HK1252322A1 (zh) 2019-05-24
HUE051541T2 (hu) 2021-03-01
IL276630A (en) 2020-09-30
WO2017015496A1 (en) 2017-01-26
IL283355A (en) 2021-07-29
AU2021202403B2 (en) 2022-12-08
RU2018105752A (ru) 2019-08-21
IL256861A (en) 2018-03-29
PL3325483T3 (pl) 2020-05-18
ES2820358T3 (es) 2021-04-20
EP3778602B1 (en) 2023-07-12
US20210171546A1 (en) 2021-06-10
EP4286387A3 (en) 2024-02-21
IL294651A (en) 2022-09-01
IL305989A (en) 2023-11-01
JP2018524387A (ja) 2018-08-30
JP2023162264A (ja) 2023-11-08
AU2023202221A1 (en) 2023-05-04
IL286788B1 (en) 2023-09-01
CN108055844A (zh) 2018-05-18
US20210171547A1 (en) 2021-06-10
JP6787995B2 (ja) 2020-11-18
EP3653628A1 (en) 2020-05-20
IL283355B (en) 2022-08-01
AU2016297608B2 (en) 2021-02-18
CA2992082A1 (en) 2017-01-26
SI3325482T1 (sl) 2020-11-30
HRP20201479T1 (hr) 2020-12-11
SG10202106529XA (en) 2021-07-29
ES2764548T3 (es) 2020-06-03
RU2727151C2 (ru) 2020-07-21
PL3325482T3 (pl) 2021-01-11
JP2021100959A (ja) 2021-07-08
CN108026103B (zh) 2021-04-16
CN113004288A (zh) 2021-06-22
SG10202009354SA (en) 2020-11-27
AU2016297608A1 (en) 2018-02-08
US20170050986A1 (en) 2017-02-23
JP2022046542A (ja) 2022-03-23
IL276631A (en) 2020-09-30
IL286788A (en) 2021-10-31
LT3325482T (lt) 2020-11-25
RS59806B1 (sr) 2020-02-28
IL294651B1 (en) 2023-10-01
AU2021203148A1 (en) 2021-06-10
JP6858745B2 (ja) 2021-04-14
RU2746322C2 (ru) 2021-04-12
WO2017015502A1 (en) 2017-01-26
US10392407B2 (en) 2019-08-27
US10081640B2 (en) 2018-09-25
AU2021202403A1 (en) 2021-05-20
CN108290895A (zh) 2018-07-17
US9873708B2 (en) 2018-01-23
KR20180026741A (ko) 2018-03-13
US20190389883A1 (en) 2019-12-26
JP7337114B2 (ja) 2023-09-01
WO2017015495A1 (en) 2017-01-26
US20200017526A1 (en) 2020-01-16
JP7334228B2 (ja) 2023-08-28
ES2959741T3 (es) 2024-02-28
CA2991305A1 (en) 2017-01-26
RU2018105756A3 (ko) 2019-12-23
JP2018526340A (ja) 2018-09-13
JP2023166434A (ja) 2023-11-21
DK3325482T3 (da) 2020-09-28
US20170050985A1 (en) 2017-02-23
CN113087763A (zh) 2021-07-09
PT3325483T (pt) 2020-01-15
US10370389B2 (en) 2019-08-06
SI3325483T1 (sl) 2020-03-31
JP2018522018A (ja) 2018-08-09
RU2018105609A (ru) 2019-08-26
CA2991326A1 (en) 2017-01-26
US10899775B2 (en) 2021-01-26
LT3325483T (lt) 2020-01-27
JP6995178B2 (ja) 2022-02-21
CY1123390T1 (el) 2022-03-24
CA2991305C (en) 2024-03-12
US20180201626A1 (en) 2018-07-19
US20170051011A1 (en) 2017-02-23
RS60840B1 (sr) 2020-10-30
AU2021203148B2 (en) 2023-01-12
EP3325485A1 (en) 2018-05-30
HK1252321A1 (zh) 2019-05-24
EP3325482B1 (en) 2020-06-24
US10787463B2 (en) 2020-09-29
US20190010169A1 (en) 2019-01-10
EP3325485B1 (en) 2020-04-08
US9890179B2 (en) 2018-02-13
CA3227588A1 (en) 2017-01-26
EP3653628B1 (en) 2022-09-14
IL256854A (en) 2018-03-29
US20230257400A1 (en) 2023-08-17
RU2018105756A (ru) 2019-08-21
EP3325483A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP7334228B2 (ja) 細胞毒性ベンゾジアゼピン誘導体の調製方法
JP2022105096A (ja) 細胞傷害性ベンゾジアゼピン誘導体の調製方法
KR102660070B1 (ko) 세포독성 벤조다이아제핀 유도체의 제조 방법
KR20240055903A (ko) 세포독성 벤조다이아제핀 유도체의 제조 방법
TW202409044A (zh) 製備喜樹鹼衍生物之新穎製程

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right