KR20170117231A - 인간 배아 줄기 세포의 분화 - Google Patents

인간 배아 줄기 세포의 분화 Download PDF

Info

Publication number
KR20170117231A
KR20170117231A KR1020177028099A KR20177028099A KR20170117231A KR 20170117231 A KR20170117231 A KR 20170117231A KR 1020177028099 A KR1020177028099 A KR 1020177028099A KR 20177028099 A KR20177028099 A KR 20177028099A KR 20170117231 A KR20170117231 A KR 20170117231A
Authority
KR
South Korea
Prior art keywords
cells
stem cells
tgf
cell
expressing
Prior art date
Application number
KR1020177028099A
Other languages
English (en)
Other versions
KR101893021B1 (ko
Inventor
쑤진
Original Assignee
얀센 바이오테크 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43465585&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20170117231(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 얀센 바이오테크 인코포레이티드 filed Critical 얀센 바이오테크 인코포레이티드
Publication of KR20170117231A publication Critical patent/KR20170117231A/ko
Application granted granted Critical
Publication of KR101893021B1 publication Critical patent/KR101893021B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0613Cells from endocrine organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Endocrinology (AREA)
  • Physiology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Nutrition Science (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 인슐린 생성 세포로의 만능 줄기 세포의 분화를 촉진하는 방법을 제공한다. 특히, 본 발명은 동물 내로의 이식 후 인슐린을 생성할 수 있는 세포를 생성하는 방법을 제공한다.

Description

인간 배아 줄기 세포의 분화{DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS}
관련 출원과의 상호 참조
본 발명은 2009년 7월 20일자로 출원된 미국 특허 출원 제61/226,936호를 우선권으로 주장한다.
본 발명은 인슐린 생성 세포로의 만능 줄기 세포의 분화를 촉진하는 방법을 제공한다. 특히, 본 발명은 동물 내로의 이식 후 인슐린을 생성할 수 있는 세포를 생성하는 방법을 제공한다.
제1형 당뇨병 및 이식가능한 랑게르한스섬의 부족에 대한 세포 대체 치료법의 발전으로, 생착(engraftment)에 적합한 인슐린 생산 세포, 또는 β 세포의 공급원을 개발하는 데 관심이 집중되어 왔다. 한 가지 접근법은 예를 들어, 배아 줄기 세포와 같은 만능 줄기 세포로부터 기능성 β 세포를 생성하는 것이다.
척추동물 배아 발생에서, 만능 세포는 낭배형성 (gastrulation)으로 알려진 과정에서 삼배엽층 (three germ layers) (외배엽, 중배엽, 및 내배엽)을 포함하는 세포군을 생성한다. 예를 들어, 갑상선, 흉선, 췌장, 소화관, 및 간과 같은 조직은 중간 단계를 통해 내배엽으로부터 발생할 것이다. 이 과정에서 중간 단계는 완성 내배엽의 형성이다. 완성 내배엽 세포는 HNF3 베타, GATA4, MIXL1, CXCR4 및 SOX17과 같은 많은 마커를 발현한다.
췌장의 형성은 완성 내배엽의 췌장 내배엽으로의 분화로부터 생긴다. 췌장 내배엽의 세포는 췌장-십이지장 호메오박스(homeobox) 유전자, Pdx1을 발현한다. Pdx1의 부재 하에서는, 췌장은 복측 원기(ventral bud) 및 배측 원기(dorsal bud)의 형성 이상으로는 발달하지 못한다. 따라서, Pdx1 발현이 췌장 기관형성에서 중요한 단계를 특징짓는다. 성숙한 췌장은 다른 세포형 중에서도 외분비 조직 및 내분비 조직을 포함한다. 외분비 및 내분비 조직은 췌장 내배엽의 분화로부터 생긴다.
췌도 세포의 특징을 지닌 세포가 생쥐의 배아 세포로부터 유도된 것으로 보고되었다. 예를 들어, 루멜스키(Lumelsky) 등 (문헌[Science 292:1389, 2001])은 생쥐 배아 줄기 세포가 췌도와 유사한 인슐린 분비 구조로 분화한 것을 보고하였다. 소리아(Soria) 등(문헌[Diabetes 49:157, 2000])은 생쥐 배아 줄기 세포로부터 유도된 인슐린 분비 세포가 스트렙토조토신 유도된 당뇨 생쥐에서 혈당을 정상화시킴을 보고하였다.
한 예에서, 호리(Hori) 등 (문헌[PNAS 99: 16105, 2002])은 생쥐 배아 줄기 세포를 포스포이노시티드 3-키나아제의 억제제(LY294002)로 처리하여 β 세포와 닮은 세포를 생성하였음을 개시하였다.
다른 예에서는, 블리츠주크(Blyszczuk) 등 (문헌[PNAS 100:998, 2003])은 구성적으로 Pax4를 발현하는 생쥐 배아 줄기 세포로부터 인슐린 생산 세포를 생성하는 것을 보고하였다.
미칼레프(Micallef) 등은 PDX1 양성 췌장 내배엽이 형성되게 하는 배아 줄기 세포의 책무(commitment)를 레틴산이 조절할 수 있음을 보고하였다. 레틴산은 배아에서 낭배형성의 마지막에 해당하는 기간 동안 배아 줄기 세포 분화의 4일째에 배양물에 첨가될 때 Pdx1 발현을 유도하는 데 가장 효과적이다 (문헌[Diabetes 54:301, 2005]).
미야자키(Miyazaki) 등은 Pdx1을 과다 발현하는 생쥐 배아 줄기 세포주를 보고한다. 그들의 결과는 외인성 Pdx1 발현이 생성된 분화된 세포에서 인슐린, 소마토스타틴, 글루코키나아제, 뉴로제닌3, P48, Pax6, 및 HNF6 유전자의 발현을 명확히 향상시켰음을 보여준다 (문헌[Diabetes 53: 1030, 2004]).
스쿠디(Skoudy) 등은 액티빈(activin) A(TGF-β 슈퍼패밀리의 구성원)가 생쥐 배아 줄기 세포에서 외분비 췌장 유전자(p48 및 아밀라아즈) 및 내분비 유전자(Pdx1, 인슐린, 및 글루카곤)의 발현을 상향조절함을 보고한다. 최대 효과는 1 nM 액티빈 A를 이용할 때 관찰되었다. 그들은 또한 인슐린 및 Pdx1 mRNA의 발현 수준이 레틴산에 의해 영향을 받지 않지만, 3 nM FGF7 처리가 Pdx1의 전사체의 수준을 증가시킴을 관찰하였다 (문헌[Biochem. J. 379: 749, 2004]).
쉬라키(Shiraki) 등은 배아 줄기 세포의 PDX1 양성 세포로의 분화를 특이적으로 향상시키는 성장 인자들의 효과를 연구하였다. 이들은 TGF-β2가 재현가능하게 더 높은 비율의 Pdx1 양성 세포를 생성함을 관찰하였다 (문헌[Genes Cells. 2005 Jun; 10(6): 503-16]).
고든(Gordon) 등은 Wnt 시그널링 억제제와 함께 액티빈의 존재 하에 그리고 혈청의 부재 하에, 생쥐 배아 줄기 세포로부터 브라키어리(brachyury) [양성]/HNF3 베타 [양성] 내배엽 세포의 유도를 보여주었다 (미국 특허 공개 제2006/0003446A1호).
고든 등(문헌[PNAS, Vol 103, page 16806, 2006])은"Wnt 및 TGF-베타/ 노달(nodal)/ 액티빈 시그널링은 전방 원시선(anterior primitive streak)의 생성에 동시에 필요하였다"라고 진술한다.
그러나, 배아 줄기 세포 발생의 생쥐 모델은 예를 들어, 인간과 같은 고등 포유류에서의 발생 프로그램을 정확하게 모방하지 않을 수 있다.
톰슨(Thomson) 등은 인간 배반포로부터 배아 줄기 세포를 단리하였다 (문헌[Science 282:114, 1998]). 동시에, 기어하트(Gearhart)와 동료들은 태아 생식선 조직으로부터 인간 배아 배(human embryonic germ, hEG) 세포주를 유도하였다 (문헌[Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998]). 백혈병 억제 인자(LIF)와 함께 배양함으로써 간단하게 분화를 방지할 수 있는 생쥐 배아 줄기 세포와는 달리, 인간 배아 줄기 세포는 매우 특별한 조건 하에서 유지되어야 한다 (미국 특허 제6,200,806호; 국제특허 공개 WO 99/20741호; 국제특허 공개 WO 01/51616호).
드'아무르(D'Amour) 등은 고농도의 액티빈과 저 혈청의 존재 하에서 인간 배아 줄기 세포-유래 완성 내배엽의 농축 배양물의 생성을 개시한다 (문헌[Nature Biotechnology 2005]). 생쥐의 신장 피막하에 이들 세포를 이식하면 일부 내배엽 기관의 특징을 가진 보다 성숙한 세포로의 분화가 야기되었다. 인간 배아 줄기 세포-유래 완성 내배엽 세포는 FGF-10의 첨가 후에 Pdx1 양성 세포로 추가로 분화될 수 있다 (미국 특허 출원 공개 제2005/0266554A1호).
드'아무르 등 (문헌[Nature Biotechnology - 24, 1392 - 1401 (2006)])은 "우리는 인간 배아 줄기 (hES) 세포를 췌장 호르몬 인슐린, 글루카곤, 소마토스타틴, 췌장 폴리펩티드 및 그렐린(ghrelin)을 합성할 수 있는 내분비 세포로 전환시키는 분화 과정을 개발하였다. 이 과정은 도중에 완성 내배엽, 창자관 내배엽, 췌장 내배엽, 및 내분비 전구체를 닮은 단계들을 통해 세포를 내분비 호르몬 발현 세포가 되도록 함으로써 생체내 (in vivo) 췌장 기관형성을 모방한다고 "밝혔다.
다른 예에서, 피스크(Fisk) 등은 인간 배아 줄기 세포로부터 췌도 세포를 생성하는 시스템을 보고하였다 (미국 특허 출원 공개 제2006/0040387A1호). 이 경우에, 분화 경로를 세 단계로 나누었다. 먼저, 인간 배아 줄기 세포는 부티르산나트륨과 액티빈 A의 조합을 사용하여 내배엽으로 분화되었다. 이어서, EGF 또는 베타셀룰린과 조합된 노긴(Noggin)과 같은 TGF-β 길항제를 이용하여 세포를 배양하여 Pdx1 양성 세포를 생성하였다. 마지막 분화는 니코틴아미드에 의해 유도되었다.
일 예에서, 벤베니스트리(Benvenistry) 등은 "우리는 Pdx1의 과다 발현이 췌장에 풍부한 유전자의 발현을 향상시켰으며 인슐린 발현의 유도는 생체내에서만 존재하는 추가의 시그널을 필요로 할 수 있다고 결론내린다"라고 진술한다 (문헌[Benvenistry et al," Stem Cells 2006; 24:1923-1930]).
다른 예에서, 그라핀-보톤(Grapin-Botton) 등은 "Ngn3의 조기 활성화는 췌장 전구 세포의 풀을 고갈시키면서 글루카곤+ 세포를 거의 배타적으로 유도하였다. E11.5에서와 같이, PDX-1 전구 세포는 인슐린 [양성] 및 PP [양성] 세포로의 분화에 대하여 적격성으로 되었다"라고 진술한다 (문헌[Johansson KA et al, Developmental Cell 12, 457-465, March 2007]).
췌장 내배엽 계통의 특징적인 마커를 발현하는 세포에서의 NGN3의 발현은 상기 세포가 인슐린 발현 세포로 추가로 분화되는 능력을 감소시킬 수 있다. 이전의 연구에 의하면 NGN3을 발현하는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 추가의 분화에 처해질 때 인슐린 발현 세포보다 글루카곤 발현 세포를 생성할 가능성이 더 큰 것으로 밝혀졌다. 그러나, NGN3 발현이 췌장 내분비 세포 또는 췌장 내분비 전구 세포 (예를 들어, 글루카곤 또는 인슐린 발현 세포를 형성할 수 있는 세포)의 형성에 필요하다. 따라서, 인슐린 발현 세포 쪽으로 췌장 내분비 전구 세포의 궁극적인 운명을 인도하는 데 있어서 NGN3의 일시적인 조절이 중요하다.
따라서, 인슐린 발현 세포로 분화하는 잠재력을 보유하는 한편, 현재의 임상적 필요성에 대처하도록 확장될 수 있는 만능 줄기 세포주를 확립하기 위한 조건을 개발하는 것에 대한 상당한 필요성이 여전히 남아있다. 본 발명은 PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포 집단을 생성함으로써 인슐린 발현 세포쪽으로의 인간 배아 줄기 세포의 분화 효율을 향상시키는 대안적인 접근법을 취한다. 본 발명의 방법은 췌장 내분비 전구 세포쪽으로의 췌장 내배엽의 분화가 시작될 때까지 NGN3 발현을 최소 수준으로 유지한다.
일 실시 형태에서, 본 발명은 PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 집단을 제공한다. 일 실시 형태에서, 이 세포의 집단은 동물 내로의 임플란트 후 C-펩티드를 생성할 수 있다.
일 실시 형태에서, 본 발명은 만능 줄기 세포의 집단을, PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 집단으로 분화시키는 방법을 제공하며, 이는
a. 만능 줄기 세포를 배양하는 단계,
b. 만능 줄기 세포를 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계, 및
c. 완성 내배엽 계통의 특징적인 마커를 발현하는 세포를 FGF7로 보충된 제1 배지로 처리하고, 이어서 상기 세포를 FGF7, BMP를 억제할 수 있는 인자, TGF-βTGF-β 작용제, 레틴산 및 헤지호그 시그널링(hedgehog signaling) 경로 억제제로 보충된 제2 배지에서 배양함으로써, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포를, PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계를 포함한다.
도 1은 실시예 1에 기재된 방법에 따라 처리된 세포에서 제3기, 4일에서의 NKX6.1, NGN3, PDX1, PTF1 알파, 및 ARX의 발현에 대한 액티빈 A의 영향을 나타낸다. 이중 샘플이 실시간 PCR 분석용으로 수집되었다. 도표는 대조군 (연한 회색 막대)과 비교한 각각의 유전자의 유도 배수를 나타낸다. 진한 회색 막대는 FGF7, 사이클로파민-KAAD, 레틴산, 20 ng/ml의 액티빈 A 및 노긴으로 처리된 세포를 나타낸다. 흑색 막대는 FGF7, 사이클로파민-KAAD, 레틴산, 50 ng/ml의 액티빈 A 및 노긴으로 처리된 세포를 나타낸다.
도 2는 FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민으로 처리된 세포 (패널 a 및 패널 b), 또는 FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민 + 20 ng/ml의 액티빈 A로 처리된 세포 (패널 c 및 패널 d), 및 FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민 + Alk5 억제제 II로 처리된 세포에서 NKX6.1 (패널 a, 패널 c, 및 패널 e) 및 NGN3 (패널 b, 패널 d 및 패널 f)의 발현을 나타내는 면역형광 이미지를 나타낸다.
도 3은 1% B27+ FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민 + 20 ng/ml의 액티빈 A로 보충된 DMEM-고 글루코스로 처리된 세포 (패널 a 및 패널 b), 및 1% B27+ FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민 + 20 ng/ml의 액티빈 A로 보충된 DMEM/F12로 처리된 세포 (패널 c 및 패널 d)에서 PDX1 (패널 a 및 패널 c), CDX2 (패널 b 및 패널 d)의 발현을 나타내는 면역형광 이미지를 나타낸다.
도 4는 실시예 1에 기재된 방법에 따라 처리된 세포에서 제3기, 4일에서의 NKX6.1, NGN3, 및 PDX1의 발현에 대한 액티빈 A, 액티빈 B, TGFβ2, GDF11 및 GDF8의 영향을 나타낸다. 이중 샘플이 실시간 PCR 분석용으로 수집되었다. 도표는 FGF7+사이클로파민-KAAD+레틴산 + 노긴으로 처리된 군과 비교한 각각의 유전자의 유도 배수를 나타낸다.
도 5는 실시예 2에 기재된 방법에 따라 처리된 세포에서 제4기, 3일에서의 NGN3, NEUROD, NKX2.2 및 PAX6 (패널 a), 및 NKX6.1, PDX1 및 PTF1 알파 (패널 b)의 발현에 대한 노긴 및 Alk5 억제제 II 처리의 영향을 나타낸다. 이중 샘플이 실시간 PCR 분석용으로 수집되었다. 도표는 단지 기본 배지 (DMEM-고 글루코스+1% B27) 군 (연한 회색 막대)과 비교한 각각의 유전자의 유도 배수를 나타낸다. 진한 회색 막대는 노긴 및 Alk5 억제제 II로 처리된 세포를 나타낸다.
도 6은 실시예 2에 기재된 바와 같이 FGF7 + 노긴 + 레틴산 + KAAD-사이클로파민 + 액티빈 A로 4일 동안, 이어서 노긴 및 Alk5 억제제 II로 3일 동안 처리된 세포에서의 면역형광 이미지를 나타낸다. 패널 a는 NKX6.1 및 NGN3의 오버레이(overlay) 및 NKX6.1, NGN3의 발현을 나타낸다. 패널 b는 PDX1 및 NGN3의 오버레이 및 PDX1, NGN3의 발현을 나타낸다.
도 7은 실시예 3에 기재된 처리 프로토콜의, 제4기, 3일 (연한 회색 막대), 또는 제5기, 3일 (진한 회색 막대), 또는 제5기, 7일 (흑색 막대)에서의 세포에서의 NGN3, PAX4, PDX1, NKX6.1, NEUROD, 인슐린 및 글루카곤의 발현을 나타낸다. 이중 샘플이 실시간 PCR 분석용으로 수집되었다. 도표는 제4기, 1일에 검출된 발현에 관련하여 각각의 유전자의 유도 배수를 나타낸다.
도 8은 실시예 3에 기재된 처리 프로토콜의 제5기, 7일에서의 세포에서의 인슐린, 글루카곤 및 NKX6.1의 발현을 나타내는 면역형광 이미지를 나타낸다. 인슐린과 글루카곤의 발현, 및 인슐린과 NKX6.1의 발현의 오버레이가 또한 나타내어져 있다.
도 9는 신장 피막 하에 본 발명의 세포를 받은 STZ 유도된 당뇨병 SCID-베이지(beige) 생쥐에서의 순환 인간 C-펩티드 (패널 a) 및 비-공복 혈당 수준 (패널 b)을 나타낸다. C-펩티드 수준 및 혈당 수준은 지시된 시점에서 탐지되었다.
개시내용을 분명하게 하고 제한되지 않기 위해, 발명을 실시하기 위한 구체적인 내용은 본 발명의 소정 특징, 실시 형태 또는 응용을 기재 또는 예시하는 하기 세부 항목으로 나뉘어진다.
정의
줄기 세포는 단일 세포 레벨에서 자가 재생하고 분화하여 자가 재생 전구 세포, 비재생 전구 세포, 및 최종 분화 세포를 비롯한 자손 세포 (progeny cell)를 생성하는 그의 능력에 의해 규정되는 미분화 세포이다. 줄기 세포는 또한 다수의 배엽층(내배엽, 중배엽 및 외배엽)으로부터 다양한 세포 계통의 기능성 세포로 시험관 내에서 분화하는 그의 능력, 및 이식 후 다수의 배엽층의 조직을 발생시키며, 배반포 내로의 주입 후, 전부는 아니더라도 대부분의 조직에 실질적으로 기여하는 그의 능력을 특징으로 한다.
줄기 세포는 그들의 발생 잠재력에 의해 분류된다: (1) 모든 배아 및 배자외 세포 유형이 생기게 할 수 있음을 의미하는 전능성; (2) 모든 배아 세포 유형이 생기게 할 수 있음을 의미하는 만능성; (3) 세포 계통의 하위세트이지만 모두 특정 조직, 기관 또는 생리학적 시스템 내에 있는 하위세트가 생기게 할 수 있음을 의미하는 다능성(예를 들어, 조혈 줄기 세포(hematopoietic stem cell, HSC)는 HSC(자가-재생), 혈구 세포 제한된 소기능성(oligopotent) 조상세포 및 혈액의 정상 성분인 모든 세포 유형 및 요소(예를 들어, 혈소판)를 포함하는 자손을 생성할 수 있음); (4) 다능 줄기 세포보다 더 제한된 하위세트의 세포 계통이 될 수 있음을 의미하는 소기능성; 및 (5) 단일 세포 계통(예를 들어, 정자발생 줄기 세포)이 생기게 할 수 있음을 의미하는 단일기능성.
분화는 특화되지 않은 ("미결정된(uncommitted)") 또는 덜 특화된 세포가 예를 들어, 신경 세포 또는 근육 세포와 같은 특화된 세포의 특징을 획득하는 과정이다. 분화된 또는 분화 유도된 세포는 세포 계통 내에서 보다 특화된 ("결정된(committed)") 위치를 차지한 것이다. 분화 과정에 적용될 때, 용어 "결정된"은 분화 경로에서, 통상적인 환경하에서 특정 세포형 또는 세포형의 서브세트로 계속 분화할 것이며, 통상적인 환경하에서 다른 세포형으로 분화할 수 없거나 덜 분화된 세포형으로 돌아갈 수 없는 시점까지 진행한 세포를 말한다. 탈분화는 세포가 세포 계통 내의 덜 특화된 (또는 결정된) 위치로 되돌아가는 과정을 말한다. 본 명세서에 사용되는 바와 같이, 세포 계통은 세포의 유전, 즉, 어느 세포로부터 왔는지 그리고 어떤 세포를 발생시킬 수 있는지를 규정한다. 세포 계통은 세포를 발생과 분화의 유전적 체계 내에 둔다. 계통 특이적 마커는 대상 계통의 세포 표현형과 특이적으로 관련되며, 미결정된 세포가 대상 계통으로 분화하는지를 평가하기 위해 사용될 수 있는 특징을 말한다.
본 명세서에 사용되는 바와 같이, "완성 내배엽 계통의 특징적인 마커를 발현하는 세포", 또는 "제1기 세포", 또는 "제1기"는 하기 마커 중 적어도 하나를 발현하는 세포를 말한다: SOX17, GATA4, HNF3 베타, GSC, CER1, 노달(Nodal), FGF8, 브라키우리(Brachyury), Mix-유사 호메오박스 단백질, FGF4 CD48, 에오메소더민(eomesodermin)(EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, 또는 OTX2. 완성 내배엽 계통의 특징적인 마커를 발현하는 세포는 원시선 전구 세포, 원시선 세포, 중내배엽 세포 및 완성 내배엽 세포를 포함한다.
본 명세서에 사용되는 바와 같이, "췌장 내배엽 계통의 특징적인 마커를 발현하는 세포"는 하기 마커 중 적어도 하나를 발현하는 세포를 말한다: PDX1, HNF1 베타, PTF1 알파, HNF6, NKX6.1 또는 HB9. 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 췌장 내배엽 세포, 원시 장관(gut tube) 세포, 및 후방 전장 세포를 포함한다.
본 명세서에 사용되는 바와 같이, "완성 내배엽"은 낭배의 외피(epiblast)로 인한 세포의 특징을 갖고 위장관로 및 그의 유도체를 형성하는 세포를 말한다. 완성 내배엽 세포는 하기 마커를 발현한다: HNF3 베타, GATA4, SOX17, 세르베루스(Cerberus), OTX2, 구스코이드(goosecoid), C-키트, CD99 및 MIXL1.
본 명세서에 사용되는 바와 같이, "마커"는 관심있는 세포에서 차등적으로 발현되는 핵산 또는 폴리펩티드 분자이다. 이와 관련하여, 차등 발현은 양성 마커의 레벨 증가 및 음성 마커의 레벨 감소를 의미한다. 마커 핵산 또는 폴리펩티드의 검출가능한 레벨은 다른 세포에 비하여 대상 세포에서 충분히 더 높거나 더 낮아, 대상 세포가 당업계에 알려진 다양한 방법 중 임의의 것을 이용하여 다른 세포로부터 확인되어 구별될 수 있다.
본 명세서에 사용되는 바와 같이, "췌장 내분비 세포" 또는 "췌장 호르몬 발현 세포"는 하기 호르몬 중 적어도 하나를 발현할 수 있는 세포를 말한다: 인슐린, 글루카곤, 소마토스타틴, 및 췌장 폴리펩티드.
만능 줄기 세포의 단리, 팽창 및 배양
만능 줄기 세포의 특성화
만능 줄기 세포는 단계-특이적 배아 항원(stage-specific embryonic antigen, SSEA) 3 및 4, 및 Tra-1-60 및 Tra-1-81로 표기되는 항체를 이용하여 검출가능한 마커 중 하나 이상을 발현할 수 있다(문헌[Thomson et al., Science 282:1145, 1998]). 시험관 내에서 만능 줄기 세포의 분화는 SSEA-4, Tra 1-60, 및 Tra 1-81 발현(존재하는 경우)의 손실 및 SSEA-1의 발현 증가로 이어진다. 미분화된 만능 줄기 세포는 전형적으로 알칼라인 포스파타아제 활성을 가지며, 이 활성은 상기 세포를 4% 파라포름알데히드로 고정시키고, 이어서 제조사 (미국 캘리포니아주 벌링게임 소재의 벡터 래보러토리즈(Vector Laboratories))가 설명한 바와 같이, 기질로서 벡터 레드를 이용하여 발색시킴으로써 검출될 수 있다. 미분화된 만능 줄기 세포는 또한 전형적으로 RT-PCR에 의해 검출할 때, OCT4 및 TERT를 발현한다.
증식된 만능 줄기 세포의 다른 바람직한 표현형은 모든 삼배엽층의 세포, 즉, 내배엽, 중배엽 및 외배엽의 조직으로 분화하는 잠재력이다. 만능 줄기 세포의 만능성은 예를 들어, 세포를 중증 복합형 면역결핍증(severe combined immunodeficient, SCID) 생쥐내로 주사하고, 형성되는 기형종을 4% 파라포름알데히드를 이용하여 고정하고, 이어서 삼배엽층으로부터의 세포 유형의 증거에 대해 그들을 조직학적으로 조사함으로써 확인할 수 있다. 대안적으로, 만능성은 배상체를 형성하고, 삼배엽층과 관련된 마커들의 존재에 대해 배상체를 평가함으로써 결정될 수 있다.
증식된 만능 줄기 세포주는 표준 G-밴딩 기술을 이용하여 핵형을 결정하고 상응하는 영장류 종의 공개된 핵형과 비교할 수 있다. "정상 핵형"을 가진 세포를 얻는 것이 필요하며, 이는 세포가 모든 인간 염색체가 존재하며 눈에 띄게 변경되지 않은 정배수체임을 의미한다.
만능 줄기 세포의 공급원
사용될 수 있는 만능 줄기 세포의 유형은 전-배아(pre-embryonic) 조직(예를 들어, 배반포), 배아 조직, 또는 임신 동안 그러나 전형적으로 약 10-12주 임신 전일 필요는 없는 임의의 시점에 취한 태아 조직을 비롯한, 임신 후 형성된 조직으로부터 유래된 만능 세포의 확립된 주를 포함한다. 비제한적인 예로는 인간 배아 줄기 세포 또는 인간 배아 배 세포의 확립된 주, 예를 들어, 인간 배아 줄기 세포주 H1, H7, 및 H9 (WiCell)가 있다. 이러한 세포의 초기 수립 또는 안정화 시에 본 명세서의 조성물의 사용도 고려되며, 이 경우에는 공급원 세포는 공급원 조직으로부터 직접 취한 일차 만능성 세포일 것이다. 영양세포의 부재하에서 이미 배양된 만능 줄기 세포 집단으로부터 취한 세포가 또한 적합하다. 돌연변이 인간 배아 줄기 세포주, 예를 들어, BG01v (BresaGen (Athens, GA))가 또한 적합하다.
일 실시형태에서, 인간 배아 줄기 세포는 톰슨 (Thomson) 등에 의해 문헌 [참조: 미국 특허 제5,843,780호; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998]; 문헌[Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995]에 기재된 바와 같이 제조된다.
만능 줄기 세포의 배양
일 실시 형태에서, 만능 줄기 세포는 전형적으로 다양한 방식으로 만능 줄기 세포를 지지하는 영양 세포층 상에서 배양된다. 대안적으로, 만능 줄기 세포는 본질적으로 영양 세포가 없지만, 그럼에도 불구하고 실질적인 분화를 거치지 않고 만능 줄기 세포의 증식을 지지하는 배양 시스템에서 배양된다. 영양세포가 없는 배양에서 분화 없는 만능 줄기 세포의 성장은 이전에 다른 세포 유형을 이용하여 배양함으로써 조절된 배지를 이용하여 지지된다. 대안적으로, 영양세포가 없는 배양에서 분화 없는 만능 줄기 세포의 성장은 화학적 규명 배지를 이용하여 지지된다.
예를 들어, 문헌[Reubinoff et al ., Nature Biotechnology 18: 399 - 404 (2000)] 및 문헌[Thompson et al, Science 6 November 1998: Vol. 282. no. 5391, pp. 1145 - 1147]은 생쥐 배아 섬유아세포 영양 세포층을 사용하여 인간 배반포로부터 만능 줄기 세포주를 배양하는 것을 개시한다.
리차즈(Richards) 등 (문헌[Stem Cells 21: 546-556, 2003])은 인간 만능 줄기 세포 배양을 지지하는 능력에 대해 11가지 상이한 인간 성인, 태아 및 신생아 영양 세포층의 패널을 평가하였다. 리차즈 등은 "성인 피부 섬유아세포 영양세포 상에서 배양된 인간 배아 줄기 세포주는 인간 배아 줄기 세포 형태를 유지하며 만능으로 남아 있다"고 진술한다.
미국 특허 출원 공개 제20020072117호는 영양세포가 없는 배양에서 영장류 만능 줄기 세포의 성장을 지지하는 배지를 생성하는 세포주를 개시한다. 이용된 세포주는 배아 조직으로부터 얻어지거나 배아 줄기 세포로부터 분화된 중간엽 및 섬유아세포-유사 세포주이다. 미국 특허 출원 공개 제20020072117호는 또한 일차 영양 세포층으로서의 당해 세포주의 사용을 개시한다.
다른 예에서는, 왕(Wang) 등 (문헌[Stem Cells 23: 1221-1227, 2005])은 인간 배아 줄기 세포로부터 유래된 영양 세포층 상에서 인간 만능 줄기 세포의 장기 성장을 위한 방법을 개시한다.
다른 예에서는, 스토코빅(Stojkovic) 등 (문헌[Stem Cells 2005 23: 306-314, 2005])은 인간 배아 줄기 세포의 자발적 분화로부터 유래된 영양 세포 시스템을 개시한다.
추가 예에서, 미야모토(Miyamoto) 등 (문헌[Stem Cells 22: 433-440, 2004])은 인간 태반으로부터 얻은 영양 세포의 공급원을 개시한다.
아미트(Amit) 등 (문헌[Biol. Reprod 68: 2150-2156, 2003])은 인간 포피로부터 유래된 영양 세포층을 개시한다.
다른 예에서, 인준자(Inzunza) 등 (문헌[Stem Cells 23: 544-549, 2005])은 인간 출생후 포피 섬유아세포 유래의 영양 세포층을 개시한다.
미국 특허 제6642048호는 영양세포가 없는 배양에서 영장류 만능 줄기(primate pluripotent stem, pPS) 세포의 성장을 지지하는 배지 및 그러한 배지의 생성에 유용한 세포주를 개시한다. 미국 특허 제6642048호는 "본 발명은 배아 조직으로부터 얻어지거나 배아 줄기 세포로부터 분화된 중간엽 및 섬유아세포-유사 세포주를 포함한다. 그러한 세포주를 유도하고, 배지를 가공하고, 조절된 배지를 이용하여 줄기 세포를 성장시키는 방법이 이 개시 내용에 기재되고 예시된다. "라고 진술한다.
다른 예에서, 국제특허 공개 WO2005014799호는 포유류 세포의 유지, 증식 및 분화를 위한 조절된 배지를 개시한다. 국제특허 공개 WO2005014799호는 "본 발명에 따라 생성된 배양 배지는 쥐과 세포, 특히 MMH(Met 쥐과 간세포(Met Murine Hepatocyte))로 불리는, 분화되고 불멸화된 트랜스제닉(transgenic) 간세포의 세포 분비 활성에 의해 조절된다"고 진술한다.
다른 예에서, 수(Xu) 등 (문헌[Stem Cells 22: 972-980, 2004])은 인간 텔로머라아제 역전사효소를 과다 발현하도록 유전적으로 변형된 인간 배아 줄기 세포 유도체로부터 얻은 조절된 배지를 개시한다.
다른 예에서, 미국 특허 출원 공개 제20070010011호는 만능 줄기 세포의 유지를 위한 화학적으로 규명된 배양 배지를 개시한다.
대안적인 배양 시스템은 배아 줄기 세포의 증식을 촉진할 수 있는 성장 인자로 보충된 무-혈청 배지를 이용한다. 예를 들어, 천(Cheon) 등 (문헌[BioReprod DOI:10.1095/biolreprod.105.046870, October 19, 2005])은 배아 줄기 세포 자가-재생을 일으킬 수 있는 상이한 성장 인자로 보충된 비조절된 혈청 대체(serum replacement, SR) 배지에서 배아 줄기 세포가 유지되는 영양세포가 없는 무-혈청 배양 시스템을 개시한다.
다른 예에서, 레벤스타인(Levenstein) 등 (문헌[Stem Cells 24: 568-574, 2006])은 bFGF가 보충된 배지를 이용하여, 섬유아세포 또는 조절된 배지의 부재 하에서 인간 배아 줄기 세포의 장기 배양을 위한 방법을 개시하였다.
다른 예에서, 미국 특허 출원 공개 제20050148070호는 혈청 없이 그리고 섬유아세포 영양 세포 없이 규명된 배지에서 인간 배아 줄기 세포를 배양하는 방법을 개시하였으며, 이 방법은 알부민, 아미노산, 비타민, 미네랄, 적어도 하나의 트랜스페린 또는 트랜스페린 대체물, 적어도 하나의 인슐린 또는 인슐린 대체물을 함유한 배양 배지에서 줄기 세포를 배양하는 단계를 포함하며, 상기 배양 배지는 본질적으로 포유류 태아 혈청이 없으며 적어도 약 100 ng/mL의, 섬유아세포 성장 인자 시그널링 수용체를 활성화시킬 수 있는 섬유아세포 성장 인자를 함유하며, 여기서 성장 인자는 단지 섬유아세포 영양세포층 이외의 공급원으로부터 공급되며, 배지는 영양 세포 또는 조절된 배지 없이 미분화된 상태로 줄기 세포의 증식을 지지한다.
다른 예에서, 미국 특허 출원 공개 제20050233446호는 미분화 영장류 원시 줄기 세포를 비롯한 줄기 세포를 배양하는 데 유용한 규명된 배지를 개시한다. 용액에서, 배지는 배양되는 줄기 세포와 비교할 때 사실상 등장성이다. 주어진 배양물에서, 특정 배지는 기본 배지 및 원시 줄기 세포의 사실상 미분화된 성장을 지지하는 데 필요한 양의 bFGF, 인슐린 및 아스코르브산 각각을 포함한다.
다른 예에서, 미국 특허 제6800480호는 "일 실시 형태에서, 사실상 미분화된 상태의 영장류-유래 원시 줄기 세포를 성장시키기 위한 세포 배양 배지가 제공되며 이 배지는 영장류-유래 원시 줄기 세포의 성장을 지지하기에 효과적인 저 삼투압, 저 내독소 기본 배지를 포함한다. 기본 배지는 영장류-유래 원시 줄기 세포의 성장을 지지하기에 효과적인 영양 혈청과, 영양 세포 및 영양 세포로부터 유래된 세포외 매트릭스 성분으로 이루어진 군으로부터 선택된 기질과 조합된다. 배지는 추가로 비필수 아미노산, 산화방지제, 및 뉴클레오시드와 피루베이트염으로 이루어진 군으로부터 선택된 제1 성장 인자를 포함한다. "고 진술한다.
다른 예에서, 미국 특허 출원 공개 제20050244962호는 "일 태양에서 본 발명은 영장류 배아 줄기 세포를 배양하는 방법을 제공한다. 본질적으로 포유류 태아 혈청이 없는(바람직하게는 또한 본질적으로 임의의 동물 혈청이 없는) 배지에서 그리고 단지 섬유아세포 영양 세포층 이외의 공급원으로부터 공급된 섬유아세포 성장 인자의 존재하에서 줄기 세포를 배양한다. 바람직한 형태에서, 이전에는 줄기 세포 배양을 지속하기 위해 필요했던 섬유아세포 영양세포층이 충분한 섬유아세포 성장 인자의 첨가에 의해 불필요해지게 된다."고 진술한다.
추가의 예에서, 국제특허 공개 WO2005065354호는 본질적으로 영양세포가 없는 그리고 무혈청인 규명된 등장성 배양 배지를 개시하며, 이 배지는 a. 기본 배지; b. 사실상 미분화된 포유류 줄기 세포의 성장을 지지하기에 충분한 양의 bFGF; c. 사실상 미분화된 포유류 줄기 세포의 성장을 지지하기에 충분한 양의 인슐린; 및 d. 사실상 미분화된 포유류 줄기 세포의 성장을 지지하기에 충분한 양의 아스코르브산을 포함한다.
다른 예에서, 국제특허 공개 WO2005086845호에는 미분화 줄기 세포의 유지 방법이 개시되어 있는데, 상기 방법은 줄기 세포를 원하는 결과를 성취하기에 충분한 양의 시간 동안 미분화 상태로 유지하기에 충분한 양의 형질전환 성장 인자-베타 (transforming growth factor-beta, TGF-β) 패밀리의 단백질류의 구성원, 섬유아세포 성장 인자 (FGF) 패밀리의 단백질류의 구성원 또는 니코틴아미드 (NIC)에 줄기 세포를 노출시키는 것을 포함한다.
만능 줄기 세포는 적합한 배양 기재 상에 도말될 수 있다. 일 실시 형태에서, 적합한 배양 기재는 세포외 매트릭스 성분, 예를 들어, 기저막에서 유래되거나 또는 부착 분자 수용체-리간드 커플링의 일부를 형성할 수 있는 것들이다. 일 실시 형태에서, 적절한 배양 기재는 매트리젤(Matrigel)(등록상표) (벡턴 디킨슨(Becton Dickenson))이다. 매트리젤(등록상표)은 실온에서 젤화하여 재구성된 기저막을 형성하는 엔젤브레스-홈-스왐(Engelbreth-Holm Swarm) 종양 세포 유래의 용해성 제제이다.
다른 세포외 매트릭스 성분 및 성분 혼합물이 대안으로서 적합하다. 증식되는 세포 유형에 따라, 이것은 라미닌, 피브로넥틴, 프로테오글리칸, 엔탁틴, 헤파란 설페이트 등을 단독으로 또는 다양한 조합으로 포함할 수 있다.
만능 줄기 세포는 적합한 분포로 그리고 세포 생존, 번식, 및 바람직한 특징의 보유를 촉진하는 배지의 존재하에서 기재상에 도말될 수 있다. 모든 이들 특성은 시딩 분포에 세심한 주의를 기울여 이익을 얻으며, 당업자에 의해 용이하게 결정될 수 있다.
적합한 배양 배지는 하기 성분들, 예를 들어, 둘베코 변형 이글 배지(Dulbecco's modified Eagle's medium)(DMEM), 깁코(Gibco) # 11965-092; 넉아웃(Knockout) 둘베코 변형 이글 배지 (KO DMEM), 깁코 # 10829-018; 햄(Ham's) F12/50% DMEM 기본 배지; 200 mM L-글루타민, 깁코 # 15039-027; 비-필수 아미노산 용액, 깁코 11140-050; β-메르캅토에탄올, 시그마(Sigma) # M7522; 인간 재조합 염기성 섬유아세포 성장 인자(bFGF), 깁코 # 13256-029로부터 제조될 수 있다.
만능 줄기 세포로부터의 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 형성
일 실시 형태에서, 본 발명은 만능 줄기 세포로부터 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 생성하는 방법을 제공하며, 이는
a. 만능 줄기 세포를 배양하는 단계,
b. 만능 줄기 세포를 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계, 및
c. 완성 내배엽 계통의 특징적인 마커를 발현하는 세포를 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계를 포함한다.
본 발명의 일 태양에서, 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 PDX1, NKX6.1을 동시 발현하지만 CDX-2 및 NGN3은 발현하지 않는다.
완성 내배엽 계통의 특징적인 마커를 발현하는 세포로의 만능 줄기 세포의 분화
완성 내배엽 계통의 특징적인 마커를 발현하는 세포의 형성은 특정 프로토콜을 이행하기 전후에 마커의 존재에 대해 시험함으로써 결정될 수 있다. 만능 줄기 세포는 전형적으로 그러한 마커를 발현하지 않는다. 따라서, 만능성 세포의 분화는 세포가 그들을 발현하기 시작할 때에 검출된다.
만능 줄기 세포는 당업계의 임의의 방법에 의해 또는 본 발명에서 제안된 임의의 방법에 의해 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 문헌[D'Amour et al, Nature Biotechnology 23, 1534 - 1541 (2005)]에 개시된 방법에 따라 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 문헌[Shinozaki et al, Development 131, 1651 - 1662(2004)]에 개시된 방법에 따라 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 문헌[McLean et al, Stem Cells 25 , 29 - 38 (2007)]에 개시된 방법에 따라 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 문헌[D'Amour et al, Nature Biotechnology 24, 1392 - 1401 (2006)]에 개시된 방법에 따라 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 혈청 부재 하에서 액티빈 A를 함유하는 배지에서 만능 줄기 세포를 배양하고, 이어서 액티빈 A와 혈청을 이용하여 세포를 배양하고, 이어서 상이한 농도의 액티빈 A와 혈청을 이용하여 세포를 배양함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다. 이 방법의 예는 문헌[Nature Biotechnology 23, 1534 - 1541 (2005)]에 개시된다.
예를 들어, 만능 줄기 세포는 혈청 부재 하에서 액티빈 A를 함유하는 배지에서 만능 줄기 세포를 배양하고, 이어서 다른 농도의 혈청을 포함하는 액티빈 A를 이용하여 세포를 배양함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다. 이 방법의 예는 문헌[D' Amour et al, Nature Biotechnology, 2005]에 개시된다.
예를 들어 만능 줄기 세포는 혈청 부재하에서 액티빈 A와 Wnt 리간드를 함유하는 배지에서 만능 줄기 세포를 배양하고, 이어서 Wnt 리간드를 제거하고 혈청을 포함하는 액티빈 A를 이용하여 세포를 배양함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다. 이 방법의 예는 문헌[Nature Biotechnology 24, 1392 - 1401 (2006)]에 개시된다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.(LifeScan, Inc.)에 양도된, 미국 특허 출원 제11/736,908호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제11/779,311호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제60/990,529호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제61/076,889호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제61/076,900호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제61/076,908호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 만능 줄기 세포는 라이프스캔 인크.에 양도된, 미국 특허 출원 제61/076,915호에 개시된 방법에 따라 만능 줄기 세포를 처리함으로써 완성 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로의 완성 내배엽 계통의 특징적인 마커를 발현하는 세포의 분화
일 실시 형태에서, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포를 FGF7로 보충된 제1 배지에서 배양하고, 이어서 상기 세포를 FGF7, BMP를 억제할 수 있는 인자, TGFβ 수용체 작용제, 레틴산 및 헤지호그 시그널링 경로 억제제로 보충된 제2 배지에서 배양함으로써, 완성 내배엽 계통의 특징적인 마커를 발현하는 세포를, PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시킨다.
일 실시 형태에서, FGF7은 약 50 pg/ml 내지 약 50 μg/ml의 농도로 사용될 수 있다. 일 실시 형태에서, FGF7은 50 ng/ml의 농도로 사용된다.
일 실시 형태에서, BMP를 억제할 수 있는 인자는 노긴이다. 노긴은 약 500 ng/ml 내지 약 500 μg/ml의 농도로 사용될 수 있다. 일 실시 형태에서, 노긴은 100 ng/ml의 농도로 사용된다.
일 실시 형태에서, TGFβ 수용체 작용제는 액티빈 A, 액티빈 B, TGFβ-I, TGFβ-II, GDF-8, 및 GDF-11로 이루어진 군으로부터 선택된다.
액티빈 A는 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, 액티빈 A는 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, 액티빈 A는 50 ng/ml의 농도로 사용된다.
액티빈 B는 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, 액티빈 B는 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, 액티빈 B는 50 ng/ml의 농도로 사용된다.
TGFβ-I은 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, TGFβ-I은 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, TGFβ-I은 50 ng/ml의 농도로 사용된다.
TGFβ-II는 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, TGFβ-II는 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, TGFβ-II는 50 ng/ml의 농도로 사용된다.
GDF-8은 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, GDF-8은 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, GDF-8은 50 ng/ml의 농도로 사용된다.
GDF-11은 약 2 ng/ml 내지 100 ng/ml의 농도로 사용될 수 있다. 일 실시 형태에서, GDF-11은 20 ng/ml의 농도로 사용된다. 다른 실시 형태에서, GDF-11은 50 ng/ml의 농도로 사용된다.
레틴산은 약 1 nM 내지 약 1 mM의 농도로 사용될 수 있다. 일 실시 형태에서, 레틴산은 1 μM의 농도로 사용된다.
일 실시 형태에서, 헤지호그 시그널링 경로 억제제는 사이클로파민-KAAD이다. 사이클로파민-KAAD는 약 0.025 μM 내지 약 2.5 μM의 농도로 사용될 수 있다. 일 실시 형태에서, 사이클로파민-KAAD는 0.25 μM의 농도로 사용된다.
분화 효율은 완성 내배엽 계통의 특징을 나타내는 마커를 발현하는 세포에 의해 발현되는 단백질 마커를 특이적으로 인식하는 제제 (예를 들어, 항체)에 처리 세포 집단을 노출시킴으로써 결정될 수 있다.
배양되거나 단리된 세포에서 단백질 및 핵산 마커의 발현을 평가하는 방법은 당업계에서의 표준이다. 이들은 정량적 역전사효소 폴리머라아제 연쇄반응(RT-PCR), 노던 블롯, 원위치(in situ) 혼성화(예를 들어, 문헌[Current Protocols in Molecular Biology, Ausubel et al., eds. 2001 supplement)] 참고), 및 면역분석, 예를 들어, 단면 재료의 면역조직화학적 분석, 웨스턴 블롯팅 및 온전한 상태의 세포에서 접근가능한 마커의 경우 유세포분석(FACS) (예를 들어 문헌[Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)] 참고)을 포함한다.
만능 줄기 세포의 특징은 당업자에게 잘 알려져 있으며, 만능 줄기 세포의 추가의 특징은 계속 확인되고 있다. 만능 줄기 세포 마커는 예를 들어, 하기 중 하나 이상의 발현을 포함한다: ABCG2, 크립토, FOXD3, 코넥신43, 코넥신45, OCT4, SOX2, 나노그, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
만능 줄기 세포를 본 발명의 방법으로 처리한 후, 분화된 세포는 완성 내배엽 계통의 특징적인 마커를 발현하는 세포에 의해 발현된 CXCR4와 같은 단백질 마커를 특이적으로 인식하는 제제 (예를 들어, 항체)에 처리 세포 집단을 노출시켜 정제할 수 있다.
본 발명에 사용하기에 적합한 만능 줄기 세포는 예를 들어, 인간 배아 줄기 세포주 H9 (NIH 코드: WA09), 인간 배아 줄기 세포주 H1 (NIH 코드: WA01), 인간 배아 줄기 세포주 H7 (NIH 코드: WA07), 및 인간 배아 줄기 세포주 SA002 (스웨덴 소재의 셀라르티스(Cellartis))를 포함한다. 만능 세포의 하기 특징적인 마커 중 적어도 하나를 발현하는 세포가 또한 본 발명에 사용하기에 적합하다: ABCG2, 크립토(cripto), CD9, FOXD3, 코넥신43(CONNEXIN43), 코넥신45, OCT4, SOX2, 나노그(Nanog), hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, 및 Tra 1-81.
완성 내배엽 계통의 특징적인 마커는 SOX17, GATA4, HNF3 베타, GSC, CER1, 노달, FGF8, 브라키어리, Mix-유사 호메오박스 단백질, FGF4 CD48, 에오메소더민(EOMES), DKK4, FGF17, GATA6, CXCR4, C-키트, CD99 및 OTX2로 이루어진 군으로부터 선택된다. 완성 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 본 발명에 사용하기에 적합하다. 본 발명의 일 태양에서, 완성 내배엽 계통의 특징을 나타내는 마커를 발현하는 세포는 원시선 전구 세포이다. 다른 태양에서, 완성 내배엽 계통의 특징을 나타내는 마커를 발현하는 세포는 중내배엽 세포이다. 다른 태양에서, 완성 내배엽 계통의 특징을 나타내는 마커를 발현하는 세포는 완성 내배엽 세포이다.
췌장 내배엽 계통의 특징적인 마커는 PDX1, HNF1 베타, PTF1 알파, HNF6, HB9 및 PROX1로 이루어진 군으로부터 선택된다. 췌장 내배엽 계통의 특징적인 마커들 중 적어도 하나를 발현하는 세포가 본 발명에 사용하기에 적합하다. 본 발명의 일 태양에서, 췌장 내배엽 계통의 특징을 나타내는 마커를 발현하는 세포는 췌장 내배엽 세포이다.
췌장 내분비 계통의 특징적인 마커를 발현하는 세포의 형성
일 실시 형태에서, 본 발명의 방법에 의해 생성된 PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화될 수 있다.
췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 당업계의 임의의 방법에 의해 또는 본 발명에서 제안된 임의의 방법에 의해 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 분화될 수 있다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 엑센딘 4를 함유하는 배지에서 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 배양하고, 이어서 엑센딘 4를 함유하는 배지를 제거하고, 그 후 엑센딘 1, IGF-1 및 HGF를 함유하는 배지에서 상기 세포를 배양함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다. 이 방법의 예는 문헌[D' Amour et al, Nature Biotechnology, 2006]에 개시된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 DAPT (시그마-알드리치(Sigma-Aldrich), 미국 미주리주) 및 엑센딘 4를 함유하는 배지에서 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 배양함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다. 이 방법의 예는 문헌[D' Amour et al, Nature Biotechnology, 2006]에 개시된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 엑센딘 4를 함유하는 배지에서 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 배양함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다. 이 방법의 예는 문헌[D' Amour et al, Nature Biotechnology, 2006]에 개시된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 라이프스캔 인크.에 양도된 미국 특허 출원 제11/736,908호에 개시된 방법에 따라 노치 시그널링 경로를 억제하는 인자로 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 처리함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 라이프스캔 인크.에 양도된 미국 특허 출원 제11/779,311호에 개시된 방법에 따라 노치 시그널링 경로를 억제하는 인자로 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 처리함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 라이프스캔 인크.에 양도된 미국 특허 출원 제60/953,178호에 개시된 방법에 따라 노치 시그널링 경로를 억제하는 인자로 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 처리함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다.
예를 들어, 본 발명의 방법에 따라 얻어진 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 라이프스캔 인크.에 양도된 미국 특허 출원 제60/990,529호에 개시된 방법에 따라 노치 시그널링 경로를 억제하는 인자로 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 처리함으로써, 췌장 내분비 계통의 특징적인 마커를 발현하는 세포로 추가로 분화된다.
췌장 내분비 계통의 특징적인 마커는 NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4 및 PTF-1 알파로 이루어진 군으로부터 선택된다. 일 실시 형태에서, 췌장 내분비 세포는 하기 호르몬 중 적어도 하나를 발현할 수 있다: 인슐린, 글루카곤, 소마토스타틴, 및 췌장 폴리펩티드. 췌장 내분비 계통의 특징을 나타내는 마커 중 적어도 하나를 발현하는 세포가 본 발명에 사용하기에 적합하다. 본 발명의 일 태양에서, 췌장 내분비 계통의 특징을 나타내는 마커를 발현하는 세포는 췌장 내분비 세포이다. 췌장 내분비 세포는 췌장 호르몬 발현 세포일 수 있다. 대안적으로, 췌장 내분비 세포는 췌장 호르몬 분비 세포일 수 있다.
본 발명의 일 태양에서, 췌장 내분비 세포는 β 세포 계통의 특징적인 마커를 발현하는 세포이다. β 세포 계통의 특징적인 마커를 발현하는 세포는 PDX1, 및 하기의 전사 인자 중 적어도 하나를 발현한다: NGN3, NKX2.2, NKX6.1, NEUROD, ISL1, HNF3 베타, MAFA, PAX4, 및 PAX6. 본 발명의 일 태양에서, β 세포 계통의 특징적인 마커를 발현하는 세포는 β 세포이다.
치료법
일 태양에서, 본 발명은 제1형 당뇨병을 앓고 있거나 상기 당뇨병이 발병될 위험이 있는 환자를 치료하는 방법을 제공한다. 일 실시 형태에서, 본 방법은 만능 줄기 세포를 배양하는 단계, 만능 줄기 세포를 시험관 내에서 β-세포 계통으로 분화시키는 단계, 및 β-세포 계통의 세포를 환자 내로 이식하는 단계를 포함한다. 다른 실시 형태에서, 본 방법은 만능 줄기 세포를 배양하는 단계, 시험관 내에서 만능 줄기 세포를, PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계, 및 PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 세포를 환자 내로 임플란트하는 단계를 포함한다.
또 다른 태양에서, 본 발명은 제2형 당뇨병을 앓고 있거나, 상기 당뇨병이 발병될 위험이 있는 환자를 치료하는 방법을 제공한다. 일 실시 형태에서, 본 방법은 만능 줄기 세포를 배양하는 단계, 만능 줄기 세포를 시험관 내에서 β-세포 계통으로 분화시키는 단계, 및 β-세포 계통의 세포를 환자 내로 이식하는 단계를 포함한다. 다른 실시 형태에서, 본 방법은 만능 줄기 세포를 배양하는 단계, 시험관 내에서 만능 줄기 세포를, PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로 분화시키는 단계, 및 PDX1, NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 세포를 환자 내로 임플란트하는 단계를 포함한다.
적절하다면, 환자는 이식된 세포의 생존과 기능을 촉진하는 약학 제제 또는 생물활성제로 추가로 처리될 수 있다. 이러한 제제는 다른 것들 중에서, 예를 들어, 인슐린, TGF-β 패밀리의 구성원(TGF-β1, 2, 및 3 포함), 골 형성 단백질(BMP-2, -3, -4, -5, -6, -7, -11, -12, 및 -13), 섬유아세포 성장 인자-1 및 -2, 혈소판-유도 성장 인자-AA, 및 -BB, 혈소판 풍부한 혈장, 인슐린 성장 인자(IGF-I, II) 성장 분화 인자(GDF-5, -6, -7, -8, -10, -15), 혈관 내피 세포-유도 성장 인자 (VEGF), 플레이오트로핀(pleiotrophin), 엔도텔린(endothelin)을 포함할 수 있다. 다른 약학적 화합물은 예를 들어, 니코틴아미드, 글루카곤 유사 펩티드-I (GLP-1) 및 II, GLP-1 및 2 미메티바디, 엑센딘-4, 레틴산, 부갑상선 호르몬, MAPK 억제제, 예를 들어, 미국 특허 출원 공개 제2004/0209901호 및 제2004/0132729호에 개시된 화합물을 포함할 수 있다.
만능 줄기 세포는 수령체 내로 이식하기 전에 인슐린-생성 세포로 분화될 수 있다. 특정 실시 형태에서, 만능 줄기 세포는 수여자에게 이식되기 전에, β-세포로 완전히 분화된다. 대안적으로, 만능 줄기 세포는 미분화 또는 부분 분화 상태로 수여자 내로 이식될 수 있다. 추가 분화는 수령체 내에서 일어날 수 있다.
완성 내배엽 세포 또는, 대안적으로, 췌장 내배엽 세포, 또는, 대안적으로, β 세포는 분산된 세포로서 이식되거나, 또는 간문맥으로 융합될 수 있는 클러스터로 형성될 수 있다. 대안적으로, 세포는 생체적합성 분해성 중합체성 지지체, 다공성 비분해성 장치로 제공되거나 또는 피막화되어 숙주 면역 반응으로부터 보호될 수 있다. 세포는 수령체에서 적절한 부위 내로 이식될 수 있다. 이식 부위는 예를 들어, 간, 천연 췌장, 신장 피막하 공간, 장막, 복막, 장막하 공간, 장, 위, 또는 피하 주머니를 포함한다.
추가 분화, 이식된 세포의 생존 또는 활성을 향상시키기 위하여, 성장 인자, 산화방지제 또는 항염증제와 같은 추가 인자를 세포의 투여 전에, 세포의 투여와 동시에, 또는 세포의 투여 후에 투여할 수 있다. 소정의 실시 형태에서, 성장 인자는 생체 내에서 투여된 세포를 분화시키기 위해 사용된다. 이들 인자는 내인성 세포에 의해 분비되어 원위치에서 투여된 세포에 노출될 수 있다. 이식된 세포는 내부 및 외부 투여된 당업계에 알려진 성장 인자의 임의의 조합에 의해 분화되도록 유도될 수 있다.
이식에 사용되는 세포의 양은 환자의 상태 및 치료법에 대한 반응을 비롯한 다양한 많은 인자에 의존하며, 당업자에 의해 결정될 수 있다.
일 태양에서 본 발명은 당뇨병을 앓고 있거나 상기 당뇨병이 발병될 위험이 있는 환자를 치료하는 방법을 제공한다. 이 방법은 만능 줄기 세포를 배양하는 단계, 배양된 세포를 시험관 내에서 β-세포 계통으로 분화시키는 단계, 및 세포를 3차원 지지체 내로 혼입하는 단계를 포함한다. 세포는 환자 내로 이식되기 전에 이 지지체 상에서 시험관 내에서 유지될 수 있다. 대안적으로, 세포를 함유한 지지체는 추가의 시험관 내 배양 없이 환자에서 직접 이식될 수 있다. 지지체에는 이식된 세포의 생존과 기능을 촉진하는 적어도 하나의 약학 제제가 선택적으로 혼입될 수 있다.
본 발명의 목적을 위해 사용하기에 적합한 지지체 물질은 조직 복구에 유용한 조직 주형, 도관, 장벽, 및 저장부를 포함한다. 구체적으로, 생물학적 조직을 재구성하거나 재생시키기 위해서뿐만 아니라 조직 성장을 유도하기 위한 주화성 제제를 전달하기 위해 시험관 내 및 생체 내에서 사용된 폼, 스펀지, 젤, 하이드로젤, 직물, 및 부직 구조체 형태의 합성 및 천연 물질이 본 발명의 방법의 실시에서 사용하기에 적합하다. 예를 들어, 미국 특허 제5,770,417호, 미국 특허 제6,022,743호, 미국 특허 제5,567,612호, 미국 특허 제5,759,830호, 미국 특허 제6,626,950호, 미국 특허 제6,534,084호, 미국 특허 제6,306,424호, 미국 특허 제6,365,149호, 미국 특허 제6,599,323호, 미국 특허 제6,656,488호, 미국 특허 출원 공개 제2004/0062753 A1호, 미국 특허 제4,557,264호 및 미국 특허 제6,333,029호에 개시된 물질을 참고한다.
약학 제제가 혼입된 지지체를 형성하기 위하여, 약학 제제는 지지체를 형성하기 전에 중합체 용액과 혼합될 수 있다. 대안적으로, 약학 제제는 바람직하게는 약학적 담체의 존재 하에서, 제작된 지지체 상에 코팅될 수 있다. 약학 제제는 액체, 미분 고체, 또는 임의의 다른 적절한 물리적 형태로 존재할 수 있다. 대안적으로, 부형제는 약학 제제의 방출 속도를 변경하기 위하여 지지체에 첨가될 수 있다. 다른 실시 형태에서, 지지체에는 항-염증성 화합물인 적어도 하나의 약학적 화합물, 예컨대, 예를 들어 미국 특허 제6,509,369호에 개시된 화합물이 혼입된다.
지지체에는 예를 들어, 미국 특허 제6,793,945호에 개시된 화합물과 같은 항-아폽토시스 화합물인 적어도 하나의 약학적 화합물이 혼입될 수 있다.
지지체에는 예를 들어, 미국 특허 제6,331,298호에 개시된 화합물과 같은 섬유증 억제제인 적어도 하나의 약학적 화합물이 또한 혼입될 수 있다.
지지체에는 또한 예를 들어, 미국 특허 출원 공개 제2004/0220393호 및 미국 특허 출원 공개 제2004/0209901호에 개시된 화합물과 같은 혈관신생을 향상시킬 수 있는 적어도 하나의 약학적 화합물이 혼입될 수 있다.
지지체에는 또한 예를 들어, 미국 특허 출원 공개 제2004/0171623호에 개시된 화합물과 같은 면역억제 화합물인 적어도 하나의 약학적 화합물이 혼입될 수 있다.
지지체에는 또한, 성장 인자, 예컨대, 다른 것들 중에서도, 예를 들어, TGF-β 패밀리의 구성원(TGF-β1, 2, 및 3 포함), 골 형성 단백질(BMP-2, -3,-4, -5, -6, -7, -11, -12, 및 -13), 섬유아세포 성장 인자-1 및 -2, 혈소판-유도 성장 인자-AA, 및 -BB, 혈소판 풍부한 혈장, 인슐린 성장 인자 (IGF-I, II) 성장 분화 인자 (GDF-5, -6, -8, -10, -15), 혈관 내피 세포-유도 성장 인자 (VEGF), 플레이오트로핀, 엔도텔린인 적어도 하나의 약학적 화합물이 혼입된다. 다른 약학적 화합물은 예를 들어, 니코틴아미드, 저산소증 유도성 인자 1-알파, 글루카곤 유사 펩티드-I(GLP-1), GLP-1 및 GLP-2 미메티바디, 및 II, 엑센딘-4, 노달, 노긴, NGF, 레틴산, 부갑상선 호르몬, 테나신-C, 트로포엘라스틴, 트롬빈-유래 펩티드, 카텔리시딘, 데펜신, 라미닌, 피브로넥틴 및 비트로넥틴과 같은 부착성 세포외 매트릭스 단백질의 세포- 및 헤파린-결합 도메인을 함유한 생물학적 펩티드, MAPK 억제제, 예를 들어, 미국 특허 출원 공개 제2004/0209901호 및 미국 특허 출원 공개 제2004/0132729호에 개시된 화합물을 포함할 수 있다.
스캐폴드(scaffold) 내로 본 발명의 세포를 혼입시키는 것은 스캐폴드 상에 세포를 간단히 침적시키는 것에 의해 성취될 수 있다. 세포는 간단한 확산에 의해 스캐폴드 내로 들어갈 수 있다 (문헌[J. Pediatr. Surg. 23 (1 Pt 2): 3-9 (1988)]. 세포 접종의 효율을 향상시키기 위하여 몇몇 다른 접근법이 개발되었다. 예를 들어, 스피너 플라스크(spinner flasks)가 폴리글리콜산 스캐폴드 상에 연골세포를 접종하는 데 사용되었다 (문헌[Biotechnol. Prog. 14(2): 193-202 (1998)). 세포를 접종하기 위한 다른 접근법은 원심분리를 사용하는 것이며, 이것은 접종된 세포에 대해 최소의 스트레스를 생성하며 접종 효율을 향상시킨다. 예를 들어, 양(Yang) 등은 세포 접종 방법을 개발하였다(문헌[J. Biomed. Mater. Res. 55(3): 379-86 (2001)]).
본 발명을 하기 실시예에 의해 추가로 예시하지만 하기 실시예에 의해 한정되지는 않는다.
실시예
실시예 1
PDX1 , NKX6 .1을 동시 발현하지만 CDX2 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포로의 인간 만능 줄기 세포의 분화
이 실시예는 액티빈 A를 노긴 및 레틴산과 조합하여 사용하여 NKX6.1 발현의 상향 조절을 용이하게 할 수 있음을 입증한다. 간략하게는, 인간 배아 줄기 세포주 H1의 세포를 매트리젤™ (1:30의 희석) 코팅된 디쉬와, 1일 동안 2% BSA, 100 ng/ml의 액티빈 A, 20 ng/ml의 WNT-3a, 8 ng/ml의 bFGF가 보충된 RPMI 배지에서 배양하고, 이어서 2% BSA, 100 ng/ml의 액티빈 A, 8 ng/ml의 bFGF가 보충된 RPMI 배지로 추가 2일간 처리하고 (제1기), 이어서
a. 3일 동안 DMEM/F12 + 2% BSA + 50 ng/ml FGF7 (제2기), 이어서
b. 4일 동안 DMEM-고 글루코스 + 1% B27 + 50 ng/ml FGF7 + 0.25 μM 사이클로파민- KAAD + 2 μM 레틴산 (RA) + 100 ng/ml의 노긴 + 20 ng/ml의 액티빈 A 또는 50 ng/ml의 액티빈 A (제3기)로 처리하였다.
대조군으로서, 별도의 세포 집단을 1% B27, 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 및 100 ng/ml의 노긴이 보충된 DMEM 고 글루코스로 처리하였다.
배양물을 제3기, 4일에 이중으로 샘플링하고, 실시간 PCR을 이용하여 췌장 마커의 발현에 대하여 분석하였다.
도 1에 나타낸 바와 같이, 액티빈 A를 받지 않은 세포로부터 얻은 샘플과 비교하여 제3기, 4일에 NKX6.1 발현의 극적인 증가가 있었다. 액티빈 A에 의해 매개된 NKX6.1의 발현 증가는 액티빈 A의 용량에 비례하여 증가하였다. NGN3 발현의 하향조절이 제3기, 4일의 세포에서 또한 관찰되었다. TGF-베타 경로가 PDX1 및 NKX6.1을 동시 발현하는 췌장 내배엽 세포의 형성을 용이하게 하는 것에 연루되었는지를 결정하기 위하여, 세포를 하기와 같이 처리하였다.
인간 배아 줄기 세포주 H1의 세포를 매트리젤-코팅된 플레이트 상에서 배양하고 (1:30의 희석), 하기 프로토콜을 이용하여 췌장 내분비 전구 세포로 분화시켰다:
a. 1일 동안 2% BSA (카탈로그 번호 152401, 엠피 바이오메디칼, 미국 오하이오주) 및 100 ng/ml 액티빈-A(알앤디 시스템즈, 미국 미네소타주)에 더하여 20 ng/ml WNT-3a(카탈로그 번호 1324-WN-002, 알앤디 시스템즈, 미국 미네소타주)에 더하여 8 ng/ml의 bFGF(카탈로그 번호 100-18B, 페프로테크(PeproTech), 미국 뉴저지주)가 보충된 RPMI 배지(카탈로그 번호 22400, 인비트로겐, 미국 캘리포니아주), 이어서 2% BSA 및 100 ng/ml 액티빈-A에 더하여 8 ng/ml의 bFGF가 보충된 RPMI 배지로 추가 2일간 처리 (제1기), 이어서
b. 3일 동안 DMEM/F12 (카탈로그 번호 11330, 인비트로겐, 미국 캘리포니아주)+ 2% BSA + 50 ng/ml FGF7 (제2기), 이어서
c. 처리 1: 4일 동안 DMEM (고 글루코스) + 1% B27 (인비트로겐, 미국 캘리포니아주) + 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA) 및 100 ng/ml의 노긴 (제3기), 또는
d. 처리 2: 4일 동안 DMEM (고 글루코스) + 1% B27 (인비트로겐, 미국 캘리포니아주) + 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 100 ng/ml의 노긴, 20 ng/ml의 액티빈 A (제3기), 또는
e. 처리 3: 4일 동안 DMEM (고 글루코스) + 1% B27 (인비트로겐, 미국 캘리포니아주) + 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 100 ng/ml의 노긴, 1 μM ALK5 억제제 II (알렉시스 바이오케미칼(Alexis Biochemical)) (제3기).
배양물을 제3기, 4일에 이중으로 샘플링하고, 실시간 PCR을 이용하여 췌장 마커의 발현에 대하여 분석하였다. 또한 이와 병행하여 배양물을 면역형광 분석을 위하여 고정하였다.
표 1은 이 실험에서 가장 최소한인 조건 (처리 1)에 대하여 정규화할 때 제3기, 4일에서의 NKX6.1, NGN3 및 PDX1의 상대적인 발현 수준을 나타낸다.
Figure pat00001
처리 1 (FGF7, 레틴산 및 노긴)은 NKX6.1 및 NGN3의 발현을 유도하였다. 도 2, 패널 a 및 패널 b를 참고하라. 그러나, 액티빈 A의 첨가 (처리 2)는 NGN3의 발현을 차단하였으며, NKX6.1 발현 세포의 수를 유의하게 증가시켰다. 도 2, 패널 c 및 패널 d를 참고하라. 이들 데이터는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 집단의 형성 동안의 TGFβ 수용체 경로의 활성화가 NGN3을 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 집단을 생성함을 시사한다.
세포를 TGFβ 수용체 억제제 Alk5 억제제 II와 함께 인큐베이션하여 이 가설을 확인하였다 (처리 3을 참고). 1% B27 (인비트로겐, 미국 캘리포니아주), 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 100 ng/ml의 노긴, 1 μM ALK5 억제제 II가 보충된 DMEM (고 글루코스)에서의 세포의 처리는 NKX6.1의 발현 수준을 감소시켰다. 관찰된 발현 수준은 처리 1을 받은 세포에서 관찰된 것보다 더 낮았다. 표 1 및 도 2, 패널 e를 참고하라. 반면에, NGN3 발현 세포의 수는 유의하게 증가하였다. 표 1 및 도 2, 패널 f를 참고하라. PDX1 발현에 대한 어떠한 상당한 영향도 관찰되지 않았다. 이들 결과는 노긴, 레틴산 및 액티빈 A의 조합이 상승 작용식으로 작용하여 NKN6.1 및 PDX1의 발현에 대해서는 양성이지만 NGN3의 발현에 대해서는 음성인 췌장 전구 세포 집단을 특정함을 시사한다.
도 3, 패널 a 및 패널 b에 나타낸 바와 같이, DMEM (처리 2 -DMEM (고 글루코스) + 1% B27 (인비트로겐, 미국 캘리포니아주) + 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 100 ng/ml의 노긴, 20 ng/ml의 액티빈 A)을 사용하여 생성한 대부분의 PDX1 발현 세포는 제3기, 4일에 CDX2를 발현하지 않았다. 이는 1% B27 (인비트로겐, 미국 캘리포니아주) + 50 ng/ml FGF7, 0.25 μM 사이클로파민-KAAD, 2 μM 레틴산 (RA), 100 ng/ml의 노긴, 20 ng/ml의 액티빈 A 가 보충된 DMEM/F12를 사용하여 생성한 PDX1 발현 세포와는 대조적인데, 여기서 대부분의 PDX1 발현 세포는 CDX2를 또한 발현하였다. 도 3, 패널 c 및 패널 d를 참고하라.
다수의 TGFβ 수용체 작용제를 시험하였다. 처리 2에서 액티빈 A를 GDF-8, GDF-11, 액티빈 B, 또는 TGFβ2 중 어느 하나로 대체하면 모든 것은 유사한 결과를 생성하였으며, 4일 동안 GDF-8, GDF-11, 액티빈 B, 또는 TGFβ2 중 어느 하나로 처리하면 NKX6.1의 발현이 증가하였고 NGN3이 하향조절되었다. 도 4, 패널 a 및 패널 c를 참고하라. PDX1 발현에 대한 어떠한 상당한 영향도 관찰되지 않았다. 도 4, 패널 b를 참고하라.
실시예 2
췌장 내분비 전구 세포로의, PDX1 , NKX6 .1을 동시 발현하지만 CDX2 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 분화
이전의 연구에 의하면 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포는 추가의 분화에 처해질 때 인슐린 발현 세포보다 글루카곤 발현 세포를 생성할 가능성이 더 큰 것으로 밝혀졌다. 이는 부분적으로는 췌장 내배엽 세포에서의 NGN3의 발현으로 인한 것일 수 있다. 본 발명의 방법은 NGN3을 발현하지 않는 췌장 내배엽 세포의 집단을 생성하며, 따라서 인슐린 발현 세포로 분화될 가능성이 더 클 것이다. 그러나, NGN3 발현이 췌장 내분비 세포 또는 췌장 내분비 전구 세포 (예를 들어, 글루카곤 또는 인슐린 발현 세포를 형성할 수 있는 세포)의 형성에 필요하다. 따라서, 췌장 내분비 전구 세포의 궁극적인 운명을 인도하는 데 있어서 NGN3의 일시적인 조절이 중요하다.
본 발명은 췌장 내분비 전구 세포쪽으로의 췌장 내배엽의 분화가 시작될 때까지 NGN3 발현을 최소 수준으로 유지하여야 한다고 가정한다.
간략하게는, 인간 배아 줄기 세포주 H1의 세포를 매트리젤™ 코팅된 디쉬 (1:30의 희석)에서 1일 동안 RPMI 배지 + 2% BSA + 100 ng/ml의 액티빈 A + 20 ng/ml의 WNT-3a + 8 ng/ml의 bFGF를 이용하여 배양하고, 이어서 RPMI 배지 + 2% BSA + 100 ng/ml의 액티빈 A + 8 ng/ml의 bFGF로 추가 2일간 처리하고 (제1기), 이어서
a. 3일 동안 DMEM/F12 + 2% BSA + 50 ng/ml FGF7 (제2기), 이어서
b. 4일 동안 DMEM-고 글루코스 + 1% B27 + 50 ng/ml FGF7 + 0.25 μM 사이클로파민- KAAD + 2 μM 레틴산 (RA) + 100 ng/ml의 노긴 + 20 ng/ml의 액티빈 A (제3기), 이어서
c. 3일 동안 DMEM-고 글루코스 + 1% B27 + 100 ng/ml 노긴 + 1 μM ALK5 억제제 II (제4기), 또는
d. 3일 동안 단지 DMEM-고 글루코스 + 1% B27로 처리하였다 (제4기).
상기 분화 프로토콜은 PDX1 및 NKX6.1을 동시 발현하지만 CDX2 및 NGN3을 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포가 췌장 내분비 전구 세포로 추가로 분화되는 능력을 시험하기 위하여 디자인하였다. 췌장 내분비 전구 세포는 NGN3을 발현한다.
단순히 기본 배지 (DMEM-고 글루코스 + 1% B27)에서 PDX1 및 NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포를 배양하면 NGN3 발현이 유도되지 않았다. 도 5, 패널 a, 연한 회색 막대를 참고하라. 이와 유사하게, NEUROD, NKX2.2, 및 PAX6의 발현은 관찰되지 않았다.
이와는 대조적으로, Alk5 억제제 II의 존재 하에 배양한 세포에서, NGN3 발현의 유의한 증가가 관찰되었다. 도 5, 패널 a, 진한 회색 막대를 참고하라. NEUROD, NKX2.2, PAX4 및 PAX6의 발현의 상향조절이 또한 관찰되었으며, 이외에도 PTF1 알파의 발현의 증가가 관찰되었다. 도 5, 패널 a 및 패널 b를 참고하라. Alk5 억제제 II의 존재는 PDX1 또는 NKX6.1의 발현에 영향을 주지 않는 것으로 보였다. 도 5, 패널 b를 참고하라.
Alk5 억제제 II의 존재 하에서의 NGN3 발현의 증가 - PCR에 의해 검출되는 바와 같음 - 는 NGN3 단백질의 존재에 대해 양성인 세포수의 증가 - 면역세포화학에 의해 검출되는 바와 같음 - 에서 또한 반영되었다. 도 6을 참고하라. 이미지를 분석해 보면 대다수의 NGN3 발현 세포는 또한 PDX1은 동시 발현하지만 NKX6.1은 그렇지 않음이 나타났다. 더욱이, 대다수의 NKX6.1 세포는 PDX1을 동시 발현하였다. 이 시기에서, 예, 인슐린 및 글루카곤의 발현에 의해 입증되는 바와 같이 내분비 세포의 발현 수준은 최소였다. 본 발명자의 결과는 TGF-베타 경로의 활성화가 PDX1 및 NKX6.1을 동시 발현하는 세포의 집단의 형성을 용이하게 할 것이며 TGF-베타 경로의 후속적인 억제가 내분비 전구 세포로의 내배엽의 분화를 추가로 유도할 것임을 시사하였다.
실시예 3
췌장 내분비 세포로의, PDX1 , NKX6 .1을 동시 발현하지만 CDX2 NGN3은 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포의 분화
이 실시예는 PDX1 및 NKX6.1을 동시 발현하지만 CDX2 및 NGN3을 발현하지 않는 췌장 내배엽 계통의 특징적인 마커를 발현하는 세포가 췌장 내분비 전구 세포 유래의 췌장 내분비 세포로 추가로 분화되는 능력을 시험하기 위하여 디자인하였다.
간략하게는, 인간 배아 줄기 세포주 H1의 세포를 매트리젤™ 코팅된 디쉬 (1:30의 희석)에서 1일 동안 RPMI 배지 + 2% BSA + 100 ng/ml의 액티빈 A + 20 ng/ml의 WNT-3a + 8 ng/ml의 bFGF를 이용하여 배양하고, 이어서 RPMI 배지 + 2% BSA + 100 ng/ml의 액티빈 A + 8 ng/ml의 bFGF로 추가 2일간 처리하고 (제1기), 이어서
a. 3일 동안 DMEM/F12 + 2% BSA + 50 ng/ml FGF7 (제2기), 이어서
b. 4일 동안 DMEM-고 글루코스 + 1% B27 + 50 ng/ml FGF7 + 0.25 μM 사이클로파민- KAAD + 2 μM 레틴산 (RA) + 100 ng/ml의 노긴 + 20 ng/ml의 액티빈 A (제3기), 또는
c. 4일 동안 DMEM-고 글루코스 + 1% B27 + 50 ng/ml FGF7 + 0.25 μM 사이클로파민- KAAD + 2 μM 레틴산 (RA) + 100 ng/ml의 노긴 + 20 ng/ml의 액티빈 A (제3기), 이어서
d. 3일 동안 DMEM-고 글루코스 + 1% B27 + 100 ng/ml 노긴 + 1 μM Alk5 억제제 II (제4기),
e. 5일 내지 7일 동안 DMEM-고 글루코스 + 1% B27 + 100 ng/ml의 노긴 + 1 μM ALK5 억제제 II + 베타셀룰린 20 ng/ml로 처리하였다 (제5기).
NGN3 및 PAX4의 발현은 제4기, 3일에 그의 최대 수준으로부터 하락하여 제5기, 7일에 더욱 낮은 수준의 발현에 도달하였다. 이 시간 동안, 내분비 마커, 예를 들어 인슐린 및 글루카곤의 발현이 증가하였다. 도 7을 참고하라. 이들 데이터는 본 발명의 세포가 내분비 전구 세포 유래의 췌장 내분비 세포를 형성할 수 있었음을 시사한다.
인슐린 단독, 또는 글루카곤 단독, 또는 인슐린과 글루카곤 둘 모두를 발현하는 세포가 관찰되었다. 도 8 및 표 2를 참고하라. 제5기, 7일에서의 배양물의 FACS 분석에 의하면 (표 2), 분화된, PDX1 및 NKX6.1을 동시 발현하는 췌장 내배엽 전구체의 대략 60%가 범-내분비 마커 시냅토피신을 발현하고 있었다. 단일 인슐린-발현 세포의 백분율은 10.4%였고, 단일 글루카곤-발현 세포는 5.1%였다. 게다가, 인슐린 및 글루카곤 동시 발현 세포는 20%였다. 인슐린을 발현하며 다른 췌장 호르몬은 발현하지 않는 세포 중, 60%가 NKX6.1 (성숙 베타 세포의 마커)을 동시 발현하였다. 이들 데이터는 더욱 성숙한 인슐린 발현 세포가 본 발명의 방법에 의해 형성되었음을 시사한다.
Figure pat00002
실시예 4
STZ 유도된 당뇨병성 중증 복합형 면역결핍증( SCID ) - 베이지 ( Bg ) 생쥐 내로의 본 발명의 세포의 임플란트
인간 배아 줄기 세포주 H1의 세포를 매트리젤(등록상표) 코팅된 디쉬 (1:30의 희석)에서 1일 동안 RPMI 배지 + 0.2% FBS + 100 ng/ml의 액티빈 A + 20 ng/ml의 WNT-3a를 이용하여 배양하고, 이어서 RPMI 배지 + 0.5% FBS + 100 ng/ml의 액티빈 A로 추가 2일간 처리하고 (제1기), 이어서
a. 3일 동안 DMEM/F12+ 2% FBS + 50 ng/ml FGF7 (제2기), 이어서
b. 4일 동안 DMEM-고 글루코스 + 1% B27 + 0.25 μM 사이클로파민- KAAD + 2 μM 레틴산 (RA) + 100 ng/ml의 노긴 + 50 ng/ml의 FGF7 + 20 ng/ml의 액티빈 A (제3기), 이어서
c. 4일 동안 DMEM-고 글루코스 + 1% B27 + 100 ng/ml 노긴 + 1 μM ALK5 억제제 II로 처리하였다 (제4기).
5 내지 6주령 수컷 scid-베이지 생쥐 (C.B-Igh-1b/GbmsTac-Prkdcscid-Lystbg N7)) 는 타코닉 팜스(Taconic Farms)에서 구매하였다. 생쥐는 살균된 먹이와 물에 자유롭게 접근하게 하여 마이크로단리(microisolator) 케이지에 수용하였다. 수술 준비에서, 생쥐를 귀 태깅에 의해 식별하고, 그의 체중을 측정하고, 그의 혈당을 휴대용 혈당측정기(원터치(One Touch), 라이프스캔)로 측정하였다.
이식 2주 전에, 생쥐의 중량을 재고, 5일의 연속일 각각에 pH가 4.5인 아세트산염 완충액에 용해시킨 스트렙토조토신 (시그마)을 80 mg/kg으로 생쥐에 투약하여 당뇨병을 유도하였다. 혈당을 모니터링하고, 혈당이 > 300 mg/dL인 생쥐만을 이식 수령체로서 사용하였다.
아이솔플루란 및 산소의 혼합물을 사용해 생쥐를 마취시키고 수술 부위를 작은 동물 클리퍼를 사용해 면도하였다. 수술전에 생쥐에 0.1 mg.kg 부프레넥스(Buprenex)를 피하 투여하였다. 70% 아이소프로필 알코올 및 10% 포비돈-요오다이드의 연속 세척에 의해 수술 부위를 준비하였다.
제4기의 마지막의 세포를 1 mg/ml의 디스파아제로 5분 동안 간단히 처리하고, 1 ml 유리 피펫을 사용하여 기계적으로 스코어링하고, 후속적으로 하룻밤 배양을 위하여 비-부착성 플레이트로 옮겼다. 생쥐의 수술전 준비 동안에, 세포는 1.5 ml 마이크로퓨즈 튜브에서 원심분리하고, 대부분의 상청액을 제거하여, 세포의 펠렛을 수집하기에 겨우 충분한 것을 남겨 두었다. 세포는 라이닌 포스-D(Rainin Pos-D) 용적형 피펫(positive displacement pipette) 내로 수집하고, 피펫은 세포가 중력에 의해 침강되도록 거꾸로 하였다. 여분의 배지를 디스펜스하여(dispensed) 이식용의 패킹된(packed) 세포 제제가 남게 하였다.
이식에 있어서, 24G x 1.9 cm (¾") I.V. 카테터를 사용하여 신장 피막을 관통하고, 니들을 제거하였다. 다음, 카테터를 신장 피막 아래에서 신장의 원위부 극 쪽으로 전진시켰다. 포스-D 피펫 팁을 카테터의 허브에 단단하게 놔두었고, 500만개의 세포를 신장 피막 아래에서 카테터를 통하여 피펫으로부터 디스펜스하여 신장의 원위부 극에 전달하였다. 신장 피막을 저온 소작에 의해 밀봉하고, 신장을 그의 원래의 해부학적 위치에 되돌려 놓았다. 이와 병행하여, 500만개의 세포를 포함하는 세포 응집체를 포스트-D 피펫 팁을 이용하여 50 μl 기구 내로 로딩하였다. 50 μl 기구를 테라사이트, 인크(TheraCyte, Inc) (미국 캘리포니아주 어바인)로부터 구매하였다. 상기 기구는 로딩 후 의료용 접착제 실리콘 타입 A (다우 코닝(Dow Corning), 카탈로그 번호 129109)로 밀봉하고, SICD/Bg 생쥐 (동물 3번 및 4번) 내로 피하 임플란트하였다. 근육을 5-0 바이크릴을 사용하여 연속 봉합사로 닫고, 피부를 창상용 클립을 사용하여 닫았다. 수술후에 1.0 mg.kg 메타캄을 생쥐에 피하 투약하였다. 생쥐에서 마취를 없애고, 생쥐를 완전히 회복시켰다.
이식 후, 생쥐를 1주 당 1회 칭량하고, 혈당을 1주에 2회 측정하였다. 이식 후 다양한 간격에서, 후안구동을 통해 소량의 헤파린이 든 마이크로퓨즈 튜브 내로 혈액을 빼내었다. 혈액을 원심분리하고, 혈장을 제2 마이크로퓨즈 튜브 내에 넣고, 드라이아이스에서 냉동시키고, 이어서 인간 c-펩티드 분석을 수행할 때까지 -80℃에서 보관하였다. 제조업자의 지시에 따라 메르코디아/알프코 다이아그노스틱스(Mercodia/ALPCO Diagnotics) 초민감 C-펩티드 ELISA (카탈로그 번호 80-CPTHU-E01, 알프코 다이아그노스틱스(Alpco Diagnostics), 미국 뉴햄프셔주)를 사용하여 인간 c-펩티드 수준을 결정하였다.
인간 C-펩티드는 이식 후 4주만큼 이른 시점에 신장 피막 군에서 동물 혈청에서 검출되었으며, 이는 시간이 지남에 따라 증가하였다 (도 9, 패널 a). 2개월의 마지막에, 순환 인간 C-펩티드의 상당한 양, 1.1±0.5 ng/ml가 검출되었다 (도 9, 패널 a). 이식후 최대 2개월까지, 그의 비-공복 혈당 수준은 일관되게 400 ng/dl보다 높았다. 이 연구에서, 인슐린의 투여는 필요하지 않았다. 이식물-유래된 인슐린의 혈청중 수준이 1 ng/ml 초과로 상승하면 고혈당이 점진적으로 감소한다. 3개월에, 90%의 STZ 유도 당뇨병 동물에서 상당한 양의 순환 인간 C-펩티드가 검출되었다. 평균 순환 인간 C-펩티드는 2±0.96 ng/ml (n=8)였다 (도 9, 패널 a). hES 세포-유래된 내분비 전구체를 생착시킨 90%의 당뇨병 생쥐의 혈당 수준은 200 mg/dl 미만이었으며, 상기 수준은 유지되었다. 이식물이 수술에 의해 제거된 후, 혈당 수준은 이식물 제거 직후 고혈당 수준으로 증가하였으며, 이는 생착된 인간 세포가 STZ-처리된 생쥐에서 단지 정상혈당의 유지에 책임이 있음을 시사하는 것이었다 (도 9, 패널 b).
이 실시예는 PDX1 및 NKX6.1 동시 발현 세포 집단과, PDX-1 및 NKX6.1을 동시 발현하는 세포 집단으로부터 유래된 내분비 전구 세포 집단이 생체 내에서 인슐린 분비 세포로 추가로 분화하는 적격성을 가짐을 입증한다.
본 명세서 전체에 걸쳐 인용된 간행물은 본 명세서에 전체적으로 참고로 포함된다. 본 발명의 다양한 태양은 실시예 및 바람직한 실시 형태를 참조로 하여 상기 예시되었음에도, 본 발명의 범주는 전술한 상세한 설명에 의해서가 아니라 본 특허 법칙의 원칙 하에 적절하게 의도되는 하기 청구항에 의해 정의되는 것으로 생각될 것이다.

Claims (11)

  1. 배양 배지; 및 PDX1 및 NKX6.1을 동시 발현하지만 CDX2 및 NGN3은 발현하지 않는 인간 췌장 내배엽 세포로부터 유도된 인간 췌장 내분비 세포의 정제되지 않은 집단;을 포함하며,
    여기서, 상기 정제되지 않은 집단은 노긴 및 ALK5 억제제 II로 보충된 배지 내에서 상기 인간 췌장 내배엽 세포를 배양함으로써 얻어진 것인,
    당뇨병 치료용 약제.
  2. 제1항에 있어서, 배지가 DMEM-고 글루코스인, 약제.
  3. 제1항에 있어서, 인간 췌장 내배엽 세포가, 인간 완성 내배엽 세포를 FGF7로 보충된 제 1 배지로 처리하고, 이어서 상기 세포를 FGF7; 노긴; 레틴산; 사이클로파민-KAAD; 및 액티빈 B, TGFβ-I, TGFβ-II, GDF-8 및 GDF-11로 구성된 군으로부터 선택되는 TGF-β 수용체 작용제로 보충된 제 2 배지에서 배양함으로써 얻어진 것인, 약제.
  4. 제3항에 있어서, TGF-β 수용체 작용제가 액티빈 A인, 약제.
  5. 제3항에 있어서, TGF-β 수용체 작용제가 액티빈 B인, 약제.
  6. 제3항에 있어서, TGF-β 수용체 작용제가 TGFβ-I인, 약제.
  7. 제3항에 있어서, TGF-β 수용체 작용제가 TGFβ-II인, 약제.
  8. 제3항에 있어서, TGF-β 수용체 작용제가 GDF-8인, 약제.
  9. 제3항에 있어서, TGF-β 수용체 작용제가 GDF-11인, 약제.
  10. 제1항에 있어서, 세포가 피막화된 것인, 약제.
  11. 제1항에 있어서, 간, 천연 췌장, 신장 피막하 공간, 장막, 복막, 장막하 공간, 장, 위, 또는 피하 주머니 내로의 이식을 위하여 제제화된 것인, 약제.
KR1020177028099A 2009-07-20 2010-07-19 인간 배아 줄기 세포의 분화 KR101893021B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22693609P 2009-07-20 2009-07-20
US61/226,936 2009-07-20
PCT/US2010/042393 WO2011011302A2 (en) 2009-07-20 2010-07-19 Differentiation of human embryonic stem cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020127003776A Division KR101785626B1 (ko) 2009-07-20 2010-07-19 인간 배아 줄기 세포의 분화

Publications (2)

Publication Number Publication Date
KR20170117231A true KR20170117231A (ko) 2017-10-20
KR101893021B1 KR101893021B1 (ko) 2018-08-29

Family

ID=43465585

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127003776A KR101785626B1 (ko) 2009-07-20 2010-07-19 인간 배아 줄기 세포의 분화
KR1020177028099A KR101893021B1 (ko) 2009-07-20 2010-07-19 인간 배아 줄기 세포의 분화

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020127003776A KR101785626B1 (ko) 2009-07-20 2010-07-19 인간 배아 줄기 세포의 분화

Country Status (18)

Country Link
US (1) US8785184B2 (ko)
EP (1) EP2456858B1 (ko)
JP (1) JP5819825B2 (ko)
KR (2) KR101785626B1 (ko)
CN (1) CN102482640B (ko)
AR (1) AR077767A1 (ko)
AU (1) AU2010276440B2 (ko)
BR (1) BR112012001557A2 (ko)
CA (1) CA2768644A1 (ko)
ES (1) ES2693088T3 (ko)
GB (1) GB2485112B (ko)
HK (1) HK1170262A1 (ko)
MX (1) MX340952B (ko)
PL (1) PL2456858T3 (ko)
RU (1) RU2540021C2 (ko)
SG (1) SG177483A1 (ko)
WO (1) WO2011011302A2 (ko)
ZA (1) ZA201201221B (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154606A1 (en) * 2008-06-03 2009-12-23 Cythera, Inc. Growth factors for production of definitive endoderm
DK2421957T3 (da) * 2009-04-22 2021-01-25 Viacyte Inc Cellesammensætninger afledt af dedifferentierede omprogrammerede celler
WO2011109279A2 (en) 2010-03-01 2011-09-09 Centocor Ortho Biotech Inc. Methods for purifying cells derived from pluripotent stem cells
CN103314108B (zh) 2010-10-08 2015-08-05 米纳治疗有限公司 短rna分子
ES2902650T3 (es) * 2011-06-21 2022-03-29 Novo Nordisk As Inducción eficiente de endodermo definitivo a partir de células madre pluripotentes
BR112014015417A8 (pt) 2011-12-22 2017-07-04 Janssen Biotech Inc diferenciação de células-tronco embrionárias humanas em células positivas de insulina hormonal únicas
CN104334719B (zh) * 2012-06-08 2018-02-13 詹森生物科技公司 人胚胎干细胞向胰腺内分泌细胞的分化
US20150247123A1 (en) 2012-09-03 2015-09-03 Novo Nordisk A/S Generation of pancreatic endoderm from Pluripotent Stem cells using small molecules
MX2015008619A (es) 2012-12-31 2016-01-12 Janssen Biotech Inc Suspension y agrupamiento de celulas humanas pluripotentes para la diferenciacion a celulas endocrinas pancreaticas.
RU2018116647A (ru) 2012-12-31 2018-10-24 Янссен Байотек, Инк. Культивация эмбриональных стволовых клеток человека в воздушно-жидкостной зоне взаимодействия с целью их дифференцировки в панкреатические эндокринные клетки
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
CN106414718A (zh) * 2013-06-11 2017-02-15 哈佛学院校长同事会 SC-β细胞以及用于产生其的组合物和方法
KR102507624B1 (ko) 2013-11-22 2023-03-09 미나 테라퓨틱스 리미티드 C/ebp 알파 짧은 활성화 rna 조성물 및 사용 방법
WO2016100930A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Methods for generating stem cell-derived b cells and methods of use thereof
WO2016100898A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
WO2016100909A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College METHODS FOR GENERATING STEM CELL-DERIVED β CELLS AND USES THEREOF
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CA3081762A1 (en) 2017-11-15 2019-05-23 Semma Therapeutics, Inc. Islet cell manufacturing compositions and methods of use
CA3108275A1 (en) 2018-08-10 2020-02-13 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US20200080107A1 (en) 2018-09-07 2020-03-12 Crispr Therapeutics Ag Universal donor cells
US20210340499A1 (en) * 2018-09-25 2021-11-04 The Regents Of The University Of California Production and Enrichment of Pancreatic Endocrine Progenitor Cells
JP2022534545A (ja) 2019-05-31 2022-08-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 生体適合性メンブレン複合体
EP3975926A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
CA3139591C (en) 2019-05-31 2024-01-16 Timothy M. BRUHN A biocompatible membrane composite
WO2020243668A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. Cell encapsulation devices with controlled oxygen diffusion distances
CN114364791A (zh) 2019-09-05 2022-04-15 克里斯珀医疗股份公司 通用供体细胞
US11104918B2 (en) 2019-09-05 2021-08-31 Crispr Therapeutics Ag Universal donor cells
CA3203392A1 (en) 2020-12-31 2022-07-07 Alireza Rezania Universal donor cells

Family Cites Families (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) * 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) * 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) * 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
US4499802A (en) * 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) * 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5089396A (en) * 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5215893A (en) * 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) * 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
US5837539A (en) * 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
US5449383A (en) * 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) * 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
US5523226A (en) * 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) * 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (ko) * 1993-11-19 1995-09-21 Ciba Geigy
US6703017B1 (en) * 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6001647A (en) * 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US5834308A (en) * 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6083903A (en) * 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
KR100252743B1 (ko) 1994-12-29 2000-09-01 나가야마 오사무 Il-6 안타고니스트를 함유하는 항종양제의 작용증강제
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) * 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) * 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
ES2202840T3 (es) 1997-04-24 2004-04-01 Ortho-Mcneil Pharmaceutical, Inc. Imidazoles sustituidos utiles en el tratamiento de enfermedades inflamatorias.
DE69837491T2 (de) * 1997-07-03 2008-01-17 Osiris Therapeutics, Inc. Menschliche mesenchymale stammzellen aus peripherem blut
US6670127B2 (en) * 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
EP1538206B1 (en) * 1997-09-16 2010-03-24 Centocor, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
CA2307807C (en) * 1997-10-23 2008-09-02 Andrea G. Bodnar Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
CO4980885A1 (es) 1997-12-29 2000-11-27 Ortho Mcneil Pharm Inc Compuestos de trifenilpropanamida utiles en el tratamiento de inflamaciones y metodos para preparar dicho compuesto
AU755888B2 (en) * 1998-03-18 2003-01-02 Mesoblast International Sarl Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
MY132496A (en) * 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
US6458593B1 (en) * 1999-01-21 2002-10-01 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6815203B1 (en) * 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6685936B2 (en) * 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US6303424B1 (en) * 1999-10-21 2001-10-16 United Microelectronics Corp. Method for fabricating a buried bit line in a DRAM cell
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
US6753153B2 (en) * 1999-12-13 2004-06-22 The Scripps Research Institute Markers for identification and isolation of pancreatic islet α and β progenitors
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) * 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
JP4621410B2 (ja) * 2000-06-26 2011-01-26 Ncメディカルリサーチ株式会社 神経細胞へ分化しうる細胞分画の調製方法及び神経変性疾患治療薬の製造方法
JP4524072B2 (ja) 2000-10-23 2010-08-11 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー 新規化合物
YU46603A (sh) 2000-12-08 2006-05-25 Ortho-Mcneil Pharmaceutical Inc. Indazolil-supstituisana jedinjenja pirolina, kao inhibitori kinaze
AU2737102A (en) 2000-12-08 2002-06-18 Ortho Mcneil Pharm Inc Macroheterocylic compounds useful as kinase inhibitors
US6599323B2 (en) * 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
JP2005503759A (ja) * 2001-01-24 2005-02-10 アメリカ合衆国 幹細胞の膵臓内分泌細胞への分化方法
US6713446B2 (en) * 2001-01-25 2004-03-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Formulation of boronic acid compounds
US6656488B2 (en) * 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
JP2004527249A (ja) * 2001-04-19 2004-09-09 デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング 幹細胞をインスリン産生細胞に分化する方法
WO2002088335A1 (fr) 2001-04-24 2002-11-07 Ajinomoto Co., Inc. Cellules souches et procede d'extraction de ces cellules
EP1393066A4 (en) 2001-05-15 2006-01-25 Rappaport Family Inst For Res INSULIN-PRODUCING CELLS DERIVED FROM HUMAN EMBRYONAL STEM CELLS
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) * 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
AU2002319780A1 (en) * 2001-08-06 2003-02-24 Bresagen, Ltd. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) * 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1438075A4 (en) * 2001-10-02 2006-04-19 Inst Clayton De La Rech METHOD AND COMPOSITIONS ASSOCIATED WITH LENTIVIRAL VECTORS WITH LIMITED EXPRESSION AND ITS APPLICATIONS
US20050053588A1 (en) * 2001-10-18 2005-03-10 Li Yin Conversion of liver stem and progenitor cells to pancreatic functional cells
JP2005533480A (ja) * 2001-11-09 2005-11-10 アーテセル・サイエンシズ・インコーポレーテツド 脂肪組織由来間質細胞の膵内分泌分化およびその使用
ATE438708T1 (de) 2001-11-15 2009-08-15 Childrens Medical Center Verfahren zur isolierung, expansion und differenzierung fötaler stammzellen aus chorionzotte, fruchtwasser und plazenta und therapeutische verwendungen davon
CA2692325C (en) * 2001-12-07 2015-10-20 Geron Corporation Islet cells from human embryonic stem cells
US20030161816A1 (en) * 2001-12-07 2003-08-28 Fraser John K. Systems and methods for treating patients with processed lipoaspirate cells
WO2003054169A1 (en) 2001-12-21 2003-07-03 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
AU2003231358A1 (en) * 2002-04-17 2003-10-27 Otsuka Pharmaceutical Co., Ltd. METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS
US20040161419A1 (en) * 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
ATE387444T1 (de) 2002-05-08 2008-03-15 Janssen Pharmaceutica Nv Substituierte pyrroline als kinase inhibitoren
US20060003446A1 (en) * 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
CN1662643A (zh) 2002-05-28 2005-08-31 贝克顿·迪金森公司 人腺泡细胞的扩增和转分化
MXPA04012188A (es) 2002-06-05 2005-07-25 Johnson & Johnson Derivados de bisindolil-maleimida como inhibidores de cinasa.
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) * 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) * 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
AU2003257938A1 (en) 2002-07-29 2004-02-16 Es Cell International Pte Ltd. Multi-step method for differentiation of insulin positive, glucose
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
WO2004023100A2 (en) 2002-09-06 2004-03-18 Amcyte Inc. Cd56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) * 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20060252150A1 (en) 2002-11-08 2006-11-09 Linzhao Cheng Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
EP1567639A4 (en) 2002-12-05 2005-12-21 Technion Res & Dev Foundation CULTURE OF HUMAN PANCREATIC ISLANDS AND USES THEREOF
CN100549163C (zh) 2002-12-16 2009-10-14 技术研究及发展基金有限公司 制备无饲养细胞、无异源的人胚胎干细胞的方法以及使用该方法制备的干细胞培养物
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
WO2005045001A2 (en) * 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
CA2520861A1 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
JP4950660B2 (ja) * 2003-06-27 2012-06-13 エチコン、インコーポレイテッド 分娩後由来細胞を使用する眼組織の修復および再生
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
US7569385B2 (en) * 2003-08-14 2009-08-04 The Regents Of The University Of California Multipotent amniotic fetal stem cells
US7157275B2 (en) * 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
WO2005021728A2 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
WO2005058301A1 (en) 2003-12-17 2005-06-30 Allergan, Inc. Methods for treating retinoid responsive disorders using selective inhibitors of cyp26a and cyp26b
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
AU2004309421B2 (en) 2003-12-23 2011-04-21 Viacyte, Inc. Definitive endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
US20050266554A1 (en) * 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
TWI334443B (en) * 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US20050233446A1 (en) * 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
CA2581424A1 (en) * 2004-03-09 2005-09-22 Gang Xu Methods for generating insulin-producing cells
AU2005221079B2 (en) 2004-03-10 2010-07-22 Regents Of The University Of California Compositions and methods for growth of embryonic stem cells
KR20070029681A (ko) 2004-04-01 2007-03-14 위스콘신 얼럼나이 리서어치 화운데이션 줄기 세포의 내배엽 및 이자 혈통으로의 분화
JP4926946B2 (ja) 2004-04-27 2012-05-09 ヴィアサイト,インコーポレイテッド Pdx1発現性内胚葉
CN102925406B (zh) 2004-07-09 2019-11-22 维亚希特公司 鉴定用于分化定型内胚层的因子的方法
CA2576872C (en) 2004-08-13 2013-11-12 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006026473A2 (en) 2004-08-25 2006-03-09 University Of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
CN101044235B (zh) 2004-09-08 2013-01-02 威斯康星校友研究基金会 胚胎干细胞的培养基和培养
AU2005282414C1 (en) 2004-09-08 2011-04-07 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
JP2008528038A (ja) 2005-01-31 2008-07-31 エス セル インターナショナル ピーティーイー リミテッド 胚性幹細胞の指示された分化及びその利用
AU2006218359A1 (en) 2005-03-04 2006-09-08 John O'neil Adult pancreatic derived stromal cells
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
WO2006113470A2 (en) 2005-04-15 2006-10-26 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
WO2006114097A2 (en) 2005-04-26 2006-11-02 Aarhus Universitet Biosurface structure array
CA2610598A1 (en) 2005-06-10 2006-12-21 Irm Llc Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
EP1931764A1 (en) 2005-06-21 2008-06-18 GE Healthcare Bio-Sciences AB Method for cell culture
ES2330789T3 (es) 2005-06-30 2009-12-15 Janssen Pharmaceutica Nv Anilino-piridinotriazinas ciclicas como inhibidores de gsk-3.
GB2443370A (en) 2005-07-29 2008-04-30 Australian Stem Cell Ct Ltd Compositions and methods for growth of pluripotent cells
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
AU2006285468A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
GB2444686B (en) 2005-09-12 2010-08-25 Es Cell Int Pte Ltd Differentiation of pluripotent stem cells using p38 MAPK inhibitors or prostaglandins
WO2008048671A1 (en) 2006-10-18 2008-04-24 University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
NZ567082A (en) 2005-10-14 2012-08-31 Univ Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
DK2674485T3 (da) * 2005-10-27 2019-08-26 Viacyte Inc Pdx-1 udtrykkende dorsal og ventral fortarm endoderm
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
CA2643478C (en) 2006-02-23 2019-06-18 Novocell, Inc. Compositions and methods useful for culturing differentiable cells
CA2644468C (en) 2006-03-02 2022-02-01 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
WO2007127927A2 (en) 2006-04-28 2007-11-08 Lifescan, Inc. Differentiation of human embryonic stem cells
US8741643B2 (en) * 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US20070259423A1 (en) * 2006-05-02 2007-11-08 Jon Odorico Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
WO2007139929A2 (en) 2006-05-25 2007-12-06 The Burnham Institute For Medical Research Methods for culture and production of single cell populations of human embryonic stem cells
WO2007149182A2 (en) 2006-06-19 2007-12-27 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
CA2656175C (en) 2006-06-26 2018-08-28 Lifescan, Inc. Conditioned media obtained from amniotic fluid-derived cells for pluripotent stem cell culture
US8968994B2 (en) 2006-07-06 2015-03-03 Jeremy Micah Crook Method for stem cell culture and cells derived therefrom
WO2008013664A2 (en) 2006-07-26 2008-01-31 Cythera, Inc. Methods of producing pancreatic hormones
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008039521A2 (en) * 2006-09-26 2008-04-03 Nmt Medical, Inc. Method for modifying a medical implant surface for promoting tissue growth
WO2008048647A1 (en) 2006-10-17 2008-04-24 Cythera, Inc. Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
WO2008086005A1 (en) 2007-01-09 2008-07-17 University Of South Florida Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
CN103627671A (zh) 2007-01-30 2014-03-12 佐治亚大学研究基金会 产生中内胚层细胞及多能游走细胞的方法与细胞群及用途
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
CN105176919A (zh) 2007-07-18 2015-12-23 生命扫描有限公司 人胚胎干细胞的分化
EP2185693B1 (en) 2007-07-31 2019-07-03 Lifescan, Inc. Differentiation of human embryonic stem cells
WO2009027644A2 (en) 2007-08-24 2009-03-05 Stichting Het Nederlands Kanker Instituut Composition
EP2229434B1 (en) * 2007-11-27 2011-09-07 Lifescan, Inc. Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
CA2959401C (en) 2008-02-21 2021-12-07 Centocor Ortho Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
WO2009116951A2 (en) 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
DK2283117T3 (da) 2008-04-21 2014-01-20 Viacyte Inc Fremgangsmåde til oprensning af pancreatiske endodermceller afledt fra humane embryoniske stamceller
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
EP2310492B1 (en) 2008-06-30 2015-07-22 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
CA2742268C (en) 2008-10-31 2020-02-18 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
GB2485113B (en) 2009-07-20 2016-12-28 Janssen Biotech Inc Differentiation of human embryonic stem cells into cells of the pancreatic endoderm lineage
CA2791846A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D’Amour, K. et al., Nature Biotechnology, November 2006, vol.24, no.11, pp.1392-1401 *

Also Published As

Publication number Publication date
US8785184B2 (en) 2014-07-22
WO2011011302A3 (en) 2011-05-05
HK1170262A1 (en) 2013-02-22
PL2456858T3 (pl) 2019-01-31
MX340952B (es) 2016-07-29
AU2010276440A1 (en) 2012-01-19
AU2010276440B2 (en) 2014-07-03
RU2012105923A (ru) 2013-08-27
KR101893021B1 (ko) 2018-08-29
RU2540021C2 (ru) 2015-01-27
SG177483A1 (en) 2012-02-28
ES2693088T3 (es) 2018-12-07
EP2456858A4 (en) 2015-03-18
GB2485112B (en) 2014-02-26
CA2768644A1 (en) 2011-01-27
GB201202847D0 (en) 2012-04-04
EP2456858A2 (en) 2012-05-30
MX2012000899A (es) 2012-02-13
US20110014702A1 (en) 2011-01-20
KR101785626B1 (ko) 2017-10-16
KR20120034793A (ko) 2012-04-12
AR077767A1 (es) 2011-09-21
JP5819825B2 (ja) 2015-11-24
ZA201201221B (en) 2013-07-31
EP2456858B1 (en) 2018-08-29
BR112012001557A2 (pt) 2016-03-08
CN102482640B (zh) 2015-03-11
JP2012533321A (ja) 2012-12-27
GB2485112A (en) 2012-05-02
CN102482640A (zh) 2012-05-30
WO2011011302A2 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR101893021B1 (ko) 인간 배아 줄기 세포의 분화
US11369642B2 (en) Methods for lowering blood glucose
KR101786735B1 (ko) 인간 배아 줄기 세포의 분화
KR101798474B1 (ko) 인간 배아 줄기 세포의 췌장 내분비 계통으로의 분화
KR101867369B1 (ko) 인간 배아 줄기 세포의 분화
KR20190027969A (ko) 췌장 내분비 전구 세포를 이용한 당뇨병의 치료

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant