KR20170125065A - 하이브리드 차량의 제어 장치 - Google Patents

하이브리드 차량의 제어 장치 Download PDF

Info

Publication number
KR20170125065A
KR20170125065A KR1020177027403A KR20177027403A KR20170125065A KR 20170125065 A KR20170125065 A KR 20170125065A KR 1020177027403 A KR1020177027403 A KR 1020177027403A KR 20177027403 A KR20177027403 A KR 20177027403A KR 20170125065 A KR20170125065 A KR 20170125065A
Authority
KR
South Korea
Prior art keywords
brake
mode
correction amount
pulley pressure
torque correction
Prior art date
Application number
KR1020177027403A
Other languages
English (en)
Inventor
히로노리 미야이시
도모유키 미즈오치
아키토 스즈키
데츠야 이즈미
Original Assignee
쟈트코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쟈트코 가부시키가이샤 filed Critical 쟈트코 가부시키가이샤
Publication of KR20170125065A publication Critical patent/KR20170125065A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • B60L11/14
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0266Moment of inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/088Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1025Input torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1095Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/54Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the brakes, e.g. parking brakes

Abstract

구동 모드로서 HEV 모드와 EV 모드를 갖는 FF 하이브리드 차량의 제어 장치에 있어서, 브레이크 감속시(스텝 S1), 벨트식 무단 변속기(6)로의 입력 토크분과, 이너셔 토크 보정분인 브레이크 토크 보정량에 기초하여 벨트식 무단 변속기(6)의 벨트(6c)를 클램핑하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)을 정하는 CVT 컨트롤 유닛(84)을 설치한다. CVT 컨트롤 유닛(84)은, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 한다(스텝 S9).

Description

하이브리드 차량의 제어 장치
본 발명은, 브레이크 감속시에 이너셔 토크에 의한 브레이크 토크 보정량만큼 풀리압을 높이는 풀리압 보정 제어가 행해지는 하이브리드 차량의 제어 장치에 관한 것이다.
종래, 벨트식 무단 변속기의 제어 장치로서, 브레이크 감속시에 이너셔 토크에 기인한 벨트 미끄럼을 방지하는 것을 목적으로 하여, 이너셔 토크에 의한 보정량만큼 풀리압을 높이는 풀리압 보정 제어를 행하는 것이 알려져 있다(예를 들어, 특허 문헌 1 참조).
그러나, 종래 장치를 하이브리드 차량에 적용하면, EV 모드에서의 브레이크 감속시인지 HEV 모드에서의 브레이크 감속시인지에 관계없이, 동일한 보정량에 의해 풀리압을 높이는 풀리압 보정이 행해진다. 이 때문에, HEV 모드에 비해 이너셔 토크가 작은 EV 모드에서의 브레이크 감속시, 보정 후의 세컨더리 풀리압이 필요 이상으로 증대되어, 벨트 노이즈를 악화시켜버린다는 문제가 있었다.
일본 특허 공개 제2007-107653호 공보
본 발명은, 상기 문제에 착안하여 이루어진 것으로, EV 모드에서의 브레이크 감속시, 벨트식 무단 변속기에서의 벨트 노이즈의 악화를 억제하는 하이브리드 차량의 제어 장치를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명은, 구동계에, 엔진과, 모터와, 벨트식 무단 변속기를 구비한다. 벨트식 무단 변속기는, 프라이머리 풀리와 세컨더리 풀리에 벨트를 걸치고, 프라이머리 풀리압과 세컨더리 풀리압으로 벨트를 클램핑하도록 구성되어 있다. 구동 모드로서, 엔진과 모터를 구동원으로 하는 HEV 모드와, 모터만을 구동원으로 하는 EV 모드를 갖는다. 이 하이브리드 차량의 제어 장치에 있어서, 브레이크 감속시, 벨트식 무단 변속기로의 입력 토크분과, 이너셔 토크 보정분인 브레이크 토크 보정량에 기초하여, 프라이머리 풀리압과 세컨더리 풀리압을 정하는 풀리압 보정 제어 수단을 설치한다. 풀리압 보정 제어 수단은, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 한다.
따라서, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 된다. 즉, 이너셔 토크 보정분인 브레이크 토크 보정량을 정할 때의 고려해야 할 구동계의 구성 요소는 EV 모드와 HEV 모드에서 상이하다. 즉, 모터만을 구동원으로 하는 EV 모드의 경우, 엔진은 클러치에 의해 프라이머리 풀리로부터 분리되어 있어, 엔진과 모터를 구동원으로 하는 HEV 모드에 비해 이너셔 토크가 작다. 이 때문에, 엔진과 벨트식 무단 변속기가 비직결인 EV 모드에서의 브레이크 토크 보정량을, HEV 모드에서의 브레이크 토크 보정량으로부터 구분하여, EV 모드에서의 이너셔 토크에 맞추어, HEV 모드의 선택시보다 작은 브레이크 토크 보정량으로 설정한다. 이 결과, 각 모드에서의 이너셔에 의한 벨트 미끄럼을 방지하면서, EV 모드에서의 브레이크 감속시, 벨트식 무단 변속기에서의 벨트 노이즈의 악화를 억제할 수 있다.
도 1은, 실시예 1의 제어 장치가 적용된 FF 하이브리드 차량을 나타낸 전체 시스템도이다.
도 2는, 실시예 1의 CVT 컨트롤 유닛에 있어서 실행되는 브레이크 감속시의 풀리압 보정 제어 처리의 흐름을 나타낸 흐름도이다.
도 3은, 실시예 1의 FF 하이브리드 차량에 있어서 이너셔 토크 보정분인 브레이크 토크 보정량을 정할 때의 고려해야 할 구동계의 구성 요소를 WSC 모드ㆍEV 모드ㆍHEV 모드ㆍABS 작동 중으로 나누어 나타낸 설명도이다.
도 4는, 실시예 1의 FF 하이브리드 차량에 있어서 WSC 모드가 선택되어 있을 때의 브레이크ㆍ차속ㆍ엔진 회전수ㆍ차회전수(差回轉數)ㆍCL1 상태ㆍCL2 상태ㆍ브레이크 토크 보정량의 각 특성을 나타낸 타임 차트이다.
도 5는, 실시예 1의 FF 하이브리드 차량에 있어서 EV 모드가 선택되어 있을 때의 브레이크ㆍ차속ㆍ엔진 회전수ㆍ차회전수ㆍCL1 상태ㆍCL2 상태ㆍ브레이크 토크 보정량의 각 특성을 나타낸 타임 차트이다.
도 6은, 실시예 1의 FF 하이브리드 차량에 있어서 HEV 모드가 선택되어 있을 때의 브레이크ㆍ차속ㆍ엔진 회전수ㆍ차회전수ㆍCL1 상태ㆍCL2 상태ㆍ브레이크 토크 보정량의 각 특성을 나타낸 타임 차트이다.
도 7은, 실시예 1의 FF 하이브리드 차량에 있어서 HEV 모드로부터 EV 모드로 모드 천이될 때의 브레이크ㆍ차속ㆍ엔진 회전수ㆍ차회전수ㆍCL1 상태ㆍCL2 상태ㆍ브레이크 토크 보정량의 각 특성을 나타낸 타임 차트이다.
도 8은, 실시예 1의 FF 하이브리드 차량에 있어서 일정형 브레이크 토크 보정 패턴ㆍ하강형 브레이크 토크 보정 패턴ㆍ요철형 브레이크 토크 보정 패턴의 각 특성을 나타낸 타임 차트이다.
도 9는, 실시예 1의 FF 하이브리드 차량에 있어서 모드 천이를 따라서 브레이크 조작으로부터 브레이크 해방으로 이행할 때의 브레이크 SWㆍCL1 제어 상태ㆍ모터 회전수ㆍ엔진 회전수ㆍ브레이크 토크 보정량ㆍ세컨더리 풀리 지시압의 각 특성을 나타낸 타임 차트이다.
도 10은, EV 모드가 선택된 브레이크 감속시에 있어서의 벨트 노이즈 저감의 대비 효과를 나타낸 효과 확인도이다.
이하, 본 발명의 하이브리드 차량 제어 장치를 실현하는 최선의 형태를, 도면에 나타낸 실시예 1에 기초하여 설명한다.
실시예 1
먼저, 구성을 설명한다. 실시예 1에 있어서의 제어 장치는, 좌우 전륜을 구동륜으로 하고, 변속기로서 벨트식 무단 변속기를 탑재한 FF 하이브리드 차량(하이브리드 차량의 일례)에 적용한 것이다. 이하, 실시예 1의 FF 하이브리드 차량의 제어 장치 구성을, 「전체 시스템 구성」, 「브레이크 감속시의 풀리압 보정 제어 처리 구성」으로 나누어서 설명한다.
[전체 시스템 구성]
도 1은, 실시예 1의 제어 장치가 적용된 FF 하이브리드 차량의 전체 시스템을 나타낸다. 이하, 도 1에 기초하여, FF 하이브리드 차량의 전체 시스템 구성을 설명한다.
FF 하이브리드 차량의 구동계는, 도 1에 나타낸 바와 같이, 횡치 엔진(2)과, 제1 클러치(3)(약칭 「CL1」)와, 모터 제너레이터(4)(약칭 「MG」)와, 제2 클러치(5)(약칭 「CL2」)와, 벨트식 무단 변속기(6)(약칭 「CVT」)를 구비하고 있다. 벨트식 무단 변속기(6)의 출력축은, 종감속 기어 트레인(7)과 차동 기어(8)와 좌우의 드라이브 샤프트(9R, 9L)를 통해, 좌우의 전륜(10R, 10L)에 구동 연결된다. 또한, 좌우의 후륜(11R, 11L)은, 종동륜으로 하고 있다.
상기 횡치 엔진(2)은, 스타터 모터(1)와, 크랭크축 방향을 차폭 방향으로 하여 프론트 룸에 배치한 엔진이며, 전동 워터 펌프(12)와, 횡치 엔진(2)의 역전을 검지하는 크랭크축 회전 센서(13)를 갖는다. 이 횡치 엔진(2)은, 시동 방식으로서 12V 배터리(22)를 전원으로 하는 스타터 모터(1)에 의해 크랭킹하는 「스타터 시동 모드」와, 제1 클러치(3)을 미끄럼 체결하면서 모터 제너레이터(4)에 의해 크랭킹하는 「MG 시동 모드」를 갖는다. 「스타터 시동 모드」는, 저온시 조건 또는 고온시 조건의 성립에 의해 선택되고, 「MG 시동 모드」는, 스타터 시동 이외의 조건에서의 엔진 시동시에 선택된다.
상기 모터 제너레이터(4)는, 제1 클러치(3)를 통해 횡치 엔진(2)에 연결된 삼상 교류의 영구 자석형 동기 모터이다. 이 모터 제너레이터(4)는, 후술하는 강전 배터리(21)를 전원으로 하고, 스테이터 코일에는, 역행시에 직류를 삼상 교류로 변환시키고, 회생시에 삼상 교류를 직류로 변환시키는 인버터(26)가, AC 하니스(27)를 통해 접속된다.
상기 제2 클러치(5)는, 모터 제너레이터(4)와 구동륜인 좌우의 전륜(10R, 10L) 사이에 개재 장착된 유압 작동에 의한 습식 다판 마찰 클러치이며, 제2 클러치 유압에 의해 완전 체결/슬립 체결/개방이 제어된다. 실시예 1에 있어서의 제2 클러치(5)는, 유성 기어에 의한 전후진 전환 기구에 설치된 전진 클러치(5a)와 후퇴 브레이크(5b)를 유용하고 있다. 즉, 전진 주행시에는, 전진 클러치(5a)가 제2 클러치(5)로 되고, 후퇴 주행시에는, 후퇴 브레이크(5b)가 제2 클러치(5)로 된다.
상기 벨트식 무단 변속기(6)는, 프라이머리 풀리(6a)와, 세컨더리 풀리(6b)와, 양쪽 풀리(6a, 6b)에 걸쳐진 벨트(6c)를 갖는다. 그리고, 프라이머리 유실과 세컨더리 유실에 공급되는 프라이머리압과 세컨더리압에 의해, 벨트(6c)의 권취 직경을 바꿈으로써 무단계(無段階)의 변속비를 얻는 변속기이다. 벨트식 무단 변속기(6)에는, 유압원으로서, 모터 제너레이터(4)의 모터축(=변속기 입력축)에 의해 회전 구동되는 메인 오일 펌프(14)(메카니즘 구동)와, 보조 펌프로서 사용되는 서브 오일 펌프(15)(모터 구동)를 갖는다. 그리고, 유압원으로부터의 펌프 토출압을 압력 조절함으로써 생성된 라인압(PL)을 원압으로 하고, 제1 클러치압과 제2 클러치압, 및 프라이머리압과 세컨더리압을 만들어 내는 컨트롤 밸브 유닛(6d)을 구비하고 있다.
상기 제1 클러치(3)와 모터 제너레이터(4)와 제2 클러치(5)에 의해, 1 모터ㆍ2 클러치라고 불리는 하이브리드 구동 시스템이 구성되며, 주요 구동 형태로서, 「EV 모드」, 「HEV 모드」, 「WSC 모드」를 갖는다. 「EV 모드」는, 제1 클러치(3)를 개방하고, 제2 클러치(5)를 체결하여 모터 제너레이터(4)만을 구동원으로 갖는 전기 자동차 모드이며, 「EV 모드」에 의한 주행을 「EV 주행」이라고 한다. 「HEV 모드」는, 양쪽 클러치(3, 5)를 체결하여 횡치 엔진(2)과 모터 제너레이터(4)를 구동원으로 갖는 하이브리드차 모드이며, 「HEV 모드」에 의한 주행을 「HEV 주행」이라고 한다. 「WSC 모드」는, 「HEV 모드」 또는 「EV 모드」에 있어서, 모터 제너레이터(4)를 모터 회전수 제어로 하고, 제2 클러치(5)를 요구 구동력 상당의 체결 토크 용량으로 슬립 체결하는 CL2 슬립 체결 모드이다.
FF 하이브리드 차량의 제동계는, 도 1에 나타낸 바와 같이, 브레이크 조작 유닛(16)과, 브레이크 액압 제어 유닛(17)과, 좌우 전륜 브레이크 유닛(18R, 18L)과, 좌우 후륜 브레이크 유닛(19R, 19L)을 구비하고 있다. 이 제동계에서는, 브레이크 조작시에 모터 제너레이터(4)에 의해 회생을 행할 때, 페달 조작에 기초하는 요구 제동력에 대하여, 요구 제동력으로부터 회생 제동력을 차감한 만큼을, 액압 제동력으로 분담하는 회생 협조 제어가 행해진다.
상기 브레이크 조작 유닛(16)은, 브레이크 페달(16a), 횡치 엔진(2)의 흡기 부압을 사용하는 부압 부스터(16b), 마스터 실린더(16c) 등을 갖는다. 이 회생 협조 브레이크 유닛(16)은, 브레이크 페달(16a)에 가해지는 드라이버로부터의 브레이크 답력에 따라서, 소정의 마스터 실린더압을 발생하는 것으로, 전동 부스터를 사용하지 않는 간이 구성에 의한 유닛이 된다.
상기 브레이크 액압 제어 유닛(17)은, 도시하고 있지 않으나, 전동 오일 펌프, 증압 솔레노이드 밸브, 감압 솔레노이드 밸브, 유로 전환 밸브 등을 가지고 구성된다. 브레이크 컨트롤 유닛(85)에 의한 브레이크 액압 제어 유닛(17)의 제어에 의해, 브레이크 비조작시에 휠 실린더 액압을 발생하는 기능과, 브레이크 조작시에 휠 실린더 액압을 압력 조절하는 기능을 발휘한다. 브레이크 비조작시의 액압 발생 기능을 사용하는 제어가, 트랙션 제어(TCS 제어)나 차량 거동 제어(VDC 제어)나 이머전시 브레이크 제어(자동 브레이크 제어) 등이다. 브레이크 조작시의 액압 조정 기능을 사용하는 제어가, 회생 협조 브레이크 제어, 안티 로크 브레이크 제어(ABS 제어) 등이다.
상기 좌우 전륜 브레이크 유닛(18R, 18L)은, 좌우 전륜(10R, 10L) 각각에 설치되고, 좌우 후륜 브레이크 유닛(19R, 19L)은, 좌우 후륜(11R, 11L) 각각에 설치되며, 각 바퀴에 액압 제동력을 부여한다. 이들 브레이크 유닛(18R, 18L, 19R, 19L)에는, 브레이크 액압 제어 유닛(17)에서 만들어내진 브레이크 액압이 공급되는, 도시하지 않은 휠 실린더를 갖는다.
FF 하이브리드 차량의 전원계는, 도 1에 나타낸 바와 같이, 모터 제너레이터(4)의 전원으로서의 강전 배터리(21)와, 12V계 부하의 전원으로서의 12V 배터리(22)를 구비하고 있다.
상기 강전 배터리(21)는, 모터 제너레이터(4)의 전원으로서 탑재된 이차 전지이며, 예를 들어 다수의 셀에 의해 구성된 셀 모듈을, 배터리 팩 케이스 내에 설정한 리튬 이온 배터리가 사용된다. 이 강전 배터리(21)에는, 강전의 공급/차단/분배를 행하는 릴레이 회로를 집약시킨 정션 박스가 내장되고, 추가로 배터리 냉각 기능을 갖는 냉각 팬 유닛(24)과, 배터리 충전 용량(배터리 SOC)이나 배터리 온도를 감시하는 리튬 배터리 컨트롤러(86)가 부설된다.
상기 강전 배터리(21)와 모터 제너레이터(4)는, DC 하네스(25)와 인버터(26)와 AC 하니스(27)를 통해 접속된다. 인버터(26)에는, 역행/회생 제어를 행하는 모터 컨트롤러(83)가 부설된다. 즉, 인버터(26)는, 강전 배터리(21)의 방전에 의해 모터 제너레이터(4)를 구동하는 역행시, DC 하네스(25)로부터의 직류를 AC 하니스(27)로의 삼상 교류로 변환시킨다. 또한, 모터 제너레이터(4)에서의 발전에 의해 강전 배터리(21)를 충전하는 회생시, AC 하니스(27)로부터의 삼상 교류를 DC 하네스(25)로의 직류로 변환시킨다.
상기 12V 배터리(22)는, 스타터 모터(1) 및 보조 기계류인 12V계 부하의 전원으로서 탑재된 이차 전지이며, 예를 들어 엔진차 등에 탑재되어 있는 납 배터리가 사용된다. 강전 배터리(21)와 12V 배터리(22)는, DC 분기 하니스(25a)와 DC/DC 컨버터(37)와 배터리 하니스(38)를 통해 접속된다. DC/DC 컨버터(37)는, 강전 배터리(21)로부터의 몇백볼트 전압을 12V로 변환시키는 것이며, 이 DC/DC 컨버터(37)를 하이브리드 컨트롤 모듈(81)에 의해 제어함으로써, 12V 배터리(22)의 충전량을 관리하는 구성으로 되어 있다.
FF 하이브리드 차량의 전자 제어계는, 도 1에 나타낸 바와 같이, 차량 전체의 소비 에너지를 적절하게 관리하는 통합 제어 기능을 담당하는 전자 제어 유닛으로서, 하이브리드 컨트롤 모듈(81)(약칭: 「HCM」)을 구비하고 있다. 다른 전자 제어 유닛으로서, 엔진 컨트롤 모듈(82)(약칭: 「ECM」)과, 모터 컨트롤러(83)(약칭: 「MC」)와, CVT 컨트롤 유닛(84)(약칭: 「CVTCU」)을 갖는다. 또한, 브레이크 컨트롤 유닛(85)(약칭: 「BCU」)과, 리튬 배터리 컨트롤러(86)(약칭: 「LBC」)를 갖는다. 이들 전자 제어 유닛(81, 82, 83, 84, 85, 86)은, CAN 통신선(90)(CAN은 「Controller Area Network」의 약칭)에 의해 쌍방향 정보 교환 가능하게 접속되고, 서로 정보를 공유한다.
상기 하이브리드 컨트롤 모듈(81)은, 다른 전자 제어 유닛(82, 83, 84, 85, 86), 이그니션 스위치(91) 등으로부터의 입력 정보에 기초하여, 다양한 통합 제어를 행한다.
상기 엔진 컨트롤 모듈(82)은, 하이브리드 컨트롤 모듈(81), 엔진 회전수 센서(92) 등으로부터의 입력 정보에 기초하여, 횡치 엔진(2)의 시동 제어나 연료 분사 제어나 점화 제어나 연료 커트 제어, 엔진 아이들 회전 제어 등을 행한다.
상기 모터 컨트롤러(83)는, 하이브리드 컨트롤 모듈(81), 모터 회전수 센서(93) 등으로부터의 입력 정보에 기초하여, 인버터(26)에 대한 제어 지령에 의해 모터 제너레이터(4)의 역행 제어나 회생 제어, 모터 크리프 제어, 모터 아이들 제어 등을 행한다.
상기 CVT 컨트롤 유닛(84)은, 하이브리드 컨트롤 모듈(81), 액셀러레이터 개방도 센서(94), 차속 센서(95), 인히비터 스위치(96), ATF 유온 센서(97) 등으로부터의 입력 정보에 기초하여, 컨트롤 밸브 유닛(6d)에 제어 지령을 출력한다. 이 CVT 컨트롤 유닛(84)에서는, 제1 클러치(3)의 체결 유압 제어, 제2 클러치(5)의 체결 유압 제어, 벨트식 무단 변속기(6)의 프라이머리압과 세컨더리압에 의한 변속 유압 제어 등을 행한다.
상기 브레이크 컨트롤 유닛(85)은, 하이브리드 컨트롤 모듈(81), 브레이크 스위치(98), 브레이크 스트로크 센서(99) 등으로부터의 입력 정보에 기초하여, 브레이크 액압 제어 유닛(17)으로 제어 지령을 출력한다. 이 브레이크 컨트롤 유닛(85)에서는, TCS 제어, VDC 제어, 자동 브레이크 제어, 회생 협조 브레이크 제어, ABS 제어 등을 행한다.
상기 리튬 배터리 컨트롤러(86)는, 배터리 전압 센서(100), 배터리 온도 센서(101) 등으로부터의 입력 정보에 기초하여, 강전 배터리(21)의 배터리 SOC나 배터리 온도 등을 관리한다.
[브레이크 감속시의 풀리압 보정 제어 처리 구성]
도 2는, 실시예 1의 CVT 컨트롤 유닛(84)에서 실행되는 브레이크 감속시의 풀리압 보정 제어 처리의 흐름을 나타낸다(풀리압 보정 제어 수단). 이하, 브레이크 감속시의 풀리압 보정 제어 처리 구성을 나타낸 도 2의 각 스텝에 대하여 설명한다.
스텝 S1에서는, 브레이크 조작이 있는지 여부를 판단한다. "예"(브레이크 조작 있음)의 경우에는 스텝 S2로 진행하고, NO(브레이크 조작 없음)의 경우에는 스텝 S3으로 진행한다. 여기서, 「브레이크 조작의 유무」는, 브레이크 스위치(98)로부터의 스위치 신호가 ON일 때에 브레이크 조작 있음으로 판단하고, 스위치 신호가 OFF일 때에 브레이크 조작 없음으로 판단한다.
스텝 S2에서는, 스텝 S1에서의 브레이크 조작 있음이라는 판단에 이어서, 인히비터 스위치(96)로부터의 레인지 신호가, 주행 레인지인 D 레인지 또는 R 레인지인지 여부를 판단한다. "예"(D 레인지 또는 R 레인지)의 경우에는 스텝 S4로 진행하고, NO(D, R 레인지 이외)의 경우에는 스텝 S3으로 진행한다.
스텝 S3에서는, 스텝 S1에서의 브레이크 조작 없음이라는 판단, 또는 스텝 S2에서의 D, R 레인지 이외라는 판단에 이어서, 브레이크 토크 보정량을 산출하지 않고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값을 정하고, 종료로 진행한다. 여기서, 「보정 없음」의 경우, 액셀러레이터 개방도 APO 등에 의해 벨트식 무단 변속기(6)로의 입력 토크를 추정하고, 추정된 입력 토크에 대하여 벨트 미끄럼을 억제하는 풀리 클램프력을 구한다. 그리고, 풀리 클램프력을 얻는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값(입력 토크분만)을 정한다. 또한, 변속비의 변경이 있는 변속 과도기에 있어서는, 변속비를 유지할 때의 풀리압 지시값에 대하여 변속의 진행을 재촉하는 변속 보정이 더해진다.
스텝 S4에서는, 스텝 S2에서의 레인지 신호가 D 레인지 또는 R 레인지라는 판단, 또는 스텝 S11에서의 해제 조건 불성립이라는 판단에 이어서, ABS 작동 중인지 여부를 판단한다. "예"(ABS 작동 중)의 경우에는 스텝 S5로 진행하고, NO(ABS 비작동)의 경우에는 스텝 S6로 진행한다. 여기서, 「ABS 작동 중인지 여부의 판단」은, 브레이크 컨트롤 유닛(85)으로부터 초래되는 ABS 작동 플래그가, ABS 작동 플래그=1일 때 ABS 작동 중으로 판단하고, ABS 작동 플래그=0일 때 ABS 비작동으로 판단한다.
스텝 S5에서는, 스텝 S4에서의 ABS 작동 중이라는 판단에 이어서, HEV 이너셔량에 의한 브레이크 토크 보정량을 산출하고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값을 정하고, 스텝 S11로 진행한다. 여기서, ABS 작동 중의 이너셔량은, 도 3(ABS on)에 나타낸 바와 같이, 횡치 엔진(2)과 제1 클러치(3)와 모터 제너레이터(4)와 메인 오일 펌프(14)와 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 HEV 이너셔량을 더하고, 합계 토크가 입력되어도 풀리(6a, 6b)와, 양쪽 풀리(6a, 6b)에 걸쳐진 벨트(6c) 사이에서 미끄럼이 발생하지 않는 토크 용량을 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 또한, D 레인지와 R 레인지에서는, 변속비의 차이에 의해 ABS 작동 중의 브레이크 토크 보정량이 상이하다.
스텝 S6에서는, 스텝 S5에서의 ABS 비작동이라는 판단에 이어서, WSC 모드의 선택 상태인지 여부를 판단한다. "예"(WSC 모드 상태)의 경우에는 스텝 S7로 진행하고, NO(WSC 모드 이외의 상태)의 경우에는 스텝 S8로 진행한다. 여기서, 「WSC 모드 상태」는, 제2 클러치(5)(CL2)의 체결 용량이 요구 구동력 상당이며, 제2 클러치(5)(CL2)가 슬립 체결 상태라는 판정에 의해 행한다.
스텝 S7에서는, 스텝 S6에서의 WSC 모드 상태라는 판단에 이어서, WSC 이너셔량에 의한 브레이크 토크 보정량을 산출하고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값을 정하고, 스텝 S11로 진행한다. 여기서, WSC 이너셔량은, 도 3(WSC)에 나타낸 바와 같이, 제2 클러치(5)와 벨트식 무단 변속기(6)의 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 보정량이 소(小)인 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 WSC 이너셔량을 더하고, 합계 토크가 입력되어도 풀리(6a, 6b)와, 양쪽 풀리(6a, 6b)에 걸쳐진 벨트(6c) 사이에서 미끄럼이 발생하지 않는 토크 용량을 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 또한, D 레인지와 R 레인지에서는, 변속비의 차이에 의해 WSC 이너셔량이 상이하다.
스텝 S8에서는, 스텝 S6에서의 WSC 모드 이외의 상태라는 판단에 이어서, EV 모드의 선택 상태인지 여부를 판단한다. "예"(EV 모드 상태)의 경우에는 스텝 S9로 진행하고, NO(HEV 모드)의 경우에는 스텝 S10으로 진행한다. 여기서, 「EV 모드 상태」는, 제1 클러치(3)(CL1)가 개방 상태에서, 또한 제2 클러치(5)(CL2)가 체결 상태라는 판정에 의해 행한다.
스텝 S9에서는, 스텝 S8에서의 EV 모드 상태라는 판단에 이어서, EV 이너셔량에 의한 브레이크 토크 보정량을 산출하고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값을 정하고, 스텝 S11로 진행한다. 여기서, EV 이너셔량은, 도 3(EV)에 나타낸 바와 같이, 모터 제너레이터(4)와 메인 오일 펌프(14)와 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 보정량이 중(中)인 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 EV 이너셔량을 더하여, 합계 토크가 입력되어도 풀리(6a, 6b)와, 양쪽 풀리(6a, 6b)에 걸쳐진 벨트(6c) 사이에서 미끄럼이 발생하지 않는 토크 용량을 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 또한, D 레인지와 R 레인지에서는, 변속비의 차이에 의해 EV 이너셔량이 상이하다.
스텝 S10에서는, 스텝 S8에서의 HEV 모드 상태라는 판단에 이어서, HEV 이너셔량에 의한 브레이크 토크 보정량을 산출하고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값을 정하고, 스텝 S11로 진행한다. 여기서, HEV 이너셔량은, 도 3(HEV)에 나타낸 바와 같이, 횡치 엔진(2)과 제1 클러치(3)와 모터 제너레이터(4)와 메인 오일 펌프(14)와 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 보정량이 대(大)인 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 HEV 이너셔량을 더하여, 합계 토크가 입력되어도 풀리(6a, 6b)와, 양쪽 풀리(6a, 6b)에 걸쳐진 벨트(6c) 사이에서 미끄럼이 발생하지 않는 토크 용량을 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 또한, D 레인지와 R 레인지에서는, 변속비의 차이에 의해 HEV 이너셔량이 상이하다. 또한, WSC 이너셔량과 EV 이너셔량과 HEV 이너셔량의 크기 관계는, WSC 이너셔량<EV 이너셔량<HEV 이너셔량이라는 관계에 있다.
스텝 S11에서는, 스텝 S5, 스텝 S7, 스텝 S9, 스텝 S10 중 어느 스텝에서의 보정에 이어서, 풀리압 보정 제어의 해제 조건이 성립하였는지 여부를 판단한다. "예"(해제 조건 성립)인 경우에는 스텝 S12로 진행하고, NO(해제 조건 불성립)의 경우에는 스텝 S4로 복귀한다. 여기서, 「풀리압 보정 제어의 해제 조건」으로서는, 브레이크 OFF 조작 조건, 또는 차속 VSP가 정차 판정 차속 이하가 되었다는 차속 조건이 성립되었을 때로 한다.
스텝 S12에서는, 스텝 S11에서의 해제 조건의 성립이라는 판단에 이어서, 해제 조건 성립으로부터 규정 시간만큼 브레이크 토크 보정량을 유지한 후, 브레이크 토크 보정량을 낮추어 제로로 하고, 종료로 진행한다. 여기서, 「규정 시간」으로서는, 보정 연장 시간으로서의 적정 시간을 미리 타이머 시간 등에 의해 정한다.
이어서, 작용을 설명한다. 실시예 1의 FF 하이브리드 차량의 제어 장치에 있어서의 작용을, 「브레이크 감속시의 풀리압 보정 제어 처리 작용」, 「브레이크 감속시를 포함하는 풀리압 보정 제어 작용」, 「풀리압 보정 제어의 특징 작용」으로 나누어 설명한다.
[브레이크 감속시의 풀리압 보정 제어 처리 작용]
도 4는 WSC 모드 선택시, 도 5는 EV 모드 선택시, 도 6은 HEV 모드 선택시, 도 7은 HEV 모드로부터 EV 모드로 모드 천이시를 나타낸 타임 차트이다. 도 8은 일정형 브레이크 토크 보정 패턴ㆍ하강형 브레이크 토크 보정 패턴ㆍ요철형 브레이크 토크 보정 패턴의 각 특성을 나타낸다. 이하, 도 2 및 도 4 내지 도 8에 기초하여, 브레이크 토크 보정 패턴을 포함하여 브레이크 감속시의 풀리압 보정 제어 처리 작용을 설명한다.
먼저, 브레이크 비조작시는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S3→종료로 진행한다. 또한, 브레이크 조작시이지만, D, R 레인지 이외의 레인지 위치 선택시에는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S3→종료로 진행하고, 어느 경우에도 풀리압 보정이 행해지지 않는다.
브레이크 조작시, 레인지 신호가 D 레인지 또는 R 레인지이며, 또한 ABS 작동 중일 때는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S4→스텝 S5→스텝 S11로 진행한다. 스텝 S5에서는, HEV 이너셔량에 의한 브레이크 토크 보정량이 산출되고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 즉, ABS 작동 중에는, 브레이크 토크 보정량이 대인 HEV 이너셔량이 된다(도 6을 참조). 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 HEV 이너셔량을 더하여, 합계 토크를 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다.
브레이크 조작시, 레인지 신호가 D 레인지 또는 R 레인지이며, 또한 WSC 모드 상태일 때는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S4→스텝 S6→스텝 S7→스텝 S11로 진행한다. 스텝 S7에서는, WSC 이너셔량에 의한 브레이크 토크 보정량이 산출되고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 즉, WSC 모드 선택시에는, 도 4에 나타낸 바와 같이, 브레이크 토크 보정량이 작은 WSC 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 WSC 이너셔량을 더하여, 합계 토크를 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다.
여기서, 도 4의 시각 t1은 풀리압 보정 제어의 개시 조건 성립 시각이다. 도 4의 시각 t2는 차속 조건(차속≤정차 판정 차속)에 의한 풀리압 보정 제어의 해제 조건 성립 시각이다. 도 4의 시각 t3은 브레이크 토크 보정량의 제로 저하 시각이다. 또한, WSC 모드의 선택시에는, 엔진 회전수는 역치 이하에 의한 정지 상태이며, CL2 차회전수는 역치 이상에 의한 슬립 체결 상태이며, 제1 클러치(CL1)는 개방 또는 스탠바이 상태이다.
브레이크 조작시, 레인지 신호가 D 레인지 또는 R 레인지이며, 또한 EV 모드 상태일 때는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S4→스텝 S6→스텝 S8→스텝 S9→스텝 S11로 진행한다. 스텝 S9에서는, EV 이너셔량에 의한 브레이크 토크 보정량이 산출되고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 즉, EV 모드 선택시에는, 도 5에 나타낸 바와 같이, 브레이크 토크 보정량이 중인 EV 이너셔량이 되고, 브레이크 토크 보정량이 대인 비교예(파선 특성)에 비해 낮아진다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 EV 이너셔량을 더하여, 합계 토크를 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다.
여기서, 도 5의 시각 t1은 풀리압 보정 제어의 개시 조건 성립 시각이다. 도 5의 시각 t2는 브레이크 조작 조건(브레이크 ON→OFF)에 의한 풀리압 보정 제어의 해제 조건 성립 시각이다. 도 5의 시각 t3은 브레이크 토크 보정량의 제로 저하 시각이다. 또한, EV 모드의 선택시에는, 엔진 회전수는 역치 이하에 의한 정지 상태이며, CL2 차회전수는 역치 이하에 의한 CL2 체결 상태이며, 제1 클러치(CL1)은 개방 또는 스탠바이 상태이다.
브레이크 조작시, 레인지 신호가 D 레인지 또는 R 레인지이며, 또한 HEV 모드 상태일 때는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S4→스텝 S6→스텝 S8→스텝 S10→스텝 S11로 진행한다. 스텝 S10에서는, HEV 이너셔량에 의한 브레이크 토크 보정량이 산출되고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다. 즉, HEV 모드 선택시에는, 도 6에 나타낸 바와 같이, 브레이크 토크 보정량이 대인 HEV 이너셔량이 된다. 그리고, 액압 토크나 회생 토크 등에 의한 벨트식 무단 변속기(6)로의 입력 토크분에, 이너셔 토크 보정분인 HEV 이너셔량을 더하여, 합계 토크를 달성하는 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)의 풀리압 지시값이 결정된다.
여기서, 도 6의 시각 t1은 풀리압 보정 제어의 개시 조건 성립 시각이다. 도 6의 시각 t2는 브레이크 조작 조건(브레이크 ON→OFF)에 의한 풀리압 보정 제어의 해제 조건 성립 시각이다. 도 6의 시각 t3은 브레이크 토크 보정량의 제로 저하 시각이다. 또한, HEV 모드의 선택시에는, 엔진 회전수는 역치 이상에 의한 운전 상태이며, CL2 차회전수는 역치 이하에 의한 CL2 체결 상태이며, 제1 클러치(CL1)는 체결(LU ON) 또는 슬립 상태이다.
레인지 신호가 D 레인지 또는 R 레인지인 브레이크 조작 중, 구동 모드가 HEV 모드에서 EV 모드로 모드 천이될 때는, 도 2의 흐름도에 있어서, 스텝 S1→스텝 S2→스텝 S4→스텝 S6→스텝 S8→스텝 S10→스텝 S11로 진행한다. 그 후, 스텝 S11로부터 스텝 S4→스텝 S6→스텝 S8→스텝 S9→스텝 S11로 진행한다. 스텝 S10에서는, HEV 이너셔량에 의한 브레이크 토크 보정량이 산출되고, 스텝 S9에서는, EV 이너셔량에 의한 브레이크 토크 보정량이 산출된다. 즉, HEV 모드가 선택되어 있는 시각 t1 내지 시각 t2까지는, 도 7에 나타낸 바와 같이, 브레이크 토크 보정량이 대인 HEV 이너셔량이 되고, EV 모드가 선택되어 있는 시각 t2 내지 시각 t3까지는, 도 7에 나타낸 바와 같이, 브레이크 토크 보정량이 중인 EV 이너셔량이 되고, 브레이크 토크 보정량이 대인 비교예(파선 특성)에 비해 낮아진다.
여기서, 도 7의 시각 t1은 풀리압 보정 제어의 개시 조건 성립 시각이다. 도 7의 시각 t2는 엔진 회전수 조건에 의해 결정된 모드 천이 시각이다. 도 7의 시각 t3은 브레이크 조작 조건(브레이크 ON→OFF)에 의한 풀리압 보정 제어의 해제 조건 성립 시각이다. 도 7의 시각 t4는 브레이크 토크 보정량의 제로 저하 시각이다. 또한, 엔진 회전수가 역치 이상인 구간을 HEV 모드 구간이라고 판정하고, 엔진 회전수가 역치 미만이 되면 EV 모드 구간이라고 판정한다. CL2 차회전수는 역치 이하에 의한 CL2 체결 상태이며, 제1 클러치(CL1)는 체결(LU ON) 또는 슬립 상태로부터 개방 또는 스탠바이 상태로 이행한다.
브레이크 토크 보정 패턴으로서는, 도 8에 나타낸 바와 같이, 일정형 브레이크 토크 보정 패턴과, 하강형 브레이크 토크 보정 패턴과, 요철형 브레이크 토크 보정 패턴을 갖는다.
일정형 브레이크 토크 보정 패턴은, 풀리압 보정 제어의 개시 조건 성립 시각 t1로부터 해제 조건 성립 시각 t4를 경과하고, 브레이크 토크 보정량의 제로 저하 시각 t5에 이르기까지 브레이크 토크 보정량을 일정값으로 부여하는 패턴이며, 도 4 내지 도 6이 이것에 상당한다. 이 일정형 브레이크 토크 보정 패턴은, 풀리압 보정 제어 중에 제1 클러치(CL1)와 제2 클러치(CL2)의 전환 없음, 또는 제2 클러치(CL2)가 항상 OFF일 때 선택된다. 그리고, 유압 응답 지연으로 벨트(6c)가 미끄러지지 않도록, 브레이크 ON 개시시부터 브레이크 토크 보정량을 보충하고 있다.
하강형 브레이크 토크 보정 패턴은, 풀리압 보정 제어의 개시 조건 성립 시각 t1로부터 시각 t2까지는 브레이크 토크 보정량을 대(大)로 부여하고, 시각 t2로부터 제로 저하 시각 t5에 이르기까지는 브레이크 토크 보정량을 중(中)으로 부여하는 패턴이며, 도 7이 이것에 상당한다. 이 하강형 브레이크 토크 보정 패턴은, 풀리압 보정 제어 중에 제1 클러치(CL1) 또는 제2 클러치(CL2)가 OFF로 전환될 때에 선택된다. 보정량이 감소하는 모드에서는, 차회전수의 크기에 의한 오판정을 방지하고, 확실하게 클러치가 빠져 있는 상황에서 전환된다. 또한, 보정량이 낮아지면 풀리 유압도 낮아지지만, 풀리 유압이 낮아질 때에는 감소율 제한이 있기 때문에, 언더슈트에 의한 벨트(6c)의 미끄럼은 없다.
요철형 브레이크 토크 보정 패턴은, 예를 들어 풀리압 보정 제어의 개시 조건 성립 시각 t1로부터 시각 t2까지는 브레이크 토크 보정량을 중(中)으로 부여하고, 시각 t2로부터 시각 t3까지는 브레이크 토크 보정량을 소(小)로 부여하며, 시각 t3으로부터 시각 t5까지는 브레이크 토크 보정량을 대(大)로 부여하는 패턴이다. 이 요철형 브레이크 토크 보정 패턴은, 풀리압 보정 제어 중에 제1 클러치(CL1)가 OFF이며 제2 클러치(CL2)가 ON으로부터 제2 클러치(CL2)가 슬립 체결 상태로 되고, 추가로 제1 클러치(CL1)에 체결 후에 제2 클러치(CL2)가 ON으로 전환될 때에 선택된다. 화살표 A로 나타낸 보정량이 감소시의 영향은 하강형과 동일하여 문제가 없다. 화살표 B로 나타낸 보정량이 증가시에는, 유압 응답 지연을 고려하여, 클러치 체결 개시의 판정 직후부터 보정량을 높인다.
[브레이크 감속시를 포함하는 풀리압 보정 제어 작용]
도 9는, 모드 천이를 수반하여 브레이크 조작으로부터 브레이크 해방으로 이행할 때의 타임 차트를 나타낸다. 이하, 도 9에 기초하여, 브레이크 감속시를 포함하는 풀리압 보정 제어 작용을 설명한다. 도 9에 있어서, 시각 t1은 풀리압 보정 제어의 개시 조건 성립 시각이다. 시각 t2는 브레이크 토크 보정량의 저하 시각이다. 시각 t3은 브레이크 토크 보정량의 상승 시각이다. 시각 t4는 풀리압 보정 제어의 해제 조건 성립 시각이다. 시각 t5는 브레이크 토크 보정량의 제로 저하 시각이다. 시각 t6은 HEV 모드에서 EV 모드로의 모드 천이 시각이다. 시각 t7은 EV 모드에서 HEV 모드로의 모드 천이 시각이다.
HEV 모드가 선택되어 있는 시각 t1에서 브레이크 OFF→ON 조작하면, HEV 모드가 유지되고 있는 시각 t2까지 제1 클러치(CL1)는 체결 상태가 유지되고, 브레이크 토크 보정량으로서 보정량 대(大)의 HEV 이너셔량이 된다. 그리고, 시각 t2에서 EV 모드로 모드 천이되면, 시각 t2 내지 시각 t3까지는 제1 클러치(CL1)가 해방 상태로 되고, 브레이크 토크 보정량으로서 보정량 중(中)의 EV 이너셔량이 된다. 이에 따라서, 풀리 지시압도, 시각 t2 내지 시각 t3의 사이는, 브레이크 토크 보정량으로서 보정량 대(大)를 부여하는 비교예(파선 특성)에 비해 낮아진다. 그리고, 시각 t3에서 HEV 모드로 모드 천이되며, 제1 클러치(CL1)가 체결 상태로 되고, 시각 t4에서 브레이크 ON→OFF 조작하면, 시각 t3 내지 시각 t5까지는 브레이크 토크 보정량으로서 보정량 대의 HEV 이너셔량이 된다.
시각 t5 이후에는, 시각 t6에서 HEV 모드에서 EV 모드로 모드 천이되며, 제1 클러치(CL1)가 해방 상태로 되고, 또한 시각 t7에서 EV 모드에서 HEV 모드로 모드 천이되며, 제1 클러치(CL1)가 해방 상태로 된다. 그러나, 시각 t5 이후에는, 브레이크 OFF 상태이며, 브레이크 토크 보정 조건인 브레이크 ON 조건이 불성립하기 때문에, 브레이크 토크 보정 및 풀리 지시압 보정은 행해지지 않는다.
[모터 아이들 제어의 특징 작용]
실시예 1에서는, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 하는 구성으로 하였다. 즉, 이너셔 토크 보정분인 브레이크 토크 보정량을 정할 때의 고려해야 할 구동계의 구성 요소는 EV 모드와 HEV 모드에서 상이하다. 즉, 모터 제너레이터(4)만을 구동원으로 하는 EV 모드의 경우, 횡치 엔진(2)과 모터 제너레이터(4)를 구동원으로 하는 HEV 모드에 비해 이너셔 토크가 작다. 이 때문에, 횡치 엔진(2)과 벨트식 무단 변속기(6)가 비직결인 EV 모드에서의 브레이크 토크 보정량을, HEV 모드에서의 브레이크 토크 보정량으로부터 구분하여, EV 모드에서의 이너셔 토크에 맞추어, HEV 모드의 선택시보다 작은 브레이크 토크 보정량으로 설정한다. 이 결과, EV 모드에서의 브레이크 감속시, 벨트식 무단 변속기(6)에서의 벨트 노이즈의 악화가 억제된다. 이 효과에 대해서는, EV 모드(주파수 2.5kHz)일 때, HEV 이너셔량에 의한 세컨더리 풀리압을 부여한 비교예와, EV 이너셔량에 의한 세컨더리 풀리압을 부여한 실시예 1과의 비교에 의한 확인 시험을 행하였다. 이 확인 시험의 결과, 도 10에 나타낸 바와 같이, 비교예에서의 음향 파워가 C점이었던 데 비해, 실시예 1에서의 음향 파워는 D점까지 저하되게 되고, 벨트 노이즈의 저감 목표값을 클리어하는 결과가 얻어져, 벨트 노이즈의 악화 억제 효과가 높다는 것이 확인되었다. EV 모드에서는, 엔진이 정지 상태가 되기 때문에, HEV 모드에서 엔진이 구동되고 있는 상태에 비해, 벨트 노이즈가 운전자에게 끼치는 영향이 커지지만, EV 모드에서의 벨트 노이즈가 저감됨으로써, 엔진이 정지하고 있어도 운전자에게 부여하는 벨트 노이즈의 영향을 저감시킬 수 있다. 또한, 노이즈 발생의 명확한 메커니즘 해석은 이루어져 있지 않지만, 벨트(6c)의 엘리먼트가 세컨더리 풀리(6b)의 시브면에 물러들어갈 때에 소리가 발생하고, 그 때의 씹힘력(풀리 추력)이 클수록 소리가 커진다는 현상은 확인되어 있다.
실시예 1에서는, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 모터 제너레이터(4)와 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 EV 이너셔량으로 한다. HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, EV 모드의 구성 요소에 횡치 엔진(2)과 제1 클러치(3)를 더한 이너셔 토크에 기초하는 HEV 이너셔량으로 하는 구성으로 하였다. 즉, 이너셔 토크 보정분인 브레이크 토크 보정량을 정할 때의 고려해야 할 구동계의 구성 요소가, EV 모드와 HEV 모드로 적확하게 구분된다. 따라서, 브레이크 토크 보정량으로서의 EV 이너셔량과 HEV 이너셔량이 고정밀도로 얻어진다.
실시예 1에서는, WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, EV 모드에서의 브레이크 감속시의 브레이크 토크 보정량보다 작게 하는 구성으로 하였다. 즉, WSC 모드에서는, 제2 클러치(5)가 슬립 체결된다. 따라서, 구동계 중 제2 클러치(5)보다 상류측의 구성 요소는, 이너셔 토크 보정분으로서 고려해야 할 구성 요소로부터 제외된다. 따라서, WSC 모드에서의 브레이크 감속시, 벨트식 무단 변속기(6)에서의 벨트 노이즈의 악화가 억제된다.
실시예 1에서는, WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 WSC 이너셔량으로 하는 구성으로 하였다. 즉, WSC 이너셔량에서 고려되는 구동계의 구성 요소로서, 제2 클러치(5)보다 상류측의 구성 요소를 제외하고, 제2 클러치(5)와 프라이머리 풀리(6a)를 선택하였다. 따라서, WSC 모드가 선택되어 있을 때, 고정밀도의 WSC 이너셔량이 얻어진다. 또한, WSC 모드가 선택되어 있을 때는, 제2 클러치(5)의 전달 용량 토크분을 WSC 이너셔량에 더하는 구성으로 해도 된다. 이에 의해 제2 클러치(5)를 통해 이너셔 토크가 입력되었다고 해도 벨트 슬립을 방지하면서, 벨트 노이즈의 악화를 억제할 수 있다.
실시예 1에서는, 브레이크 감속 중에 ABS 제어가 작동하는 ABS 작동시의 브레이크 토크 보정량을, 구동 모드에 관계없이 HEV 이너셔량으로 하는 구성으로 하였다. 즉, ABS 제어는, 급제동시 등에 있어서 브레이크 액압의 감압ㆍ유지ㆍ증압을 반복함으로써 실시된다. 이 ABS 제어 중에 벨트식 무단 변속기(6)에 있어서 벨트 미끄럼이 발생하면, 제동력 빠짐에 의해 제동 로크를 억제하는 ABS 제어 기능이 손상된다. 따라서, ABS 작동시에는, 벨트식 무단 변속기(6)로의 입력 토크 변동이 크더라도 확실하게 벨트 미끄럼을 억제할 필요가 있다. 따라서, ABS 작동시, 보정량이 대인 HEV 이너셔량으로 함으로써, 제동 로크를 억제하는 ABS 제어 기능이 확보된다. 또한, ABS 작동시에는, 전후륜(10R, 10L, 11R, 11L)이 회전하고 있는 상태와 회전하고 있지 않은 상태를 단주기로 반복하게 되므로, 차량으로서의 진동이 커서, 벨트 노이즈는 문제가 되지 않는다.
실시예 1에서는, 풀리압 보정 제어의 해제 조건이 성립하면, 해제 조건 성립으로부터 규정 시간만큼 브레이크 토크 보정량을 유지한 후, 브레이크 토크 보정량을 낮추는 구성으로 하였다. 예를 들어, 해제 조건 성립하는 즉시 브레이크 토크 보정량을 낮추었을 경우, 브레이크 OFF 조작 직후에 재답입에 의한 브레이크 ON 조작이 있을 때, 유압의 빠짐 응답보다 도입 응답이 지연됨으로써, 풀리 유압의 저조가 있다. 이에 반해, 풀리압 보정 제어의 해제 조건이 성립되었을 때, 해제 조건 성립으로부터 규정 시간만큼 브레이크 토크 보정량을 유지함으로써, 브레이크 OFF 조작 직후에 재답입에 의한 브레이크 ON 조작이 있을 때에 풀리 유압의 저조가 방지된다.
이어서, 효과를 설명한다. 실시예 1의 FF 하이브리드 차량의 제어 장치에 있어서는, 하기에 열거하는 효과가 얻어진다.
(1) 구동계에, 엔진(횡치 엔진(2))과, 모터(모터 제너레이터(4))와, 벨트식 무단 변속기(6)를 구비하고, 벨트식 무단 변속기(6)는, 프라이머리 풀리(6a)와 세컨더리 풀리(6b)에 벨트(6c)를 걸치고, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)으로 벨트(6c)를 클램핑하도록 구성되어, 구동 모드로서, 엔진(횡치 엔진(2))과 모터(모터 제너레이터(4))를 구동원으로 하는 HEV 모드와, 모터(모터 제너레이터(4))만을 구동원으로 하는 EV 모드를 갖는 하이브리드 차량(FF 하이브리드 차량)의 제어 장치에 있어서, 브레이크 감속시, 벨트식 무단 변속기(6)로의 입력 토크분과, 이너셔 토크 보정분인 브레이크 토크 보정량에 기초하여, 프라이머리 풀리압(Ppri)과 세컨더리 풀리압(Psec)을 정하는 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84))을 설치하고, 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 한다. 이 때문에, EV 모드에서의 브레이크 감속시, 벨트식 무단 변속기(6)에서의 벨트 노이즈의 악화를 억제할 수 있다.
(2) 구동계에, 추가로, 엔진(횡치 엔진(2))과 모터(모터 제너레이터(4))를 단절 및 접속 가능한 제1 클러치(3)와, 모터(모터 제너레이터(4))와 벨트식 무단 변속기(6)를 단절 및 접속 가능한 제2 클러치(5)를 구비하고, 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 모터(모터 제너레이터(4))와 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 EV 이너셔량으로 하고, HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, EV 모드의 구성 요소에 엔진(횡치 엔진(2))과 제1 클러치(3)를 더한 이너셔 토크에 기초하는 HEV 이너셔량으로 한다. 이 때문에, (1)의 효과에 더하여, 브레이크 토크 보정량으로서의 EV 이너셔량과 HEV 이너셔량을 고정밀도로 얻을 수 있다.
(3) 구동 모드로서, HEV 모드와 EV 모드 이외에도, 제1 클러치(3)를 체결하며 제2 클러치(5)를 슬립 체결하는 WSC 모드를 추가하고, 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, EV 모드에서의 브레이크 감속시의 브레이크 토크 보정량보다 작게 한다. 이 때문에, (2)의 효과에 더하여, WSC 모드에서의 브레이크 감속시, 벨트식 무단 변속기(6)에서의 벨트 노이즈의 악화를 억제할 수 있다.
(4) 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 제2 클러치(5)와 프라이머리 풀리(6a)를 합한 이너셔 토크에 기초하는 WSC 이너셔량으로 한다. 이 때문에, (3)의 효과에 더하여, WSC 모드가 선택되어 있을 때, 고정밀도의 WSC 이너셔량을 얻을 수 있다.
(5) 제동계에, 브레이크 조작시, 브레이크 액압 컨트롤에 의해 제동륜의 제동 로크를 억제하는 안티 로크 브레이크 제어 수단(브레이크 컨트롤 유닛(85))을 설치하고, 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, 브레이크 감속 중에 안티 로크 브레이크 제어(ABS 제어)가 작동하는 ABS 작동시의 브레이크 토크 보정량을, 구동 모드에 관계없이 HEV 이너셔량으로 한다. 이 때문에, (1) 내지 (4)의 효과에 더하여, ABS 작동시, 보정량이 대인 HEV 이너셔량으로 함으로써, 제동 로크를 억제하는 ABS 제어 기능을 확보할 수 있다.
(6) 풀리압 보정 제어 수단(CVT 컨트롤 유닛(84), 도 2)은, 풀리압 보정 제어의 해제 조건이 성립하면, 해제 조건 성립으로부터 규정 시간만큼 브레이크 토크 보정량을 유지한 후, 브레이크 토크 보정량을 낮춘다. 이 때문에, (1) 내지 (5)의 효과에 더하여, 풀리압 보정 제어의 해제 조건이 성립한 직후에 재답입에 의한 브레이크 ON 조작이 있을 때, 풀리 유압의 저조를 방지할 수 있다.
이상, 본 발명의 하이브리드 차량 제어 장치를 실시예 1에 기초하여 설명하였지만, 구체적인 구성에 대해서는, 이 실시예 1로 한정되는 것은 아니고, 특허 청구 범위의 각 청구항에 관한 발명의 요지를 일탈하지 않는 한, 설계의 변경이나 추가 등은 허용된다.
실시예 1에서는, 하이브리드 구동계로서, 횡치 엔진(2)과 모터 제너레이터(4) 사이에 제1 클러치(3)를 개재 장착하고, 제1 클러치(3)의 체결/개방에 의해 EV 모드와 HEV 모드를 전환하는 예를 나타내었다. 그러나, 하이브리드 구동계로서는, 플래니터리 기어 세트를 사용한 동력 분할 기구 등에 의해 EV 모드와 HEV 모드를 전환하는 예여도 된다.
실시예 1에서는, 본 발명의 제어 장치를, FF 하이브리드 차량에 적용하는 예를 나타내었다. 그러나, 본 발명의 제어 장치는, FR 하이브리드 차량이나 4WD 하이브리드 차량 등에 대해서도 적용할 수 있다. 요컨대, 구동계에, 엔진과, 모터와, 벨트식 무단 변속기를 구비하고, 구동 모드로서, HEV 모드와 EV 모드를 갖는 하이브리드 차량에 적용할 수 있다.

Claims (6)

  1. 구동계에, 엔진과, 모터와, 벨트식 무단 변속기를 구비하고,
    상기 벨트식 무단 변속기는, 프라이머리 풀리와 세컨더리 풀리에 벨트를 걸치고, 프라이머리 풀리압과 세컨더리 풀리압으로 상기 벨트를 클램핑하도록 구성되며,
    구동 모드로서, 상기 엔진과 상기 모터를 구동원으로 하는 HEV 모드와, 상기 모터만을 구동원으로 하는 EV 모드를 갖는 하이브리드 차량의 제어 장치에 있어서,
    브레이크 감속시, 상기 벨트식 무단 변속기로의 입력 토크분과, 이너셔 토크 보정분인 브레이크 토크 보정량에 기초하여, 상기 프라이머리 풀리압과 상기 세컨더리 풀리압을 정하는 풀리압 보정 제어 수단을 설치하고,
    상기 풀리압 보정 제어 수단은, 상기 EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 상기 HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량보다 작게 하는, 하이브리드 차량의 제어 장치.
  2. 제1항에 있어서,
    구동계에, 상기 엔진과 상기 모터를 단절 및 접속 가능한 제1 클러치와, 상기 모터와 상기 벨트식 무단 변속기를 단절 및 접속 가능한 제2 클러치를 더 구비하고,
    상기 풀리압 보정 제어 수단은, 상기 EV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 상기 모터와 상기 제2 클러치와 상기 프라이머리 풀리를 합한 이너셔 토크에 기초하는 EV 이너셔량으로 하고,
    상기 HEV 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 상기 EV 모드의 구성 요소에 상기 엔진과 상기 제1 클러치를 더한 이너셔 토크에 기초하는 HEV 이너셔량으로 하는, 하이브리드 차량의 제어 장치.
  3. 제2항에 있어서,
    구동 모드로서, 상기 HEV 모드와 상기 EV 모드 이외에도, 상기 제1 클러치를 체결하며 상기 제2 클러치를 슬립 체결하는 WSC 모드를 추가하고,
    상기 풀리압 보정 제어 수단은, 상기 WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 상기 EV 모드에서의 브레이크 감속시의 브레이크 토크 보정량보다 작게 하는, 하이브리드 차량의 제어 장치.
  4. 제3항에 있어서,
    상기 풀리압 보정 제어 수단은, 상기 WSC 모드가 선택되어 있을 때의 브레이크 감속시의 브레이크 토크 보정량을, 상기 제2 클러치와 상기 프라이머리 풀리를 합한 이너셔 토크에 기초하는 WSC 이너셔량으로 하는, 하이브리드 차량의 제어 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    제동계에, 브레이크 조작시, 브레이크 액압 컨트롤에 의해 제동륜의 제동 로크를 억제하는 안티 로크 브레이크 제어 수단을 설치하고,
    상기 풀리압 보정 제어 수단은, 브레이크 감속 중에 안티 로크 브레이크 제어가 작동하는 ABS 작동시의 브레이크 토크 보정량을, 구동 모드에 관계없이 HEV 이너셔량으로 하는, 하이브리드 차량의 제어 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 풀리압 보정 제어 수단은, 풀리압 보정 제어의 해제 조건이 성립하면, 해제 조건 성립으로부터 규정 시간만큼 브레이크 토크 보정량을 유지한 후, 브레이크 토크 보정량을 낮추는, 하이브리드 차량의 제어 장치.
KR1020177027403A 2015-03-05 2016-02-10 하이브리드 차량의 제어 장치 KR20170125065A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015043478 2015-03-05
JPJP-P-2015-043478 2015-03-05
PCT/JP2016/053907 WO2016140027A1 (ja) 2015-03-05 2016-02-10 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
KR20170125065A true KR20170125065A (ko) 2017-11-13

Family

ID=56848104

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177027403A KR20170125065A (ko) 2015-03-05 2016-02-10 하이브리드 차량의 제어 장치

Country Status (6)

Country Link
US (1) US10457290B2 (ko)
EP (1) EP3266665B1 (ko)
JP (1) JP6444488B2 (ko)
KR (1) KR20170125065A (ko)
CN (1) CN107406067B (ko)
WO (1) WO2016140027A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911711B2 (ja) * 2017-10-31 2021-07-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP6819547B2 (ja) * 2017-11-13 2021-01-27 トヨタ自動車株式会社 車両の駆動力制御装置
JP6958329B2 (ja) * 2017-12-20 2021-11-02 トヨタ自動車株式会社 ハイブリッド車両
KR102645052B1 (ko) * 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210450A (ja) * 1995-02-01 1996-08-20 Nissan Motor Co Ltd Vベルト式無段変速機のライン圧制御装置
DE19928292A1 (de) * 1998-12-22 2000-06-29 Bosch Gmbh Robert System zur Einstellung der Spannung des Umschlingungsteils eines Umschlingungsgetriebes
EP1209020B1 (de) * 2000-11-25 2004-10-20 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Wirkungsgradverbesserung bei CVT Getrieben durch Schlupfvermeidung erreicht durch Drehmomentkontrolle mittels einer elektrischen Maschine
JP3835202B2 (ja) * 2001-05-18 2006-10-18 トヨタ自動車株式会社 車両用駆動制御装置
WO2004083870A2 (en) * 2003-03-19 2004-09-30 The Regents Of The University Of California Method and system for controlling rate of change of ratio in a continuously variable transmission
JP4409496B2 (ja) 2005-10-14 2010-02-03 ジヤトコ株式会社 ベルト式無段変速機の制御装置
JP4730296B2 (ja) * 2006-12-26 2011-07-20 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP5019870B2 (ja) * 2006-12-27 2012-09-05 ボッシュ株式会社 ハイブリッド車両の制御方法
JP5401999B2 (ja) * 2008-03-03 2014-01-29 日産自動車株式会社 車両のトラクション制御装置
JP5411448B2 (ja) * 2008-05-23 2014-02-12 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP5163438B2 (ja) 2008-11-14 2013-03-13 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5171799B2 (ja) * 2008-12-18 2013-03-27 日産自動車株式会社 ベルト式無段変速機の制御装置
JP4908572B2 (ja) * 2009-10-30 2012-04-04 本田技研工業株式会社 無段変速機の制御装置
CN103260986B (zh) * 2010-10-21 2015-12-09 日产自动车株式会社 车辆的驱动力控制装置
JP5750162B2 (ja) * 2011-08-30 2015-07-15 ジヤトコ株式会社 車両制御装置、及びその制御方法
JP2013127288A (ja) * 2011-12-19 2013-06-27 Nissan Motor Co Ltd Vベルト式無段変速機のベルト挟圧力制御装置
WO2013105444A1 (ja) 2012-01-13 2013-07-18 日産自動車株式会社 Vベルト式無段変速機のベルト挟圧力制御装置
JP2015096735A (ja) * 2012-03-13 2015-05-21 日産自動車株式会社 車両の動力伝達装置
JP6115022B2 (ja) 2012-04-19 2017-04-19 日産自動車株式会社 車両の制御装置
JP6151972B2 (ja) * 2013-05-30 2017-06-21 株式会社Subaru 車両用駆動制御装置
JP6326494B2 (ja) * 2014-07-09 2018-05-16 ジヤトコ株式会社 無段変速機の制御装置
WO2016152341A1 (ja) * 2015-03-23 2016-09-29 ジヤトコ株式会社 車両及び車両の制御方法
JP6125576B2 (ja) * 2015-07-29 2017-05-10 本田技研工業株式会社 ベルト式無段変速機のプーリ側圧制御装置

Also Published As

Publication number Publication date
JPWO2016140027A1 (ja) 2017-10-12
EP3266665B1 (en) 2021-04-07
WO2016140027A1 (ja) 2016-09-09
CN107406067A (zh) 2017-11-28
US10457290B2 (en) 2019-10-29
CN107406067B (zh) 2020-09-01
US20180015929A1 (en) 2018-01-18
EP3266665A4 (en) 2018-04-11
JP6444488B2 (ja) 2018-12-26
EP3266665A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2977649B1 (en) Belt-type continuously variable transmission
CN107531231B (zh) 混合动力车辆的控制装置
EP3273102B1 (en) Vehicle regenerative speed control device
RU2623284C1 (ru) Устройство управления для электрического транспортного средства с приводом на четыре колеса
JP6256651B2 (ja) 車両の回生変速制御装置
CN107531155B (zh) 车辆的显示转速控制装置
JP6706884B2 (ja) 車両のオイルポンプ駆動制御装置
KR20170125065A (ko) 하이브리드 차량의 제어 장치
JP6488788B2 (ja) ハイブリッド車両の制御装置
WO2015037042A1 (ja) ハイブリッド車両の制御装置
JP6488798B2 (ja) ハイブリッド車両の制御装置
WO2017073379A1 (ja) 変速機搭載車両の油圧制御方法及び制御装置
WO2015037043A1 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right