KR20170136618A - 형상 측정 장치 및 형상 측정 방법 - Google Patents

형상 측정 장치 및 형상 측정 방법 Download PDF

Info

Publication number
KR20170136618A
KR20170136618A KR1020177032769A KR20177032769A KR20170136618A KR 20170136618 A KR20170136618 A KR 20170136618A KR 1020177032769 A KR1020177032769 A KR 1020177032769A KR 20177032769 A KR20177032769 A KR 20177032769A KR 20170136618 A KR20170136618 A KR 20170136618A
Authority
KR
South Korea
Prior art keywords
disturbance
rigid body
image
cutting line
measured
Prior art date
Application number
KR1020177032769A
Other languages
English (en)
Other versions
KR101950634B1 (ko
Inventor
아츠히로 히비
유스케 곤노
노부히로 후루야
도모히로 구로이와
Original Assignee
신닛테츠스미킨 카부시키카이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신닛테츠스미킨 카부시키카이샤 filed Critical 신닛테츠스미킨 카부시키카이샤
Publication of KR20170136618A publication Critical patent/KR20170136618A/ko
Application granted granted Critical
Publication of KR101950634B1 publication Critical patent/KR101950634B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal

Abstract

[과제] 반송 시에 높이 방향의 평행 이동, 길이 방향 축 주위의 회전 또는 폭 방향 축 주위의 회전의 3개의 외란 중 어느 하나가 발생한 경우라도, 피측정 강체의 표면 높이를 더 정확하게 측정하는 것.
[해결 수단] 본 발명에 관한 형상 측정 장치는, 피측정 강체의 폭 방향으로 연장되는 광 절단선이며, 피측정 강체의 표면 형상을 산출하기 위해 사용되는 형상 측정용 광 절단선과, 피측정 강체의 길이 방향에 대해 평행하고, 또한 형상 측정용 광 절단선과 교차하고 있고, 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제1 보정용 광 절단선과, 피측정 강체의 길이 방향에 대해 평행하고, 형상 측정용 광 절단선과 교차하고, 또한 제1 보정용 광 절단선과는 상이한 피측정 강체의 폭 방향 위치에 존재하고 있는 제2 보정용 광 절단선을 이용한다. 2종류의 보정용 광 절단선에 기초하여 형상 측정용 광 절단선과 보정용 광 절단선의 교점에서 외란의 크기를 추정하고, 형상 측정용 광 절단선으로부터 얻어진 형상 데이터를 보정한다.

Description

형상 측정 장치 및 형상 측정 방법
본 발명은 형상 측정 장치 및 형상 측정 방법에 관한 것이다.
철강 반제품인 슬래브나, 이러한 슬래브를 이용하여 제조되는 후판 등은, 그 제조 과정에 있어서 복수의 롤로 구성되는 제조 라인 상에서 반송된다. 이때, 이들 슬래브나 후판 등의 강체의 표면 높이를 측정하기 위해, 이른바 광 절단법을 이용한 형상 측정이 행해지고 있다. 그러나, 슬래브나 후판과 같은 강체가 제조 라인에서 반송될 때에는, 측정되는 표면 높이에 대해, 강체의 상하 이동이나 회전(이하, 「외란」이라고 칭함)에 기인하는 표면 높이의 변동이 중첩되어 버려, 실제의 표면 높이를 측정할 수 없다고 하는 문제가 있었다.
상기 문제에 대응하기 위해, 이하의 특허문헌 1에 나타낸 기술에서는, 피측정 강체의 폭 방향으로 형성한 본래의 형상 측정을 위한 광 절단선 외에도, 당해 광 절단선에 대해 경사 방향(서로 평행하지 않은 방향)으로 광 절단선을 더 형성하는 것이 제안되어 있다. 이러한 기술에서는, 원래 동일한 표면 높이를 가져야 할 피측정 강체의 동일점의 측정을, 상이한 길이 방향 위치, 상이한 폭 방향 위치의 복수 점에 대해 각각 2회씩 실시한다. 그 후, 상기 복수 점의 표면 높이가 가장 잘 일치하는 외란(상하 이동이나 회전)의 크기를 최적화 계산에 의해 도출하여, 측정 결과로부터 외란의 영향을 제거하고 있다.
일본 특허 공개 제2013-221799호 공보
그러나, 상기 특허문헌 1에 나타낸 기술에서는, 각 측정점의 표면 높이 측정에 있어서 측정 오차가 커지면, 최적화 계산이 정확하게 수렴되지 않는 경우가 있다. 또한, 상기 특허문헌 1에 나타낸 기술은, 외란으로서 존재할 수 있는, 상하 이동(높이 방향의 평행 이동), 길이 방향 축 주위의 회전, 폭 방향 축 주위의 회전의 3개가 동시에 존재하는 경우에는, 측정 결과에 오차가 중첩되어 버린다고 하는 문제가 있었다.
그래서 본 발명은, 상기 문제에 비추어 이루어진 것이며, 본 발명의 목적으로 하는 점은, 반송 시에, 높이 방향의 평행 이동, 길이 방향 축 주위의 회전 또는 폭 방향 축 주위의 회전의 3개의 외란 중 어느 것이 발생한 경우라도, 피측정 강체의 표면 높이를 더 정확하게 측정하는 것이 가능한, 형상 측정 장치 및 형상 측정 방법을 제공하는 데 있다.
상기 과제를 해결하기 위해, 본 발명의 일 관점에 의하면, 피측정 강체의 길이 방향을 따라 당해 피측정 강체에 대해 상대 이동하는 복수의 선형 레이저 광원으로부터, 상기 피측정 강체의 표면으로 조사된, 복수의 선형 레이저광에 의한 복수의 광 절단선에 의해, 당해 피측정 강체의 형상을 측정하는 것이며, 길이 방향을 따라 상대 이동하는 상기 피측정 강체의 표면에 대해, 3개의 상기 선형 레이저광을 조사함과 함께, 상기 3개의 선형 레이저광의 상기 피측정 강체의 표면으로부터의 반사광을 소정의 길이 방향 간격으로 촬상하는 촬상 장치와, 상기 촬상 장치에 의해 촬상된 상기 광 절단선에 관한 촬상 화상에 대해 화상 처리를 실시하여, 상기 피측정 강체의 표면 형상을 산출하는 연산 처리 장치를 구비하고, 상기 촬상 장치는, 상기 피측정 강체의 폭 방향으로 연장되는 상기 광 절단선이며, 상기 피측정 강체의 표면 형상을 산출하기 위해 사용되는 형상 측정용 광 절단선을 사출하는 제1 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 또한 상기 형상 측정용 광 절단선과 교차하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제1 보정용 광 절단선을 사출하는 제2 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 상기 형상 측정용 광 절단선과 교차하고, 또한 상기 제1 보정용 광 절단선과는 상이한 상기 피측정 강체의 폭 방향 위치에 존재하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제2 보정용 광 절단선을 사출하는 제3 선형 레이저 광원과, 상기 형상 측정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 형상 측정용 광 절단선의 촬상 화상을 생성하는 제1 카메라와, 상기 보정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 보정용 광 절단선의 촬상 화상을 생성하는 제2 카메라를 갖고 있고, 상기 연산 처리 장치는, 상기 제1 카메라에 의해 생성된 각 시각에서의 상기 형상 측정용 광 절단선의 촬상 화상에 기초하여, 상기 피측정 강체의 표면의 3차원 형상을 나타내고, 또한 상기 외란에 기인하는 측정 오차가 중첩된 형상 데이터를 산출하는 형상 데이터 산출부와, 상기 피측정 강체의 동일 위치에 대해 상이한 2개의 시각에 취득한 상기 피측정 강체의 표면 높이에 관한 높이 측정값으로부터, 당해 위치에 있어서의 상기 외란에 기인하는 높이 변화값을 취득하는 높이 변화값 취득 처리를, 상기 제1 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제1 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시함과 함께, 상기 높이 변화값 취득 처리를, 상기 제2 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제2 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시하고, 상기 제1 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값과, 상기 제2 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값을 이용하여, 상기 형상 데이터에 중첩된 상기 외란에 기인하는 높이 변동량을 추정하는 외란 추정부와, 상기 형상 데이터로부터 상기 높이 변동량을 차감함으로써 상기 외란에 기인하는 측정 오차를 보정하는 보정부를 갖는 형상 측정 장치가 제공된다.
상기 외란 추정부는, 상기 제1 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시켜, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 추정하고, 상기 제2 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시켜, 당해 직선과 상기 형상 측정용 광 절단선과의 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 추정하고, 2개의 상기 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 연결하는 직선에 의해, 상기 높이 변동량을 추정하는 것이 바람직하다.
상기 제1 카메라 및 상기 제2 카메라는, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상을 행하여, 각각 N매(N은, 2 이상의 정수)의 촬상 화상을 생성하고, 상기 외란 추정부는, 1매째의 촬상 화상에 상기 외란이 발생되어 있지 않다고 간주하고 상기 높이 변동량을 산출하는 것이 바람직하다.
상기 제1 카메라 및 상기 제2 카메라의 촬상 타이밍은, 서로 인접하는 촬상 시각에 촬상한 상기 제2 카메라의 촬상 화상에 있어서, 공통적으로 상기 보정용 광 절단선이 조사되어 있는 상기 피측정 강체의 부분인 공통 조사 영역이 존재하도록 제어되어 있고, 상기 외란 추정부는, 상기 제1 보정용 광 절단선 및 상기 제2 보정용 광 절단선의 각각에서의 상기 공통 조사 영역에 해당되는 상기 복수의 점에 대해, 상기 외란에 기인하는 높이 변화값을 산출하는 것이 바람직하다.
상기 외란 추정부는, 상기 제2 카메라의 i+1매째(i=1, 2, ···, N-1)의 촬상 화상으로부터 얻어지는 상기 높이 변화값을 포함하는 겉보기 표면 높이와, 상기 제2 카메라의 i매째의 촬상 화상으로부터 얻어지는, 당해 촬상 화상의 상기 공통 조사 영역에 있어서의 상기 높이 변화값을 제거한 후의 표면 높이를 사용하여, 상기 i+1매째의 촬상 화상에 있어서의 상기 높이 변화값과, 당해 높이 변화값을 제거한 후의 표면 높이를 산출하는 것이 바람직하다.
상기 외란 추정부는, 상기 제2 카메라의 1매째의 촬상 화상을 기준으로 하여, 상기 제2 카메라의 i매째(i=2, ···, N)의 촬상 화상에 있어서의 상기 높이 변화값을 산출하는 것이 바람직하다.
상기 제1 선형 레이저 광원, 상기 제2 선형 레이저 광원 및 상기 제3 선형 레이저 광원은, 각각의 광원의 광축이 상기 피측정 강체의 길이 방향 및 폭 방향으로 규정되는 평면에 대해 수직으로 되도록 배치되는 것이 바람직하다.
상기 제1 카메라의 광축과 상기 제1 선형 레이저 광원의 광축이 이루는 각, 상기 제2 카메라의 시선과 상기 제2 선형 레이저 광원의 광축이 이루는 각, 및 상기 제2 카메라의 시선과 상기 제3 선형 레이저 광원의 광축이 이루는 각은, 서로 독립적으로, 30도 이상 60도 이하인 것이 바람직하다.
또한, 상기 과제를 해결하기 위해, 본 발명의 다른 관점에 의하면, 피측정 강체의 길이 방향을 따라 당해 피측정 강체에 대해 상대 이동하는 복수의 선형 레이저 광원으로부터, 상기 피측정 강체의 표면으로 조사된, 복수의 선형 레이저광에 의한 복수의 광 절단선에 의해, 당해 피측정 강체의 형상을 측정하는 것이며, 상기 피측정 강체의 폭 방향으로 연장되는 상기 광 절단선이며, 상기 피측정 강체의 표면 형상을 산출하기 위해 사용되는 형상 측정용 광 절단선을 사출하는 제1 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 또한 상기 형상 측정용 광 절단선과 교차하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제1 보정용 광 절단선을 사출하는 제2 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 상기 형상 측정용 광 절단선과 교차하고, 또한 상기 제1 보정용 광 절단선과는 상이한 상기 피측정 강체의 폭 방향 위치에 존재하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제2 보정용 광 절단선을 사출하는 제3 선형 레이저 광원과, 상기 형상 측정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 형상 측정용 광 절단선의 촬상 화상을 생성하는 제1 카메라와, 상기 보정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 보정용 광 절단선의 촬상 화상을 생성하는 제2 카메라를 갖는 촬상 장치로부터, 길이 방향을 따라 상대 이동하는 상기 피측정 강체의 표면에 대해 3개의 상기 광 절단선을 조사하여, 당해 3개의 광 절단선의 상기 피측정 강체의 표면으로부터의 반사광을 소정의 길이 방향 간격으로 촬상하는 촬상 스텝과, 상기 제1 카메라에 의해 생성된 각 시각에서의 상기 형상 측정용 광 절단선의 촬상 화상에 기초하여, 상기 피측정 강체의 표면의 3차원 형상을 나타내고, 또한 상기 외란에 기인하는 측정 오차가 중첩된 형상 데이터를 산출하는 형상 데이터 산출 스텝과, 상기 피측정 강체의 동일 위치에 대해 상이한 2개의 시각에 취득한 상기 피측정 강체의 표면 높이에 관한 높이 측정값으로부터, 당해 위치에 있어서의 상기 외란에 기인하는 높이 변화값을 취득하는 높이 변화값 취득 처리를, 상기 제1 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제1 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시함과 함께, 상기 높이 변화값 취득 처리를, 상기 제2 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제2 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시하여, 상기 제1 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값과, 상기 제2 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값을 이용하여, 상기 형상 데이터에 중첩된 상기 외란에 기인하는 높이 변동량을 추정하는 외란 추정 스텝과, 상기 형상 데이터로부터 상기 높이 변동량을 차감함으로써 상기 외란에 기인하는 측정 오차를 보정하는 보정 스텝을 포함하는 형상 측정 방법이 제공된다.
상기 외란 추정 스텝에서는, 상기 제1 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시킴으로써, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값이 추정되고, 상기 제2 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시킴으로써, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값이 추정되고, 2개의 상기 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 연결하는 직선에 의해, 상기 높이 변동량이 추정되는 것이 바람직하다.
상기 제1 카메라 및 상기 제2 카메라는, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상을 행하여, 각각 N매(N은, 2 이상의 정수)의 촬상 화상을 생성하고, 상기 외란 추정 스텝에서는, 1매째의 촬상 화상에 상기 외란이 발생되어 있지 않다고 간주하고 상기 높이 변동량이 산출되는 것이 바람직하다.
상기 제1 카메라 및 상기 제2 카메라의 촬상 타이밍은, 서로 인접하는 촬상 시각에 촬상한 상기 제2 카메라의 촬상 화상에 있어서, 공통적으로 상기 보정용 광 절단선이 조사되어 있는 상기 피측정 강체의 부분인 공통 조사 영역이 존재하도록 제어되어 있고, 상기 외란 추정 스텝에서는, 상기 제1 보정용 광 절단선 및 상기 제2 보정용 광 절단선의 각각에서의 상기 공통 조사 영역에 해당되는 상기 복수의 점에 대해, 상기 외란에 기인하는 높이 변화값이 산출되는 것이 바람직하다.
상기 외란 추정 스텝에서는, 상기 제2 카메라의 i+1매째(i=1, 2, ···, N-1)의 촬상 화상으로부터 얻어지는 상기 높이 변화값을 포함하는 겉보기 표면 높이와, 상기 제2 카메라의 i매째의 촬상 화상으로부터 얻어지는, 당해 촬상 화상의 상기 공통 조사 영역에 있어서의 상기 높이 변화값을 제거한 후의 표면 높이를 사용하여, 상기 i+1매째의 촬상 화상에 있어서의 상기 높이 변화값과, 당해 높이 변화값을 제거한 후의 표면 높이가 산출되는 것이 바람직하다.
상기 외란 추정 스텝에서는, 상기 제2 카메라의 1매째의 촬상 화상을 기준으로 하여, 상기 제2 카메라의 i매째(i=2, ···, N)의 촬상 화상에 있어서의 상기 높이 변화값이 산출되는 것이 바람직하다.
상기 제1 선형 레이저 광원, 상기 제2 선형 레이저 광원 및 상기 제3 선형 레이저 광원은, 각각의 광원의 광축이 상기 피측정 강체의 길이 방향 및 폭 방향으로 규정되는 평면에 대해 수직으로 되도록 배치되는 것이 바람직하다.
상기 제1 카메라의 광축과 상기 제1 선형 레이저 광원의 광축이 이루는 각, 상기 제2 카메라의 시선과 상기 제2 선형 레이저 광원의 광축이 이루는 각, 및 상기 제2 카메라의 시선과 상기 제3 선형 레이저 광원의 광축이 이루는 각은, 서로 독립적으로, 30도 이상 60도 이하인 것이 바람직하다.
이상 설명한 바와 같이 본 발명에 따르면, 반송 시에, 높이 방향의 평행 이동, 길이 방향 축 주위의 회전 또는 폭 방향 축 주위의 회전의 3개의 외란 중 어느 것이 발생한 경우라도, 피측정 강체의 표면 높이를 더 정확하게 측정하는 것이 가능해진다.
도 1은 본 발명의 실시 형태에 관한 형상 측정 장치의 구성을 모식적으로 도시한 설명도이다.
도 2는 동 실시 형태에 관한 형상 측정 장치가 구비하는 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 3은 동 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 4는 동 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 5는 동 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 6은 동 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 7은 동 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
도 8은 피측정 강체에 발생할 수 있는 외란에 대해 설명하기 위한 모식도이다.
도 9는 피측정 강체에 발생할 수 있는 외란에 대해 설명하기 위한 모식도이다.
도 10은 피측정 강체에 발생할 수 있는 외란에 대해 설명하기 위한 모식도이다.
도 11은 피측정 강체에 발생할 수 있는 외란에 대해 설명하기 위한 모식도이다.
도 12는 동 실시 형태에 관한 형상 측정 장치에 구비되는 연산 처리 장치의 화상 처리부의 구성의 일례를 나타낸 블록도이다.
도 13은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 14는 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 15는 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 16은 동 실시 형태에 관한 화상 처리부가 구비하는 외란 추정부의 구성 일례를 나타낸 블록도이다.
도 17은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 18은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 19는 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 20은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 21은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 22는 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 23은 동 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다.
도 24는 동 실시 형태에 관한 형상 데이터 산출부가 실시하는 형상 데이터 산출 처리에 대해 설명하기 위한 설명도이다.
도 25는 동 실시 형태에 관한 보정 처리부가 실시하는 보정 처리에 대해 설명하기 위한 설명도이다.
도 26은 동 실시 형태에 관한 보정 처리부가 실시하는 보정 처리에 대해 설명하기 위한 설명도이다.
도 27은 동 실시 형태에 관한 촬상 장치의 변형예를 모식적으로 도시한 설명도이다.
도 28은 동 실시 형태에 관한 촬상 장치의 변형예를 모식적으로 도시한 설명도이다.
도 29a는 동 실시 형태에 관한 형상 측정 방법의 흐름의 일례를 나타낸 흐름도이다.
도 29b는 동 실시 형태에 관한 형상 측정 방법의 흐름의 일례를 나타낸 흐름도이다.
도 30은 동 실시 형태에 관한 연산 처리 장치의 하드웨어 구성의 일례를 나타낸 블록도이다.
도 31a는 실험예 1에 대해 설명하기 위한 설명도이다.
도 31b는 실시예 1에 대해 설명하기 위한 설명도이다.
도 31c는 실험예 1의 결과를 나타낸 그래프도이다.
도 31d는 실험예 1의 결과를 나타낸 그래프도이다.
도 32a는 실험예 2에 대해 설명하기 위한 설명도이다.
도 32b는 실시예 2에 대해 설명하기 위한 설명도이다.
도 32c는 실험예 2의 결과를 나타낸 그래프도이다.
도 32d는 실험예 2의 결과를 나타낸 그래프도이다.
도 33a는 실험예 3에 대해 설명하기 위한 설명도이다.
도 33b는 실시예 3에 대해 설명하기 위한 설명도이다.
도 33c는 실험예 3의 결과를 나타낸 그래프도이다.
도 33d는 실험예 3의 결과를 나타낸 그래프도이다.
이하에 첨부 도면을 참조하면서, 본 발명의 적합한 실시 형태에 대해 상세하게 설명한다. 또한, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는, 동일한 번호를 붙임으로써 중복 설명을 생략한다.
(형상 측정 장치의 전체 구성에 대해)
이하에서는, 먼저, 도 1을 참조하면서, 본 발명의 실시 형태에 관한 형상 측정 장치(10)의 전체 구성에 대해 설명한다. 도 1은, 본 실시 형태에 관한 형상 측정 장치의 구성을 모식적으로 도시한 설명도이다.
본 실시 형태에 관한 형상 측정 장치(10)는, 피측정 강체의 길이 방향을 따라 당해 피측정 강체에 대해 상대 이동하는 복수의 선형 레이저 광원으로부터, 피측정 강체의 표면으로 조사된, 복수의 선형 레이저광에 의한 복수의 광 절단선에 의해, 소위 광 절단법에 의해, 피측정 강체의 형상을 측정하는 장치이다. 이하에서는, 피측정 강체가 제조 라인 상에서 반송되는 경우를 예로 들어 설명을 행하는 것으로 한다.
또한, 이하의 설명에서는, 도 1에 도시한 바와 같이, 형상 측정 장치(10)가 배치되어 있는 공간에 설정된 공간 좌표계를 사용하는 것으로 한다. 또한, 설명의 편의상, 피측정 강체(S)의 폭 방향을 (공간 좌표계에서의)C축 방향으로 하고, 피측정 강체(S)의 길이 방향, 즉 반송 방향을 L축 방향으로 하고, 피측정 강체(S)의 높이 방향을 Z축 방향으로 한다.
여기서, 본 실시 형태에서 착안하는 피측정 강체(S)는, 이하에서 설명하는 형상 측정 처리 시에, 그 형상이나 체적이 변화되지 않는다고 간주하는 것이 가능한 물체로 한다. 따라서, 예를 들어 철강업에 있어서의 반제품인 슬래브나 후판 등은, 본 실시 형태에 있어서의 피측정 강체(S)로서 취급하는 것이 가능하다. 또한, 철강업에 있어서의 슬래브나 후판뿐만 아니라, 예를 들어 티타늄, 구리, 알루미늄 등과 같은 철 이외의 각종 금속, 세라믹스, 복합 재료의 슬래브나 후판 등에 대해서도, 본 실시 형태에 있어서의 피측정 강체(S)로서 취급하는 것이 가능하다.
본 실시 형태에 관한 형상 측정 장치(10)는, 도 1에 도시한 바와 같이, 피측정 강체(S)의 표면에 대해 복수의 선형 레이저광을 조사함과 함께, 피측정 강체(S)의 표면에서의 선형 레이저광의 반사광을 촬상하는 촬상 장치(100)와, 촬상 장치(100)에 의해 촬상된 화상에 대해 소정의 화상 처리를 실시하여, 피측정 강체(S)의 3차원 형상(즉, L축-C축 평면의 각 위치에 있어서의 표면 높이)을 산출하는 연산 처리 장치(200)를 구비한다.
촬상 장치(100)는, 피측정 강체(S)의 표면에 대해 3개의 선형 레이저광을 조사함과 함께, 피측정 강체(S)의 표면을 길이 방향을 따라 소정의 길이 방향 간격에 대응하는 각 시각에서 순차 촬상하고, 촬상의 결과 얻어지는 촬상 화상(광 절단 화상)을 후술하는 연산 처리 장치(200)에 출력하는 장치이다. 촬상 장치(100)는, 후술하는 연산 처리 장치(200)에 의해, 피측정 강체(S)로의 선형 레이저광의 조사 타이밍이나, 피측정 강체(S)의 표면의 촬상 타이밍 등이 제어되어 있다. 이러한 촬상 장치(100)는, 예를 들어 촬상 장치(100)에 대한 피측정 강체(S)의 길이 방향 위치의 변화에 수반하여, 피측정 강체(S)의 반송을 제어하고 있는 구동 기구 등에 설치된 PLG(Pulse Logic Generator: 펄스형 속도 검출기)로부터 출력되는 PLG 신호 등에 기초하여, 피측정 강체(S)가 소정 거리(예를 들어, 1㎜ 등) 이동할 때마다, 1회의 촬상 처리를 행한다.
또한, 연산 처리 장치(200)는, 촬상 장치(100)에 의해 생성된 각 시각에 있어서의 광 절단 화상에 대해, 이하에서 설명하는 화상 처리를 행함으로써, 피측정 강체(S)의 3차원 형상을 산출하는 장치이다.
이하에서는, 이들 촬상 장치(100) 및 연산 처리 장치(200)에 대해, 도면을 참조하면서 상세하게 설명한다.
<촬상 장치에 대해>
계속해서, 도 2 내지 도 7을 참조하면서, 본 실시 형태에 관한 형상 측정 장치(10)가 구비하는 촬상 장치(100)에 대해, 상세하게 설명한다. 도 2 내지 도 7은, 본 실시 형태에 관한 촬상 장치의 구성을 모식적으로 도시한 설명도이다.
본 실시 형태에 관한 촬상 장치(100)는, 도 2에 모식적으로 도시한 바와 같이, 각각이 선형 레이저광을 사출하는 3대의 선형 레이저 광원(101a, 101b, 101c)(이하, 통합하여 「선형 레이저 광원(101)」이라고도 함)과, 2대의 에어리어 카메라(111, 113)를 주로 구비한다. 여기서, 선형 레이저 광원(101a)은 제1 선형 레이저 광원의 일례이고, 선형 레이저 광원(101b)은 제2 선형 레이저 광원의 일례이고, 선형 레이저 광원(101c)은 제3 선형 레이저 광원의 일례이다. 또한, 에어리어 카메라(111)는 제1 카메라의 일례이고, 에어리어 카메라(113)는 제2 카메라의 일례이다.
또한, 도 2 이후의 도면에서는, 촬상 장치(100)가 2대의 에어리어 카메라를 갖는 경우를 예로 들어 설명을 행하지만, 본 실시 형태에 관한 촬상 장치(100)가 구비하는 에어리어 카메라의 대수는, 이러한 예에 한정되는 것은 아니다. 또한, 촬상 장치(100)가 3대의 에어리어 카메라를 구비하는 경우에 대해서는, 후술한다.
선형 레이저 광원(101)은, 측정 대상물인 피측정 강체(이하, 단순히 「강체」라고도 칭함)(S)의 표면에 대해 선형의 레이저광(선형 레이저광)을 조사하는 장치이다. 본 실시 형태에 관한 선형 레이저 광원(101)은, 강체(S)의 표면에 대해 선형 레이저광을 조사 가능한 것이면, 임의의 광원을 이용하는 것이 가능하지만, 선형 레이저 광원(101)은 레이저 광원 및 로드 렌즈 등의 각종 렌즈를 사용하여 구성하는 것이 가능하다.
레이저 광원으로서는, 예를 들어 연속적으로 레이저 발진을 행하는 CW(Continuous Wave) 레이저 광원을 사용하는 것이 가능하다. 레이저 광원이 발진하는 레이저광의 파장은, 예를 들어 400㎚ 내지 800㎚ 정도의 가시광 대역에 속하는 파장인 것이 바람직하다. 이러한 레이저 광원은, 후술하는 연산 처리 장치(200)로부터 송출되는 발진 타이밍 제어 신호에 기초하여, 레이저광의 발진을 행한다.
또한, 레이저 광원으로서, 펄스상의 레이저 발진을 행하는 펄스 레이저 광원을 사용한 경우라도, 펄스 레이저의 발진 타이밍과, 에어리어 카메라(111, 113)의 촬상 타이밍을 동기시킴으로써, CW 레이저 광원과 마찬가지로 취급하는 것이 가능하다.
로드 렌즈는, 레이저 광원으로부터 사출된 레이저광을, 강체(S)의 표면을 향해 부채 형상의 면으로 확대하는 렌즈이다. 이에 의해, 레이저 광원으로부터 사출된 레이저광은 선형 레이저광이 되어, 강체(S)의 표면에 조사된다. 또한, 후술하는 연산 처리 장치(200)에 있어서의 화상 처리의 관점에서, 로드 렌즈에 의해 얻어지는 부채 형상의 면이 Z축과 평행해지도록 레이저 광원을 설치하는 것이 바람직하다. 또한, 본 실시 형태에 관한 선형 레이저 광원(101)에서는, 레이저광을 부채 형상으로 확대하는 것이 가능한 것이면, 실린드리컬 렌즈나 파월 렌즈 등과 같은 로드 렌즈 이외의 렌즈를 이용하는 것도 가능하다.
선형 레이저광이 조사된 강체(S)의 표면에는, 선형의 밝은 부위(도 2 등에서는, 흑색선으로서 나타내고 있음)가 형성된다. 본 실시 형태에 관한 촬상 장치(100)에서는, 3대의 선형 레이저 광원(101a, 101b, 101c)을 사용하고 있기 때문에, 3개의 밝은 부위가 형성된다. 이들 선형의 밝은 부위를, 광 절단선이라고 칭한다. 강체(S)의 표면에서의 광 절단선의 반사광은, 에어리어 카메라까지 전파되어, 에어리어 카메라에 설치된 촬상 소자에 결상하고, 에어리어 카메라에 의해 촬상된다.
이하의 설명에서는, 선형 레이저 광원(101a)에 의해 얻어지는 광 절단선을, 광 절단선 La라고 하고, 선형 레이저 광원(101b)에 의해 얻어지는 광 절단선을, 광 절단선 Lb라고 하고, 선형 레이저 광원(101c)에 의해 얻어지는 광 절단선을, 광 절단선 Lc라고 한다. 또한, 광 절단선 La, Lb, Lc를 통합하여, 「광 절단선 L」이라고도 한다. 여기서, 광 절단선 La는, 형상 측정용 광 절단선의 일례이다. 또한, 광 절단선 Lb 및 광 절단선 Lc는, 보정용 광 절단선의 일례이며, 예를 들어 광 절단선 Lb가 제1 보정용 광 절단선에 대응하고, 광 절단선 Lc가 제2 보정용 광 절단선에 대응한다.
여기서, 본 실시 형태에 관한 선형 레이저 광원(101)은, 도 2에 예시한 바와 같이, 이하의 3개의 조건을 모두 만족시키도록 반송 라인 상에 설치된다.
·광 절단선 La와 광 절단선 Lb가 교점 A를 갖는다.
·광 절단선 La와 광 절단선 Lc가 교점 B를 갖는다.
·광 절단선 Lb와 광 절단선 Lc는, 모두 L축과 평행하고, 광 절단선 Lb와 광 절단선 Lc는, 강체(S)의 표면 상의 서로 다른 폭 방향 위치에 존재한다.
소위 광 절단법에서는, 도 2에 나타낸 광 절단선 La만을 이용하여, 광 절단선 La에 의해 조사되는 강체(S)의 길이 방향 위치의 표면 높이를 산출하고, 얻어진 표면 높이를 강체(S)와 촬상 장치의 상대 이동(예를 들어, 강체(S)의 반송)에 따라서 길이 방향으로 연결함으로써, 강체(S) 전체의 표면 높이를 구할 수 있다. 그러나, 강체(S)의 반송 중에 외란이 발생하는 경우, 1개의 광 절단선을 사용한 광 절단법에 의해 얻어지는 표면 높이는, 외란을 포함한 겉보기 표면 높이이며, 실제의 표면 높이와는 상이한 오차를 포함한 계측값이 된다.
그래서, 본 실시 형태에 관한 형상 측정 장치(10)에서는, 이하에서 상세하게 서술하는 바와 같이, 강체(S)의 길이 방향으로 연장되는 광 절단선 Lb를 더하여, 광 절단선 Lb 상의 길이 방향 위치의 각 점과 외란 기인의 표면 높이 변화의 관계를 직선 근사시킨다. 그리고 나서, 본 실시 형태에 관한 형상 측정 장치(10)에서는, 광 절단선 La가 존재하는 길이 방향 위치(즉, 광 절단선 La와 광 절단선 Lb의 교점 A)에 있어서의 근사 직선의 값을, 광 절단선 La의 외란 기인의 표면 높이 변화로서, 일의적으로 확정한다. 여기서, 본 실시 형태에 관한 형상 측정 장치(10)에서는, 측정 대상물이 강체라는 점에서, 외란에 의한 겉보기 표면 높이의 외란 제거 후의 표면 높이로부터의 변화(즉, 외란에 의한 겉보기 표면 높이의 실제의 표면 높이로부터의 변화)는, 길이 방향을 따라 직선 형상으로 변화된다. 따라서, 광 절단선 Lb 상의 각 점에 있어서의 측정값을 직선 근사시킴으로써, 측정 오차에 의한 값의 변동을 흡수하는 효과가 있다. 이러한 광 절단선 Lb의 추가에 의해, Z 방향의 상하 이동(근사 직선의 값이, 길이 방향 위치에 상관없이 일정 값을 취한다. 즉, 근사 직선의 기울기가 0), C축 주위의 회전(근사 직선이, 길이 방향 위치에 대해 일정한 기울기를 가짐)이라고 하는 2종류의 외란의 크기를 일의적으로 구하는 것이 가능해진다.
본 실시 형태에 관한 형상 측정 장치(10)에서는, 광 절단선 Lb와는 상이한 폭 방향 위치에 대해 광 절단선 Lc를 더 추가하여, 광 절단선 Lb와 마찬가지의 처리를 실시한다. 이에 의해, 본 실시 형태에 관한 형상 측정 장치(10)에서는, 외란 기인의 표면 높이의 변화와 폭 방향 위치의 관계를 특정하는 것이 가능해지고, L축 주위의 회전의 크기도 도출하는 것이 가능해진다.
따라서, 본 실시 형태에 관한 형상 측정 장치(10)에서는, 상기와 같은 3개의 광 절단선을 이용함으로써, 반송 시에, 높이 방향의 평행 이동, 길이 방향 축 주위의 회전, 또는 폭 방향 축 주위의 회전의 3개의 외란 중 어느 것이 발생한 경우라도, 피측정 강체의 표면 높이를 더 정확하게 측정하는 것이 가능해진다.
또한, 도 2 이후의 도면에서는, 광 절단선 La와 광 절단선 Lb가 직교하는 경우, 및 광 절단선 La와 광 절단선 Lc가 직교하는 경우에 대해 도시하고 있지만, 광 절단선의 배치(즉, 선형 레이저 광원(101)의 배치)는, 이들 도면에 나타낸 경우에 한정되는 것은 아니다. 즉, 광 절단선 La와, 광 절단선 Lb 및 절단선 Lc가 직교하지 않는 경우에 있어서도, 이하의 설명은 마찬가지로 성립된다. 이것은, 이하에서 상세하게 설명하는 바와 같이, 본 실시 형태에서는, 상기 근사 직선을 이용하여 교점 A 및 교점 B에 있어서의 외란의 크기를 산출하고 있어, 2개의 광 절단선이 직교하지 않아도 되기 때문이다. 또한, 도 2 이후의 도면에서는, 강체(S)의 표면이 평탄한 경우에 대해 도시하고 있지만, 이하의 설명은, 이들 도면에 나타낸 경우에 한정되는 것은 아니며, 강체(S)의 표면이 평탄하지 않은 경우에도 마찬가지로 성립된다. 그 이유에 대해서는, 별도로 설명한다.
또한, 광 절단선 L의 구체적인 길이에 대해서는, 특별히 한정되는 것은 아니며, 강체(S)의 표면에 있어서, 광 절단선의 휘도 분포가 균일해지도록 적절하게 길이를 결정하면 된다. 또한, 광 절단선 Lb, Lc의 폭 방향 위치에 대해서도 특별히 한정되는 것은 아니며, 어떠한 폭의 강체(S)가 반송 라인 상에서 반송된 경우라도, 광 절단선 Lb, Lc가 강체(S)의 표면에 존재하도록 그 위치를 설정하면 된다.
에어리어 카메라(111, 113)에는, 소정의 초점 거리를 갖는 렌즈와, CCD(Charge Coupled Device), 또는 CMOS(Complementary Metal Oxide Semiconductor) 등의 촬상 소자가 탑재되어 있다. 에어리어 카메라(111, 113)는, 강체(S)의 표면에 대해 조사된 선형 레이저광의 반사광인 광 절단선을, 강체(S)가 소정의 거리만큼 이동할 때마다 촬상하여, 광 절단 화상을 생성한다. 그리고 나서, 에어리어 카메라(111, 113)는, 생성된 광 절단 화상을, 후술하는 연산 처리 장치(200)에 출력한다.
여기서, 에어리어 카메라(111, 113)는, 후술하는 연산 처리 장치(200)에 의해 제어되어 있고, 강체(S)가 소정의 거리만큼 이동할 때마다, 연산 처리 장치(200)로부터 촬상을 위한 트리거 신호가 출력된다. 에어리어 카메라(111, 113)는, 연산 처리 장치(200)로부터 출력된 트리거 신호에 따라서, 선형 레이저광이 조사된 강체(S)의 표면을 촬상하여 광 절단 화상을 생성하고, 생성된 광 절단 화상을 연산 처리 장치(200)에 출력한다. 이에 의해, 연산 처리 장치(200)에는, 각 에어리어 카메라(111, 113)로부터, 각각 N매(N은, 2 이상의 정수)의 촬상 화상이 출력된다.
도 3에 모식적으로 나타낸 바와 같이, 선형 레이저 광원(101a)은, 이러한 광원으로부터 사출된 선형 레이저광을 포함하는 평면이 L축-C축 평면에 대해 수직으로 되도록(바꾸어 말하면, 선형 레이저 광원(101a)의 광축이 Z축에 대해 대략 평행해지도록) 반송 라인에 설치된다. 이러한 설치 조건을 만족시키지 않는 경우, 선형 레이저광은, 후술하는 외란에 의해, 강체(S)의 길이 방향 위치의 상이한 부분을 조사하게 되어, 정확한 표면 형상의 측정을 행하는 것이 곤란해진다. 선형 레이저 광원(101b, 101c)에 대해서도, 상기와 마찬가지의 이유에 의해, 도 4에 나타낸 바와 같이, 사출된 선형 레이저광을 포함하는 평면이 L축-C축 평면에 대해 수직으로 되도록(바꾸어 말하면, 선형 레이저 광원(101b, 101c)의 광축이 Z축에 대해 대략 평행해지도록), 각 광원이 반송 라인에 설치된다.
상기한 바와 같이 광원을 설치한 경우라도, 외란에 의해 각 광 절단선 La, Lb, Lc에 대해 평행한 축 주위로 강체(S)가 회전한 경우(예를 들어, 광 절단선 La에 대해서는 C축 주위, 광 절단선 Lb, Lc에 대해서는 L축 주위로 강체(S)가 회전한 경우)에는, 엄밀하게는 선형 레이저광의 조사 위치가 동일하지는 않게 된다. 그러나, 강체(S)의 실제의 표면 높이가 매끄럽게 변화되는 것, 및 강체(S)의 회전량이 크지 않은 것을 가정하면, 이러한 회전이 있었던 경우라도, 선형 레이저광은, 강체(S)의 표면의 동일 위치를 조사하고 있다고 생각할 수 있다. 특히, 슬래브나 후판 등과 같은 질량이 큰 강체(S)의 표면 형상에 착안하는 경우, 후자의 가정은 적절하다고 할 수 있다.
선형 레이저 광원(101a)과 에어리어 카메라(111) 사이의 광학적인 위치 관계에 대해, 도 3에 나타낸 바와 같이, L축-Z축 평면에 있어서 에어리어 카메라(111)의 광축과 선형 레이저 광원(101a)의 광축(바꾸어 말하면, Z축)이 이루는 각 α1의 크기는, 임의의 값으로 설정하는 것이 가능하다. 그러나, 이러한 각 α1의 크기는, 30도 내지 60도 정도로 하는 것이 바람직하다. 각도 α1<30도로 되는 경우에는, 동일한 높이 변화에 대해, 카메라 시야 내에서의 광 절단선 La의 이동량이 적어져, 높이 방향을 따른 분해능이 저하된다. 한편, 각도 α1>60도로 되는 경우에는, 에어리어 카메라(111)가 선형 레이저 광원(101a)의 정반사 방향으로부터 이격되어, 에어리어 카메라(111)에 의해 촬영되는 광 절단선 La가 어둡게 되어 버려, 동일 밝기로 촬영을 실시하기 위해서는, 더 고출력의 레이저가 필요하게 되어 버린다.
또한, 도 5에 나타낸 바와 같이, L축-C축 평면에 투영된 에어리어 카메라(111)의 광축과, 광 절단선 La가 서로 직교하도록, 에어리어 카메라(111)를 설치하는 것이 바람직하다. 이에 의해, 에어리어 카메라(111)로부터 본 광 절단선 La의 C축 방향의 분해능(1픽셀에 상당하는 길이(단위: ㎜))을 정렬시키는 것이 가능해진다. 단, 앞서 언급한 바와 같이, 광 절단선 La와 광 절단선 Lb, Lc는 직교하고 있지 않아도 된다. 즉, 광 절단선 La는, 폭 방향(C 축 방향)에 대해 평행하지 않아도 된다. 이것은, 전술한 바와 같이, 교점 A, 교점 B에 있어서의 외란량을 산출하기 위해서는, 광 절단선 La와 광 절단선 Lb, Lc가 직교하고 있지 않아도 되기 때문이다.
여기서, 도 5에 모식적으로 나타낸 것 같이, 에어리어 카메라(111)는 광 절단선 La 전체가 촬상 시야에 포함되도록, 에어리어 카메라(111)의 촬상 영역 AR1이 설정된다.
선형 레이저 광원(101b, 101c)과 에어리어 카메라(113) 사이의 광학적인 위치 관계에 대해, 도 4에 모식적으로 나타낸 바와 같이, C축-Z축 평면에 있어서의 광 절단선 Lb, Lc에 대한 에어리어 카메라(113)의 시선과, 각각의 선형 레이저 광원(101b, 101c)의 광축(바꾸어 말하면, Z축)이 이루는 각 α2, α3의 크기는, 각도 α1과 마찬가지로 임의의 값으로 설정하는 것이 가능하다. 그러나, 각도 α1과 마찬가지의 이유에 의해, 각 α2, α3의 크기는, 각각 30도 내지 60도 정도로 하는 것이 바람직하다.
또한, 광 절단선 La와 에어리어 카메라(111)의 관계와 마찬가지로, L축-C축 평면에 있어서의 광 절단선 Lb와, L축-C축 평면에 투영된 에어리어 카메라(113)의 광축은 서로 직교하는 것이 바람직하다. 이때, 광 절단선 Lb와 광 절단선 Lc는 서로 평행하다는 점에서, 광 절단선 Lb에 대해 이러한 조건이 성립되면, 광 절단선 Lc에 대해서도 자동적으로 조건이 충족된다.
여기서, 도 6에 모식적으로 나타낸 바와 같이, 에어리어 카메라(113)는, 교점 A 및 교점 B가 촬상 시야에 포함되도록 에어리어 카메라(113)의 촬상 영역 AR2가 설정된다. 여기서, 도 6에서는 광 절단선 Lb, Lc 전체가 촬상 시야에 포함되어 있는 경우를 도시하고 있지만, 적어도 교점 A 및 교점 B가 촬상 시야에 포함되어 있으면, 후술하는 외란 추정 처리를 실시 가능하다. 또한, 후술하는 외란 추정 처리의 정밀도를 높이기 위해, 광 절단선 Lb, Lc 전체를 촬상 시야에 포함하는 것이 바람직하다.
또한, 에어리어 카메라(111, 113)의 촬상 타이밍은, 예를 들어 도 7에 모식적으로 나타낸 바와 같이, 서로 인접하는 시각(예를 들어, i매째의 촬상 시각(i는, 1 이상의 정수)과, i+1매째의 촬상 시각)에 촬상한 에어리어 카메라(113)의 촬상 화상에 있어서, 공통적으로 광 절단선이 조사되어 있는 강체(S)의 부분(이하, 「공통 조사 부분」이라고 함)이 존재하도록 설정된다. 이하에서 상세하게 서술하는 바와 같이, 본 실시 형태에 관한 연산 처리 장치(200)에서는, 공통 조사 부분에 있어서의 광 절단선 Lb, Lc에 착안하여, 외란의 크기를 산출하기 때문이다. 또한, 도 7에서는, 강체(S)의 표면이 평탄하고, 또한 연속된 2매의 화상 사이에 외란이 발생되어 있지 않은 경우에 대해 도시하고 있지만, 강체(S)의 표면이 평탄하지 않은 경우, 또는 연속된 2매의 화상 사이에 외란이 발생하고 있는 경우라도 공통 조사 부분은 존재한다.
이상, 도 2 내지 도 7을 참조하면서, 본 실시 형태에 관한 촬상 장치(100)의 구성에 대해 상세하게 설명하였다.
<피측정 강체에 발생하는 외란에 대해>
다음으로, 도 8 내지 도 11을 참조하면서, 피측정 강체(S)에 발생하는 외란과, 이러한 외란에 수반하여 촬상되는 촬상 화상(광 절단 화상)에 대해 구체적으로 설명한다. 도 8 내지 도 11은, 피측정 강체에 발생할 수 있는 외란에 대해 설명하기 위한 모식도이다.
본 실시 형태에 관한 형상 측정 장치(10)는, 슬래브나 후판 등의 강체가 연속적으로 반송될 때 등에, 강체(S)의 표면 높이를 측정하는 것이다. 여기서, 강체(S)의 반송 중에는, 반송 라인 등에 설치된 구동 기구에 기인하는 진동 등과 같이, 다양한 측정 오차의 요인이 있다.
본 실시 형태에 관한 형상 측정 장치(10)에서는, 도 8에 나타낸 바와 같이, 측정 오차의 요인으로서 다음의 3개에 착안한다.
(1) Z축 방향(강체(S)의 높이 방향)의 평행 이동
(2) L축(강체(S)의 길이 방향) 주위의 회전
(3) C축(강체(S)의 폭 방향) 주위의 회전
이하, 이들 3개의 측정 오차의 요인을 통합하여, 외란이라고도 칭한다.
도 9 내지 도 11을 참조하면서, 표면이 평탄한 강체(S)를 대상으로, 외란의 유무에 의해 발생하는, 에어리어 카메라(113)에 의해 촬영되는 촬상 화상의 변화를 설명한다.
또한, 도 9 내지 도 11에서는, 강체(S)의 표면이 평탄한 경우에 착안하여 도시하고 있지만, 이하의 설명은, 도 9 내지 도 11에 도시한 경우에 한정되는 것은 아니며, 강체(S)의 표면이 평탄하지 않은 경우에도 모두 마찬가지로 성립된다. 강체(S)의 표면이 평탄하지 않은 경우, 광 절단선 자체는 곡선이 되기는 하지만, 외란의 유무에 의한 광 절단선의 변화는, 평탄한 경우와 마찬가지로 길이 방향을 따라 직선적으로 변화되기 때문이다.
먼저, 서로 다른 2개의 시각의 2매의 화상(예를 들어, i매째의 촬상 화상과 i+1매째의 촬상 화상) 사이에 상기와 같은 외란이 발생하고 있지 않은 경우에는, 각각의 광 절단선 L의 위치는, 촬상 화상 사이에서 변화되지 않는다. 그러나, i+1매째의 촬상 시에 외란으로서 Z축 방향의 평행 이동이 발생한 경우에는, 도 9에 도시한 바와 같이, 광 절단선 La, Lb, Lc 각각은, 서로 동일한 양만큼 화상 내를 세로 방향으로 평행 이동한다. 또한, i+1매째의 촬상 시에 외란으로서 L축 주위의 회전이 발생한 경우에는, 도 10에 도시한 바와 같이, 광 절단선 La의 기울기나 길이가 변화됨과 함께, 광 절단선 Lb, Lc는, 서로 다른 양만큼 화상 내를 평행 이동한다. 또한, i+1매째의 촬상 시에 외란으로서 C축 주위의 회전이 발생한 경우에는, 도 11에 나타낸 바와 같이, 광 절단선 Lb, Lc의 기울기가 변화되게 된다.
그래서, 이하에서 상세하게 설명하는 연산 처리 장치(200)에서는, 에어리어 카메라(113)에 의해 얻어지는 연속된 2매의 화상을 비교함으로써, 강체(S)에 발생한 외란에 기인하는 표면 높이의 변화(Z 좌표의 변화)를, 각각의 화상 촬상 시각에서 산출한다. 그 후, 얻어진 외란에 기인하는 표면 높이의 변화(바꾸어 말하면, 외란의 크기)에 기초하여, 에어리어 카메라(111)의 광 절단 화상으로부터 얻어지는, 외란에 의한 측정 오차가 중첩되어 있는 표면 높이를 보정하고, 실제의 표면 높이를 출력한다.
<연산 처리 장치에 대해>
다음으로, 도 1 및 도 12 내지 도 26을 참조하면서, 본 실시 형태에 관한 형상 측정 장치(10)가 구비하는 연산 처리 장치(200)에 대해 상세하게 설명한다. 도 12는, 본 실시 형태에 관한 형상 측정 장치가 구비하는 연산 처리 장치의 화상 처리부의 구성의 일례를 나타낸 블록도이다. 도 14 및 도 15, 그리고 도 17 내지 도 23은 본 실시 형태에 관한 외란 추정부가 실시하는 외란 추정 처리에 대해 설명하기 위한 설명도이다. 도 16은, 본 실시 형태에 관한 화상 처리부가 구비하는 외란 추정부의 구성의 일례를 나타낸 블록도이다. 도 24는, 본 실시 형태에 관한 형상 데이터 산출부가 실시하는 형상 데이터 산출 처리에 대해 설명하기 위한 설명도이다. 도 25 및 도 26은, 본 실시 형태에 관한 보정 처리부가 실시하는 보정 처리에 대해 설명하기 위한 설명도이다.
[연산 처리 장치의 전체 구성에 대해]
다시 도 1로 되돌아가, 본 실시 형태에 관한 형상 측정 장치(10)가 구비하는 연산 처리 장치(200)의 전체 구성에 대해 설명한다.
본 실시 형태에 관한 연산 처리 장치(200)는, 도 1에 도시한 바와 같이, 촬상 제어부(201)와, 화상 처리부(203)와, 표시 제어부(205)와, 기억부(207)를 주로 구비한다.
촬상 제어부(201)는, 예를 들어 CPU(Central Processing Unit), ROM(Read Only Memory), RAM(Random Access Memory), 통신 장치 등에 의해 실현된다. 촬상 제어부(201)는, 본 실시 형태에 관한 촬상 장치(100)에 의한 강체(S)의 촬상 처리를 통괄하여 제어한다.
더 상세하게는, 촬상 제어부(201)는, 강체(S)의 촬상을 개시하는 경우에, 촬상 장치(100)에 대해 선형 레이저 광원(101)의 발진을 개시시키기 위한 제어 신호를 송출한다. 또한, 촬상 장치(100)가 강체(S)의 촬상을 개시하면, 촬상 제어부(201)는, 강체(S)의 반송을 제어하고 있는 구동 기구 등으로부터 정기적으로 송출되는 PLG 신호(예를 들어, 강체(S)가 1㎜ 이동할 때마다 등에 출력되는 PLG 신호)를 취득할 때마다, 에어리어 카메라(111, 113)에 대해 촬상을 개시하기 위한 트리거 신호를 송출한다.
화상 처리부(203)는, 예를 들어 CPU, ROM, RAM, 통신 장치 등에 의해 실현된다. 화상 처리부(203)는, 에어리어 카메라(111, 113)가 생성한 촬상 데이터(즉, 광 절단 화상에 관한 촬상 화상 데이터)를 취득하고, 이러한 촬상 데이터에 대해 이하에서 설명하는 화상 처리를 행하여, 강체(S)의 표면 전체의 높이를 3차원 형상 데이터로서 산출한다. 화상 처리부(203)는, 강체(S)의 표면 높이의 산출 처리를 종료하면, 얻어진 산출 결과에 관한 정보를, 표시 제어부(205)나 기억부(207)에 전송하거나, 형상 측정 장치(10)의 외부에 설치된 각종 기기 등에 전송하거나 한다.
또한, 이 화상 처리부(203)에 대해서는, 이하에서 다시 상세하게 설명한다.
표시 제어부(205)는, 예를 들어 CPU, ROM, RAM, 출력 장치, 통신 장치 등에 의해 실현된다. 표시 제어부(205)는, 화상 처리부(203)로부터 전송된, 강체(S)의 측정 결과를, 연산 처리 장치(200)가 구비하는 디스플레이 등의 출력 장치나 연산 처리 장치(200)의 외부에 설치된 출력 장치 등에 표시할 때의 표시 제어를 행한다. 이에 의해, 형상 측정 장치(10)의 이용자는, 강체(S)의 3차원 형상에 관한 계측 결과를, 그 자리에서 파악하는 것이 가능해진다.
기억부(207)는, 연산 처리 장치(200)가 구비하는 기억 장치의 일례이며, 예를 들어 ROM, RAM, 스토리지 장치 등에 의해 실현된다. 이 기억부(207)에는, 화상 처리부(203)에서 실시되는 화상 처리에서 이용되는 광 절단선 L에 관한 교정 데이터가 저장되어 있다. 또한, 기억부(207)에는, 촬상 장치(100)가 갖는 선형 레이저 광원(101), 에어리어 카메라(111, 113)의 광학적인 위치 관계를 나타내는 정보나, 형상 측정 장치(10)의 외부에 설치된 상위 계산기(예를 들어, 반송 라인을 전반적으로 관리하고 있는 관리 컴퓨터 등)로부터 전송되는 정보와 같은, 형상 측정 장치(10)의 설계 파라미터에 관한 정보도 저장되어 있다. 또한, 기억부(207)에는, 본 실시 형태에 관한 연산 처리 장치(200)가 무언가의 처리를 행할 때에 보존할 필요가 발생한 다양한 파라미터나 처리의 도중 경과(예를 들어, 화상 처리부(203)로부터 전송된 계측 결과, 사전에 저장되어 있는 교정 데이터, 각종 데이터베이스 및 프로그램 등)가 적절하게 기록된다. 이 기억부(207)는, 촬상 제어부(201), 화상 처리부(203), 표시 제어부(205) 및 상위 계산기 등이, 자유롭게 데이터의 리드/라이트 처리를 행하는 것이 가능하다.
또한, 기억부(207)에 저장되어 있는 교정 데이터의 상세에 대해서는, 이하에서 다시 설명한다.
[화상 처리부의 구성에 대해]
다음으로, 도 12 내지 도 26을 참조하면서, 연산 처리 장치(200)가 구비하는 화상 처리부(203)의 구성에 대해 설명한다.
본 실시 형태에 관한 화상 처리부(203)는, 도 12에 도시한 바와 같이, 촬상 데이터 취득부(211)와, 외란 추정부(213)와, 형상 데이터 산출부(215)와, 보정부(217)와, 결과 출력부(219)를 구비한다.
촬상 데이터 취득부(211)는, 예를 들어 CPU, ROM, RAM, 통신 장치 등에 의해 실현된다. 촬상 데이터 취득부(211)는, 촬상 장치(100)의 에어리어 카메라(111, 113)로부터 출력된, 광 절단선의 촬상 데이터(즉, 광 절단 화상에 관한 화상 데이터)를 취득한다. 촬상 데이터 취득부(211)는, 에어리어 카메라(113)로부터, 보정용 광 절단선으로서 사용되는 광 절단선 Lb, Lc에 관한 촬상 데이터(바꾸어 말하면, 도 6에 있어서의 촬상 영역 AR2를 촬상한 촬상 데이터)를 취득하면, 이러한 촬상 데이터를, 후술하는 외란 추정부(213)에 대해 출력한다. 또한, 촬상 데이터 취득부(211)는, 에어리어 카메라(111)로부터, 형상 측정용 광 절단선으로서 사용되는 광 절단선 La에 관한 촬상 데이터(바꾸어 말하면, 도 5에 있어서의 촬상 영역 AR1을 촬상한 촬상 데이터)를 후술하는 형상 데이터 산출부(215)에 대해 출력한다.
또한, 촬상 데이터 취득부(211)는, 촬상 장치(100)로부터 취득한 광 절단선에 관한 촬상 데이터에, 당해 촬상 데이터를 취득한 일시 등에 관한 시각 정보를 관련지어 기억부(207) 등에 이력 정보로서 저장해도 된다.
외란 추정부(213)는, 예를 들어 CPU, ROM, RAM 등에 의해 실현된다. 외란 추정부(213)는, 에어리어 카메라(113)에 의해 촬상된, 보정용 광 절단선(즉, 광 절단선 Lb, Lc)의 촬상 데이터를 이용하여, 강체(S)에 발생한 외란의 크기를 추정하는 처리부이다.
더 상세하게는, 외란 추정부(213)는, 강체(S)의 동일 위치에 대해 상이한 2개의 시각에 취득한, 강체(S)의 표면 높이에 관한 높이 측정값으로부터, 당해 위치에 있어서의 외란에 기인하는 높이 변화값을 취득하는 높이 변화값 취득 처리를, 에어리어 카메라(113)로부터 얻어진 촬상 화상에 대해 실시한다. 이때, 외란 추정부(213)는, 광 절단선 Lb의 상이한 길이 방향 위치의 복수의 점에 대해 상기한 높이 변화값 취득 처리를 실시함과 함께, 광 절단선 Lc의 상이한 길이 방향 위치의 복수의 점에 대해, 상기한 높이 변화값 취득 처리를 실시한다. 그리고 나서, 외란 추정부(213)는, 광 절단선 Lb로부터 얻어진 교점 A에 있어서의 높이 변화값과, 광 절단선 Lc로부터 얻어진 교점 B에 있어서의 높이 변화값을 이용하여, 후술하는 형상 데이터 산출부(215)에서 산출되는 형상 데이터에 중첩되어 있는 높이 변동량을 추정한다.
이러한 외란 추정부(213)에 있어서의 외란 추정 처리에 대해서는, 이하에서 다시 상세하게 설명한다.
외란 추정부(213)는, 이하에서 상세하게 서술하는 외란 추정 처리를 종료하면, 얻어진 외란의 추정 결과를, 후술하는 보정부(217)에 출력한다. 또한, 외란 추정부(213)는, 얻어진 외란에 관한 추정 결과를 나타내는 데이터에, 당해 데이터를 생성한 일시 등에 관한 시각 정보를 관련지어, 기억부(207) 등에 이력 정보로서 저장해도 된다.
형상 데이터 산출부(215)는, 예를 들어 CPU, ROM, RAM 등에 의해 실현된다. 형상 데이터 산출부(215)는, 에어리어 카메라(111)에 의해 생성된 각 시각에서의 광 절단선 La에 관한 촬상 화상에 기초하여, 강체(S)의 표면의 3차원 형상을 나타내고, 또한 외란에 기인하는 측정 오차가 중첩된 형상 데이터를 산출한다.
이러한 형상 데이터 산출부(215)에 있어서의 형상 데이터의 산출 처리에 대해서는, 이하에서 다시 설명한다.
형상 데이터 산출부(215)는, 이하에서 설명하는 형상 데이터의 산출 처리를 종료하면, 얻어진 형상 데이터를, 후술하는 보정부(217)에 출력한다. 또한, 형상 데이터 산출부(215)는, 얻어진 형상 데이터에, 당해 형상 데이터를 생성한 일시 등에 관한 시각 정보를 관련지어, 기억부(207) 등에 이력 정보로서 저장해도 된다.
보정부(217)는, 예를 들어 CPU, ROM, RAM 등에 의해 실현된다. 보정부(217)는, 형상 데이터 산출부(215)에 의해 산출된 형상 데이터로부터, 상기 외란 추정부(213)에 의해 산출된 높이 변동량을 차감함으로써, 외란에 기인하는 측정 오차를 보정한다. 이에 의해, 강체(S)에 발생할 수 있는 외란에 수반되는 측정 오차가 제거된, 강체(S)에 관한 실제의 형상 데이터가 생성되게 된다.
이러한 보정부(217)에 있어서의 보정 처리에 대해서는, 이하에서 다시 설명한다.
보정부(217)는, 이하에서 설명하는 보정 처리를 종료하면, 보정된 형상 데이터를, 후술하는 결과 출력부(219)에 출력한다.
결과 출력부(219)는, 예를 들어 CPU, ROM, RAM, 출력 장치, 통신 장치 등에 의해 실현된다. 결과 출력부(219)는, 보정부(217)로부터 출력된, 강체(S)의 표면 형상에 관한 정보를, 표시 제어부(205)에 출력한다. 이에 의해, 강체(S)의 표면 형상에 관한 정보가, 표시부(도시하지 않음)에 출력되게 된다. 또한, 결과 출력부(219)는, 얻어진 표면 형상에 관한 측정 결과를, 제조 관리용 프로세스 컴퓨터 등의 외부의 장치에 출력해도 되고, 얻어진 측정 결과를 이용하여, 각종 전표를 작성해도 된다. 또한, 결과 출력부(219)는, 강체(S)의 표면 형상에 관한 정보를, 당해 정보를 산출한 일시 등에 관한 시각 정보와 관련지어, 기억부(207) 등에 이력 정보로서 저장해도 된다.
○ 외란 추정부(213)에 있어서의 외란 추정 처리에 대해
이하에서는, 도 13 내지 도 23을 참조하면서, 외란 추정부(213)에서 실시되는 외란 추정 처리에 대해, 상세하게 설명한다.
먼저, 외란 추정 처리에 대해 설명하기에 앞서, 이러한 외란 추정 처리에서 사용되는 교정 데이터에 대해 설명한다.
◇ 교정 데이터에 대해
앞서 언급한 바와 같이, 기억부(207)에는, 외란 추정부(213)에 있어서의 외란 추정 처리나, 형상 데이터 산출부(215)에 있어서의 형상 산출 처리에서 사용되는, 광 절단선 L에 관한 교정 데이터가, 미리 저장되어 있다. 기억부(207)에 사전에 저장되는 교정 데이터에는, 제1 교정 데이터 및 제2 교정 데이터라고 하는, 2종류의 교정 데이터가 있다.
제1 교정 데이터는, 에어리어 카메라(111, 113)에 의해 촬상된 촬상 화상 상에서의 광 절단선의 위치 변화량(단위: 픽셀)을 실 공간에서의 양(단위: ㎜나 m 등의 길이의 단위, 이하에서는 ㎜의 단위를 사용하여 설명함)으로 변환하기 위해 필요한 교정 데이터이다.
제1 교정 데이터는, 에어리어 카메라의 통상 촬상 분해능(㎜/픽셀)과, 광 절단선 La, Lb, Lc에 대한 시선과 Z축 방향이 이루는 각 α1, α2, α3으로부터 산출되는 데이터이다. 그러나, 본 발명에 있어서는, 측정 대상인 강체(S)가 카메라 광축에 대해 전후하기 때문에, 엄밀하게는 촬상 분해능이나 각도 α1, α2, α3은 상수가 아니며, 강체(S)의 높이에 따라 상이한 값으로 된다. 따라서, 측정 대상인 강체(S)의 높이 변화가 큰 경우에는, 촬상 화상 중에서의 광 절단선의 위치와, 실 공간에서의 높이의 관계를 나타내는 교정 곡선이 필요해진다. 이하에서는, 이러한 제1 교정 데이터를, 교정 곡선이라고 한다. 이러한 교정 곡선은, 각각의 광 절단선 La, Lb, Lc에 대해 각각 설정된다.
제1 교정 데이터는, 계산에 의해 산출하는 것도 가능하고, 실측에 의해 얻는 것도 가능하다.
계산에 의해 제1 교정 데이터를 산출하는 경우에는, 에어리어 카메라(111, 113)에 장착된 렌즈의 초점 거리 f와, 렌즈로부터 측정 대상(즉, 강체(S))까지의 거리 a와, 에어리어 카메라(111, 113)에 설치된 촬상 소자로부터 렌즈까지의 거리 b를 이용한다. 더 상세하게는, 이들 파라미터를 이용하여, 이하의 식 101로 표현되는 결상 공식에 의해 식 103으로 표현되는 배율 m을 구하여, 제1 교정 데이터를 계산할 수 있다.
Figure pct00001
Figure pct00002
여기서, 에어리어 카메라(111, 113)에 설치된 촬상 소자의 화소 사이즈를 d(㎜)로 한 경우, 촬상 분해능 D(㎜/픽셀)는, 이하의 식 105로 표현되는 값이 된다. 이러한 촬상 분해능 D는, 시선과 수직인 면 내에서의 촬상 분해능이기 때문에, 시선과 법선 방향이 이루는 각도가 α도인 경우, 1화소에 대응하는 측정 대상의 상하 이동량 H(㎜)는, 이하의 식 107로 표현되는 값이 된다.
Figure pct00003
Figure pct00004
이상과 같이 하여 얻어지는, 1화소에 대응하는 측정 대상의 상하 이동량 H가, 에어리어 카메라(111, 113)에 의해 촬상된 촬상 화상 상에서의 광 절단선의 변화량(단위: 픽셀)을, 실 공간에서의 양(단위: 예를 들어 ㎜)으로 변환하기 위한 변환 계수가 된다. 따라서, 에어리어 카메라(111, 113)와, 각 에어리어 카메라(111, 113)에 대응하는 광 절단선 La, Lb, Lc의 광학적인 위치 관계에 기초하여 상기 식 107에서 부여되는 값을, 각 광 절단선 La, Lb, Lc에 관한 교정 곡선 Ca, Cb, Cc(즉, 제1 교정 데이터)로서 사용하는 것이 가능하다.
제1 교정 데이터를 실측하는 경우에는, 교정판을 준비하여, 높이 방향의 좌표 Z=0으로 되는 기준면에 설치하고, 이러한 교정판을 ΔZ[㎜]만큼 Z축 방향으로 평행 이동시키면서, 각 에어리어 카메라(111, 113)에 의해 광 절단 화상을 촬상한다. 그리고 나서, 얻어진 각 에어리어 카메라(111, 113)의 촬상 화상에서의 화소 단위의 광 절단선 L의 이동량 ΔZimg[단위: 픽셀]를 복수 점에 관하여 실측하고, 교정 곡선 ΔZ=C(ΔZimg)를 작성하면 된다(단, C(ΔZimg)는, ΔZimg를 변수로 하는 함수를 나타냄). 이에 의해, 각 광 절단선 La, Lb, Lc에 관한 교정 곡선 Ca, Cb, Cc를 얻을 수 있다.
다음으로, 제2 교정 데이터에 대해, 도 13을 참조하면서 설명한다.
제2 교정 데이터는, 도 13에 나타낸 실 공간 상에서의 연속되는 2매의 화상 촬상 시각 사이에 있어서, 강체(S)의 실 공간에서의 반송 거리(단위: ㎜나 m 등의 길이의 단위)에 상당하는 화상 내에서의 수평 방향의 이동량(단위: 픽셀)을 나타낸 데이터이다. 이 제2 교정 데이터는, 광 절단선 Lb, Lc에 대해, 각각 설정된다. 후술하는 바와 같이, 이러한 이동량만큼 에어리어 카메라(113)에 의해 촬상된 촬상 화상을 수평 방향(실 공간에 있어서의 L축 방향에 대응하는 방향)으로 평행 이동시킴으로써, 연속되는 2매의 촬영 화상에 있어서 강체(S) 상의 동일한 점의 상하 방향 이동량을 비교할 수 있다. 이와 같이, 제2 교정 데이터는, 외란의 크기를 추정하기 위해 사용되는 교정 데이터이다.
제2 교정 데이터에 대해서도, 계산에 의해 산출하는 것도 가능하고, 실측에 의해 얻는 것도 가능하다.
전술한 바와 같이, 제2 교정 데이터는, 연속되는 2매의 촬영 화상이 생성되는 동안에 있어서의 강체(S)의 실 공간에 있어서의 반송 거리 Δs(도 13에 나타낸 Δs)가, 생성된 촬상 화상에 있어서, 어느 정도의 화소 수에 대응하는지를 나타낸 데이터이다. 따라서, 계산에 의해 제2 교정 데이터를 산출하는 경우에는, 상기 식 105에서 산출되는 촬상 분해능 D를, 광 절단선 Lb, Lc의 양쪽에 대해 산출하고, 얻어진 촬상 분해능 Db, Dc를 사용하여, 실 공간에 있어서의 반송 거리 Δs의 설정값을 나누면 된다. 즉, 광 절단선 Lb에 관한 수평 방향의 이동량을 ΔLb로 하고, 광 절단선 Lc에 관한 수평 방향의 이동량을 ΔLc로 하면, 이들 값은, 이하의 식 109 및 식 111에 의해 산출할 수 있다.
Figure pct00005
Figure pct00006
제2 교정 데이터를 실측하는 경우에는, 제1 교정 데이터를 실측하는 경우와 마찬가지로 하여 Z=0의 기준면에 교정판을 설치하고, 교정판을 Δs[㎜]만큼 L축 방향으로 평행 이동시키면서, 촬상 화상을 생성하면 된다. 그리고 나서, 얻어진 촬상 화상을 해석하여, 촬상 화상 내에서의 수평 방향의 이동량 ΔLb, ΔLc를 측정하면 된다.
이상, 본 실시 형태에 관한 화상 처리부(203)에서 사용되는, 2종류의 교정 데이터에 대해 설명하였다.
◇ 외란 추정 처리에서 사용되는 좌표계에 대해
다음으로, 도 14 및 도 15를 참조하면서, 외란 추정 처리에서 사용되는 좌표계에 대해, 구체적으로 설명한다.
본 실시 형태에 관한 외란 추정부(213)에서 실시되는 외란 추정 처리에서는, 에어리어 카메라(113)에 의해 촬상된 촬상 화상에 고정된 좌표계를 사용하여, 화상 처리가 행해진다. 즉, 에어리어 카메라(113)에 의해 생성된 광 절단 화상에 있어서, 강체(S)의 길이 방향에 대응하는 방향(즉, 광 절단 화상의 수평 방향)을 X축 방향으로 하고, X축 방향에 대해 직교하는 방향(즉, 광 절단 화상의 높이 방향)을 Y축 방향으로 한다.
또한, 교정판 등의 평탄면을 Z=0의 위치에 배치한 후, 촬상한 에어리어 카메라(113)의 촬상 화상에 있어서, 광 절단선 Lb가 촬상되어 있는 높이 방향의 위치를, 광 절단선 Lb에 관한 Y 좌표 Yb의 기준 위치(즉, Yb=0의 위치)로 하고, X 좌표 Xb의 기준 위치를, 촬상 화상의 좌측 단부로 한다. 그 결과, 광 절단선 Lb에 관한 X 좌표 Xb는, 광 절단선 Lb의 연신 방향을 따라 규정되고, 광 절단선 Lb에 관한 X축 방향 Xb 및 Y축 방향 Yb는, 도 14에 도시한 바와 같이 규정된다.
마찬가지로, 교정판 등의 평탄면을 Z=0의 위치에 배치한 후, 촬상한 에어리어 카메라(113)의 촬상 화상에 있어서, 광 절단선 Lc가 촬상되어 있는 높이 방향의 위치를, 광 절단선 Lc에 관한 Y 좌표 Yc의 기준 위치(즉, Yc=0의 위치)로 하고, X 좌표 Xc의 기준 위치를, 촬상 화상의 좌측 단부로 한다. 그 결과, 광 절단선 Lc에 관한 X 좌표 Xc는, 광 절단선 Lc의 연신 방향을 따라 규정되고, 광 절단선 Lc에 관한 X축 방향 Xc 및 Y축 방향 Yc는, 도 15에 나타낸 바와 같이 규정된다.
또한, 교정판 등의 평탄면을 Z=0의 위치에 배치한 후, 촬상한 에어리어 카메라(111)의 촬상 화상에 있어서도, 마찬가지로 하여 좌표계를 규정하는 것이 가능하다. 즉, 광 절단선 La가 촬상되어 있는 높이 방향의 위치를, 광 절단선 La에 관한 Y 좌표 Ya의 기준 위치(즉, Ya=0의 위치)로서 규정하고, 광 절단선 La에 관한 X 좌표 Xa를, 촬상 화상의 좌측 단부를 기준으로 하여 광 절단선 La의 연신 방향을 따라 규정한다. 광 절단선 La에 관한 좌표계의 구체예에 대해서는, 이하에서 도 24를 참조하면서, 다시 언급한다.
또한, 이후의 설명에 있어서, 「높이」라고 언급한 경우는, 촬상 화상 중에서의 세로 방향, 즉, Ya, Yb, Yc 좌표(단위: 픽셀)에서의 값을 나타내고, 교정 곡선Ca, Cb, Cc에 의해 촬상 화상 중에서의 「높이」를 실 공간(단위: ㎜)으로 변환한 경우의 값을, 「Z 좌표에 있어서의 높이」 등으로 나타내는 것으로 한다.
◇ 외란 추정 처리의 상세에 대해
그러면, 도 16 내지 도 23을 참조하면서, 외란 추정부(213)에서 실시되는 외란 추정 처리에 대해, 상세하게 설명한다.
본 실시 형태에 관한 외란 추정부(213)에서는, 에어리어 카메라(113)에 의해 촬상된, 광 절단선 Lb, Lc가 찍히는 촬상 화상을 기초로, 강체(S)의 표면 중, 광 절단선 Lb, Lc 상에 존재하는 부분에 있어서의, 외란 기인의 높이 변화값(즉, 실 공간에 있어서의 Z 좌표의 변화량)을 산출한다.
□ 외란 추정 처리의 개략
상기 특허문헌 1에서 제안되어 있는 광 절단법에서는, 광 절단선 상의 상이한 길이 방향 위치의 복수의 점에 대해, 상이한 시각에 표면 높이 측정을 행하고, 각 점의 표면 높이 측정 결과의 차이(즉, 외란 기인의 변화)를 그대로 외란의 크기의 계산에 사용하고 있었다. 그러나, 본 실시 형태에 관한 형상 측정 장치(10)에서 실시되는 광 절단법에서는, 외란 추정부(213)가 실시하는 외란 추정 처리에 의해, 광 절단선 Lb 상의 각 점의 길이 방향 위치(즉, Xb 좌표의 값)와, 이들 점에서의 외란에 기인하는 Yb 좌표의 값의 변화의 관계를, 상이한 시각에 촬상된 복수의 촬상 화상을 이용하여 특정한다. 그리고 나서, 외란 추정부(213)는, Yb 좌표의 변화량의 Xb 방향을 따른 분포를, 직선으로 근사시킨다. 이러한 근사 직선을 이용함으로써, 외란 추정부(213)는, 광 절단선 Lb 상의 각 점에 있어서의 측정 오차에 의한 값의 변동을 억제하면서, 도 2에 나타낸 교점 A에 대응하는 Xb 좌표에서의 Yb 좌표의 값의 변화량을 정확하게 산출할 수 있다. 그 후, 외란 추정부(213)는, 앞서 설명한 바와 같은 교정 곡선 Cb를 사용함으로써 화소 단위로 표현되어 있는 Yb 좌표의 값의 변화량을, 실 공간에서의 Z 좌표의 변화량(즉, 외란에 기인하는 높이 변동량)으로 변환한다.
또한, 도 2에 나타낸 교점 B에 있어서의 외란 기인의 Z 좌표의 변화에 대해서도, 광 절단선 Lb 대신 광 절단선 Lc에 착안함으로써 상기와 마찬가지로 구하는 것이 가능해진다.
다음으로, 실 공간에 있어서의 C 좌표(즉, 강체(S)의 폭 방향)를 기준으로 하여 생각해 보면, 상기한 바와 같이 하여 산출되는 교점 A 및 교점 B에서의 Z 좌표의 변화량을, C 좌표를 횡축에 취하고, Z 좌표의 변화량을 종축에 취한 평면 상에 플롯할 수 있다. 본 실시 형태에 관한 형상 측정 장치(10)에서 착안하는 측정 대상물은 강체이므로, 실 공간에 있어서, 교점 A와 교점 B 사이에 위치하는 강체(S)의 폭 방향의 각 점에서의 Z 좌표의 변화량은, 직선적으로 변화될 것이다. 그래서, 상기와 같은 C축-Z축 평면 상에 있어서, 교점 A 및 교점 B에서의 Z 좌표의 변화량을 통과하는 직선을 생각하면, 실 공간에 있어서, 교점 A와 교점 B 사이에 위치하는 강체(S)의 폭 방향의 각 점에서의 Z 좌표의 변화량을 나타낼 수 있다. 따라서, 외란 추정부(213)는, C축-Z축 평면 상에 있어서의 상기와 같은 직선을 구함으로써, 2 교점을 연결하는 각 폭 방향 위치에 있어서의 외란 기인의 Z 좌표의 변화를 구하는 것이 가능해진다.
이상이, 외란 추정부(213)에서 실시되는 외란 추정 처리의 개략이지만, 이러한 외란 추정 처리를 실시하는 외란 추정부(213)는, 도 16에 나타낸 바와 같이, 공통 조사 부분 외란 추정부(221)와, 교점 위치 외란 추정부(223)를 갖고 있다.
□ 공통 조사 부분 외란 추정부(221)에 대해
공통 조사 부분 외란 추정부(221)는, 예를 들어 CPU, ROM, RAM 등에 의해 실현된다. 공통 조사 부분 외란 추정부(221)는, 상기한 외란 추정 처리의 개략에서 간단하게 언급한 처리 중, 광 절단선 Lb, Lc 상의 각 점의 길이 방향 위치(즉, Xb 좌표, Xc 좌표의 값)와, 이들 점에서의 외란에 기인하는 Yb 좌표, Yc 좌표의 값의 변화의 관계를, 서로 시각에 촬상된 복수의 촬상 화상을 이용하여 특정하는 처리부이다.
공통 조사 부분 외란 추정부(221)는, 상기와 같은 외란에 기인하는 Yb 좌표 및 Yc 좌표의 값의 변화값의 산출 처리를, 도 7에 나타낸 공통 조사 부분에 대해 실시한다. 이하에서는, 이 공통 조사 부분 외란 추정부(221)가 실시하는 처리에 대해, 도 17 내지 도 20을 참조하면서 상세하게 설명한다.
도 7을 참조하면서 설명한 바와 같이, 이동하고 있는 강체(S)를 에어리어 카메라(113)에 의해 촬상하면, 연속된 2매의 촬상 화상(예를 들어, i매째와 i+1매째의 촬상 화상) 내에는, 공통적으로 촬상되는 영역(즉, 도 7에 나타낸 공통 조사 부분)이 존재한다. 따라서, 제2 교정 데이터에 기초하여, 에어리어 카메라(113)에 의해 촬상된 i매째의 촬상 화상을 Xb축의 부방향으로 ΔLb만큼 평행 이동시키면, i매째의 공통 조사 부분의 Xb 좌표와, i+1매째의 공통 조사 부분의 Xb 좌표를 일치시킬 수 있다. 마찬가지로, 광 절단선 Lc에 대해서도, 에어리어 카메라(113)에 의해 촬상된 i매째의 촬상 화상을, 제2 교정 데이터에 기초하여 Xc축의 부방향으로 ΔLc만큼 평행 이동시키면, i매째의 공통 조사 부분의 Xc 좌표와, i+1매째의 공통 조사 부분의 Xc 좌표를 일치시킬 수 있다. 공통 조사 부분은, 강체(S) 상의 동일 위치이기 때문에, 실 공간에 있어서의 공통 조사 부분의 실제의 표면 높이는 동일하다. 따라서, X 좌표를 정렬시킨 후에, i매째에 있어서의 공통 조사 부분의 Y 좌표와 i+1매째에 있어서의 공통 조사 부분의 Y 좌표를 비교함으로써, i+1매째의 촬상 시에 강체(S)에 발생한 외란의 크기를 추정하는 것이 가능해진다.
더 상세하게는, 공통 조사 부분 외란 추정부(221)는, i+1매째의 촬상 화상으로부터 얻어지는, 외란 성분을 포함한 겉보기 표면 높이(이하, 「겉보기 높이」라고 칭함)와, i매째의 촬상 화상 중의 공통 조사 부분에 있어서의 외란 제거 후의 표면 높이를 사용하여, i+1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이와, i+1매째의 화상에 있어서의 외란 성분에 의한 높이 변화(이하, 「외란 성분」이라고 칭함)을 계산한다.
강체(S)에 있어서 외란이 발생하면, 에어리어 카메라(113)에 의해 얻어지는 촬상 화상에 찍히는 광 절단선 Lb의 Yb 좌표 및 광 절단선 Lc의 Yc 좌표는, 도 9 내지 도 11에 예시한 바와 같이 변화된다. 도 17은, 공통 조사 부분 외란 추정부(221)에 있어서의 외란 기인의 Yb 좌표의 변화값의 산출 방법을 설명하기 위한 설명도이다. 또한, 도 17에서는, 연속된 2매의 화상 사이에서 외란으로서 Z축 방향의 평행 이동이 발생하고 있는 경우에 대해 도시하고 있지만, 이하의 설명은, 외란으로서 Z축 방향의 평행 이동이 발생한 경우에 한정되는 것은 아니며, L축 주위의 회전이 발생하고 있는 경우나, C축 주위의 회전이 발생하고 있는 경우에 있어서도 모두 마찬가지로 성립된다. 그 이유는, 3개의 외란 중 어느 쪽에 있어서도, 외란 기인의 Yb 좌표 및 Yc 좌표의 변화는, 착안하고 있는 측정 대상물이 강체이기 때문에 직선 근사시킬 수 있기 때문이다.
또한, 공통 조사 부분 외란 추정부(221)는, 광 절단선 Lb에 대해 실시한 것과 마찬가지의 처리를, 광 절단선 Lc에 대해서도 실시한다. 따라서, 이하의 도면이나 설명에서는, 광 절단선 Lb에 대해 실시되는 처리를 대표시켜, 기재를 행하는 것으로 한다.
공통 조사 부분 외란 추정부(221)는, 먼저, 에어리어 카메라(113)에 의해 촬영된 i매째와 i+1매째의 2개의 촬상 화상에 대해, 각각의 공통 조사 부분에 속하는 Xb 좌표에 대해 이하의 처리를 실행한다.
또한, 이하의 설명에서는, (Xb, Yb) 좌표계에 있어서의 i매째의 촬상 화상에 있어서의 광 절단선 Lb를 Xb의 함수로서 파악하여, Yb=Fobs b(i, Xb)로 나타내는 것으로 한다. 또한, 이하에서는, Fobs b(i, Xb)를 광 절단선 Lb의 「겉보기 높이」라고 칭하는 것으로 한다.
또한, 외란에 의해, 도 9 내지 도 11에 나타낸 바와 같이, 촬상 화상 중에 있어서의 광 절단선의 위치가 변화되지만, i=1매째의 촬상 화상을 기준으로 한 i매째의 촬상 화상의 외란 기인에 의한 광 절단선의 상하 이동을, 외란 성분 db(i, Xb)로 나타내는 것으로 한다. 여기서, 일반적인 광 절단법에 대해 생각해 보면, i매째의 촬상 화상에서의 광 절단선의 위치를 기준으로 하여 i+1매째의 촬상 화상에서의 광 절단선의 위치의 상하 이동을 특정하고, 외란의 크기를 추정하는(즉, 촬상 화상 프레임 사이에서 외란을 추정하는) 방법인 것을 알 수 있다. 그러나, 본 실시 형태에 관한 광 절단법은, 지금 언급하고, 또한 이후에도 상세하게 설명하는 바와 같이, 1매째의 촬상 화상에 있어서의 광 절단선의 위치를 기준으로 하여 외란의 크기를 추정하는 방법인 점에 주의해야 한다.
i매째의 촬상 화상에 있어서의 광 절단선 Lb의 겉보기 높이는, 도 9 내지 도 11 등을 참고로 생각해 보면, 「외란이 존재하지 않는 경우에 관측될 표면 높이에, 외란 성분에 기인하는 광 절단선의 위치 변화가 더해진 것이다」라고 생각할 수 있다. 즉, i매째의 촬상 화상의 광 절단선 Lb의 겉보기 높이는, 도 17에 모식적으로 나타낸 바와 같이, 외란 성분과, 외란이 제거된 후의 표면 높이(즉, 외란이 존재하지 않는 경우에 관측될 표면 높이. 이하, 단순히, 「외란 제거 후의 표면 높이」라고도 칭함)의 합이라고 생각할 수 있다. 앞서 언급한 바와 같이, 측정 대상이 강체라는 점에서, 외란 성분 db(i, Xb)는 Xb에 대한 1차 함수, 즉 직선으로서 파악할 수 있다.
여기서, 본 실시 형태에 관한 외란 추정 처리에서는, 「1매째의 촬상 화상에 있어서의 외란 성분은 제로이다」라고 간주한다. 즉, 1매째의 촬상 화상과, 1매째의 촬상 화상에 있어서의 공통 조사 부분이 존재하는 2매째 이후의 촬상 화상에 있어서, 공통 조사 부분에 속하는 모든 Xb 좌표에 대해서는, 이하의 식 121이 성립된다고 간주한다.
Figure pct00007
또한, 1매째의 화상에 외란이 가해져 있는 경우도 생각할 수 있지만, 그 경우에 있어서, 본 실시 형태에 관한 화상 처리에 의해 최종적으로 출력되는 표면 높이는, 본래의 표면 높이에 대해, 1매째의 화상 촬상 시에 이미 더해져 있던 외란 성분의 크기에 의해 정해지는 평면이 균일하게 가산된 값이 된다. 그러나, 강체(S)가 예를 들어 철강 반제품인 슬래브와 같이 기준면이 정해지는 경우에는, 최종적으로 출력되는 전체 길이 전체 폭의 표면 높이가 기준면과 일치하도록 평면을 차감하는 보정을 행함으로써, 기준면으로부터 본 표면 높이를 얻을 수 있다. 그 때문에, 이하에서는, 상기 식 121이 성립된다고 간주하고 설명을 행한다.
도 17에 나타낸 바와 같이, i매째의 촬영 시각에 있어서 광 절단선 Lb에 의해 조사된 부분의 외란 제거 후의 표면 높이는, 겉보기 표면 높이로부터 외란 성분을 빼면 된다. 즉, i매째의 촬상 화상에 있어서의 광 절단선 Lb에 조사된 강체(S)의 외란 제거 후의 표면 높이 Hb(i, Xb)는, 이하의 식 123에 따라서 구할 수 있다.
Figure pct00008
또한, i+1매째의 촬상 화상에 있어서의 외란 성분은, i+1매째의 촬상 화상에 있어서의 겉보기 높이로부터, 외란 제거 후의 표면 높이를 빼면 구해진다. 즉, 이하의 식 125가 성립된다.
Figure pct00009
여기서, i+1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(i+1, Xb)는, i+1매째의 화상만으로부터는 측정할 수 없다. 그러나, 공통 조사 부분이, 강체(S) 상의 동일 위치라는 점에서, i+1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이는, i매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이와 동등하다. 그래서, 본 실시 형태에 관한 공통 조사 부분 외란 추정부(221)는, 식 123에서 이미 구해져 있는, i매째에 있어서의 외란 제거 후의 표면 높이 Hb(i, Xb)를, 반송 방향(즉, Xb축의 부방향)으로 ΔLb만큼 평행 이동시켜 공통 조사 부분을 정렬시킨 것을, i+1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(i+1, Xb)로서 이용한다. 즉, 이하의 식 127로 표현되는 관계가 성립되어 있는 것을 이용한다.
Figure pct00010
따라서, 식 127을 식 125에 대입함으로써, i+1매째의 외란 성분 db(i+1, Xb)는, i+1매째의 화상으로부터 얻어지는 겉보기 높이와, i매째의 외란 제거 후의 표면 높이를 이용하여, 이하의 식 129에 의해 구할 수 있다.
Figure pct00011
또한, 상기 식 123에 있어서, 파라미터 i를 1 증가시켜 i=i+1로 하고, db(i+1, Xb)의 부분에, 상기 식 129에서 얻어진 i매째의 외란 성분을 대입함으로써, i+1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(i+1, Xb)를 구할 수 있다.
이와 같이, 공통 조사 부분 외란 추정부(221)는, i=1에 있어서의 식 121을 초기값으로 하여 식 129와 식 123을 교대로 적용하고, 파라미터 i의 값을 1씩 증가시켜 감으로써, i매째에 있어서의 외란 제거 후의 표면 높이와, i+1매째에 있어서의 외란 성분을 순차 산출할 수 있다.
이하에서는, 상기한 공통 조사 부분 외란 추정부(221)에 의한 공통 조사 부분에서의 외란 성분의 특정 처리가, 도 18에 나타낸 바와 같은 상황에 적용한 경우에 어떻게 실시되는지를 구체적으로 설명한다.
또한, 이하에서는, 광 절단선 Lb에 관해서만 설명을 행하지만, 광 절단선 Lc에 대해서도 마찬가지이다.
도 18에서는, 광 절단선 Lb가 조사되는 부분의 일부에 요철이 있는 강체(S)를 측정 대상으로 한다. 도 18의 좌반부에 나타낸 바와 같이, 1매째와 2매째의 촬상 화상을 촬상하는 동안에, 외란으로서 Z 방향의 평행 이동이 발생한 것으로 한다.
도 19는, 1매째의 촬상 화상과 2매째의 촬상 화상의 공통 조사 부분에 있어서, 식 129에 기초하는 처리를 설명하기 위한 설명도이다. 상기 식 125가 나타내는 바와 같이, 2매째의 촬상 화상에 있어서의 외란 성분 db(2, Xb)는 겉보기 높이 Fobs b(2, Xb)와, 2매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(2, Xb)의 차이다. 한편, 앞서 설명한 바와 같이, 2매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(2, Xb)는, 1매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(1, Xb)를 도 19 중의 파선과 같이 ΔLb만큼 평행 이동한 것(즉, Hb(1, Xb+ΔLb))이다. 여기서, 상기 식 121로부터, Hb(1, Xb)는, Fobs b(1, Xb)와 동등하다. 따라서, Hb(1, Xb+ΔLb)는, Fobs b(1, Xb+ΔLb)와 동등해진다. 따라서, 도 19를 참조하면, 2매째의 촬상 화상에 있어서의 외란 성분 db(2, Xb)는, 겉보기 높이 Fobs b(2, Xb)로부터, 1매째의 겉보기 높이를 ΔLb 평행 이동한 것을 뺀 것과 동등해진다. 즉, 도 19에 나타내는 상황이, 상기 식 129로서 나타낸 식을 도면으로서 나타낸 것에 대응하고 있다.
또한, 도 18의 경우, 강체(S)에 발생하고 있는 외란이 Z 방향의 평행 이동이기 때문에, 식 129에 의해 구해진 외란 성분(도 19에 있어서의 일점 쇄선으로 나타낸 크기) db(2, Xb)는, Xb 좌표에 상관없이 일정해진다.
다음으로, 도 18의 우반부에 나타낸 바와 같이, 2매째와 3매째의 촬상 화상을 촬상하는 동안에, C축 주위의 회전이 발생한 것으로 한다. 이 경우, 도 18에 있어서, 1매째의 촬상 화상과 3매째의 촬상 화상을 비교하면 명백한 바와 같이, 1매째의 촬상 화상을 기준으로 하여 생각하면, 강체(S)에는, 외란으로서, Z 방향의 평행 이동과 C축 주위의 회전이 발생하고 있는 것이 된다.
도 20은, 2매째의 촬상 화상과 3매째의 촬상 화상의 공통 조사 부분에 있어서, 식 123 및 식 129에 기초하는 처리를 설명하기 위한 설명도이다.
도 20의 우반부에 도시한 바와 같이, 2매째의 화상으로부터 얻어진 겉보기 높이 Fobs b(2, Xb)로부터, 도 19에 기초하여 이미 산출한 외란 성분 db(2, Xb)를 차감함으로써 외란 제거 후의 표면 높이 Hb(2, Xb)를 산출할 수 있다. 이 관계는, 상기 식 123으로 표현되는 관계를 도시한 것이다.
다음으로, 도 20의 좌반부에 도시한 바와 같이, 2매째의 촬상 화상의 공통 조사 부분에 있어서의, 외란 제거 후의 표면 높이 Hb(2, Xb)를, 3매째의 촬상 화상과 공통 조사 부분이 일치하도록 ΔLb만큼 평행 이동시키고, 3매째의 촬상 화상으로부터 얻어진 겉보기 높이로부터 차감함으로써 3매째의 촬상 화상에 있어서의 외란 성분 db(3, Xb)를 산출할 수 있다.
여기서, 2매째의 촬상 화상과 3매째의 촬상 화상 사이에는, C축 주위의 회전이 가해져 있지만, 도 20의 좌반부에 나타낸 일점 쇄선의 길이(즉, db(3, Xb))를, X 좌표 Xb에 대해 플롯하면, db(3, Xb)는 어느 기울기를 갖는 직선이 된다.
여기서, 도 20으로부터도 명백한 바와 같이, 3매째의 촬상 화상의 외란 성분 db(3, Xb)는, 3매째의 촬상 화상의 겉보기 높이 Fobs b(3, Xb)로부터, 2매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(2, Xb)를 차감한 것이며, 2매째의 촬상 화상에 있어서의 외란 제거 후의 표면 높이 Hb(2, Xb)는, 2매째의 촬상 화상의 겉보기 높이 Fobs b(2, Xb)로부터, 2매째의 촬상 화상의 외란 성분 db(2, Xb)를 차감한 것이다. 따라서, 3매째의 촬상 화상의 외란 성분 db(3, Xb)는, 2매째의 촬상 화상의 외란 성분 db(2, Xb)에 기초한 양이라고 생각할 수도 있다. 마찬가지로 하여, 2매째의 촬상 화상의 외란 성분 db(2, Xb)는, 1매째의 촬상 화상의 외란 성분 db(1, Xb)에 기초한 양으로서 파악할 수 있다. 이러한 관계로부터 명백한 바와 같이, 본 실시 형태에 관한 외란 추정 처리는, i매째의 촬상 화상에 있어서의 외란 성분 db(i, Xb)를, 1매째의 촬상 화상에 있어서의 외란으로부터 i-1매째의 촬상 화상에 있어서의 외란까지의 모든 외란의 적산의 결과로서 특정한다.
또한, 외란으로서 L축 주위의 회전이 발생한 경우에는, Z 방향의 평행 이동이 발생한 경우와 마찬가지로, 광 절단선 Lb 상의 외란 성분의 크기는 Xb 좌표에 상관없이 일정해진다. 또한, 실 공간에 있어서 상이한 폭 방향 위치에 존재하는 광 절단선 Lc 상의 외란 성분 dc(i, Xc)도, 좌표 Xc에 상관없이 일정해진다. 그러나, 외란 성분 db와 외란 성분 dc의 값이 상이하다는 점에서, L축 주위의 회전이 존재하는 것을 파악할 수 있다.
이상과 같은 처리를 공통 조사 부분 외란 추정부(221)가 실시함으로써, 2매의 연속하는 촬상 화상을 사용하여, 광 절단선 Lb 상에서의 외란 성분 db(i, Xb)의 크기를 산출할 수 있다. 상기와 같은 처리를, 광 절단선 Lc에 대해서도 마찬가지로 적용함으로써, 공통 조사 부분 외란 추정부(221)는, 광 절단선 Lc 상에서의 외란 성분 dc(i, Xc)의 크기를 산출할 수 있다.
공통 조사 부분 외란 추정부(221)는, 이와 같이 하여 산출한, 각 광 절단선 Lb, Lc 상에서의 외란 성분의 크기에 관한 정보를, 후술하는 교점 위치 외란 추정부(223)에 출력한다.
□ 교점 위치 외란 추정부(223)에 대해
교점 위치 외란 추정부(223)는, 예를 들어 CPU, ROM, RAM 등에 의해 실현된다. 교점 위치 외란 추정부(223)는, 상기한 외란 추정 처리의 개략으로 간단하게 언급한 처리 중, 광 절단선 Lb에 관하여, Yb 좌표의 변화량의 Xb 방향을 따른 분포를 직선으로 근사시킴과 함께, 광 절단선 Lc에 관하여, Yc 좌표의 변화량의 Xc 방향을 따른 분포를 직선으로 근사시키는 처리를 실시하여, 교점 A, B의 위치에서의 외란의 크기를 추정하는 처리부이다.
더 상세하게는, 교점 위치 외란 추정부(223)는, 공통 조사 부분 외란 추정부(221)가 산출한, 공통 조사 부분에 있어서의 외란의 크기를 이용하여, X 좌표를 따른 외란의 크기 분포를 직선 근사시키고, 얻어진 근사 직선을 교점 위치까지 외삽(경우에 따라서는, 내삽)함으로써, 교점 A 및 교점 B에 있어서의 외란의 크기를 산출한다. 이러한 직선 근사에 의해, 광 절단선 Lb, Lc 상의 각 점에 발생하는 변동을 흡수하고, 상기 특허문헌 1에 기재된 발명을 포함한 종래의 광 절단법과 비교하여 더 고정밀도로, 교점 A 및 교점 B에 있어서의 외란의 값을 구하는 것이 가능해진다. 그 후, 교점 위치 외란 추정부(223)는, 제1 교정 데이터인 교정 곡선 Cb, Cc를 이용하여, 화소 단위로 표현된 표면 높이를, Z 좌표(단위: ㎜)에서의 값으로 변환하여, 교점 A, B의 Z 좌표에 있어서의 외란의 크기를 산출한다.
상기한 바와 같이 교점 위치 외란 추정부(222)는, i번째의 화상에 있어서의
·교점 A에 있어서의 외란 성분에 기인하는 Z 좌표의 변화 ΔZb(i)(단위: ㎜)
·교점 B에 있어서의 외란 성분에 기인하는 Z 좌표의 변화 ΔZc(i)(단위: ㎜)
의 각각을 산출하는 처리부이다.
또한, 2 교점 A, B에서의 외란 성분을 구하는 이유는, 이하의 2개이다. 제1 이유는, 측정 대상물이 강체라는 점에서, 에어리어 카메라(111)에 의해 촬상된 촬상 화상에 있어서의 광 절단선 La를 따른 외란 성분 da(i, Xa)와, 이러한 외란 성분 da(i, Xa)를 교정 곡선 Ca에 의해 환산한 Z 좌표에 있어서의 외란 성분은, 광 절단선 Lb, Lc의 경우와 마찬가지로 직선이 되기 때문이다. 또한, 제2 이유는, 광 절단선 La에 관한 직선 상의 2점에서의 외란 성분의 값을 특정할 수 있음으로써, 광 절단선 La에 관하여, 교점 이외의 장소에서의 외란 성분의 값을 추정하는 것이 가능해지기 때문이다.
이하에서는, 이 교점 위치 외란 추정부(223)가 실시하는 처리에 대해, 도 21 내지 도 23을 참조하면서, 상세하게 설명한다. 또한, 도 21에서는, 연속된 2매의 촬상 화상 사이에 있어서, 외란으로서 Z축 방향의 평행 이동이 발생하고 있는 경우에 대해 도시하고 있지만, 이하의 설명은 도 21에 나타낸 경우에 한정되는 것은 아니며, L축 주위의 회전이 발생하고 있는 경우, 및 C축 주위의 회전이 발생하고 있는 경우에도 마찬가지로 적용 가능하다.
이때, i매째의 촬상 화상의 촬상 시각에 있어서, 광 절단선 La와 광 절단선 Lb의 교점 A에 관하여, 외란 성분을 포함한 겉보기 Z 좌표를 Zb(i)로 나타내고, 광 절단선 La와 광 절단선 Lc의 교점 B에 관하여, 외란 성분을 포함한 겉보기 Z 좌표를 Zc(i)로 나타내는 것으로 한다.
또한, 도 21에 나타낸 바와 같이, 1매째의 촬상 화상의 촬상 시를 기준으로 하여, i매째까지 외란이 발생하지 않는다고 간주한 Z 좌표에서의 표면 높이(즉, 외란 제거 후의 Z 좌표에서의 표면 높이)를, 교점 A에 대해서는 Zb t(i)로 나타내고, 교점 B에 대해서는 Zc t(i)로 나타내는 것으로 한다.
도 21 및 하기의 식 131에 나타내는 바와 같이, Z 좌표에 있어서의 교점 A에서의 겉보기 표면 높이 Zb(i)와, Z 좌표에 있어서의 외란 제거 후의 표면 높이 Zb t(i)의 차를, 외란 성분에 의한 Z 좌표의 변화 ΔZb(i)로 규정한다. 마찬가지로, 하기의 식 133에 나타내는 바와 같이, Z 좌표에 있어서의 교점 B에서의 겉보기 표면 높이 Zc(i)와, Z 좌표에 있어서의 외란 제거 후의 표면 높이 Zc t(i)의 차를, 외란 성분에 의한 Z 좌표의 변화 ΔZc(i)로 규정한다.
Figure pct00012
Figure pct00013
외란 성분에 의한 Z 좌표의 변화 ΔZb(i)를 산출하기 위해, 교점 위치 외란 추정부(223)는, 도 22에 나타낸 바와 같이, 공통 조사 부분 외란 추정부(221)로부터 출력된 외란 성분 db(i, Xb)의 크기가, Xb 방향을 따라 어떻게 분포되어 있는지를 고려한다. 그리고 나서, 교점 위치 외란 추정부(223)는, 최소 제곱법 등의 공지의 통계 처리에 의해, Xb 방향을 따른 외란 성분 db(i, Xb)의 분포를 직선 근사시킨다. 그 후, 교점 위치 외란 추정부(223)는, 교점 A의 Xb 좌표와, 산출한 근사 직선을 이용하여, 교점 A에서의 외란 성분의 크기인 외란 성분 db(i, A)(단위: 픽셀)를 산출한다.
교점 A에서의 외란 성분 db(i, A)(단위: 픽셀)를 산출하면, 교점 위치 외란 추정부(223)는, 제1 교정 데이터인 교정 곡선 Cb를 이용하여, 화소 단위에서의 외란 성분의 크기를, Z 좌표에 있어서의 외란 성분 ΔZb(i)(단위: ㎜)로 변환한다.
여기서, 실 공간에서의 Z 좌표에 있어서의 외란 성분 ΔZb(i)를 산출할 때에는, 교정 곡선 Cb가 곡선이고, 또한 외란 성분 db(i, A)가, 앞서 언급한 바와 같이, 1매째의 촬상 화상을 기준으로 한 외란 성분인 것을 고려하는 것이 중요하다. 구체적으로는, 도 23에 나타낸 바와 같은 교정 곡선 Cb를 적용하여 ΔZb(i)를 구하기 위해서는, 교정 곡선 상의 2점에서 픽셀 단위로부터 ㎜ 단위로의 변환을 행하여, Z 좌표에 있어서 차를 취할 필요가 있다.
여기서, 앞서 언급한 바와 같이, 외란 제거 후의 표면 높이 Hb(i, A)에 대해, 외란 성분 db(i, A)를 더한 것이, 촬상 화상 내에서의 i매째에 있어서의 교점 A의 겉보기 높이 Fobs b(i, A)로 된다. 그래서, 교점 위치 외란 추정부(223)는, 도 23에 나타낸 바와 같이, 교점 A의 겉보기 높이 Fobs b(i, A)와, 교정 곡선 Cb를 이용하여, i매째의 Z 좌표에 있어서의 교점 A의 겉보기 표면 높이 Zb(i)를 산출한다. 또한, 교점 위치 외란 추정부(223)는, 외란 제거 후의 표면 높이 Hb(i, A)와, 교정 곡선 Cb를 이용하여, i매째의 Z 좌표에 있어서의 외란 제거 후의 표면 높이 Zb t(i)를 산출한다. 그 후, 교점 위치 외란 추정부(223)는, 얻어진 2개의 표면 높이의 차를 산출함으로써, 교점 A에서의 Z 좌표에 있어서의 외란 성분 ΔZb(i)를 산출한다. 또한, 교점 위치 외란 추정부(223)는, 완전히 마찬가지로 하여, 교점 B에서의 Z 좌표에 있어서의 외란 성분 ΔZc(i)도 산출한다.
교점 위치 외란 추정부(223)는, 이와 같이 하여 산출한, 교점 A 및 교점 B에서의 외란 성분의 크기에 관한 정보를, 보정부(217)에 출력한다.
이상, 도 16 내지 도 23을 참조하면서, 외란 추정부(213)에서 실시되는 외란 추정 처리에 대해, 상세하게 설명하였다.
○ 형상 데이터 산출부(215)에 있어서의 형상 데이터 산출 처리에 대해
계속해서, 도 24를 참조하면서, 형상 데이터 산출부(215)에서 실시되는 형상 데이터 산출 처리에 대해, 상세하게 설명한다. 또한, 도 24에서는, 외란으로서 L축 주위의 회전이 발생하고 있는 경우에 대해 도시하고 있지만, 지금까지의 설명과 마찬가지로, 이하의 설명은, 도 24에 나타낸 경우에 한정되는 것은 아니다.
형상 데이터 산출부(215)에서는, 먼저, 촬상 데이터 취득부(211)로부터 출력된, 에어리어 카메라(111)에 의해 촬상된 촬상 화상 데이터를 참조하여, 도 24에 나타낸 바와 같이, i매째의 촬상 화상에서의 광 절단선 La에 관한 겉보기 높이 Fobs a(i, Xa)(단위: 픽셀)를 특정한다. 여기서, 도 24에 나타낸 촬상 화상 내의 좌표계는, 앞서 설명한 바와 같이, 교정판 등의 평탄면을 Z=0의 위치에 배치한 후, 촬상한 에어리어 카메라(111)의 촬상 화상을 사용하여 규정할 수 있다. 즉, 광 절단선 La가 촬상되어 있는 높이 방향의 위치를, 광 절단선 La에 관한 Y 좌표 Ya의 기준 위치(즉, Ya=0의 위치)로서 규정하고, 광 절단선 La에 관한 X 좌표 Xa를, 촬상 화상의 좌측 단부를 기준으로 하여 광 절단선 La의 연신 방향을 따라 규정할 수 있다.
다음으로, 형상 데이터 산출부(215)는, i매째의 촬상 화상으로부터 얻어진 겉보기 높이 Fobs a(i, Xa)(단위: 픽셀)를, 기억부(207)에 저장되어 있는 제1 교정 데이터인 교정 곡선 Ca를 이용하여, Z 좌표에 있어서의 겉보기 높이 Z(i, Xa)(단위: ㎜ 등의 길이의 단위)로 변환한다.
이와 같이 하여 산출된, Z 좌표에 있어서의 겉보기 높이 Z(i, Xa)는, 외란에 기인하는 Z 좌표의 변화(즉, 측정 오차)가 중첩되어 있는 값이다. 형상 데이터 산출부(215)는, 이와 같이 하여 산출한 Z 좌표에 있어서의 겉보기 높이 Z(i, Xa)에 관한 정보를, 후술하는 보정부(217)에 출력한다.
○ 보정부(217)에 있어서의 보정 처리에 대해
계속해서, 도 25 및 도 26을 참조하면서, 보정부(217)에서 실시되는 보정 처리에 대해 상세하게 설명한다.
본 실시 형태에 관한 보정부(217)는, 형상 데이터 산출부(215)에 의해 산출된 측정 오차를 포함하는 형상 데이터(Z 좌표에 있어서의 겉보기 높이 Z(i, Xa))와, 외란 추정부(213)에 의해 산출된 외란 성분(Z 좌표에 있어서의 외란 성분 ΔZb(i))를 이용하여 보정 처리를 실시하고, 측정 대상물인 강체(S)의 실제의 표면 높이를 산출한다. 이러한 보정 처리를 에어리어 카메라(111)에 의해 촬상된 모든 화상에 대해 반복함으로써, 실제의 표면 높이를 길이 방향으로 겹치게 되어, 결과적으로, 강체(S)의 전체에 있어서의 실제의 표면 높이를 산출하는 것이 가능해진다.
더 상세하게는, 보정부(217)는 먼저, 외란 추정부(213)에 의해 산출된, 교점 A 및 교점 B에서의 Z 좌표에 있어서의 외란 성분 ΔZb(i), ΔZc(i)를 이용하여, 도 25에 나타낸 바와 같은 직선을 산출한다. 앞서 언급한 바와 같이, 광 절단선 La를 따른 Z 좌표에 있어서의 외란 성분 ΔZ(i, Xa)는, 측정 대상이 강체이므로, 좌표 Xa에 관하여 1차 함수(즉, 직선)가 된다. 따라서, 교점 A 및 교점 B에서의 Z 좌표에 있어서의 외란 성분 ΔZb(i), ΔZc(i)를 연결하는 직선을 산출함으로써, 광 절단선 La를 따른 Z 좌표에 있어서의 외란 성분 ΔZ(i, Xa)를 특정할 수 있게 된다.
계속해서, 보정부(217)는, 도 26 및 이하의 식 141에 나타낸 바와 같이, 형상 데이터 산출부(215)에서 얻어진 Z(i, Xa)로부터, 외란에 의한 Z 좌표의 변화(즉, 외란 성분 ΔZ(i, Xa))를 차감함으로써, Z 좌표에서의 실제의 표면 높이 Zout(i, Xa)를 산출한다.
Figure pct00014
보정부(217)는, 에어리어 카메라(111)에 의해 촬상된 모든 화상에 대해 이상의 처리를 반복(즉, 에어리어 카메라(111, 113)에 의해 촬영된 화상의 매수를 각각 N매로 하면, i=1, 2, ···, N에 대해 Zout(i, Xa)를 구하는 처리를 반복)하고, 실제의 표면 높이를 길이 방향으로 차례로 배열함으로써 강체(S) 전체의 실제의 표면 높이를 산출할 수 있다.
이상, 도 25 및 도 26을 참조하면서, 본 실시 형태에 관한 보정부(217)에서 실시되는 보정 처리에 대해 설명하였다.
이상, 본 실시 형태에 관한 연산 처리 장치(200)의 기능의 일례를 나타냈다. 상기한 각 구성 요소는, 범용적인 부재나 회로를 사용하여 구성되어 있어도 되고, 각 구성 요소의 기능에 특화된 하드웨어에 의해 구성되어 있어도 된다. 또한, 각 구성 요소의 기능을, CPU 등이 모두 행해도 된다. 따라서, 본 실시 형태를 실시하는 그때그때의 기술 레벨에 따라서, 적절하게 이용하는 구성을 변경하는 것이 가능하다.
또한, 상술한 바와 같이 본 실시 형태에 관한 연산 처리 장치의 각 기능을 실현하기 위한 컴퓨터 프로그램을 제작하여, 퍼스널 컴퓨터 등에 실장하는 것이 가능하다. 또한, 이러한 컴퓨터 프로그램이 저장된, 컴퓨터로 판독 가능한 기록 매체도 제공할 수 있다. 기록 매체는, 예를 들어 자기 디스크, 광 디스크, 광자기 디스크, 플래시 메모리 등이다. 또한, 상기한 컴퓨터 프로그램은, 기록 매체를 사용하지 않고, 예를 들어 네트워크를 통해 배신해도 된다.
(촬상 장치의 변형예)
다음으로, 도 27 및 도 28을 참조하면서, 본 실시 형태에 관한 촬상 장치(100)의 변형예에 대해 간단하게 설명한다. 도 27 및 도 28은, 본 실시 형태에 관한 촬상 장치의 변형예를 모식적으로 도시한 설명도이다.
상기한 설명에서는, 촬상 장치(100)에 있어서, 2대의 에어리어 카메라(111, 113)가 설치되어 있는 경우에 대해 설명하였지만, 본 실시 형태에 관한 촬상 장치(100)의 구성은, 이러한 예에 한정되는 것은 아니다.
예를 들어 도 27에 나타낸 바와 같이, 광 절단선 Lb를 에어리어 카메라(115)에 의해 촬상함과 함께, 광 절단선 Lc를 에어리어 카메라(117)에 의해 촬상하고, 에어리어 카메라(111)와 더불어 3대의 에어리어 카메라를 사용하는 것도 가능하다.
각각의 에어리어 카메라(115, 117)는, 촬상 장치(100)로서 2대의 에어리어 카메라(111, 113)를 사용하는 경우와 마찬가지로, 도 28에 나타낸 바와 같이, 광 절단선 Lb와 L축-C축 평면에 투영된 에어리어 카메라(115)의 광축이 직교하고, 또한 광 절단선 Lc와 L축-C축 평면에 투영된 에어리어 카메라(117)의 광축이 직교하도록 설치한다. 에어리어 카메라(115)의 촬상 영역 AR3, 및 에어리어 카메라(117)의 촬상 영역 AR4는, 촬상 장치(100)로서 2대의 에어리어 카메라(111, 113)를 사용하는 경우와 마찬가지로, 각각 교점 A 및 교점 B를 촬상 시야에 포함되도록 적절하게 설정하면 되지만, 광 절단선 Lb, Lc 전체가 촬상 시야에 포함되어 있는 것이 바람직하다.
각 에어리어 카메라의 광축과 Z축이 이루는 각 α4, α5는, 에어리어 카메라가 2대인 경우와 마찬가지의 이유로, 예를 들어 30도 내지 60도 정도로 하는 것이 바람직하다. 또한, 각도 α4, α5는, 동일한 값이어도 되고, 서로 다른 값이어도 된다. 어느 경우에 있어서도, 1대의 에어리어 카메라를 사용하는 경우와 동일한 계산 처리에 의해, 구하는 형상을 계측하는 것이 가능하다.
또한, 도 27 및 도 28에서는, 강체(S)의 폭 방향의 편측에, 2대의 에어리어 카메라(115, 117)가 배치되는 경우를 도시하고 있지만, 외란 추정부(213)에 있어서의 평행 이동의 방향까지 주의한다면, 강체(S)의 광 절단선 Lb측의 측방에 에어리어 카메라(115)를 배치하고, 강체(S)의 광 절단선 Lc측의 측방에 에어리어 카메라(117)를 배치하는 것도 가능하다.
또한, 광 절단선 La, Lb, Lc 각각에 대해 촬영 시야를 분할함으로써, 4대 이상의 에어리어 카메라를 사용하는 것도 가능하다.
이상, 도 27 및 도 28을 참조하면서, 본 실시 형태에 관한 촬상 장치(100)의 변형예에 대해 설명하였다.
(형상 측정 방법의 흐름에 대해)
다음으로, 도 29a 및 도 29b를 참조하면서, 본 실시 형태에 관한 형상 측정 장치(10)에서 실시되는 형상 측정 방법의 흐름에 대해 간단하게 설명한다. 도 29a 및 도 29b는, 본 실시 형태에 관한 형상 측정 방법의 흐름의 일례를 나타낸 흐름도이다.
또한, 이하의 설명에 앞서, 상기한 바와 같은 각종 방법을 이용하여, 제1 교정 데이터 및 제2 교정 데이터가 적절하게 생성되고, 기억부(207)에 저장되어 있는 것으로 한다.
먼저, 본 실시 형태에 관한 형상 측정 장치(10)의 촬상 장치(100)는, 연산 처리 장치(200)에 있어서의 촬상 제어부(201)의 제어하에서, 반송되고 있는 피측정 강체(S)를 각 에어리어 카메라(111, 113)에 의해 촬상하여, 각각 N매의 촬상 화상을 생성한다(스텝 S101). 촬상 장치(100)의 에어리어 카메라(111, 113)는, 1매의 촬상 화상을 생성할 때마다, 생성된 촬상 화상의 촬상 데이터를, 연산 처리 장치(200)에 출력한다.
연산 처리 장치(200)의 촬상 데이터 취득부(211)는, 촬상 장치(100)로부터 촬상 데이터를 취득하면, 에어리어 카메라(111)에 의해 생성된 촬상 데이터를 형상 데이터 산출부(215)에 대해 출력함과 함께, 에어리어 카메라(113)에 의해 생성된 촬상 데이터를, 외란 추정부(213)에 대해 출력한다.
외란 추정부(213), 형상 데이터 산출부(215) 및 보정부(217)는, 각 처리부에서 실시하는 처리에 있어서 사용하는 파라미터 i를, i=1로 초기화한다(스텝 S103). 계속해서, 외란 추정부(213), 형상 데이터 산출부(215) 및 보정부(217)는, 파라미터 i의 값이, 촬상 화상의 매수 N 이하인지 여부를 판단한다(스텝 S105). 파라미터 i의 값이 N 이하인 경우에는, 외란 추정부(213)는 상기와 같은 외란 추정 처리를 개시함과 함께, 형상 데이터 산출부(215)는 상기와 같은 형상 데이터 산출 처리를 개시한다. 또한, 보정부(217)는, 외란 추정부(213) 및 형상 데이터 산출부(215)로부터의 데이터의 출력 대기를 개시한다. 한편, 파라미터 i의 값이 N 초과인 경우에는, 형상 측정 장치(10)는 형상 측정 처리를 종료한다.
또한, 외란 추정부(213)에 있어서의 외란 추정 처리 및 형상 데이터 산출부(215)에 있어서의 형상 데이터 산출 처리는, 각각 병행하여 실시되어도 되고, 어느 한쪽의 처리부에 있어서의 처리가, 다른 쪽의 처리부에 있어서의 처리에 앞서 실시되어도 되는 것은 물론이다.
형상 데이터 산출부(215)는, 앞서 설명한 바와 같은 방법에 의해, i매째의 촬상 화상을 참조하면서, 형상 측정용 광 절단선(즉, 광 절단선 La)과, 교정 곡선 Ca를 이용하여, 실 공간에서의 형상 데이터(Z 좌표에 있어서의 표면 높이)를 산출한다(스텝 S107). 형상 데이터 산출부(215)는, i매째의 촬상 화상에 대해 실 공간에서의 형상 데이터를 산출하면, 얻어진 형상 데이터에 관한 정보를, 보정부(217)에 출력한다.
한편, 외란 추정부(213)는, 앞서 설명한 바와 같은 방법에 의해, i매째의 촬상 화상을 참조하면서, 각 보정용 광 절단선(즉, 광 절단선 Lb, Lc)에 기초하여, 공통 조사 부분의 외란 성분을 산출한다(스텝 S109). 그 후, 외란 추정부(213)는, 산출한 외란 성분을 이용하여 근사 직선을 산출한 후, 교점 A 및 교점 B에서의 외란 성분을 산출한다(스텝 S111). 계속해서, 외란 추정부(213)는, 교점 A 및 교점 B에서의 외란 성분을, 교정 곡선 Cb, Cc를 이용하여, 실 공간에서의 양으로 변환한다(스텝 S113). 그 후, 외란 추정부(213)는, 얻어진 실 공간에서의 외란 성분의 크기에 관한 정보를, 보정부(217)에 출력한다.
보정부(217)는, 외란 추정부(213)로부터 출력된, 교점 A 및 교점 B의 실 공간에서의 외란 성분에 기초하여, 앞서 설명한 바와 같은 방법에 의해, 형상 측정용 광 절단선의 위치에서의 외란 성분을 산출한다(스텝 S115). 그 후, 보정부(217)는 형상 데이터 산출부(215)로부터 출력된, 실 공간에서의 형상 데이터로부터, 실 공간에서의 외란 성분을 차감하여, 실제의 표면 높이를 산출한다(스텝 S117).
그 후, 외란 추정부(213), 형상 데이터 산출부(215) 및 보정부(217)는, 파라미터 i의 값을, i=i+1로 갱신하고(스텝 S119), 스텝 S105의 처리를 다시 실시한다.
이상, 도 29a 및 도 29b를 참조하면서, 본 실시 형태에 관한 형상 측정 방법의 흐름을 간단하게 설명하였다.
(하드웨어 구성에 대해)
다음으로, 도 30을 참조하면서, 본 발명의 실시 형태에 관한 연산 처리 장치(200)의 하드웨어 구성에 대해 상세하게 설명한다. 도 30은, 본 발명의 실시 형태에 관한 연산 처리 장치(200)의 하드웨어 구성을 설명하기 위한 블록도이다.
연산 처리 장치(200)는 주로, CPU(901)와, ROM(903)과, RAM(905)을 구비한다. 또한, 연산 처리 장치(200)는 또한, 버스(907)와, 입력 장치(909)와, 출력 장치(911)와, 스토리지 장치(913)와, 드라이브(915)와, 접속 포트(917)와, 통신 장치(919)를 구비한다.
CPU(901)는, 중심적인 처리 장치 및 제어 장치로서 기능하고, ROM(903), RAM(905), 스토리지 장치(913), 또는 리무버블 기록 매체(921)에 기록된 각종 프로그램에 따라서, 연산 처리 장치(200) 내의 동작 전반 또는 그 일부를 제어한다. ROM(903)은, CPU(901)가 사용하는 프로그램이나 연산 파라미터 등을 기억한다. RAM(905)는, CPU(901)가 사용하는 프로그램이나, 프로그램의 실행에 있어서 적절하게 변화되는 파라미터 등을 1차 기억한다. 이들은 CPU 버스 등의 내부 버스에 의해 구성되는 버스(907)에 의해 서로 접속되어 있다.
버스(907)는, 브리지를 통해, PCI(Peripheral Component Interconnect/Interface) 버스 등의 외부 버스에 접속되어 있다.
입력 장치(909)는, 예를 들어 마우스, 키보드, 터치 패널, 버튼, 스위치 및 레버 등 유저가 조작하는 조작 수단이다. 또한, 입력 장치(909)는, 예를 들어 적외선이나 그 밖의 전파를 이용한 리모트 컨트롤 수단(소위, 리모컨)이어도 되고, 연산 처리 장치(200)의 조작에 대응한 PDA 등의 외부 접속 기기(923)여도 된다. 또한, 입력 장치(909)는, 예를 들어 상기한 조작 수단을 사용하여 유저에 의해 입력된 정보에 기초하여 입력 신호를 생성하고, CPU(901)에 출력하는 입력 제어 회로 등으로 구성되어 있다. 유저는, 이 입력 장치(909)를 조작함으로써, 형상 측정 장치(10)에 대해 각종 데이터를 입력하거나 처리 동작을 지시하거나 할 수 있다.
출력 장치(911)는, 취득한 정보를 유저에 대해 시각적 또는 청각적으로 통지하는 것이 가능한 장치로 구성된다. 이러한 장치로서, CRT 디스플레이 장치, 액정 디스플레이 장치, 플라즈마 디스플레이 장치, EL 디스플레이 장치 및 램프 등의 표시 장치나, 스피커 및 헤드폰 등의 음성 출력 장치나, 프린터 장치, 휴대 전화, 팩시밀리 등이 있다. 출력 장치(911)는, 예를 들어 연산 처리 장치(200)가 행한 각종 처리에 의해 얻어진 결과를 출력한다. 구체적으로는, 표시 장치는, 연산 처리 장치(200)가 행한 각종 처리에 의해 얻어진 결과를, 텍스트 또는 이미지로 표시한다. 한편, 음성 출력 장치는, 재생된 음성 데이터나 음향 데이터 등으로 이루어지는 오디오 신호를 아날로그 신호로 변환하여 출력한다.
스토리지 장치(913)는, 연산 처리 장치(200)의 기억부의 일례로서 구성된 데이터 저장용 장치이다. 스토리지 장치(913)는, 예를 들어 HDD(Hard Disk Drive) 등의 자기 기억부 디바이스, 반도체 기억 디바이스, 광 기억 디바이스, 또는 광자기 기억 디바이스 등에 의해 구성된다. 이 스토리지 장치(913)는, CPU(901)가 실행하는 프로그램이나 각종 데이터 및 외부로부터 취득한 각종 데이터 등을 저장한다.
드라이브(915)는, 기록 매체용 리더 라이터이며, 연산 처리 장치(200)에 내장, 혹은 외장된다. 드라이브(915)는, 장착되어 있는 자기 디스크, 광 디스크, 광자기 디스크, 또는 반도체 메모리 등의 리무버블 기록 매체(921)에 기록되어 있는 정보를 판독하여, RAM(905)에 출력한다. 또한, 드라이브(915)는, 장착되어 있는 자기 디스크, 광 디스크, 광자기 디스크, 또는 반도체 메모리 등의 리무버블 기록 매체(921)에 기록을 기입하는 것도 가능하다. 리무버블 기록 매체(921)는, 예를 들어 CD 미디어, DVD 미디어, Blu-ray(등록 상표) 미디어 등이다. 또한, 리무버블 기록 매체(921)는, 컴팩트 플래시(등록 상표)(Compact Flash: CF), 플래시 메모리, 또는 SD 메모리 카드(Secure Digital memory card) 등이어도 된다. 또한, 리무버블 기록 매체(921)는, 예를 들어 비접촉형 IC 칩을 탑재한 IC 카드(Integrated Circuit card) 또는 전자 기기 등이어도 된다.
접속 포트(917)는, 기기를 연산 처리 장치(200)에 직접 접속하기 위한 포트이다. 접속 포트(917)의 일례로서, USB(Universal Serial Bus) 포트, IEEE 1394 포트, SCSI(Small Computer System Interface) 포트, RS-232C 포트 등이 있다. 이 접속 포트(917)에 외부 접속 기기(923)를 접속함으로써, 연산 처리 장치(200)는 외부 접속 기기(923)로부터 직접 각종 데이터를 취득하거나, 외부 접속 기기(923)에 각종 데이터를 제공하거나 한다.
통신 장치(919)는, 예를 들어 통신망(925)에 접속하기 위한 통신 디바이스 등으로 구성된 통신 인터페이스이다. 통신 장치(919)는, 예를 들어 유선 또는 무선 LAN(Local Area Network), Bluetooth(등록 상표), 또는 WUSB(Wireless USB)용 통신 카드 등이다. 또한, 통신 장치(919)는, 광 통신용 라우터, ADSL(Asymmetric Digital Subscriber Line)용 라우터, 또는 각종 통신용 모뎀 등이어도 된다. 이 통신 장치(919)는, 예를 들어 인터넷이나 다른 통신 기기와의 사이에서, 예를 들어 TCP/IP 등의 소정의 프로토콜에 의거하여 신호 등을 송수신할 수 있다. 또한, 통신 장치(919)에 접속되는 통신망(925)은, 유선 또는 무선에 의해 접속된 네트워크 등에 의해 구성되고, 예를 들어 인터넷, 가정 내 LAN, 사내 LAN, 적외선 통신, 라디오파 통신 또는 위성 통신 등이어도 된다.
이상, 본 발명의 실시 형태에 관한 연산 처리 장치(200)의 기능을 실현 가능한 하드웨어 구성의 일례를 나타냈다. 상기한 각 구성 요소는, 범용적인 부재를 사용하여 구성되어 있어도 되고, 각 구성 요소의 기능에 특화된 하드웨어에 의해 구성되어 있어도 된다. 따라서, 본 실시 형태를 실시하는 그때그때의 기술 레벨에 따라서, 적절하게 이용하는 하드웨어 구성을 변경하는 것이 가능하다.
실시예
이하에서는, 실시예를 나타내면서, 본 발명에 관한 형상 측정 장치 및 형상 측정 방법에 대해 구체적으로 설명한다. 또한, 이하에 나타내는 실시예는, 본 발명에 관한 형상 측정 장치 및 형상 측정 방법의 어디까지나 일례이며, 본 발명에 관한 형상 측정 장치 및 형상 측정 방법이, 하기에 나타내는 실시예에 한정되는 것은 아니다.
이하에 나타내는 실시예 1 내지 실시예 3에서는, 표면이 평탄한 것으로 이미 알고 있는 알루미늄판을 피측정 강체(S)로서 이용하였다. 또한, 형상 측정에 사용한 형상 측정 장치는, 도 1 및 도 2에 나타낸 바와 같은, 본 실시 형태에 관한 형상 측정 장치(10)이다.
실시예 1 내지 실시예 3에서는, 상기한 바와 같은 알루미늄판을, 일정 속도 5㎜/초로 60㎜ 반송하면서, 2대의 에어리어 카메라에 의해 0.2초당 1매 촬상하여, 각 에어리어 카메라에 의해 60매의 촬상 화상을 얻었다. 또한, 사전에, 교정 곡선 Ca, Cb, Cc 및 ΔLb, ΔLc를 작성하고, 얻어진 데이터를 기억부에 저장해 두었다.
이하에 나타내는 실시예에서는, 알루미늄판의 반송 중에, 3종류의 외란(Z축 방향의 이동, L축 주위의 회전, C축 주위의 회전)을 각각 부가하고, 외란에 기인하는 Z 좌표의 변화가 포함된 값 Z(i, Xa)와, 연산 처리 장치(200)로부터 출력된 실제의 표면 높이 Zout(i, Xa)(i=1, 2, ···, 60)를 비교하였다. 또한, 이하에서는, Xa 좌표(단위: 픽셀)를 강체(S)의 폭 방향인 C 좌표(단위: ㎜)로 변환하여 얻어지는 결과를 나타내고 있다.
(실시예 1)
실시예 1에서는, 도 31a에 나타낸 바와 같은 Z 방향의 평행 이동을, 알루미늄판의 반송 중에 외란으로서 부가하였다. 또한, 광 절단선의 위치는, 도 31b에 나타낸 바와 같다. 그 결과, 도 31c에 나타낸 바와 같이, Z(i, Xa)는 외란에 의한 Z축 방향의 변화가 중첩되어 있고, 해당되는 부분의 표면 높이가 평탄하게 되어 있지 않은 것을 알 수 있다. 이 결과는, Z(i, Xa)에서는 정확한 표면 높이를 표현하지 못한 것을 나타내고 있다. 한편, 도 31d에 나타낸 바와 같이, Zout(i, Xa)(i=1, 2, ···, 60)는 평탄하게 되어, 정확한 표면 높이가 측정되어 있는 것을 확인할 수 있었다.
(실시예 2)
실시예 2에서는, 도 32a에 나타낸 바와 같은 L축 주위의 회전(회전축은, 알루미늄판의 폭 방향 중앙 위치로 하고, 회전각의 정방향은, L축 정방향을 따라 시계 방향으로 함)을, 알루미늄판의 반송 중에 외란으로서 부가하였다. 또한, 광 절단선의 위치와 회전축의 위치 관계는, 도 32b에 나타낸 바와 같다. 그 결과, 도 32c에 나타낸 바와 같이, Z(i, Xa)는, L축 주위의 회전에 의한 Z축 방향의 변화가 중첩되어 있고, 해당되는 부분의 표면 높이가 평탄하게 되어 있지 않은 것을 알 수 있다. 이 결과는, Z(i, Xa)에서는 정확한 표면 높이를 표현하지 못한 것을 나타내고 있다. 한편, 도 32d에 나타낸 바와 같이, Zout(i, Xa)(i=1, 2, ···, 60)는 평탄하게 되어, 정확한 표면 높이가 측정되어 있는 것을 확인할 수 있었다.
(실시예 3)
실시예 3에서는, 도 33a에 나타낸 바와 같은 C축 주위의 회전(회전축은, 알루미늄판의 길이 방향 중앙 위치로 하고, 회전각의 정방향은, C축 정방향을 따라 시계 방향으로 함)을, 알루미늄판의 반송 중에 외란으로서 부가하였다. 또한, 광 절단선의 위치와 회전축의 위치 관계는, 도 33b에 나타낸 바와 같다. 그 결과, 도 33c에 나타낸 바와 같이, Z(i, Xa)는, C축 주위의 회전에 의한 Z축 방향의 변화가 중첩되어 있고, 해당되는 부분의 표면 높이가 평탄하게 되어 있지 않은 것을 알 수 있다. 이 결과는, Z(i, Xa)에서는, 정확한 표면 높이를 표현하지 못한 것을 나타내고 있다. 한편, 도 33d에 나타낸 바와 같이, Zout(i, Xa)(i=1, 2, ···, 60)는 평탄하게 되어, 정확한 표면 높이가 측정되어 있는 것을 확인할 수 있었다.
이상, 첨부 도면을 참조하면서 본 발명의 적합한 실시 형태에 대해 상세하게 설명하였지만, 본 발명은 이러한 예에 한정되지 않는다. 본 발명이 속하는 기술분야에 있어서의 통상의 지식을 갖는 자이면, 청구범위에 기재된 기술적 사상의 범주 내에 있어서, 각종 변경예 또는 수정예에 상도할 수 있는 것은 명확하고, 이들에 대해서도, 당연히 본 발명의 기술적 범위에 속하는 것이라고 이해된다.
10 : 형상 측정 장치
100 : 촬상 장치
101a, 101b, 101c : 선형 레이저 광원
111, 113, 115, 117 : 에어리어 카메라
200 : 연산 처리 장치
201 : 촬상 제어부
203 : 화상 처리부
205 : 표시 제어부
207 : 기억부
211 : 촬상 데이터 취득부
213 : 외란 추정부
215 : 형상 데이터 산출부
217 : 보정부
219 : 결과 출력부
221 : 공통 조사 부분 외란 추정부
223 : 교점 위치 외란 추정부

Claims (16)

  1. 피측정 강체의 길이 방향을 따라 당해 피측정 강체에 대해 상대 이동하는 복수의 선형 레이저 광원으로부터, 상기 피측정 강체의 표면으로 조사된, 복수의 선형 레이저광에 의한 복수의 광 절단선에 의해, 당해 피측정 강체의 형상을 측정하는 것이며,
    길이 방향을 따라 상대 이동하는 상기 피측정 강체의 표면에 대해, 3개의 상기 선형 레이저광을 조사함과 함께, 상기 3개의 선형 레이저광의 상기 피측정 강체의 표면으로부터의 반사광을 소정의 길이 방향 간격으로 촬상하는 촬상 장치와,
    상기 촬상 장치에 의해 촬상된 상기 광 절단선에 관한 촬상 화상에 대해 화상 처리를 실시하여, 상기 피측정 강체의 표면 형상을 산출하는 연산 처리 장치
    를 구비하고,
    상기 촬상 장치는,
    상기 피측정 강체의 폭 방향으로 연장되는 상기 광 절단선이며, 상기 피측정 강체의 표면 형상을 산출하기 위해 사용되는 형상 측정용 광 절단선을 사출하는 제1 선형 레이저 광원과,
    상기 피측정 강체의 길이 방향에 대해 평행하고, 또한 상기 형상 측정용 광 절단선과 교차하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제1 보정용 광 절단선을 사출하는 제2 선형 레이저 광원과,
    상기 피측정 강체의 길이 방향에 대해 평행하고, 상기 형상 측정용 광 절단선과 교차하고, 또한 상기 제1 보정용 광 절단선과는 상이한 상기 피측정 강체의 폭 방향 위치에 존재하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제2 보정용 광 절단선을 사출하는 제3 선형 레이저 광원과,
    상기 형상 측정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 형상 측정용 광 절단선의 촬상 화상을 생성하는 제1 카메라와,
    상기 보정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 보정용 광 절단선의 촬상 화상을 생성하는 제2 카메라
    를 갖고 있고,
    상기 연산 처리 장치는,
    상기 제1 카메라에 의해 생성된 각 시각에서의 상기 형상 측정용 광 절단선의 촬상 화상에 기초하여, 상기 피측정 강체의 표면의 3차원 형상을 나타내고, 또한 상기 외란에 기인하는 측정 오차가 중첩된 형상 데이터를 산출하는 형상 데이터 산출부와,
    상기 피측정 강체의 동일 위치에 대해 상이한 2개의 시각에 취득한 상기 피측정 강체의 표면 높이에 관한 높이 측정값으로부터, 당해 위치에 있어서의 상기 외란에 기인하는 높이 변화값을 취득하는 높이 변화값 취득 처리를, 상기 제1 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제1 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시함과 함께, 상기 높이 변화값 취득 처리를, 상기 제2 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제2 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시하고, 상기 제1 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값과, 상기 제2 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값을 이용하여, 상기 형상 데이터에 중첩된 상기 외란에 기인하는 높이 변동량을 추정하는 외란 추정부와,
    상기 형상 데이터로부터 상기 높이 변동량을 차감함으로써 상기 외란에 기인하는 측정 오차를 보정하는 보정부,
    를 갖는, 형상 측정 장치.
  2. 제1항에 있어서,
    상기 외란 추정부는,
    상기 제1 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시켜, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 추정하고,
    상기 제2 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시켜, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 추정하고,
    2개의 상기 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 연결하는 직선에 의해 상기 높이 변동량을 추정하는, 형상 측정 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 제1 카메라 및 상기 제2 카메라는, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상을 행하여, 각각 N매(N은, 2 이상의 정수)의 촬상 화상을 생성하고,
    상기 외란 추정부는, 1매째의 촬상 화상에 상기 외란이 발생되어 있지 않다고 간주하고 상기 높이 변동량을 산출하는, 형상 측정 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 카메라 및 상기 제2 카메라의 촬상 타이밍은, 서로 인접하는 촬상 시각에 촬상한 상기 제2 카메라의 촬상 화상에 있어서, 공통적으로 상기 보정용 광 절단선이 조사되어 있는 상기 피측정 강체의 부분인 공통 조사 영역이 존재하도록 제어되어 있고,
    상기 외란 추정부는, 상기 제1 보정용 광 절단선 및 상기 제2 보정용 광 절단선의 각각에서의 상기 공통 조사 영역에 해당되는 상기 복수의 점에 대해, 상기 외란에 기인하는 높이 변화값을 산출하는, 형상 측정 장치.
  5. 제4항에 있어서,
    상기 외란 추정부는, 상기 제2 카메라의 i+1매째(i=1, 2, ···, N-1)의 촬상 화상으로부터 얻어지는 상기 높이 변화값을 포함하는 겉보기 표면 높이와, 상기 제2 카메라의 i매째의 촬상 화상으로부터 얻어지는, 당해 촬상 화상의 상기 공통 조사 영역에 있어서의 상기 높이 변화값을 제거한 후의 표면 높이를 사용하여, 상기 i+1매째의 촬상 화상에 있어서의 상기 높이 변화값과, 당해 높이 변화값을 제거한 후의 표면 높이를 산출하는, 형상 측정 장치.
  6. 제4항 또는 제5항에 있어서,
    상기 외란 추정부는, 상기 제2 카메라의 1매째의 촬상 화상을 기준으로 하여, 상기 제2 카메라의 i매째(i=2, ···, N)의 촬상 화상에 있어서의 상기 높이 변화값을 산출하는, 형상 측정 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 제1 선형 레이저 광원, 상기 제2 선형 레이저 광원 및 상기 제3 선형 레이저 광원은, 각각의 광원의 광축이 상기 피측정 강체의 길이 방향 및 폭 방향으로 규정되는 평면에 대해 수직으로 되도록 배치되는, 형상 측정 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 제1 카메라의 광축과 상기 제1 선형 레이저 광원의 광축이 이루는 각, 상기 제2 카메라의 시선과 상기 제2 선형 레이저 광원의 광축이 이루는 각, 및 상기 제2 카메라의 시선과 상기 제3 선형 레이저 광원의 광축이 이루는 각은, 서로 독립적으로, 30도 이상 60도 이하인, 형상 측정 장치.
  9. 피측정 강체의 길이 방향을 따라 당해 피측정 강체에 대해 상대 이동하는 복수의 선형 레이저 광원으로부터, 상기 피측정 강체의 표면으로 조사된, 복수의 선형 레이저광에 의한 복수의 광 절단선에 의해, 당해 피측정 강체의 형상을 측정하는 것이며,
    상기 피측정 강체의 폭 방향으로 연장되는 상기 광 절단선이며, 상기 피측정 강체의 표면 형상을 산출하기 위해 사용되는 형상 측정용 광 절단선을 사출하는 제1 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 또한 상기 형상 측정용 광 절단선과 교차하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제1 보정용 광 절단선을 사출하는 제2 선형 레이저 광원과, 상기 피측정 강체의 길이 방향에 대해 평행하고, 상기 형상 측정용 광 절단선과 교차하고, 또한 상기 제1 보정용 광 절단선과는 상이한 상기 피측정 강체의 폭 방향 위치에 존재하고 있고, 상기 피측정 강체에 작용하는 외란의 영향을 보정하기 위해 사용되는 제2 보정용 광 절단선을 사출하는 제3 선형 레이저 광원과, 상기 형상 측정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 형상 측정용 광 절단선의 촬상 화상을 생성하는 제1 카메라와, 상기 보정용 광 절단선을, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상하고, 각 시각에 있어서의 각각의 상기 보정용 광 절단선의 촬상 화상을 생성하는 제2 카메라를 갖는 촬상 장치로부터, 길이 방향을 따라 상대 이동하는 상기 피측정 강체의 표면에 대해 3개의 상기 광 절단선을 조사하여, 당해 3개의 광 절단선의 상기 피측정 강체의 표면으로부터의 반사광을 소정의 길이 방향 간격으로 촬상하는 촬상 스텝과,
    상기 제1 카메라에 의해 생성된 각 시각에서의 상기 형상 측정용 광 절단선의 촬상 화상에 기초하여, 상기 피측정 강체의 표면의 3차원 형상을 나타내고, 또한 상기 외란에 기인하는 측정 오차가 중첩된 형상 데이터를 산출하는 형상 데이터 산출 스텝과,
    상기 피측정 강체의 동일 위치에 대해 상이한 2개의 시각에 취득한 상기 피측정 강체의 표면 높이에 관한 높이 측정값으로부터, 당해 위치에 있어서의 상기 외란에 기인하는 높이 변화값을 취득하는 높이 변화값 취득 처리를, 상기 제1 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제1 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시함과 함께, 상기 높이 변화값 취득 처리를, 상기 제2 보정용 광 절단선의 촬상 화상을 사용하여, 당해 제2 보정용 광 절단선의 상이한 길이 방향 위치의 복수의 점에 대해 실시하여, 상기 제1 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값과, 상기 제2 보정용 광 절단선의 촬상 화상으로부터 얻어진 복수의 상기 외란에 기인하는 높이 변화값을 이용하여, 상기 형상 데이터에 중첩된 상기 외란에 기인하는 높이 변동량을 추정하는 외란 추정 스텝과,
    상기 형상 데이터로부터 상기 높이 변동량을 차감함으로써 상기 외란에 기인하는 측정 오차를 보정하는 보정 스텝,
    을 포함하는, 형상 측정 방법.
  10. 제9항에 있어서,
    상기 외란 추정 스텝에서는,
    상기 제1 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시킴으로써, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값이 추정되고,
    상기 제2 보정용 광 절단선 상의 복수의 점에 있어서의 상기 외란에 기인하는 높이 변화값을 직선 근사시킴으로써, 당해 직선과 상기 형상 측정용 광 절단선의 교점에 있어서의 상기 외란에 기인하는 높이 변화값이 추정되고,
    2개의 상기 교점에 있어서의 상기 외란에 기인하는 높이 변화값을 연결하는 직선에 의해 상기 높이 변동량이 추정되는, 형상 측정 방법.
  11. 제9항 또는 제10항에 있어서,
    상기 제1 카메라 및 상기 제2 카메라는, 소정의 길이 방향 간격에 대응하는 각 시각에 촬상을 행하여, 각각 N매(N은, 2 이상의 정수)의 촬상 화상을 생성하고,
    상기 외란 추정 스텝에서는, 1매째의 촬상 화상에 상기 외란이 발생되어 있지 않다고 간주하고 상기 높이 변동량이 산출되는, 형상 측정 방법.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서,
    상기 제1 카메라 및 상기 제2 카메라의 촬상 타이밍은, 서로 인접하는 촬상 시각에 촬상한 상기 제2 카메라의 촬상 화상에 있어서, 공통적으로 상기 보정용 광 절단선이 조사되어 있는 상기 피측정 강체의 부분인 공통 조사 영역이 존재하도록 제어되어 있고,
    상기 외란 추정 스텝에서는, 상기 제1 보정용 광 절단선 및 상기 제2 보정용 광 절단선의 각각에서의 상기 공통 조사 영역에 해당되는 상기 복수의 점에 대해, 상기 외란에 기인하는 높이 변화값이 산출되는, 형상 측정 방법.
  13. 제12항에 있어서,
    상기 외란 추정 스텝에서는, 상기 제2 카메라의 i+1매째(i=1, 2, ···, N-1)의 촬상 화상으로부터 얻어지는 상기 높이 변화값을 포함하는 겉보기 표면 높이와, 상기 제2 카메라의 i매째의 촬상 화상으로부터 얻어지는, 당해 촬상 화상의 상기 공통 조사 영역에 있어서의 상기 높이 변화값을 제거한 후의 표면 높이를 사용하여, 상기 i+1매째의 촬상 화상에 있어서의 상기 높이 변화값과, 당해 높이 변화값을 제거한 후의 표면 높이가 산출되는, 형상 측정 방법.
  14. 제12항 또는 제13항에 있어서,
    상기 외란 추정 스텝에서는, 상기 제2 카메라의 1매째의 촬상 화상을 기준으로 하여, 상기 제2 카메라의 i매째(i=2, ···, N)의 촬상 화상에 있어서의 상기 높이 변화값이 산출되는, 형상 측정 방법.
  15. 제9항 내지 제14항 중 어느 한 항에 있어서,
    상기 제1 선형 레이저 광원, 상기 제2 선형 레이저 광원 및 상기 제3 선형 레이저 광원은, 각각의 광원의 광축이 상기 피측정 강체의 길이 방향 및 폭 방향으로 규정되는 평면에 대해 수직으로 되도록 배치되는, 형상 측정 방법.
  16. 제9항 내지 제15항 중 어느 한 항에 있어서,
    상기 제1 카메라의 광축과 상기 제1 선형 레이저 광원의 광축이 이루는 각, 상기 제2 카메라의 시선과 상기 제2 선형 레이저 광원의 광축이 이루는 각, 및 상기 제2 카메라의 시선과 상기 제3 선형 레이저 광원의 광축이 이루는 각은, 서로 독립적으로, 30도 이상 60도 이하인, 형상 측정 방법.
KR1020177032769A 2015-04-22 2016-04-22 형상 측정 장치 및 형상 측정 방법 KR101950634B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015087517 2015-04-22
JPJP-P-2015-087517 2015-04-22
PCT/JP2016/062801 WO2016171263A1 (ja) 2015-04-22 2016-04-22 形状測定装置及び形状測定方法

Publications (2)

Publication Number Publication Date
KR20170136618A true KR20170136618A (ko) 2017-12-11
KR101950634B1 KR101950634B1 (ko) 2019-02-20

Family

ID=57143946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177032769A KR101950634B1 (ko) 2015-04-22 2016-04-22 형상 측정 장치 및 형상 측정 방법

Country Status (10)

Country Link
US (1) US10451410B2 (ko)
EP (1) EP3270104B8 (ko)
JP (1) JP6380667B2 (ko)
KR (1) KR101950634B1 (ko)
CN (1) CN107735646B (ko)
BR (1) BR112017022305B1 (ko)
CA (1) CA2981970C (ko)
ES (1) ES2743217T3 (ko)
PL (1) PL3270104T3 (ko)
WO (1) WO2016171263A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119851A (ja) * 2017-01-25 2018-08-02 東芝三菱電機産業システム株式会社 平坦度計測装置
JP7027049B2 (ja) * 2017-06-15 2022-03-01 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP6648869B2 (ja) * 2017-11-27 2020-02-14 日本製鉄株式会社 形状検査装置及び形状検査方法
JP2019168315A (ja) * 2018-03-23 2019-10-03 三菱電機株式会社 測定装置、回路基板、表示装置、および測定方法
KR102048364B1 (ko) * 2018-04-13 2019-11-25 엘지전자 주식회사 로봇 청소기
KR102044852B1 (ko) * 2018-06-29 2019-11-13 대한민국(농촌진흥청장) 젖소 유두 자동인식장치 및 방법
WO2020129065A1 (en) * 2018-12-20 2020-06-25 Kornit Digital Ltd. Printing head height control
JP7267097B2 (ja) * 2019-05-21 2023-05-01 株式会社小野測器 速度計測装置
CN111366065B (zh) * 2020-02-28 2021-11-05 深圳冰河导航科技有限公司 一种平地机的自动校准方法
CN112648981B (zh) * 2020-12-04 2023-01-13 中国航空工业集团公司成都飞机设计研究所 一种基于激光定位的旋转机构运动过程摆动量测量方法
CN112747679A (zh) * 2020-12-23 2021-05-04 河南中原光电测控技术有限公司 测宽设备、测宽方法、存储有测宽程序的计算机可读介质
KR102413483B1 (ko) * 2021-07-28 2022-06-28 주식회사 프로시스템 3차원 곡면 형상 검사 장치 및 3차원 곡면 형상 검사 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034301A2 (de) * 2008-09-25 2010-04-01 Technische Universität Braunschweig Carolo-Wilhelmina 3d-geometrie-erfassungsverfahren und -vorrichtung
US20100209002A1 (en) * 2007-11-15 2010-08-19 Sirona Dental Systems Gmbh Method for optical measurement of the three dimensional geometry of objects
JP2011047857A (ja) * 2009-08-28 2011-03-10 Toyota Motor Corp 三次元形状計測方法
JP2012032271A (ja) * 2010-07-30 2012-02-16 Kobe Steel Ltd 測定装置
JP2013221799A (ja) 2012-04-13 2013-10-28 Nippon Steel & Sumitomo Metal 形状計測装置及び形状計測方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160437A (ja) * 1996-12-03 1998-06-19 Bridgestone Corp タイヤの外形状判定方法及び装置
KR100552469B1 (ko) * 2003-01-13 2006-02-15 삼성전자주식회사 위상차 제거기능을 갖는 트랙에러검출장치 및 그의위상차제거방법
JP5180608B2 (ja) * 2008-01-30 2013-04-10 株式会社日立ハイテクノロジーズ ディスク表面の欠陥検査方法及び欠陥検査装置
EP2492634B1 (en) * 2009-10-19 2017-05-10 Nippon Steel & Sumitomo Metal Corporation Method of measuring flatness of sheet and method of manufacturing steel sheet using same
US9116504B2 (en) * 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
CN102353684B (zh) * 2011-06-23 2013-10-30 南京林业大学 基于双激光三角法的激光肉图像采集方法
KR101797423B1 (ko) * 2014-03-07 2017-11-13 신닛테츠스미킨 카부시키카이샤 표면 성상 지표화 장치, 표면 성상 지표화 방법 및 프로그램
JP6482196B2 (ja) * 2014-07-09 2019-03-13 キヤノン株式会社 画像処理装置、その制御方法、プログラム、及び記憶媒体
CN105302151B (zh) * 2014-08-01 2018-07-13 深圳中集天达空港设备有限公司 一种飞机入坞引导和机型识别的系统及方法
EP3236199A4 (en) * 2014-12-15 2018-06-06 Sony Corporation Image capture device assembly, three-dimensional shape measurement device, and motion detection device
JP6478713B2 (ja) * 2015-03-04 2019-03-06 キヤノン株式会社 計測装置および計測方法
KR101894683B1 (ko) * 2015-05-29 2018-09-04 신닛테츠스미킨 카부시키카이샤 금속체의 형상 검사 장치 및 금속체의 형상 검사 방법
EP3343169B1 (en) * 2016-07-19 2020-12-23 Nippon Steel Corporation Apparatus and method for measuring surface roughness distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209002A1 (en) * 2007-11-15 2010-08-19 Sirona Dental Systems Gmbh Method for optical measurement of the three dimensional geometry of objects
WO2010034301A2 (de) * 2008-09-25 2010-04-01 Technische Universität Braunschweig Carolo-Wilhelmina 3d-geometrie-erfassungsverfahren und -vorrichtung
JP2011047857A (ja) * 2009-08-28 2011-03-10 Toyota Motor Corp 三次元形状計測方法
JP2012032271A (ja) * 2010-07-30 2012-02-16 Kobe Steel Ltd 測定装置
JP2013221799A (ja) 2012-04-13 2013-10-28 Nippon Steel & Sumitomo Metal 形状計測装置及び形状計測方法

Also Published As

Publication number Publication date
BR112017022305B1 (pt) 2022-08-09
BR112017022305A2 (pt) 2018-07-10
CA2981970A1 (en) 2016-10-27
US20180106608A1 (en) 2018-04-19
EP3270104B1 (en) 2019-06-12
ES2743217T3 (es) 2020-02-18
EP3270104A1 (en) 2018-01-17
WO2016171263A1 (ja) 2016-10-27
CN107735646A (zh) 2018-02-23
CA2981970C (en) 2019-08-06
EP3270104B8 (en) 2019-07-17
JPWO2016171263A1 (ja) 2018-02-08
KR101950634B1 (ko) 2019-02-20
US10451410B2 (en) 2019-10-22
EP3270104A4 (en) 2018-08-22
CN107735646B (zh) 2019-12-17
PL3270104T3 (pl) 2019-12-31
JP6380667B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
KR101950634B1 (ko) 형상 측정 장치 및 형상 측정 방법
JP4821934B1 (ja) 3次元形状計測装置およびロボットシステム
JP4715944B2 (ja) 三次元形状計測装置、三次元形状計測方法、および三次元形状計測プログラム
JP6209833B2 (ja) 検査用具、検査方法、ステレオカメラの生産方法及びシステム
JP2007114071A (ja) 三次元形状計測装置、プログラム、コンピュータ読み取り可能な記録媒体、及び三次元形状計測方法
US10151580B2 (en) Methods of inspecting a 3D object using 2D image processing
JP2013213769A (ja) 画像処理装置、画像処理方法及びプログラム
TWI672937B (zh) 三維影像處理之裝置及方法
JP2013221799A (ja) 形状計測装置及び形状計測方法
JP4058421B2 (ja) 振動計測装置及びその計測方法
Emam et al. Improving the accuracy of laser scanning for 3D model reconstruction using dithering technique
JP6095486B2 (ja) 画像測定装置
JP2007093412A (ja) 3次元形状測定装置
JP6241083B2 (ja) 撮像装置及び視差検出方法
JP7001947B2 (ja) 表面形状測定方法
JP2006337270A (ja) 断面形状の測定方法及びその装置
JP2018189459A (ja) 計測装置、計測方法、システム、および物品製造方法
JP6820516B2 (ja) 表面形状測定方法
JP6880396B2 (ja) 形状測定装置および形状測定方法
JP2010025803A (ja) 位置決め機能を有する検査装置、位置決め機能を有する検査装置用プログラム、位置決め機能を有する検査装置の検査方法
JP6777488B2 (ja) 位置計測装置および位置計測方法
JP2016095243A (ja) 計測装置、計測方法、および物品の製造方法
JP2012211905A (ja) 三次元形状計測装置、プログラム、コンピュータ読み取り可能な記録媒体、及び三次元形状計測方法
JP6225719B2 (ja) 真直度測定装置、真直度測定方法、およびプログラム
TWI813095B (zh) 三維量測系統及其校正方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant