KR20170108589A - 유기전해액 및 상기 전해액을 채용한 리튬 전지 - Google Patents

유기전해액 및 상기 전해액을 채용한 리튬 전지 Download PDF

Info

Publication number
KR20170108589A
KR20170108589A KR1020160032732A KR20160032732A KR20170108589A KR 20170108589 A KR20170108589 A KR 20170108589A KR 1020160032732 A KR1020160032732 A KR 1020160032732A KR 20160032732 A KR20160032732 A KR 20160032732A KR 20170108589 A KR20170108589 A KR 20170108589A
Authority
KR
South Korea
Prior art keywords
group
halogen
substituted
unsubstituted
carbon atoms
Prior art date
Application number
KR1020160032732A
Other languages
English (en)
Other versions
KR102547064B1 (ko
Inventor
김애란
손미영
최현봉
우명희
이승태
이하림
고애희
신우철
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020160032732A priority Critical patent/KR102547064B1/ko
Priority to US15/459,672 priority patent/US10320032B2/en
Publication of KR20170108589A publication Critical patent/KR20170108589A/ko
Application granted granted Critical
Publication of KR102547064B1 publication Critical patent/KR102547064B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/46Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom
    • C07D333/48Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom by oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)

Abstract

리튬염; 유기용매; 및 하기 화학식 1로 표시되는 술포네이트 에스테르(sulfonate ester)계 화합물을 포함하는 유기전해액이 제시된다:
<화학식 1>
R2-O-S(=O)2-R1
상기 식에서, R1은 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며, R2는 치환기로 치환 또는 비치환된 사이클릭 술폰기(cyclic sulfone group)이다.

Description

유기전해액 및 상기 전해액을 채용한 리튬 전지{Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution}
유기 전해액 및 상기 전해액을 채용한 리튬 전지에 관한 것이다.
리튬전지는 비디오 카메라, 휴대폰, 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 사용된다. 재충전이 가능한 리튬이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하다.
리튬전지는 높은 구동 전압에서 작동되므로 리튬과 반응성이 높은 수계 전해액이 사용될 수 없다. 리튬전지에는 일반적으로 유기전해액이 사용된다. 유기전해액은 리튬염이 유기용매에 용해되어 제조된다. 유기용매는 고전압에서 안정적이며, 이온전도도와 유전율이 높고 점도가 낮은 것이 바람직하다.
리튬전지에 카보네이트 계통의 극성 비수계 용매를 포함하는 유기전해액이 사용되면 초기 충전시 음극/양극과 유기전해액 사이의 부반응에 의해 전하가 과량 사용되는 비가역반응이 진행된다.
비가역반응에 의해 음극 표면에 고체전해질막층(Solid Electrolyte Interface layer; 이하 SEI층)과 같은 패시베이션층(passivation layer)이 형성된다. 또한, 상기 비가역반응에 의해 양극 표면에 보호층(protection layer)이 형성된다.
종래의 유기전해액을 사용하여 형성되는 SEI층 및/또는 보호층은 고온에서 쉽게 열화되었다. 즉, SEI층 및/또는 보호층은 고온에서 안정성이 저하되었다.
따라서, 향상된 고온 안정성을 가지는 SEI층 및/또는 보호층을 형성할 수 있는 유기전해액이 요구된다.
한 측면은 새로운 리튬전지 전해질용 첨가제를 포함하는 유기전해액을 제공하는 것이다.
다른 한 측면은 상기 유기전해액을 포함하는 리튬전지를 제공하는 것이다.
한 측면에 따라,
제1 리튬염; 유기용매; 및 하기 화학식 1로 표시되는 술포네이트 에스테르(sulfonate ester)계 화합물을 포함하는 유기전해액이 제공된다:
<화학식 1>
R2-O-S(=O)2-R1
상기 식에서,
R1은 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
R2는 치환기로 치환 또는 비치환된 사이클릭 술폰기(cyclic sulfone group)이다.
다른 한 측면에 따라,
양극; 음극; 및
상기에 따른 유기전해액을 포함하는 리튬전지가 제공된다.
한 측면에 따르면 새로운 구조의 술포네이트 에스테르계 첨가제를 포함하는 유기전해액을 사용함에 의하여 리튬전지의 고온특성 및 수명특성이 향상될 수 있다.
도 1은 실시예 4 및 비교예 3에서 제조된 리튬전지의 상온 수명특성을 나타내는 그래프이다.
도 2는 예시적인 구현예에 따른 리튬전지의 모식도이다.
<도면의 주요 부분에 대한 부호의 설명>
1: 리튬전지 2: 음극
3: 양극 4: 세퍼레이터
5: 전지케이스 6: 캡 어셈블리
이하에서 예시적인 구현예들에 따른 유기 전해액 및 상기 전해액을 채용한 리튬 전지에 관하여 더욱 상세히 설명한다.
일구현예에 따른 유기전해액은 제1 리튬염; 유기용매; 및 하기 화학식 1로 표시되는 술포네이트 에스테르(sulfonate ester)계 화합물을 포함한다:
<화학식 1>
R2-O-S(=O)2-R1
상기 식에서, R1은 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며, R2는 치환기로 치환 또는 비치환된 사이클릭 술폰기(cyclic sulfone group)이다.
첨가제로서 술포네이트 에스테르계 화합물을 포함하는 리튬전지용 유기전해액이 리튬전지의 고온특성, 수명특성 등의 전지 성능을 향상시킬 수 있다.
술포네이트 에스테르계 화합물은 술포네이트기에 사이클릭 술폰기가 연결된 구조를 가진다.
술포네이트 에스테르계 화합물이 전해액에 첨가되어 리튬전지의 성능을 향상시키는 이유에 대하여 이하에서 보다 구체적으로 설명하나 이는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이하 설명의 범위로 한정되는 것은 아니다.
술포네이트 에스테르계 화합물에 포함된 사이클릭 술폰기는 충전과정에서 음극 표면으로부터 전자를 받아들여 자신이 환원되거나, 이미 환원된 극성 용매 분자와 반응함으로써 음극 표면에 형성되는 SEI 막의 성질에 영향을 줄 수 있다. 예를 들어, 상기 사이클릭 술폰기를 포함하는 술포네이트 에스테르계 화합물은 극성용매에 비해 음극으로부터 전자를 더욱 용이하게 받아들일 수 있다. 즉, 술포네이트 에스테르계 화합물은 극성용매보다 낮은 전압에서 환원되어 극성용매가 환원되기 전에 환원될 수 있다.
예를 들어, 상기 술포네이트 에스테르계 화합물은 사이클릭 술폰기를 포함함에 의하여 충전시에 라디칼 및/또는 이온으로 더욱 용이하게 환원 및/또는 분해될 수 있다. 따라서, 라디칼 및/또는 이온이 리튬이온과 결합하여 음극에 적합한 SEI층을 형성하여 용매의 추가적인 분해 산물형성을 억제 할 수 있다. 상기 술포네이트 에스테르계 화합물은 예를 들어 탄소계 음극 표면에 존재하는 각종 작용기 또는 탄소계 음극과 공유 결합을 형성하거나 전극 표면에 흡착될 수 있다. 이러한 결합 및/또는 흡착에 의하여 유기용매에 의해서만 형성되는 SEI층에 비하여 장기간의 충방전 후에도 견고한 상태를 유지하는 안정성이 향상된 변성 SEI층이 형성될 수 있다. 또한, 이러한 견고한 변성 SEI층은 리튬이온의 인터컬레이션시에 상기 리튬이온을 용매화시킨 유기용매가 전극 내부로 들어가는 것을 보다 효과적으로 차단할 수 있다. 따라서, 상기 변성 SEI층이 유기용매와 음극의 직접적인 접촉을 더욱 효과적으로 차단하므로 리튬이온 흡장/방출의 가역성이 더욱 향상되고 결과적으로 전지의 방전용량이 증가하고 수명특성이 향상될 수 있다.
또한, 술포네이트 에스테르계 화합물은 사이클릭 술폰기를 포함함에 의하여 양극표면에 배위될 수 있으므로 양극 표면에 형성되는 보호층의 성질에 영향을 줄 수 있다. 예를 들어, 상기 사이클릭 술폰기가 양극활물질의 전이금속 이온에 배위되어 복합체(complex)를 형성할 수 있다. 이러한 복합체에 의하여 유기용매에 의해서만 형성되는 보호층에 비하여 장기간의 충방전 후에도 견고한 상태를 유지하는 안정성이 향상된 변성(modified) 보호층이 형성될 수 있다. 또한, 이러한 견고한 변성 보호층은 리튬이온의 인터컬레이션시에 상기 리튬이온을 용매화시킨 유기용매가 전극 내부로 들어가는 것을 보다 효과적으로 차단할 수 있다. 따라서, 상기 변성 보호층이 유기용매와 양극의 직접적인 접촉을 더욱 효과적으로 차단하므로 리튬이온 흡장/방출의 가역성이 더욱 향상되고 결과적으로 전지의 안정성이 증가하고 수명특성이 향상될 수 있다.
또한, 술포네이트 에스테르계 화합물은 일반적인 사이클릭 술폰계 화합물에 비하여 -O-S(=O)2- 결합에 의하여 다른 치환기가 결합되어 있어 상대적으로 큰 분자량을 가지므로 열적으로 안정할 수 있다.
결과적으로, 상기 술포네이트 에스테르계 화합물은 음극 표면에 SEI층을 형성하거나 양극 표면에 보호층을 형성할 수 있으며, 향상된 열안정성을 가짐에 의하여 리튬전지의 고온 안정성이 향상되며 리튬전지의 수명특성이 향상될 수 있다.
예를 들어, 유기전해액에서 R2가 하기 화학식 2로 표시되는 사이클릭 술폰기일 수 있다:
<화학식 2>
Figure pat00001
상기 식에서, R3 및 R4는 서로 독립적으로, 수소; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 또는 하나 이상의 헤테로원자를 포함하는 극성작용기이며, n은 4 내지 9의 정수이다.
예를 들어, 상기 하나 이상의 헤테로원자를 포함하는 극성작용기는 -F, -Cl, -Br, -I, -C(=O)OR16, -OR16, -OC(=O)OR16, -R15OC(=O)OR16, -C(=O)R16, -R15C(=O)R16, -OC(=O)R16, -R15OC(=O)R16, -C(=O)-O-C(=O)R16, -R15C(=O)-O-C(=O)R16, -SR16, -R15SR16, -SSR16, -R15SSR16, -S(=O)R16, -R15S(=O)R16, -R15C(=S)R16, -R15C(=S)SR16, -R15SO3R16, -SO3R16, -NNC(=S)R16, -R15NNC(=S)R16, -R15N=C=S, -NCO, -R15-NCO, -NO2, -R15NO2, -R15SO2R16, -SO2R16,
Figure pat00002
,
Figure pat00003
,
Figure pat00004
,
Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
,
Figure pat00016
,
Figure pat00017
,
Figure pat00018
,
Figure pat00019
,
Figure pat00020
,
Figure pat00021
,
Figure pat00022
,
Figure pat00023
,
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027
,
Figure pat00028
,
Figure pat00029
,
Figure pat00030
,
Figure pat00031
,
Figure pat00032
,
Figure pat00033
,
Figure pat00034
,
Figure pat00035
,
Figure pat00036
,
Figure pat00037
,
Figure pat00038
,
Figure pat00039
, 및
Figure pat00040
로 이루어진 군에서 선택된 하나 이상을 포함하며,
R11 및 R15가 서로 독립적으로 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴렌기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬렌기이고,
R12, R13, R14 및 R16이 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 트리알킬실릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬기이다.
예를 들어, 헤테로원자를 포함하는 극성작용기에 포함된 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 헤테로아릴기, 알킬아릴기, 트리알킬실릴기, 또는 아랄킬기에 치환된 할로겐은 불소(F)일 수 있다.
예를 들어, 유기전해액에서 R2가 치환기로 치환 또는 비치환된 술포라닐기(sulfolanyl)기일 수 있다. R2가 술포라닐기인 경우에 리튬전지의 고온 안성성 및 수명특성이 더욱 향상될 수 있다.
예를 들어, 상기 술포라닐기(sulfolanyl)기의 치환기가 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 또는 하나 이상의 헤테로원자를 포함하는 극성작용기일 수 있다.
예를 들어, 유기전해액에서 화학식 1의 술포네이트 에스테르계 화합물이 하기 화학식 3 또는 화학식 4로 표시될 수 있다:
<화학식 3> <화학식 4>
Figure pat00041
Figure pat00042
상기 식에서,
Ra 및 Ri는 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
Rb, Rc, Rd, Re, Rf, Rg 및 Rh는 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이다.
예를 들어, Ra 및 Ri는 서로 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기일 수 있다. 예를 들어, Ra 및 Ri는 서로 독립적으로 알킬기의 모든 수소가 불소로 치환된 퍼플루오로알킬기일 수 있다.
예를 들어, 상기 Ra 및 Ri는 서로 독립적으로 F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기이며,
Rb, Rc, Rd, Re, Rf, Rg 및 Rh는 서로 독립적으로 수소, F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기일 수 있다.
예를 들어, 유기전해액에서 화학식 1로 표시되는 술포네이트 에스테르계 화합물이 하기 화학식 5 또는 화학식 6으로 표시될 수 있다:
<화학식 5> <화학식 6>
Figure pat00043
Figure pat00044
상기 식들에서,
Rj 및 Rm은 서로 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
Rk 및 Rl은 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이다.
예를 들어, Rj 및 Rm은 서로 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기일 수 있다. 예를 들어, Rj 및 Rm은 서로 독립적으로 알킬기의 모든 수소가 불소로 치환된 퍼플루오로알킬기일 수 있다.
예를 들어, 상기 Rj 및 Rm은 서로 독립적으로 F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기이며,
상기 Rk 및 Rl은 서로 독립적으로 수소, F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기이다.
예를 들어, 유기전해액에서 화학식 1로 표시되는 술포네이트 에스테르계 화합물이 하기 화학식 7 내지 22로 표시될 수 있다:
<화학식 7> <화학식 8>
Figure pat00045
Figure pat00046
<화학식 9> <화학식 10>
Figure pat00047
Figure pat00048
<화학식 11> <화학식 12>
Figure pat00049
Figure pat00050
<화학식 13> <화학식 14>
Figure pat00051
Figure pat00052
<화학식 15> <화학식 16>
Figure pat00053
Figure pat00054
<화학식 17> <화학식 18>
Figure pat00055
Figure pat00056
<화학식 19> <화학식 20>
Figure pat00057
Figure pat00058
<화학식 21> <화학식 22>
Figure pat00059
Figure pat00060
본 명세서에서, "탄소수 a 내지 b"의 a 및 b는 특정 작용기(group)의 탄소수를 의미한다. 즉, 상기 작용기는 a 부터 b까지의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 4의 알킬기"는 1 내지 4의 탄소를 가지는 알킬기, 즉, CH3-, CH3CH2-, CH3CH2CH2-, (CH3)2CH-, CH3CH2CH2CH2-, CH3CH2CH(CH3)- and (CH3)3C-를 의미한다.
특정 라디칼에 대한 명명법은 문맥에 따라 모노라디칼(mon-radical) 또는 디라디칼(di-radical)을 포함할 수 있다. 예를 들어, 치환기가 나머지 분자에 대하여 두개의 연결지점을 요구하면, 상기 치환기는 디라디칼로 이해되어야 한다. 예를 들어, 2개의 연결지점을 요구하는 알킬기로 특정된 치환기는 -CH2-, -CH2CH2-, -CH2CH(CH3)CH2-, 등과 같은 디라디칼을 포함한다. "아킬렌"과 같은 다른 라디칼 명명법은 명확하게 상기 라디칼이 디라디칼임을 나타낸다.
본 명세서에서, "알킬기" 또는 "알킬렌기"라는 용어는 분지된 또는 분지되지 않은 지방족 탄화수소기를 의미한다. 일 구현예에서 알킬기는 치환되거나 치환되지 않을 수 있다. 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등을 포함하나 반드시 이들로 한정되지 않으며, 이들 각각은 선택적으로 치환되거나 치환되지 않을 수 있다. 일 구현예에서 알킬기는 1 내지 6의 탄소원자를 가질 수 있다. 예를 들어, 탄소수 1 내지 6의 알킬기는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소-부틸, sec-부틸, 펜틸, 3-펜틸, 헥실 등일 수 있으나 반드시 이들로 한정되지 않는다.
본 명세서에서, "시클로알킬기"라는 용어는 완전히 포화된 카보사이클 고리 또는 고리시스템을 의미한다. 예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실을 의미한다.
본 명세서에서, "알케닐기"라는 용어는 적어도 하나의 탄소-탄소 이중결합을 포함하는 2 내지 20의 탄소원자를 포함하는 탄화수소기로서 에테닐기, 1-프로페닐기, 2-프로페닐기, 2-메틸-1-프로페닐기, 1-부테닐기, 2-부테닐기, 시클로프로페닐기, 시클로펜테닐기, 시클로헥세닐기, 시클로헵테닐기 등을 포함하나 이들로 한정되지 않는다. 일 구현예에서, 알케닐기는 치환되거나 치환되지 않을 수 있다. 일 구현예에서, 알케닐기는 2 내지 40의 탄소원자를 가질 수 있다.
본 명세서에서, "알키닐기"라는 용어는 적어도 하나의 탄소-탄소 삼중결합을 포함하는 2 내지 20의 탄소원자를 포함하는 탄화수소기로서 에티닐기, 1-프로피닐기, 1-부티닐기, 2-부티닐기 등을 포함하나 이들로 한정되지 않는다. 일 구현예에서, 알키닐기는 치환되거나 치환되지 않을 수 있다. 일 구현예에서, 알키닐기는 2 내지 40의 탄소원자를 가질 수 있다.
본 명세서에서, "방향족"이라는 용어는 공액(conjugated) 파이 전자 시스템을 가지는 고리 또는 고리 시스템을 의미하며, 탄소고리 방향족(예를 들어, 페닐기) 및 헤테로고리 방향족기 (예를 들어, 피리딘)을 포함한다. 상기 용어는 전체 고리 시스템이 방향족이라면, 단일환고리 또는 융화된 다환고리(즉, 인접하는 원자쌍을 공유하는 고리)를 포함한다.
본 명세서에서, "아릴기"라는 용어는 고리 골격이 오직 탄소만을 포함하는 방향족 고리 또는 고리 시스템(즉, 2개의 인접하는 탄소 원자들을 공유하는 2 이상의 융화된(fused) 고리)을 의미한다. 상기 아릴기가 고리 시스템이면, 상기 시스템에서 각각의 고리는 방향족이다. 예를 들어, 아릴기는 페닐기, 비페닐기, 나프틸기, 페날트레닐기(phenanthrenyl), 나프타세닐기(naphthacenyl) 등을 포함하나 이들로 한정되지 않는다. 상기 아릴기는 치환되거나 치환되지 않을 수 있다.
본 명세서에서, "헤테로아릴기"라는 용어는 하나의 고리 또는 복수의 융화된 고리를 가지며, 하나 이상의 고리 원자가 탄소가 아닌, 즉 헤테로원자인, 방향족 고리 시스템을 의미한다. 융화된 고리 시스템에서, 하나 이상의 헤테로원자는 오직 하나의 고리에 존재할 수 있다. 예를 들어, 헤테로원자는 산소, 황 및 질소를 포함하나 반드시 이들로 한정되지 않는다. 예를 들어, 헤테로아릴기는 퓨라닐기(furanyl), 티에닐기(thienyl), 이미다졸릴기(imidazolyl), 퀴나졸리닐기(quinazolinyl), 퀴놀리닐기(quinolinyl), 이소퀴놀리닐기(isoquinolinyl), 퀴녹살리닐기(quinoxalinyl), 피리디닐기(pyridinyl), 피롤릴기(pyrrolyl), 옥사졸릴기(oxazolyl), 인돌릴기(indolyl), 등일 수 있으나 이들로 한정되지 않는다.
본 명세서에서, "아랄킬기", "알킬아릴기"라는 용어는 탄소수 7 내지 14의 아랄킬기 등과 같이, 알킬렌기를 경유하여 치환기로서 연결된 아릴기를 의미하며, 벤질기, 2-페닐에틸기, 3-페닐프로필기, 나프틸알킬기를 포함하나 이들로 한정되지 않는다. 일 구현에에서, 알킬렌기는 저급 알킬렌기(즉, 탄소수 1 내지 4의 알킬렌기)이다.
본 명세서에서, "시클로알케닐기"는 하나 이상의 이중결합을 가지는 카보사이틀 고리 또는 고리시스템으로서, 방향족 고리가 없는 고리 시스템이다. 예를 들어, 시클로헥세닐기이다.
본 명세서에서 "헤테로사이클릴기"는 고리 골격에 하나 이상의 헤테로원자를 포함하는 비방향족 고리 또는 고리시스템이다.
본 명세서에서 "할로겐"은 원소주기율표의 17족에서 속하는 안정한 원소로서 예를 들어, 불소, 염소, 브롬 또는 요오드이며, 특히 불소 및/또는 염소이다.
본 명세서에서, 치환기는 치환되지 않는 모그룹(mother group)에서 하나 이상의 수소가 다른 원자나 작용기를 교환됨에 의하여 유도된다. 다르게 기재하지 않으면, 어떠한 작용기가 "치환된"것으로 여겨질 때, 그것은 상기 작용기가 탄소수 1 내지 40의 알킬기, 탄소수 2 내지 40의 알케닐기, 탄소수 3 내지 40의 시클로알킬기, 탄소수 3 내지 40의 시클로알케닐기, 탄소수 1 내지 40의 알킬기, 탄소수 7 내지 40의 아릴기에서 선택된 하나 이상의 치환기로 치횐됨을 의미한다. 작용기가 "선택적으로 치환된다"고 기재되는 경우에, 상기 작용기가 상술한 치환기로 치환될 수 있다는 것을 의미한다.
유기전해액에서 첨가제인 화학식 1로 표시되는 술포네이트 에스테르계계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.01 내지 10 중량%일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 양이 사용될 수 있다. 예를 들어, 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 10 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 7 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 5 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 3 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 2 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 술포네이트 에스테르계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.2 내지 1.5 중량%일 수 있다. 상기 함량 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
유기전해액에서 제1 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(2≤x≤20, 2≤y≤20), LiCl 및 LiI로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 유기전해액의 리튬염으로 사용할 수 있는 것이라면 모두 가능하다.
유기전해액에서 리튬염의 농도는 0.01 내지 2.0 M 일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 농도가 사용될 수 있다. 상기 농도 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
유기전해액에서 유기용매는 저비점용매를 포함할 수 있다. 상기 저비점용매는 25℃, 1기압에서 비점이 200℃ 이하인 용매를 의미한다.
예를 들어, 유기용매는 디알킬카보네이트, 고리형카보네이트, 선형 또는 고리형 에스테르, 선형 또는 고리형 아미드, 지방족 니트릴, 선형 또는 고리형 에테르 및 이들의 유도체로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.
보다 구체적으로, 유기용매는 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 아세토니트릴, 석시노니트릴(SN), 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 하나 이상을 포함할 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 저비점용매라면 모두 가능하다.
상술한 유기 전해액은 술포네이트 에스테르계 화합물 외에 다른 첨가제를 추가적으로 포함할 수 있다. 다른 첨가제를 추가적으로 포함함에 의하여 리튬전지의 성능이 더욱 향상될 수 있다.
유기전해액이 추가적으로 포함하는 첨가제는 고리형 카보네이트 화합물, 제2 리튬염 등일 수 있다.
예를 들어, 유기전해액은 첨가제로서 고리형 카보네이트 화합물을 추가적으로 포함할 수 있다. 첨가제로 사용되는 고리형 카보네이트 화합물은 비닐렌 카보네이트(VC); 할로겐, 시아노기(CN) 및 니트로기(NO2) 중에서 선택된 하나 이상의 치환기로 치환된 비닐렌 카보네이트; 비닐에틸렌 카보네이트(VEC); 할로겐, 시아노기(CN) 및 니트로기(NO2) 중에서 선택된 하나 이상의 치환기로 치환된 비닐에틸렌 카보네이트; 플루오로에틸렌 카보네이트(FEC); 및 할로겐, 시아노기(CN) 및 니트로기(NO2) 중에서 선택된 하나 이상의 치환기로 치환된 플루오로에틸렌 카보네이트; 중에서 선택될 수 있다. 유기전해액이 첨가제로서 고리형 카보네이트 화합물을 추가적으로 포함함에 의하여 유기전해액을 채용하는 리튬전지의 충방전 특성이 더욱 향상될 수 있다.
유기전해액에서 고리형 카보네이트계 화합물의 함량이 상기 유기전해액 총 중량을 기준으로 0.01 내지 5 중량%일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 양이 사용될 수 있다. 예를 들어, 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 5 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 4 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 3 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 2 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.2 내지 2 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 고리형 카보네이트계 화합물의 함량은 유기전해액 총 중량을 기준으로 0.2 내지 1.5 중량%일 수 있다. 상기 함량 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
예를 들어, 유기전해액은 첨가제로서 제2 리튬염을 추가적으로 포함할 수 있다. 제2 리튬염은 제1 리튬염과 구별되는 리튬염으로서 음이온이 옥살레이트(oxalate), PO2F2-, N(SO2F)2- 등일 수 있다. 예를 들어, 제2 리튬염은 하기 화학식 23 내지 30으로 표시되는 화합물일 수 있다:
<화학식 23> <화학식 24>
Figure pat00061
Figure pat00062
<화학식 25> <화학식 26>
Figure pat00063
Figure pat00064
<화학식 27> <화학식 28>
Figure pat00065
Figure pat00066
<화학식 29> <화학식 30>
Figure pat00067
Figure pat00068
.
유기전해액에서 제2 리튬염의 함량은 상기 유기전해액 종 중량을 기준으로 0.1 내지 5 중량%일 수 있으나, 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 양이 사용될 수 있다. 예를 들어, 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 5 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 4 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 3 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.1 내지 2 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.2 내지 2 중량%일 수 있다. 예를 들어, 상기 유기전해액에서 제2 리튬염의 함량은 유기전해액 총 중량을 기준으로 0.2 내지 1.5 중량%일 수 있다. 상기 함량 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
유기전해액은 액체 또는 겔 상태일 수 있다. 유기전해액은 상술한 유기용매에 제1 리튬염 및 상술한 첨가제를 첨가하여 제조될 수 있다.
다른 구현예에 따른 리튬전지는 양극; 음극 및 상기에 따른 유기전해액을 포함한다. 리튬전지는 그 형태가 특별히 제한되지는 않으며, 리튬이온전지, 리튬이온폴리머전지, 리튬설퍼전지 등과 같은 리튬이차전지는 물론, 리튬일차 전지도 포함한다.
예를 들어, 리튬전지에서 음극은 흑연을 포함할 수 있다. 예를 들어, 리튬전지에서 양극이 니켈 함유 층상구조 리튬전이금속 산화물을 포함할 수 있다. 예를 들어, 리튬전지는 3.80V 이상 의 고전압을 가질 수 있다. 예를 들어, 리튬전지는 4.0V 이상 의 고전압을 가질 수 있다. 예를 들어, 리튬전지는 4.35V 이상 의 고전압을 가질 수 있다.
예를 들어, 리튬전지는 다음과 같은 방법에 의하여 제조될 수 있다.
먼저 양극이 준비된다.
예를 들어, 양극활물질, 도전재, 바인더 및 용매가 혼합된 양극활물질 조성물이 준비된다. 상기 양극활물질 조성물이 금속 집전체 위에 직접 코팅되어 양극판이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 양극활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1-bBbD2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1-bBbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bBbO4-cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobBcO2-αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcO2-αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
예를 들어, LiCoO2, LiMnxO2x(x=1, 2), LiNi1-xMnxO2x(0<x<1), LiNi1-x-yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), LiFePO4 등이다.
물론 리튬함유 금속산화물 표면에 코팅층을 갖는 것을 양극활물질로 사용할 수 있고, 또는 리튬함유 금속산화물과 리튬함유 금속산화물 표면에 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다.
바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 사용될 수 있다.
용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
양극 활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로 음극이 준비된다.
예를 들어, 음극활물질, 도전재, 바인더 및 용매를 혼합하여 음극활물질 조성물이 준비된다. 상기 음극활물질 조성물이 금속 집전체 상에 직접 코팅 및 건조되어 음극판이 제조된다. 다르게는, 상기 음극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다.
음극활물질은 당해 기술분야에서 리튬전지의 음극활물질로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
예를 들어, 상기 리튬과 합금가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다.
예를 들어, 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
예를 들어, 비전이금속 산화물은 SnO2, SiOx(0<x<2) 등일 수 있다.
예를 들어, 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
음극활물질 조성물에서 도전재 및 바인더는 상기 양극활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
음극활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로, 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다.
세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용될 수 있다. 예를 들어, 상기 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성될 수 있다. 또는, 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성될 수 있다.
세퍼레이터 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
다음으로, 상술한 유기전해액이 준비된다.
도 2에서 보여지는 바와 같이 상기 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 상술한 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지케이스(5)에 수용된다. 이어서, 상기 전지케이스(5)에 유기전해액이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬전지(1)가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다.
양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬전지가 완성된다.
전지구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
또한, 상기 리튬전지는 수명특성 및 고율특성이 우수하므로 전기차량(electric vehicle, EV)에 사용될 수 있다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드차량에 사용될 수 있다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용될 수 있다. 예를 들어, 전기 자전거, 전동 공구 등에 사용될 수 있다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(첨가제의 합성)
제조예 1: 하기 화학식 3의 화합물 합성
하기 화학식 7의 화합물은 하기 반응 스킴 1에 따라 제조될 수 있다.
<반응 스킴 1>
Figure pat00069
(화합물 A의 합성)
<1 step>
2,5-다이하이드로싸이오펜 1,1-다이옥사이드(2,5-Dihydrothiophene 1,1-dioxide, 5.0 g, 42.2 mmol)와 수산화포타슘(potassium hydroxide, 2.6 g, 46.6 mmol)을 물(7ml)에 녹여 혼합물을 준비하였다. 상기 혼합물을 환류 하에 40ㅀC에서 4시간 동안 가열하여 반응시켰다. 반응생성물을 상온까지 식힌 후에 진한 염산 수용액(농도 35~37%)을 이용하여 pH 6~7로 중화하였다. 중화된 반응생성물에 차가운 아세톤(500ml)에 붓고 감압 여과장치를 이용하여 걸러주어 침전된 염화포타슘을 제거하였다. 여과액은 감압 하에서 아세톤을 제거하여 흰색 고체를 얻었다. 흰색 고체를 최소량의 아세톤에 녹인 후에 에틸 아세테이트를 전개액으로 사용하여 실리카겔에 통과를 시켜 잔류 염화포타슘을 모두 제거하였다. 여과액을 농축시켜 노란색 액체를 얻었다.
(88%) 1H NMR (400 MHz, CDCl3) 4.74 (s, 1H), 3.40 - 3.25 (m, 2H), 3.18 - 3.12 (m, 2H); 2.38 (br, 2H)
<2 step>
1 step에서 합성한 3-하이드록시-테트라하이드로싸이오펜 1,1-다이옥사이드 (3-hydroxytetrahydrothiophene-1,1-dioxide, 3.3 g, 24.15 mmol)를 다이클로로메테인(dichloromethae, 15ml)에 녹이고 0℃로 냉각시켰다. 냉각된 용액에 TEA(triethanolamine, 3.36 ml, 24.6 mmol)를 넣어준 후에 메탄설포닐 클로라이드(methanesufonyl chloride, MC, 1.87 ml, 24.15 mmol)를 한 방울씩 천천히 적하하였다. 얻어진 혼합물을 0℃에서 50분간 반응 시킨 후 침전물을 실리카겔에 통과시켜 제거하였다. 이때 전개 용매는 에틸 아세테이트를 사용하였다. 통과된 여과액을 감압 하에서 농축시킨 후 다이클로로메테인을 이용하여 재결정으로 흰색고체를 88%의 수율로 얻었다.
1H NMR (400 MHz, CDCl3): 5.10 (m, 1H), 3.42 (d, J = 11 Hz, 2H), 3.35 - 3.19 (m, 2H), 3.12 (s, 3H), 2.68 - 2.57(m, 2H);
13C NMR (100 MHz, CDCl3): 74.67, 56.96, 49.00, 39.13, 30.33;
<화학식 7>
Figure pat00070
(유기전해액의 제조)
실시예 1: SEI-1456 1.0wt%
에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC) 및 디메틸카보네이트(DMC)의 2:2:6 부피비 혼합용매에, 리튬염으로 1.50M LiPF6 및 하기 화학식 7로 표시되는 화합물 1중량%를 첨가하여 유기전해액을 제조하였다.
<화학식 7>
Figure pat00071
실시예 2: SEI-1456 1.0wt% + VC 0.5wt%
첨가제를 상기 화학식 7의 화합물 1중량% 및 하기 화학식 31의 비닐렌카보네이트(VC) 0.5중량%로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.
<화학식 31>
Figure pat00072
실시예 3: SEI-1456 0.5wt%
첨가제인 상기 화학식 7의 화합물의 함량을 0.5중량% 로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.
비교예 1: CTL
첨가제인 상기 화학식 7의 화합물을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.
비교예 2
첨가제인 상기 화학식 7의 화합물 대신에 하기 화학식 32의 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.
<화학식 32>
Figure pat00073
(리튬 전지의 제조)
실시예 4
(음극 제조)
인조 흑연(BSG-L, Tianjin BTR New Energy Technology Co., Ltd.) 98중량%, 스티렌-부타디엔 고무(SBR)바인더(ZEON) 1.0중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.0중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극판을 제조하였다.
(양극 제조)
LiNi1/3Co1/3Al1/3O2 97.45중량%, 도전재로서 인조흑연(SFG6, Timcal) 분말 0.5중량%, 카본블랙(Ketjenblack, ECP) 0.7중량%, 개질 아크릴로니트릴 고무(BM-720H, Zeon Corporation) 0.25중량%, 폴리비닐리덴플루오라이드(PVdF, S6020, Solvay) 0.9중량%, 폴리비닐리덴플루오라이드(PVdF, S5130, Solvay) 0.2중량%를 혼합하여 N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극판을 제조하였다.
세퍼레이터로서 양극측에 세라믹이 코팅된 두께 14㎛ 폴리에틸렌 세퍼레이터 및 전해액으로서 상기 실시예 1에서 제조된 유기전해액을 사용하여 리튬전지를 제조하였다.
실시예 5 내지 6
실시예 1에서 제조된 유기전해액 대신에 실시예 2 내지 3에서 제조된 유기전해액을 각각 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 리튬전지를 제조하였다.
비교예 3 내지 4
실시예 1에서 제조된 유기전해액 대신에 비교예 1 내지 2에서 제조된 유기전해액을 각각 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 리튬전지를 제조하였다.
평가예 1: 4.2V 상온(25℃) 충방전 특성 평가
상기 실시예 4 내지 6 및 비교예 3 내지 4에서 제조된 리튬전지를 25℃에서 0.1C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 1st 사이클).
상기 화성단계의 1st 사이클을 거친 리튬전지를 25℃에서 0.2C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 0.2C rate의 정전류로 방전하였다(화성단계, 2nd 사이클).
상기 화성단계를 거친 리튬전지를 25℃에서 1.0C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.5V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하는 사이클을 400th 사이클까지 반복하였다.
상기 모든 충방전 사이클에서 하나의 충전/방전 사이클 후 10분간의 정지 시간을 두었다.
상기 충방전 실험 결과의 일부를 하기 표 1 및 도 1에 나타내었다. 400th 사이클에서의 용량유지율은 하기 수학식 1로 정의된다.
<수학식 1>
용량 유지율=[400th 사이클에서의 방전용량/1st 사이클에서의 방전용량]×100
400th 사이클에서의 방전용량 [mAh/g] 400th 사이클에서 용량유지율 [%]
실시예 4 2325 89.2
실시예 5 2370 91.0
실시예 6 2309 88.1
비교예 3 2262 87.1
비교예 4 2283 87.4
상기 표 1 및 도 1에서 보여지는 바와 같이 본원발명의 첨가제를 포함하는 실시예 4 내지 6의 리튬전지는 첨가제가 없는 비교예 2 및 본원발명과 다른 구조의 첨가제를 포함하는 비교예 3의 리튬전지에 비하여 상온에서의 방전용량 및 수명특성이 향상되었다.
평가예 6: 60℃ 고온 보관 후 직류저항(DC-IR) 평가
상기 실시예 4 내지 6 및 비교예 3 내지 4에서 제조된 리튬전지를 25℃에서 0.5C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하여, SOC(state of charge) 100%의 전압까지 충전하였다.
상기 충전된 리튬전지에 대한 직류저항(DC-IR, Direct Current Internal Resistance) 및 상기 충전된 리튬전지를 60℃ 오븐에 20일 동안 보관한 후 꺼낸 전지에 대한 직류저항(DC-IR, Direct Current Internal Resistance)을 하기 방법으로 측정하였다. 이들을 각각 초기 직류 저항 및 고온 보관 후 직류 저항이라 한다.
0.5C로 30초간 정전류 방전한 후, 30초 휴지시킨 후, 0.5C로 30초 정전류 충전시키고 10분 휴지시키고,
1.0C로 30초간 정전류 방전한 후, 30초 휴지시킨 후, 0.5C로 1분 정전류 충전시키고 10분 휴지시키고,
2.0C로 30초간 정전정류 방전한 후, 30초 휴지시킨 후, 0.5C로 2분 정전류 충전시키고 10분 휴지시키고,
3.0C로 30초간 정정류 방전한 후, 30초 휴지시킨 후, 0.5C로 3분 정전류 충전시키고 10분 휴지시켰다.
각각의 C-rate 별 30초 동안의 평균 전압 강하값이 직류 저항값이다(ΔV/ΔI=R).
측정된 초기 직류 저항 및 고온 보관 후 직류 저항으로부터 계산된 직류 저항 증가율을 하기 표 2 에 나타내었다. 직류 저항 증가율은 하기 수학식 2로 표시된다.
<수학식 2>
직류 저항 증가율 [%] = [고온 보관 후 직류 저항 / 초기 직류 저항] × 100
초기 직류 저항 [mΩ] 20일 보관 후 직류 저항 [mΩ] 20일 보관 후 직류 저항 증가율 [%]
실시예 4 36.8 42.9 117
실시예 5 36.9 43.2 117
실시예 6 36.5 43.5 119
비교예 3 36.3 44.0 121
비교예 4 36.2 44.2 122
상기 표 2 에서 보여지는 바와 같이 본원발명의 유기전해액을 포함하는 실시예 4 내지 6의 리튬전지는 본원발명의 유기전해액을 포함하지 않는 비교예 3 내지 4의 리튬전지에 비하여 고온 보관 후 직류 저항의 증가율이 감소하였다.
따라서, 리튬전지의 고온 보관 안정성이 향상되어 리튬전지의 출력 특성이 향상되었다.

Claims (15)

  1. 리튬염; 유기용매; 및 하기 화학식 1로 표시되는 술포네이트 에스테르(sulfonate ester)계 화합물을 포함하는 유기전해액:
    <화학식 1>
    R2-O-S(=O)2-R1
    상기 식에서,
    R1은 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
    R2는 치환기로 치환 또는 비치환된 사이클릭 술폰기(cyclic sulfone group)이다.
  2. 제1 항에 있어서, 상기 R2가 하기 화학식 2로 표시되는 유기전해액:
    <화학식 2>
    Figure pat00074

    상기 식에서,
    R3 및 R4는 서로 독립적으로, 수소; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 또는 하나 이상의 헤테로원자를 포함하는 극성작용기이며,
    n은 4 내지 9의 정수이다.
  3. 제2 항에 있어서, 상기 하나 이상의 헤테로원자를 포함하는 극성작용기가 -F, -Cl, -Br, -I, -C(=O)OR16, -OC(=O)OR16, -R15OC(=O)OR16, -C(=O)R16, -R15C(=O)R16, -OC(=O)R16, -R15OC(=O)R16, -C(=O)-O-C(=O)R16, -R15C(=O)-O-C(=O)R16, -SR16, -R15SR16, -SSR16, -R15SSR16, -S(=O)R16, -R15S(=O)R16, -R15C(=S)R16, -R15C(=S)SR16, -R15SO3R16, -SO3R16, -NNC(=S)R16, -R15NNC(=S)R16, -R15N=C=S, -NCO, -R15-NCO, -NO2, -R15NO2, -R15SO2R16, -SO2R16,
    Figure pat00075
    ,
    Figure pat00076
    ,
    Figure pat00077
    ,
    Figure pat00078
    ,
    Figure pat00079
    ,
    Figure pat00080
    ,
    Figure pat00081
    ,
    Figure pat00082
    ,
    Figure pat00083
    ,
    Figure pat00084
    ,
    Figure pat00085
    ,
    Figure pat00086
    ,
    Figure pat00087
    ,
    Figure pat00088
    ,
    Figure pat00089
    ,
    Figure pat00090
    ,
    Figure pat00091
    ,
    Figure pat00092
    ,
    Figure pat00093
    ,
    Figure pat00094
    ,
    Figure pat00095
    ,
    Figure pat00096
    ,
    Figure pat00097
    ,
    Figure pat00098
    ,
    Figure pat00099
    ,
    Figure pat00100
    ,
    Figure pat00101
    ,
    Figure pat00102
    ,
    Figure pat00103
    ,
    Figure pat00104
    ,
    Figure pat00105
    ,
    Figure pat00106
    ,
    Figure pat00107
    ,
    Figure pat00108
    ,
    Figure pat00109
    ,
    Figure pat00110
    ,
    Figure pat00111
    ,
    Figure pat00112
    , 및
    Figure pat00113
    로 이루어진 군에서 선택된 하나 이상을 포함하며,
    R11 및 R15가 서로 독립적으로 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴렌기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬렌기이고,
    R12, R13, R14 및 R16이 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 트리알킬실릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬기인 유기전해액.
  4. 제1 항에 있어서, 상기 R2가 치환기로 치환 또는 비치환된 술포라닐기(sulfolanyl)기인 유기전해액.
  5. 제4 항에 있어서, 상기 술포라닐기(sulfolanyl)기의 치환기가 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 또는 하나 이상의 헤테로원자를 포함하는 극성작용기인 유기전해액.
  6. 제1 항에 있어서, 상기 화학식 1의 술포네이트 에스테르계 화합물이 하기 화학식 3 또는 화학식 4로 표시되는 유기전해액:
    <화학식 3> <화학식 4>
    Figure pat00114
    Figure pat00115

    상기 식에서,
    Ra 및 Ri는 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
    Rb, Rc, Rd, Re, Rf, Rg 및 Rh는 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기; 할로겐으로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이다.
  7. 제6 항에 있어서, 상기 Ra 및 Ri는 서로 독립적으로 F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기이며,
    Rb, Rc, Rd, Re, Rf, Rg 및 Rh는 서로 독립적으로 수소, F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기인 유기전해액.
  8. 제1 항에 있어서, 상기 화학식 1로 표시되는 술포네이트 에스테르계 화합물이 하기 화학식 5 또는 화학식 6으로 표시되는 유기전해액:
    <화학식 5> <화학식 6>
    Figure pat00116
    Figure pat00117

    상기 식들에서,
    Rj 및 Rm은 서로 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기이며,
    Rk 및 Rl은 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기인 유기전해액.
  9. 제8 항에 있어서, 상기 Rj 및 Rm은 서로 독립적으로 F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기이며,
    상기 Rk 및 Rl은 서로 독립적으로 수소, F, Cl, Br, I, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 트리플루오로메틸기, 테트라플루오로에틸기, 페닐기, 나프틸기, 테트라플루오로페닐기, 피롤릴기, 또는 피리디닐기인 유기전해액.
  10. 제1 항에 있어서, 상기 화학식 1로 표시되는 술포네이트 에스테르계 화합물이 하기 화학식 7 내지 22로 표시되는 유기전해액:
    <화학식 7> <화학식 8>
    Figure pat00118
    Figure pat00119

    <화학식 9> <화학식 10>
    Figure pat00120
    Figure pat00121

    <화학식 11> <화학식 12>
    Figure pat00122
    Figure pat00123

    <화학식 13> <화학식 14>
    Figure pat00124
    Figure pat00125

    <화학식 15> <화학식 16>
    Figure pat00126
    Figure pat00127

    <화학식 17> <화학식 18>
    Figure pat00128
    Figure pat00129

    <화학식 19> <화학식 20>
    Figure pat00130
    Figure pat00131

    <화학식 21> <화학식 22>
    Figure pat00132
    Figure pat00133
  11. 제1 항에 있어서, 상기 술포네이트 에스테르계 화합물의 함량이 유기전해액 총 중량을 기준으로 0.01 내지 10 중량%인 유기전해액.
  12. 제1 항에 있어서, 상기 유기전해액에서 리튬염이 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(2≤x≤20, 2≤y≤20), LiCl 및 LiI로 이루어진 군에서 선택된 하나 이상을 포함하는 유기전해액.
  13. 양극; 음극; 및
    상기 제1 항 내지 제12 항 중 어느 한 항에 따른 유기전해액을 포함하는 리튬전지.
  14. 제13 항에 있어서, 상기 양극이 니켈 함유 층상 구조 리튬전이금속산화물을 포함하는 리튬전지.
  15. 제13 항에 있어서, 상기 리튬전지가 3.8V 이상의 고전압을 가지는 리튬전지.
KR1020160032732A 2016-03-18 2016-03-18 유기전해액 및 상기 전해액을 채용한 리튬 전지 KR102547064B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160032732A KR102547064B1 (ko) 2016-03-18 2016-03-18 유기전해액 및 상기 전해액을 채용한 리튬 전지
US15/459,672 US10320032B2 (en) 2016-03-18 2017-03-15 Organic electrolytic solution and lithium battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160032732A KR102547064B1 (ko) 2016-03-18 2016-03-18 유기전해액 및 상기 전해액을 채용한 리튬 전지

Publications (2)

Publication Number Publication Date
KR20170108589A true KR20170108589A (ko) 2017-09-27
KR102547064B1 KR102547064B1 (ko) 2023-06-23

Family

ID=59856035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160032732A KR102547064B1 (ko) 2016-03-18 2016-03-18 유기전해액 및 상기 전해액을 채용한 리튬 전지

Country Status (2)

Country Link
US (1) US10320032B2 (ko)
KR (1) KR102547064B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164130A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2018164138A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
CN109786828A (zh) * 2017-11-15 2019-05-21 三星电子株式会社 用于锂电池的电解质添加剂、包括其的有机电解质溶液和包括其的锂电池
KR20200080233A (ko) * 2017-10-31 2020-07-06 스미토모 세이카 가부시키가이샤 비수 전해액용 첨가제, 비수 전해액 및 축전 디바이스

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059250B2 (ja) 2017-03-07 2022-04-25 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2019117101A1 (ja) 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7116311B2 (ja) * 2017-12-12 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
EP3726636B1 (en) 2017-12-12 2024-06-26 Central Glass Company, Limited Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
JP7116312B2 (ja) * 2018-11-26 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
CN108123173A (zh) * 2017-12-14 2018-06-05 成都新柯力化工科技有限公司 一种低温锂离子电池电解液及锂离子电池
KR102130029B1 (ko) * 2018-03-16 2020-07-03 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN111937216A (zh) * 2018-03-30 2020-11-13 住友精化株式会社 非水电解液用添加剂、非水电解液及蓄电器件
JP7264890B2 (ja) * 2018-05-31 2023-04-25 Мuアイオニックソリューションズ株式会社 蓄電デバイス用非水電解液、及び蓄電デバイス
HUE063031T2 (hu) * 2018-08-16 2024-01-28 Central Glass Co Ltd Nem vizes elektrolitoldat és nem vizes elektrolitot tartalmazó szekunder akkumulátor
CN110911744B (zh) * 2018-09-17 2021-09-17 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN110931853B (zh) * 2018-09-19 2023-07-11 三星Sdi株式会社 锂电池
KR102426254B1 (ko) * 2019-03-28 2022-07-28 삼성에스디아이 주식회사 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지
WO2021006302A1 (ja) 2019-07-08 2021-01-14 セントラル硝子株式会社 非水電解液、及びこれを用いた非水電解液電池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031233A (ko) * 2011-04-26 2014-03-12 우베 고산 가부시키가이샤 비수 전해액, 그것을 이용한 축전 디바이스, 및 환상 설폰산 에스터 화합물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2494515A (en) 1946-05-04 1950-01-10 Shell Dev Substituted ethers of cyclic sulfones
US3907597A (en) * 1974-09-27 1975-09-23 Union Carbide Corp Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof
US4029587A (en) 1975-06-23 1977-06-14 The Lubrizol Corporation Lubricants and functional fluids containing substituted sulfolanes as seal swelling agents
US4029588A (en) 1975-06-23 1977-06-14 The Lubrizol Corporation Substituted sulfolanes as seal swelling agents
US4167458A (en) * 1978-03-28 1979-09-11 Union Carbide Corporation Lithium ion-containing organic electrolyte
JP5604105B2 (ja) * 2006-09-20 2014-10-08 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いた二次電池
KR101020465B1 (ko) * 2008-11-20 2011-03-08 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2012127717A1 (ja) * 2011-03-24 2012-09-27 日本電気株式会社 二次電池
EP2755272B1 (en) * 2011-11-16 2018-04-18 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
KR20150002608A (ko) * 2012-03-29 2015-01-07 스미또모 세이까 가부시키가이샤 전기 화학 디바이스용 전해액, 알루미늄 전해 콘덴서 및 전기 이중층 콘덴서
JP6115569B2 (ja) * 2012-07-31 2017-04-19 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
KR20150046050A (ko) * 2012-08-24 2015-04-29 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
WO2014079979A1 (en) * 2012-11-26 2014-05-30 Advanced Accelerator Applications New nucleophile-reactive sulfonated compounds for the (radio)labelling of (bio)molecules; precursors and conjugates thereof
US9520617B2 (en) 2013-03-14 2016-12-13 Advanced Technology Materials, Inc. Sulfolane mixtures as ambient aprotic polar solvents
WO2014204213A1 (ko) * 2013-06-18 2014-12-24 주식회사 엘지화학 리튬이차전지용 양극 활물질 및 그의 제조방법
WO2015159386A1 (ja) * 2014-04-16 2015-10-22 住友精化株式会社 電気化学デバイス電解液用溶媒
JP6480823B2 (ja) * 2015-07-23 2019-03-13 東芝メモリ株式会社 半導体装置の製造方法
PL3349290T3 (pl) * 2015-09-09 2024-04-02 Sumitomo Seika Chemicals Co., Ltd. Dodatek dla niewodnych roztworów elektrolitów, niewodny roztwór elektrolitu i urządzenie do magazynowania energii elektrycznej

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031233A (ko) * 2011-04-26 2014-03-12 우베 고산 가부시키가이샤 비수 전해액, 그것을 이용한 축전 디바이스, 및 환상 설폰산 에스터 화합물

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164130A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2018164138A1 (ja) * 2017-03-08 2018-09-13 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
JPWO2018164138A1 (ja) * 2017-03-08 2020-01-09 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
US11342587B2 (en) 2017-03-08 2022-05-24 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
KR20200080233A (ko) * 2017-10-31 2020-07-06 스미토모 세이카 가부시키가이샤 비수 전해액용 첨가제, 비수 전해액 및 축전 디바이스
US12021191B2 (en) 2017-10-31 2024-06-25 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
CN109786828A (zh) * 2017-11-15 2019-05-21 三星电子株式会社 用于锂电池的电解质添加剂、包括其的有机电解质溶液和包括其的锂电池

Also Published As

Publication number Publication date
KR102547064B1 (ko) 2023-06-23
US20170271715A1 (en) 2017-09-21
US10320032B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
KR102152365B1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR102547064B1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR101718062B1 (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
JP6578085B2 (ja) リチウム電池電解質用添加剤、有機電解液、及びリチウム電池
KR101718061B1 (ko) 유기전해액 및 이를 포함하는 리튬전지
KR102332334B1 (ko) 유기전해액 및 이를 포함하는 리튬 전지
KR102411933B1 (ko) 유기전해액 및 이를 포함하는 리튬 전지
KR20170018739A (ko) 리튬 전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR20170112122A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 리튬 전지
KR102436423B1 (ko) 리튬전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR102547067B1 (ko) 리튬 전지
KR20230070191A (ko) 리튬 전지
KR20230067595A (ko) 리튬 전지
KR102332336B1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR102510887B1 (ko) 리튬 전지
US11264644B2 (en) Lithium battery
US11637322B2 (en) Lithium battery
KR20170120897A (ko) 유기전해액 및 이를 포함하는 리튬전지
KR102537229B1 (ko) 리튬 전지
KR102537230B1 (ko) 리튬 전지
KR20200033203A (ko) 리튬 전지
KR20220105936A (ko) 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant