KR20170104401A - 발광소자 - Google Patents

발광소자 Download PDF

Info

Publication number
KR20170104401A
KR20170104401A KR1020170028823A KR20170028823A KR20170104401A KR 20170104401 A KR20170104401 A KR 20170104401A KR 1020170028823 A KR1020170028823 A KR 1020170028823A KR 20170028823 A KR20170028823 A KR 20170028823A KR 20170104401 A KR20170104401 A KR 20170104401A
Authority
KR
South Korea
Prior art keywords
light emitting
layer
current
emitting device
dbr
Prior art date
Application number
KR1020170028823A
Other languages
English (en)
Other versions
KR102336974B1 (ko
Inventor
추 치에 수
이-웬 후앙
이-헝 린
치-치앙 루
Original Assignee
에피스타 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에피스타 코포레이션 filed Critical 에피스타 코포레이션
Publication of KR20170104401A publication Critical patent/KR20170104401A/ko
Application granted granted Critical
Publication of KR102336974B1 publication Critical patent/KR102336974B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2213Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on polyimide or resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • H01S5/2216Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • H01S5/0283Optically inactive coating on the facet, e.g. half-wave coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0286Coatings with a reflectivity that is not constant over the facets, e.g. apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18391Aperiodic structuring to influence the near- or far-field distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 발광소자를 공개했다. 발광소자는 방사선을 방출할 수 있으며, 기판; 기판 상에 위치하고 제1 분산 브레그 반사경(distributed Bragg reflector, DBR), 발광 적층, 제2 분산 브레그 반사경 및 접촉층을 순차적으로 포함하는 에피택셜 구조; 전극; 접촉층과 전극 사이에 개재된 전류 차단층; 전류 차단층에 형성된 제1 개구; 및 전극에 형성되고 제1 개구 내에 위치하는 제2개구;를 포함하되, 발광소자는 제2 분산 브레그 반사경 적층 중에 산화층이 결여되고 또한 이온 주입층이 결여된다.

Description

발광소자{LIGHT-EMITTING DEVICE}
본 공개된 내용은 발광소자에 관한 것으로, 특히 레이저 및 발광다이오드 특성을 구비한 발광소자에 관한 것이다.
발광다이오드는 고체상태 조명광원에 광범위하게 이용된다. 종래의 백열전구 및 형광등과 비교했을 때, 발광다이오드는 소비전력이 적고 수명이 긴 등 장점이 있으므로, 발광다이오드는 종래의 광원을 점차 대체하고 있으며, 교통 표지, 백라이트 모듈, 가로등 조명, 의료기기 등 각종 분야에 응용되고 있다.
도 24는 종래의 수직 공진 표면 광방출 레이저(Vertical-Cavity Surface-Emitting Laser, VCSEL)를 나타낸 단면도이다. 수직 공진 표면 광방출 레이저는 간섭광(coherent light)을 방출할 수 있고, 그 방향은 활성영역과 수직된다. VCSEL는 기판(300), 기판(300) 상에 위치하고 활성층 영역(230)이 개재된 한 쌍의 분산 브레그 반사경(distributed Bragg reflector, DBR)적층(200, 210)을 포함하는 구조를 포함하고, 활성층 영역(230)은 전자 및 정공(Electron hole)이 서로 결합하여 광을 발생하는 영역이다. 활성층 영역(230)에 전류를 주입하여 광을 발생시키기 위하여, 제1 전극(240) 및 제2 전극(250)을 설치하고, 광은 VCSEL의 상면에 위치한 구멍(aperture)으로부터 탈출한다.
수직 공진 표면 광방출 레이저는 하나의 DBR적층(210)에 언더컷(260)을 구비할 수 있다. 도 24를 예로 들면, 언더컷(260)은 DBR적층(210) 중의 하나의 층의 주변부위를 선택적으로 제거하여 갭(gap)을 형성하는 것이고, 갭은 공기로 채워질 수 있고, 반도체재료의 전도율에 비해, 공기의 전도율은 뚜렷하게 낮으므로, DBR적층(210) 중의 기타 층의 전도율에 비해, DBR적층(210)에 형성된 언더컷(260)은 비교적 낮은 전도율을 갖는다.
본 발명은 발광소자를 공개했다. 발광소자는 방사선(radiation)을 방출할 수 있고, 기판; 기판 상에 위치하고 제1 분산 브레그 반사경(distributed Bragg reflector, DBR) 적층, 발광 적층, 제2 분산 브레그 반사경 적층 및 접촉층을 순차적으로 포함하는 에피택셜 구조; 전극; 접촉층 및 전극 사이에 개재된 전류 차단층; 전류 차단층에 형성된 제1 개구; 및 전극에 형성되고 제1 개구 내에 위치하는 제2개구;를 포함하고, 발광소자는 제2 분산 브레그 반사경 적층에 산화층이 결여되고 또한 이온 주입층이 결여된다.
도 1a는 본 공개된 내용의 실시예 1에 따른 발광소자의 평면도이다.
도 1b는 본 공개된 내용의 실시예 1에 따른 발광소자의 도 1a의 A-A'선에 따른 단면도이다.
도 2는 본 공개된 내용의 실시예 1에 따른 발광소자의 광 출력 전력(optical output power) 및 순방향 전류(forward current)의 관계 그래프이다.
도 3a 내지 도 4b는 도 1a 및 도 1b에 도시한 바와 같은 발광소자의 제조방법이다.
도 5a는 본 공개된 내용의 실시예 2에 따른 발광소자의 평면도이다.
도 5b는 본 공개된 내용의 실시예 2에 따른 발광소자의 도 5a의 A-A'선에 따른 단면도이다.
도 6은 본 공개된 내용의 실시예 3에 따른 발광소자의 단면도이다.
도 7은 본 공개된 내용의 실시예 4에 따른 발광소자의 단면도이다.
도 8a는 본 공개된 내용의 실시예 5에 따른 발광소자의 평면도이다.
도 8b는 본 공개된 내용의 실시예 5에 따른 발광소자의 도 8a의 A-A'선에 따른 단면도이다.
도 9a는 본 공개된 내용 실시예 6에 따른 발광소자의 평면도이다.
도 9b는 본 공개된 내용의 실시예 6에 따른 발광소자의 도 9a의 A-A'선에 따른 단면도이다.
도 10a는 본 공개된 내용의 도 9a에 도시한 바와 같은 실시예 6에 따른 발광소자의 전류 차단층의 평면도이다.
도 10b는 본 공개된 내용에 따른 발광소자의 도 10a의 A-A'선에 따른 단면도이다.
도 11a는 본 공개된 내용의 실시예 7의 발광소자의 평면도이다.
도 11b는 본 공개된 내용에 따른 발광소자의 도 11a의 A-A'선에 따른 단면도이다.
도 12a는 본 공개된 내용의 실시예 7에 따른 발광소자의 광 출력 전력(optical output power) 및 순방향 전류(forward current)의 관계 그래프이다.
도 12b는 도 12a 중 영역(I)의 확대도이다.
도 13a 내지 도 16b는 도 11a 및 도 11b에 도시한 바와 같은 발광소자의 제조방법이다.
도 17a는 본 공개된 내용의 실시예 8에 따른 발광소자의 평면도이다.
도 17b는 본 공개된 내용에 따른 발광소자의 도 17a의 A-A'선에 따른 단면도이다.
도 18은 본 공개된 내용의 실시예 9에 따른 발광소자의 단면도이다.
도 19a 내지 도 19d는 도 18에 도시된 바와 같은 발광소자의 제조방법이다.
도 20a는 본 공개된 내용의 실시예 10에 따른 발광소자의 평면도이다.
도 20b는 본 공개된 내용에 따른 발광소자의 도 20a의 A-A'선에 따른 단면도이다.
도 21a는 본 공개된 내용의 실시예 11에 따른 발광소자의 평면도이다.
도 21b는 본 공개된 내용에 따른 발광소자의 도 21a의 A-A'선에 따른 단면도이다.
도 22는 본 공개된 내용의 실시예 12에 따른 발광소자의 평면도이다.
도 23은 본 공개된 내용의 실시예 13에 따른 발광소자의 평면도이다.
도 24는 종래의 수직 공진 표면 광방출 레이저(Vertical-Cavity Surface-Emitting Laser, VCSEL)의 단면도이다.
이하 실시예에서는 도면과 함께 본 발명의 개념을 설명하며, 도면 또는 명세서 중, 유사하거나 동일한 부분은 동일한 부호를 사용했고, 도면에서, 소자의 형상 또는 두께는 확대 또는 축소될 수 있다. 특별히 주의해야 할 것은, 도면에 도시되지 않았거나 명세서에서 설명하지 않은 소자는, 당업자에게 알려진 형태일 수 있다.
본 공개된 내용 중, 특별한 설명이 없는 경우, 일반식 AlGaAs는 AlxGa(1-x)As를 의미하고, 0≤x≤1이고, 일반식 AlInP는 AlxIn(1-x)P를 의미하고, 0≤x≤1이고, 일반식 AlGaInP는 (AlyGa(1-y))1- xInxP를 의미하고, 0≤x≤1, 0≤y≤1이고, 일반식 AlGaN는 AlxGa(1-x)N를 의미하고, 0≤x≤1이고, 일반식 AlAsSb는 AlAs(1-x)Sbx를 의미하고, 0x1이고, 그리고 일반식 InGaP는 InxGa1 -xP를 의미하고, 0≤x≤1이다. 원소의 함량을 조절하여 상이한 목적에 도달할 수 있고, 예컨대 에너지 레벨을 조절하거나 주 발광파장을 조절한다.
도 1a는 본 공개된 내용의 실시예 1에 따른 발광소자의 평면도이다. 도 1b는 본 공개된 내용의 실시예 1에 따른 발광소자의 도 1a의 A-A'선에 따른 단면도이다. 본 실시예에서, 발광소자는 기판(10), 기판(10) 상에 위치한 에피택셜 구조(20), 전류 차단층(30), 제1 전극(40) 및 제2 전극(50)을 포함한다. 에피택셜 구조(20)는 제1 분산 브레그 반사경(distributed Bragg reflector, DBR) 적층(21), 발광 적층(22), 제2 DBR 적층(23) 및 접촉층(24)을 순차적으로 포함한다. 제1 DBR적층(21)의 도전형태는 제2 DBR 적층(23)의 도전형태와 다르다. 본 실시예에서, 제1 DBR 적층(21)은 n형이고, 제2 DBR 적층(23)은 p형이다. 전류 차단층(30)은 접촉층(24)과 제1 전극(40) 사이에 있다. 제1 개구(31)는 전류 차단층(30)에 형성되어 접촉층(24)을 노출시키고, 제1 개구(31)는 제1 최대 폭(W1)을 갖는다. 제1 전극(40)의 일부분은 제1 개구(31)에 충전되어 접촉층(24)과 직접 접촉한다. 제2 개구(25)는 제1 전극(40)에 형성되어 접촉층(24)을 노출시키고, 제2 개구(25)는 제1 최대 폭(W1)보다 작은 제2 최대 폭(W2)을 갖는다. 제2 전극(50)은 기판(10)의 에피택셜 구조(20)와 상대적인 일측에 위치한다. 발광소자는 방사선(R)을 방출할 수 있고, 600나노미터(nm) 내지 1600나노미터의 피크 파장을 가지며, 피크 파장은 830나노미터 내지 1000나노미터인 것이 바람직하다.
도 1b에 도시한 바와 같이, 본 실시예에서, 기판(10)의 폭, 에피택셜 구조(20)의 폭 및 전류 차단층(30)의 폭은 대체로 동일하다. 본 실시예에서, 제1 개구(31)의 형상은 원형이고, 제1 최대 폭(W1)은 원형의 직경이다. 제1 개구(31)의 형상은 본 실시예에 의해 한정되는 것은 아니고, 타원형, 장방형, 정방형, 능형 또는 임의의 기타 형상일 수 있다. 제1 최대 폭(W1)은, 20마이크로미터(μm) 내지 50마이크로미터이나 이에 한정되지 않는다. 전류 차단층(30)은 산화알루미늄(AlOx), 산화규소(SiOx), 질산화규소(SiOxNy), 질화규소(SixNy), 에폭시(epoxy), 폴리이미드(polyimide), 퍼플루오로 시클로부탄(perfluorocyclobutane), 벤조시클로부텐(benzocyclobutene, BCB) 또는 실리콘(silicone)을 포함하는 절연재료를 포함한다. 더 바람직하게는, 발광 적층이 방출한 방사선은 대체로 전류 차단층(30)을 투과할 수 있다. 전류 차단층(30)은 100nm보다 큰 두께를 가지며, 바람직하게는, 2μm 이하이고, 더 바람직하게는, nλ/4에 근접하거나 동일하고, 여기서 λ는 발광 적층(22)이 방출한 방사선의 피크 파장이고, n은 홀수인 양의 정수이다.
본 실시예에서, 제2 개구(25)의 형상은 원형이고, 제2 최대 폭(W2)은 원형의 직경이다. 제2 개구(25)의 형상은 본 실시예에 한정되지 않고, 타원형, 장방형, 정방형, 능형 또는 임의의 기타 형상일 수 있다. 바람직하게는, 제2 개구(25)의 형상은 대체로 제1 개구(31)의 형상과 동일하다. 바람직하게는, 제1 개구(31) 및 제2 개구(25)는 대체로 동심원이다.
도 1a 및 도 1b에 도시된 바와 같이, 제1 전극(40)은 하나의 연속된 층이고, 리드 선과 접합하기 위한 와이어 본딩 부분(41), 에피택셜 구조(20)를 통과하도록 전류를 주입하는 전류 주입부(42) 및 와이어 본딩 부분(41)과 전류 주입부(42)를 연결하는 브리지부(43)를 포함한다. 와이어 본딩 부분(41)은 전류 차단층(30) 상에 위치한다. 전류 주입부(42)는 제1 개구(31) 내에 충전(入)되어 접촉층(24)과 접촉한다. 일 실시예에서, 제2 개구(25)는 전류 주입부(42) 내에 형성되므로, 전류 주입부(42)는 환상 형태이다. 구체적으로, 본 실시예에서, 도 1a 및 도 1b에 도시된 바와 같이, 일부 전류 주입부(42)는 전류 차단층(30)의 측벽과 분리되므로, 전류 주입부(42)와 전류 차단층(30)의 측벽 사이에는 갭이 형성되어, 에피택셜 구조(20)의 일부분을 노출시킨다. 본 실시예의 제1 전극(40)은 50%보다 작은 전류 차단층(30)의 표면적을 커버한다. 전류 차단층(30)의 브리지부(43)와 에피택셜 구조(20) 사이에 위치한 부분 및 와이어 본딩 부분(41)과 에피택셜 구조(20) 사이에 위치한 부분은 전류가 와이어 본딩 부분(41) 및 브리지부(43)로부터 에피택셜 구조(20)로 직접 유입되는 것을 방지하기 위한 것이다.
본 실시예에서, 발광소자는 제2 DBR 적층(23) 중에 고저항 구조가 결여되고, 고저항 구조는 제2 DBR 적층(23) 중 제1 전극(40)의 바로 아래측에 위치하여 제1 전극(40)에 의해 커버되는 층을 가리키고, 이는 제2 DBR 적층(23) 중 기타 제1 전극(40)의 바로 아래측에 위치하여 제1 전극(40)에 의해 커버되는 층에 비해, 상대적으로 낮은 전도율을 갖는다. 구체적으로, 고저항 구조는 산화층, 이온 주입층 또는 도 24에 도시한 바와 같은 언더컷이다. 바람직하게는, 제2 DBR 적층(23) 중 전류 차단층(30)의 바로 아래측 위치 및/또는 제1 전극(40)의 바로 아래측 위치에 산화층, 이온 주입층 또는 언더컷이 결여된다. 즉, 제2 DBR 적층(23)의 제1 개구(31)의 바로 아래측에 위치한 부위의 전도율은 전체적으로 제2 DBR 적층(23)의 전류 차단층(30)에 의해 커버되는 부위의 전도율과 대체로 동일하다.
바람직하게는, 제2 DBR 적층(23)은 대체로 III-V 반도체 재료, 예컨대 AlGaAs로 조성된다. 제2 DBR 적층(23)은 산화물, 예컨대 의도적으로 형성된 산화알루미늄이 결여되고, 그 중 산화알루미늄은 AlaOb 실험식을 가지며, a 및 b는 0을 포함하지 않는 자연수이다. 또한, 제2 DBR 적층(23)은 전도율을 낮추는 모든 이온이 결여되고, 전도율을 낮추는 이온은 의도적으로 형성되어 제2 DBR 적층(23)의 일부 부위의 전도율을 낮추며, 기타 도전부위의 제2 DBR 적층(23)의 전도율에 비해, 3개 수량급(order of magnitude)을 초과하게 낮추고, 더 바람직하게는 5개 수량급을 초과하게 낮춘다. 전도율을 낮추는 이온은 아르곤(Ar) 이온, 헬륨(He) 이온 또는 수소(H) 이온을 포함한다. 제2 DBR 적층(23)은 환경 중에 존재하는 불가피한 이온을 포함할 수 있으나, 불가피한 이온은 제2 DBR 적층(23)의 전도율을 대체로 변화시키지 않고, 예컨대 기타 도전 부위의 제2 DBR 적층(23)의 전도율에 비해, 불가피한 이온은 대체로 1개 수량급을 초과하게 전도율을 감소시키지 않으므로, 불가피한 이온은 본 공개된 내용에 고려되지 않아야 한다. 일 실시예에서, 발광소자는 제2 DBR 적층(23)에서 도 24에 도시된 바와 같은 언더컷이 결여되므로, 제2 DBR 적층(23)의 각 층은 대체로 III-V 반도체 재료로 조성되고 제2 DBR 적층(23)의 임의의 층 중에 공기 간극이 존재하지 않는다.
전류가 에피택셜 구조(20)로 유입되면, 제1 개구(31) 중의 전류 주입부(42)는 에피택셜 구조(20)의 접촉층(24)과 직접 접촉하고, 또한 와이어 본딩 부분(41) 및 브리지부(43)는 전류 차단층(30)에 의해 에피택셜 구조(20)와 분리되어 절연되므로, 전류는 주로 에피택셜 구조(20) 중 전류 차단층(30)에 의해 커버되지 않고 전류 주입부(42)와 직접 접촉하는 부위를 흐른다. 즉, 전류가 에피택셜 구조(20)로 유입되면, 제2 DBR 적층(23)의 전류 차단층(30)의 바로 아래측에 위치한 부위의 전류밀도는 제2 DBR 적층(23)의 전류 차단층(30)에 의해 커버되지 않은 부위의 전류밀도보다 훨씬 낮다. 따라서, 에피택셜 구조(20)의 전류 주입부(42)와 직접 접촉하고 대체로 제1 개구(31)의 바로 아래측에 위치한 부위를 방사선(R)을 발생하는 방사선방출영역(I)으로 한다. 방사선(R)은 제1 개구(31)를 통해 발광소자로부터 탈출한다. 구체적으로, 에피택셜 구조(20)의 최상층, 즉 본 실시예에서 접촉층(24)은, 에피택셜 구조(20) 중 제1 층인 발광소자 중 제한된 전류를 전도하는 반도체층이다. 도 2는 본 공개된 내용의 실시예 1에 따른 발광소자의 광 출력 전력(optical output power, P0) 및 순방향 전류(forward current, If)의 관계 그래프이다. 본 실시예에서, 발광소자는 순방향 전압(Vf), 레이저 임계 전류(Ith) 및 포화 전류(Isat)를 가진다. 발광소자는 순방향 전압(Vf)에서 현저한 순방향 전류를 전도하기 시작한다. 예컨대, 본 실시예에서 현저한 순방향 전류는 5밀리 암페어(mA)이다. 레이저 임계 전류(Ith)는 발광소자의 방사선방출영역에서 방출되는 방사선 중 유도방출(stimulated emission)이 자발적 방출(spontaneous emission)을 초과했을 때의 최소 전류이므로, 레이저 임계 전류(Ith)에서 방사선은 간섭성(coherence)이다. 포화 전류(Isat)는 방사선 출력이 더 이상 순방향 전류의 증가에 따라 증가하지 않는 전류이다. 발광소자가 발광소자의 순방향 전압(Vf)보다 큰 작동전압(Vop) 및 레이저 임계 전류(Ith)보다 작은 순방향 전류에서 작동할 때, 본 공개된 내용의 발광소자의 방사선방출영역(I)에서 방출되는 방사선은 비간섭광이다. 바람직하게는, 발광소자가 발광소자의 순방향 전압(Vf)보다 큰 작동전압(Vop) 및 레이저 임계 전류(Ith)보다 작은 순방향 전류에서 작동할 때, 비간섭광은 60도보다 큰 원거리장 각도(far-field angle)을 갖는다. 발광소자가 레이저 임계 전류(Ith)보다 크고 또한 포화 전류(Isat)보다 작은 순방향 전류에서 작동할 때, 발광소자의 방사선방출영역(I)에서 방출되는 방사선(R)은 간섭광이고, 원거리장 각도는 15도보다 작다. 구체적으로, 발광소자의 순방향 전류가 레이저 임계 전류(Ith)과 대체로 동일할 때, 에피택셜 구조(20) 중 비(非)방사선방출영역의 전류밀도는 방사선방출영역(I)의 전류밀도보다 훨씬 작고, 더욱이 와이어 본딩 부분(41) 및 브리지부(43)가 에피택셜 구조(20)가 방출하는 방사선을 차단하므로, 에피택셜 구조(20)의 비(非)방사선방출영역이면서 제1 전극(40)에 의해 커버되지 않는 영역은 비간섭광(R1)을 방출한다.
본 실시예에서, 레이저 임계 전류(Ith)는 약 20밀리 암페어이다. 레이저 임계 전류(Ith), 포화 전류(Isat) 및 레이저 임계 전류(Ith)와 포화 전류(Isat) 사이의 차이는 상이한 응용 필요에 따라 제1 개구(31)의 제1 최대 폭(W1)에 의해 조절될 수 있다. 예컨대, 비교적 높은 레이저 임계 전류(Ith), 비교적 높은 포화 전류(Isat) 및 비교적 높은 레이저 임계 전류(Ith)와 포화 전류(Isat)의 차이가 필요한 경우, 제1 최대 폭(W1)은 비교적 클 수 있다. 구체적으로, 레이저 임계 전류(Ith) 및 제1 최대 폭(W1)은 아래의 공식을 만족한다:
0. 4 W1(mm)-7≤Ith(밀리 암페어)≤0. 4 W1(mm)+7
표 1은 상이한 순방향 전류에서의 발광소자의 방사선의 원거리장 각도를 나타낸다. 광속 발산도를 명확하게 설명하기 위하여, 본 공개된 내용의 원거리장 각도는 반 파장 폭의 발산각이다.
순방향 전류(mA) 원거리장 각도
20 65. 6°
23 5. 6°
25 5. 8°
30 6. 5°
40 7. 9°
표 1을 통해 알 수 있듯이, 하나의 순방향 전류가 레이저 임계 전류(Ith)보다 높고 포화 전류(Isat)보다 낮은 상황에서, 방사선의 원거리장 각도는 15도보다 작고, 바람직하게는 5도 내지 15도이고, 더 바람직하게는 5도 내지 13도이다.
본 공개된 내용에서, 비록 발광소자는 제2 분산 브레그 반사경 적층(23) 중에 산화층 및 이온 주입층을 포함하는 고저항 구조가 결여되지만, 전류 차단층(30) 및 제1 전극(40)을 포함하는 것에 의해, 에피택셜 구조(20)의 최상층이 에피택셜 구조(20) 중 발광소자에서 제한된 전류를 전도하는 제1 층되게 하여, 순방향 전류가 레이저 임계 전류(Ith)와 포화 전류(Isat) 사이에 있을 때, 발광소자가 15도보다 작은 원거리장 각도를 갖게 한다. 또한, 종래 기술의 발광소자는 제2 분산 브레그 반사경 적층(23) 중에 산화층과 같은 고저항의 구조를 포함하며, 정상적인 작동 조건에서, 특히 높은 순방향 전류의 작동하에서 종래기술의 발광소자는 큰 원거리장 각도를 갖는다. 그러나, 순방향 전류가 레이저 임계 전류(Ith)와 포화 전류(Isat) 사이에 있는 경우, 본 공개된 내용 중의 발광소자는 15도보다 작은 원거리장 각도를 갖는다. 발광소자는 근접 센서, 야시장비 또는 혈중산소 검출기 등의 센서에 응용될 수 있다.
도 3a 내지 도 4b는 도 1a 및 도 1b에 도시된 발광소자의 제조방법이다. 도 3b는 본 공개된 내용의 도 3a의 A-A'선에 따른 단면도이다. 도 4b는 본 공개된 내용의 도 4a의 A-A'선에 따른 단면도이다.
본 방법은,
a. 기판(10)을 제공하는 단계(도 3a 및 도 3b를 참조);
b. 기판(10) 상에 에피택시 성장에 의하여 에피택셜 구조(20)를 형성하는 단계;
c. 스퍼터링 또는 증착과 같은 임의의 적절한 방법에 의해 에피택셜 구조(20) 상에 전류 차단층(30)을 형성하는 단계;
d. 리소그래피 마스크에 의해 전류 차단층(30)을 패턴화하여, 임의의 적절한 방법으로 제1 개구(31)를 형성하여 일부분의 에피택셜 구조(20)를 노출시키는 단계;
e. 전류 차단층(30) 상에 금속층(미도시)을 형성하여 도 4a 및 도4b에 도시된 바와 같은 제1 개구(31)를 커버하는 단계;
f. 리소그래피 마스크에 의해 금속층을 패턴화하여 제1 전극(40)을 형성하되, 제1 전극(40)은 전류 주입부(42), 와이어 본딩 부분(41) 및 와이어 본딩 부분(41)과 전류 주입부(42)를 연결하는 브리지부(43)를 포함하고, 와이어 본딩 부분(41) 및 브리지부(43)는 전류 차단층(30) 상에 위치시키고, 전류 주입부(42)는 제1 개구(31)에 충전하고, 제2 개구(25)는 전류 주입부(42) 내에 형성하여 에피택셜 구조(20)를 노출시키는 단계;
g. 임의의 적절한 방법으로 기판(10)의 에피택셜 구조(20)와 상대적인 다른 일측 상에 제2 전극(50)을 형성하는 단계; 및
h. 단계g에서 형성된 구조를 절단하여, 도 1a 및 도 1b에 도시된 바와 같은 개별적으로 완성된 발광소자를 얻는 단계;를 포함한다.
본 공개된 내용의 방법은 제2 DBR 적층(23)에서의 전도율을 낮추는 단계, 예컨대 산화영역의 전도율, 이온 주입영역의 전도율 또는 도 24에 도시된 바와 같은 언더컷의 전도율이 제2 DBR 적층(23) 중 이미 처리된 영역을 제외한 기타 부위의 전도율보다 낮아지도록 하는 제2 DBR 적층(23) 내의 적어도 하나의 층을 산화시키는 산화단계, 제2 DBR 적층(23) 내의 적어도 하나의 층에 전도율을 낮추는 적어도 하나의 이온을 주입하는 단계 및/또는 제2 DBR 적층(23) 내의 적어도 하나의 층의 주변부위를 선택적으로 식각하여 도 24에 도시된 바와 같은 언더컷을 형성하는 단계를 포함하지 않는다. 산화단계, 이온 주입단계 및 제2 DBR 적층(23) 중 하나의 층을 식각하는 단계는 제2 DBR 적층(23)의 제1 전극(40) 바로 아래측에 위치한 부위를 대체로 절연되는 영역으로 변환시켜, 제2 DBR 적층(23) 중에 고저항 구조를 형성하기 위한 것이다. 본 공개된 내용의 방법은 패턴화 제조공정에서, 4종 이하의 서로 다른 리소그래피 마스크를 사용한다. 본 실시예에서, 본 방법은 패턴화 제조공정에서, 2종의 서로 다른 리소그래피 마스크만을 사용한다. 따라서, 본 공개된 내용의 발광소자의 제조방법은 간단하며 원가 효율성에 부합한다.
도 5a는 본 공개된 내용의 실시예 2의 발광소자의 평면도이다. 도 5b는 본 공개된 내용의 실시예 2에 따른 발광소자의 도 5a의 A-A'선에 따른 단면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 2에 따른 발광소자는 실시예 1과 대체로 동일한 구조를 가지며, 상이한 점은, 전류 차단층(30)의 폭이 에피택셜 구조(20)의 폭보다 작은 것이다. 따라서, 발광소자의 평면도에서, 에피택셜 구조(20)의 주변부위는 전류 차단층(30)으로부터 노출된다. 또한, 제1 전극(40)은 실시예 1과 상이한 형상을 갖는다. 구체적으로, 제1 전극(40)은 전류 차단층(30)의 제1 개구(31)를 감싸는 전체 측벽을 커버하므로, 접촉층(24)의 제2 개구(25) 바로 아래측에 위치하는 부위만을 노출시킨다. 따라서, 에피택셜 구조(20)의 전류 주입부(42)와 직접 접촉하면서 대체로 제1 개구(31)의 바로 아래측에 위치하는 부위를 방사선방출영역(I)으로 하고, 방사선(R)은 주로 제2 개구(25)에 의해 발광소자의 표면으로부터 탈출한다. 또한, 제1 전극(40)은 50%를 초과하는 전류 차단층(30)의 표면적을 커버하고, 제1 전극(40)은 대체로 전류 차단층(30)과 동일한 형상을 갖는다. 바람직하게는, 제1 전극(40)은 80%를 초과하는 전류 차단층(30)의 표면적을 커버하고, 더 바람직하게는, 90%를 초과하는 전류 차단층(30)의 표면적을 커버한다. 제1 전극(40)의 제2 개구(25)와 멀리떨져 있는 부분은 리드선과의 접합에 사용된다. 제1 전극(40)이 50%를 초과하는 전류 차단층(30)의 표면적을 커버하고 전류 차단층(30)의 제1 개구(31)를 감싸는 전체 측벽을 커버하므로, 순방향 전류가 발광소자의 레이저 임계 전류(Ith)보다 높은 경우, 대체로 제1 전극(40)의 바로 아래측에 위치한 발광 적층(22)에서 방출되는 비간섭광은 제1 전극(40)에 의해 차단되만, 발광 적층(22)에서 방출되는 간섭광은 제2 개구(25)로부터 탈출한다. 도 5a 및 도 5b에 도시된 발광소자의 제조방법은 도 1a 및 도 1b에 도시한 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 금속층을 패턴화하는 리소그래피 마스크가 상이하므로, 실시예 2에서 제1 전극(40)의 패턴은 실시예 1의 제1 전극(40)의 패턴과 다르다.
도 6은 본 공개된 내용의 실시예 3에 따른 발광소자의 단면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 3에 따른 발광소자는 실시예 2와 대체로 동일한 구조를 포함하고, 상이한 점은, 에피택셜 구조(20)의 주변부위는 임의의 적절한 방법에 의해 제거되어 일정 폭을 갖는 돌출부(26)를 형성하는 것이다. 돌출부(26)의 폭은 기판(10)의 폭보다 작고, 노출된 플랫폼 측벽(261)을 포함하고, 기판(10)의 최외측 가장자리에 비해, 제2 개구(25)에 근접한다. 구체적으로, 전류 차단층(30)은 플랫폼 측벽(261) 및 제1 DBR 적층(21)의 상면을 커버한다. 본 실시예에서, 전류 차단층(30)은 에피택셜 구조(20)의 돌출부(26)의 플랫폼 측벽(261)을 보호한다. 따라서, 에피택셜 구조(20)의 안정성 및 발광소자의 안정성을 향상시킨다. 도 6a에 도시된 발광소자의 제조방법은 도 5a 및 도 5b에 도시된 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 에피택셜 구조(20) 상에 전류 차단층(30)을 형성하기 전에, 본 방법은 임의의 적절한 방식으로 에피택셜 구조(20)의 제2 DBR 적층(23)의 주변부위, 발광 적층(22)의 주변부위 및 제1 DBR 적층(21)의 주변부위를 제거하여 플랫폼 측벽(261)을 포함하는 돌출부(26)를 형성하는, 에피택셜 구조(20)를 패턴화하는 단계를 더 포함하는 것이다. 본 실시예에서, 본 공개된 내용의 방법은 패턴화 제조공정에서, 3개 이하의 서로 다른 리소그래피 마스크를 사용한다. 따라서, 본 공개된 내용의 발광소자의 제조방법은 간단하며 원가 효율성에 부합한다.
도 7은 본 공개된 내용의 실시예 4에 따른 발광소자의 단면도이다. 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 4에 따른 발광소자는 실시예 3과 대체로 동일한 구조를 포함하고, 상이한 점은, 제1 전극(40)은 플랫폼 측벽(261)을 따라 커버되므로, 전류 차단층(30)은 에피택셜 구조(20)와 제1 전극(40) 사이에 개재된다. 제1 전극(40)은 플랫폼 측벽(261)을 따라 전류 차단층(30)을 커버하여 발광 적층(22)에서 방출되는 방사선이 플랫폼 측벽(261)으로부터 방출되는 것을 방지할 수 있다. 도 7에 도시된 발광소자의 제조방법은 도 6에 도시된 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 금속층을 패턴화하는 리소그래피 마스크가 상이한 것이다.
도 8a는 본 공개된 내용의 실시예 5에 따른 발광소자의 평면도이고, 도 8b는 본 공개된 내용의 실시예 5에 따른 발광소자의 도 8a의 A-A'선에 따른 단면도이다. 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 5의 발광소자는 실시예 4와 대체로 동일한 구조를 포함하고, 상이한 점은, 제1 개구(31)는 전류 차단층(30)에 의해 정의되는 환형인 것이다. 전류 차단층(30)은 내부(301), 외부(302)를 포함하되, 외부(302)가 감싸면서 형성한 원형의 직경은 제1 최대 폭(W1)이다. 제1 개구(31)는 전류 차단층(30)의 내부(301) 및 전류 차단층(30)의 외부(302)를 분리시켜, 전류 차단층(30)의 내부(301)가 방사선방출영역을 보호하도록 한다. 본 실시예에서, 전류 차단층(30)은 대체로 nλ/4과 동일한 두께를 가지며, λ은 발광 적층에서 방출되는 방사선의 피크 파장이고, n은 홀수인 양의 정수이다. 제1 전극(40)은 제1 개구(31)에 충전되고, 전류 차단층(30)의 내부(301)의 측벽을 따라 커버되고 전류 차단층(30)의 내부(301)의 외주영역 상에 위치한다. 제2 개구(25)는 아래의 전류 차단층(30)의 내부(301)를 노출시킨다. 도 8a 및 도 8b에 도시된 발광소자의 제조방법은 도 7에 도시된 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 전류 차단층(30)을 패턴화하는 리소그래피 마스크가 상이한 것이다.
도 9a는 본 공개된 내용의 실시예 6에 따른 발광소자의 평면도이고, 도 9b는 본 공개된 내용의 실시예 6에 따른 발광소자의 도 9a의 A-A'선에 따른 단면도이다. 도 10a는 본 공개된 내용의 도 9a에 도시된 바와 같은 실시예 6에 따른 발광소자의 전류 차단층(30)의 평면도이고, 도 10b는 본 공개된 내용에 따른 발광소자의 도 10a의 A-A'선에 따른 단면도이고, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 6의 발광소자는 실시예 4와 대체로 동일한 구조를 포함하고, 상이한 점은, 본 실시예의 발광소자는 단일 다이에 복수의 2차원 어레이 모양으로 배열된 방사선방출영역(I)을 포함하는 것이다. 구체적으로, 복수의 제1 개구(31)는 차단층(30) 내에 형성되어 접촉층(24)을 노출시킨다. 도 10a에 도시된 바와 같이, 전류 차단층(30)은 연속층이다. 제1 개구(31)는 전류 차단층에 의해 서로 분리된다. 복수의 2차원 어레이 모양으로 배열된 제2 개구(25)는 제1 전극(40) 내에 형성되어 서로 분리되고, 그 중 각각의 제2 개구(25)는 하나의 제1 개구(31) 내에 상응하게 형성되어 접촉층(24)을 노출시키므로, 상응한 제1 개구(31) 및 제2 개구(25)는 동심원이다. 제1 전극(40)은 연속층이며, 어떤 제2 개구(25)도 결여되고 리드선과 접합하기 위한 와이어 본딩 부분(41)이 구비된다. 제1 전극(40)의 일부분은 제1 개구(31) 내에 충전되고, 제1 개구(31)를 감싸는 전류 차단층(30)의 측벽을 따라 커버되고 에피택셜 구조(20)의 접촉층(24)과 직접 접촉한다. 에피택셜 구조(20)의 제1 전극(40)에 직접 접촉하며 대체로 제1 개구(31)의 바로 아래측에 위치하는 부위를 방사선방출영역으로 한다. 방사선방출영역(I)의 설치방식은 본 실시예에 한정되지 않고, 예컨대, 방사선방출영역(I)은 교차로 배열되거나 또는 두 개의 서로 인접한 행 및/또는 열의 방출영역(I)의 개수는 상이할 수 있다.
도 11a는 본 공개된 내용의 실시예 7에 따른 발광소자의 평면도이고, 도 11b는 본 공개된 내용에 따른 발광소자의 도 11a의 A-A' 선에 따른 단면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 실시예에서, 기판(10), 제1 DBR 적층(21), 발광 적층(22), 제2 DBR 적층(23)은 실시예 2와 대체로 동일하다. 상이한 점은, 접촉층(24)은 제3 폭(W3)을 가지며, 제2 DBR 적층(23)은 제3 폭(W3)보다 큰 제4 폭(W4)을 갖는 것이다. 발광소자는 접촉층(24)을 커버하며 제1 전극(40)과 접촉층(24) 사이에 삽입 설치되는 도전층(60)을 더 포함한다. 도전층(60)은 제2 DBR 적층(23)의 제4 폭(W4)과 대체로 동일한 제5 폭(W5)을 갖는다. 제1 전극(40)은 도전층(60)의 50%이상의 표면적을 커버한다. 바람직하게는, 제1 전극(40)은 도전층(60)의 80%이상의 표면적을 커버하고, 더 바람직하게는, 도전층(60)의 90%이상의 표면적을 커버한다. 제1 전극(40)의 윤곽은 도전층(60)의 윤곽과 대체로 동일하다. 제1 전극(40)은 접촉층(24)과 직접 접촉하는 것이 아니라 도전층(60)과 직접 접촉한다. 방사선방출영역(I)은 접촉층(24)의 바로 아래측에 위치한 제2 DBR 적층(23), 발광 적층(22) 및 제1 DBR 적층(21)을 포함한다. 방사선(R)는 제2 개구(25)로부터 발광소자를 탈출한다.
제2 개구(25)는 접촉층(24)의 바로 위측에 위치하고 아래의 도전층(60)을 노출시킨다. 접촉층(24)의 제3 폭(W3)과 제2 개구(25)의 제2 최대 폭(W2)의 비율은 0. 1 내지 3 이고, 바람직하게는, 0.5 내지 1.1 이고, 더 바람직하게는, 0.6 내지 0.8 이다. 제3 폭(W3)과 제2 최대 폭(W2)의 비율을 1보다 작게 하는 것을 통해, 제1 전극(40)이 방사선방출영역(I)에서 방출되는 광을 쉽게 차단하지 못하게 되어, 제2 개구(25)로부터 비교적 많은 광이 탈출된다.
접촉층(24)의 바로 아래측에 위치한 제2 DBR 적층(23)의 부위의 전도율은 제2 DBR 적층(23)의 접촉층(24)에 의해 커버되지 않은 부위의 전도율과 대체로 동일하다. 도전층(60)은 nλ/4에 근접하거나 동일한 두께를 가지며, λ는 발광 적층(22)에서 방출되는 방사선의 피크 파장이고, n은 홀수인 양의 정수이다. 도전층(60)은 투명 도전 금속 산화물 재료, 예컨대 인듐주석산화물(ITO), 알루미늄아연산화물(AZO), 카드뮴주석산화물(SnCdO), 안티몬주석산화물(ATO), 산화아연(ZnO), 아연주석산화물(ZTO) 또는 인듐아연산화물(IZO)을 포함한다. 도전층(60)은 대체로 발광 적층(22)이 방출하는 방사선이 투과되도록 할 수 있다.
전류가 제1 전극(40)에서 에피택셜 구조(20)로 유입되면, 접촉층(24)과 제2 DBR적층(23) 사이의 접촉 전기저항은 도전층(60)과 에피택셜 구조(20) 사이의 접촉 저항보다 상대적으로 낮으므로, 대부분의 전류는 도전층(60)에서 접촉층(24)으로 흐르고, 계속하여 접촉층(24)을 지나 에피택셜 구조(20)로 유입된다. 다시 말하면 접촉층(24) 바로 아래측에 위치한 제2 DBR 적층(23)의 부위의 전류밀도는 제2 DBR 적층(23)의 접촉층(24)에 의해 커버되지 않은 부위의 전류밀도보다 높다. 구체적으로, 에피택셜 구조(20)의 최상층, 즉 본 실시예에서 즉 접촉층(24)은 에피택셜 구조(20) 중 제1 층인 발광소자에서 제한된 전류를 전도하는 반도체층이다.
도 12a는 본 공개된 내용의 실시예 7에 따른 발광소자의 광 출력 전력(optical output power) 및 순방향 전류(forward current)의 관계 그래프이고, 접촉층(24)의 제3 폭(W3)과 제2 개구(25)의 제2 최대 폭(W2)의 비율은 약 1이다. 도 12b는 도 12a 중 영역(I)의 확대도이다. 본 실시예에서, 레이저 임계 전류(Ith)는 약 13밀리 암페어이고, 포화 전류(Isat)는 약 79밀리 암페어이다. 레이저 임계 전류(Ith), 포화 전류(Isat) 및 레이저 임계 전류(Ith)와 포화 전류(Isat) 사이의 차이는 상이한 응용 필요에 따라 접촉층(24)의 제3 폭(W3)에 의해 조절될 수 있다. 예컨대, 비교적 높은 레이저 임계 전류(Ith), 비교적 높은 포화 전류(Isat) 및 비교적 높은 레이저 임계 전류(Ith)와 포화 전류(Isat)의 차이가 필요한 경우, 제3 폭(W3)은 비교적 클 수 있다. 구체적으로, 레이저 임계 전류(Ith) 및 제3 폭(W3)은 다음 식을 만족한다:
0. 4 W3(mm)-7≤Ith(밀리 암페어)≤0. 4 W3(mm)+7
일 실시예에서, 방사선은 약 850±10나노미터인 피크 파장을 갖는다. 일 실시예에서, 방사선은 약 940±10나노미터인 피크 파장을 갖는다.
표 2는 상이한 순방향 전류에서의 실시예 7의 발광소자의 방사선의 원거리장 각도를 나타내며, 방사선은 약 850±10나노미터인 피크 파장을 갖는다.
순방향 전류(mA) 원거리장 각도
15 10. 54°
18 10. 90°
22 10. 9°
표 3은 상이한 순방향 전류에서의 실시예 7의 발광소자의 방사선의 원거리장 각도를 나타내고, 방사선은 약 940±10나노미터인 피크 파장을 갖는다. 본 실시예에서, 레이저 임계 전류(Ith)는 약 13밀리 암페어이고, 포화 전류(Isat)는 약 80밀리 암페어이다.
주입전류(밀리 암페어) 원거리장 각도 전력(밀리와트)
15 9. 61° 1. 09
18 11. 03° 1. 95
22 11. 19° 3. 2
표 2 및 표 3에 따르면, 순방향 전류가 레이저 임계 전류(Ith)보다 높고 포화 전류(Isat)보다 낮은 경우, 방사선의 원거리장 각도는 15도보다 작고, 바람직하게는 5 내지 15도 이고, 더 바람직하게는 8 내지 13 도 이다.
본 공개된 내용에서, 비록 발광소자는 제2 DBR 적층(23) 중에 산화층 및 이온 주입층을 포함하는 고저항 구조가 결여되나, 접촉층(24) 및 도전층(60)에 의해, 에피택셜 구조(20)의 최상층이 에피택셜 구조(20) 중 제1 층인 발광소자에서 제한된 전류를 전도한 반도체층되게 하고, 순방향 전류가 레이저 임계 전류(Ith) 및 포화 전류(Isat) 사이에 있을 경우, 발광소자의 원거리장 각도 15도 이하이다.
도 13a 내지 도 16b는 도 11a 및 도 11b에 도시된 바와 같은 발광소자의 제조방법이다.
본 방법은,
a. 기판(10)을 제공하는 단계(도 13a 및 도 13b를 참조);
b. 기판(10) 상에 에피택시 성장에 의하여 에피택셜 구조(20)를 형성하는 단계;
c. 리소그래피 마스크에 의해 접촉층(24)을 패턴화하는 단계;
d. 스퍼터링 또는 증착 등 임의의 적절한 방법으로, 패턴화된 접촉층(24)을 커버하는 도전층(60)을 형성하는 단계(도 14a 및 도 14b를 참조);
e. 도전층(60) 상에 금속층(미도시)을 형성하는 단계(도 15a 및 도 15b를 참조);
f. 리소그래피 마스크에 의해 금속층을 패턴화하여 제1 전극(40)을 형성하고 제2 개구(25)를 제1 전극(40) 내에 형성하되, 제1 전극(40)은 접촉층(24)의 패턴과 대체로 상호 보완되는 패턴을 구비하고, 즉, 접촉층(24)의 패턴은 제1 전극(40)의 제2 개구(25)의 패턴과 대체로 동일하고, 제2 개구(25)는 대체로 접촉층(24)의 바로 위측에 위치시키는 단계;
g. 에피택셜 구조(20)의 주변부위를 제거하여 기판(10)의 최외측 가장자리에 비해 제2 개구(25)와 근접하는 노출된 플랫폼 측벽(261)을 포함하는 돌출부(26)를 형성하는 단계(도 16a 및 도 16b를 참조);
h. 기판(10)의 에피택셜 구조(20)와 상대적인 다른 일측 상에 제2 전극(50)을 형성하는 단계;
i. 단계h에서 형성된 구조를 절단하여, 도 11a 및 도 11b에 도시된 바와 같은 개별적으로 완성된 발광소자를 얻는 단계;를 포함한다.
본 공개된 내용의 방법은 제2 DBR 적층(23) 중 일부 영역의 전도율을 낮추는 단계, 예컨대 산화영역의 전도율, 이온 주입영역의 전도율 또는 도 24에 도시된 바와 같은 언더컷의 전도율이 제2 DBR 적층(23) 중 이미 처리된 영역을 제외한 기타 부위의 전도율보다 낮도록 하는 제2 DBR 적층(23) 내 적어도 하나의 층을 산화하는 산화단계, 제2 DBR 적층(23) 내의 적어도 하나의 층에 전도율을 낮추는 적어도 하나의 이온을 주입하는 단계 및/또는 제2 DBR 적층(23) 내 적어도 하나의 층의 주변부위를 선택적으로 식각하여 언더컷을 형성하는 단계를 포함하지 않는다. 산화단계, 이온 주입단계 및 제2 DBR 적층(23) 중 하나의 층을 식각하는 단계는 제2 DBR 적층(23)의 제1 전극(40) 바로 아래측에 위치한 부위를 대체로 절연되는 영역으로 변환시켜, 제2 DBR 적층(23) 내에 고저항 구조를 형성하기 위한 것이다. 바람직하게는, 본 공개된 내용의 방법은 패턴화 제조공정에서, 3종 이하의 서로 다른 리소그래피 마스크를 사용한다. 따라서, 본 공개된 내용의 발광소자의 제조방법은 간단하며 원가 효율성에 부합한다.
도 17a는 본 공개된 내용의 실시예 8의 발광소자의 평면도를 공개했다. 도 17b는 본 공개된 내용에 따른 발광소자의 도 17a의 A-A'선에 따른 단면도이고, 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 8에 따른 발광소자는 실시예 7과 대체로 동일한 구조를 포함하며, 상이한 점은, 발광소자는 대체로 등각(Conformal) 형태로 에피택셜 구조(20), 도전층(60) 및 제1 전극(40)을 커버하는 보호층(110)을 더 포함하는 것이다. 보호층(110)은 아래의 제1 전극(40)을 노출시키면서 접촉층(24)과 멀어져 리드 선과 접합하기 위한 개공(111)을 포함한다. 도 17a 및 도 17b에 도시한 바와 같은 발광소자의 제조방법은 도 16a 및 도 16b에 도시된 바와 같은 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 노출된 플랫폼 측벽(261)을 포함하는 돌출부(26)를 형성한 후, 본 방법은 에피택셜 구조(20)의 노출된 플랫폼 측벽(261)을 따라, 도전층(60)의 측벽을 따라, 제1 전극(40)의 측벽을 따라 등각 형태로 보호층(110)을 형성하고, 보호층(110)은 도전층(60) 및 제1 전극(40)을 커버하는 단계를 더 포함하는 것이다. 계속하여, 보호층(110)을 패턴화하여 보호층(110) 내에 개공(111)을 형성하여 아래의 제1 전극(40)을 노출시킨다. 본 공개된 내용의 방법은 패턴화 제조공정에서, 4개 이하의 서로 다른 리소그래피 마스크를 사용한다. 따라서, 본 공개된 내용의 발광소자의 제조방법은 간단하며 원가 효율성에 부합한다.
도 18은 본 공개된 내용의 실시예 9의 발광소자의 단면도이고, 그 평면도는 대체로 도 11a와 동일하다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 9의 발광소자는 실시예 7와 대체로 동일한 구조를 포함하고, 상이한 점은, 본 실시예의 발광소자는 영구기판(90) 및 영구기판(90)과 에피택셜 구조(20) 사이에 개재된 접착층(100)을 포함하는 것이다. 본 실시예에서, 영구기판(90)은 기판(10)의 열 전도율보다 높은 열전도율을 갖는다. 접착층(100)은 영구기판(90)과 에피택셜 구조(20)를 연결하기 위한 것이다. 도 19a 내지 도 19d는 도 18에 도시된 바와 같은 발광소자의 제조방법이다. 도 18에 도시된 바와 같은 발광소자의 제조방법은 도 11a 및 도 11b에 도시된 바와 같은 발광소자의 제조방법과 대체로 동일하다. 상이한 점은, 접촉층(24)을 패턴화하기 전에, 도 19a에 도시된 바와 같이 본 방법은 임시 접착층(80)에 의해 에피택셜 구조(20)를 임시 기판(70)에 접착하는 단계를 더 포함하고, 본 실시예에서 임시 기판은 유리를 포함하고, 도 19b에 도시된 바와 같이 임의의 적절한 방법으로 기판(10)을 제거하고, 도 19c에 도시된 바와 같이 접착층(100)에 의해 에피택셜 구조(20)를 영구기판(90)에 접착하고, 도 19d에 도시한 바와 같이 임시 기판(70) 및 임시 접착층(80)을 제거하는 것이다. 본 실시예에서, 접착단계에 의해 발광소자는 비교적 높은 열전도율을 갖는 영구기판(90)을 포함한다. 따라서, 발광소자는 비교적 높은 출력 전력에 도달할 수 있다.
도 20a는 본 공개된 내용의 실시예 10에 따른 발광소자의 평면도이고, 도 20b는 본 공개된 내용에 따른 발광소자의 도 20a의 A-A' 선에 따른 단면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 10에 따른 발광소자는 실시예 7과 대체로 동일한 구조를 가지며, 상이한 점은, 본 실시예의 발광소자는 단일 다이에 복수의 어레이 모양으로 배열된 방사선방출영역(I)을 포함하는 것이다. 구체적으로, 접촉층(24)은 복수의 분리된 접촉영역(241)을 포함하고, 도 20a에 도시한 바와 같이 접촉영역(241)은 2차원 어레이 모양으로 배열된다. 각각의 접촉영역(241)은 제3 폭(W3)을 갖는다. 본 실시예에서, 복수의 접촉영역(241)의 제3 폭(W3)은 대체로 서로 동일하다. 도 20b에 도시한 바와 같이, 도전층(60)은 연속층이고 복수의 분리된 접촉영역(241)을 커버한다. 제1 전극(40)은 도전층(60)에 위치하고 연속층이다. 복수의 제2 개구(25)는 제1 전극(40) 내에 형성되며 서로 분리되고, 그 중 각각의 제2 개구(25)는 대응되게 형성되어 하나의 접촉영역(241)과 나란히 정렬된다. 제2 개구(25)는 도전층(60)을 노출시킨다. 그 중 하나의 접촉영역(241)의 제3 폭(W3)에 대응하는 제2 개구(25)의 제2 폭(W2)의 비율은 0.1 내지 3 이고, 바람직하게는 0.9 내지 1.1 이다. 본 실시예에서, 각각의 비율은 대체로 동일하다. 접촉층(24) 바로 아래측에 위치한 제2 DBR 적층(23), 발광 적층(22) 및 제1 DBR 적층(21)을 방사선방출영역(I)으로 한다. 접촉영역(241) 및 제2 개구(25)의 개수는 본 실시예에 한정되지 않고, 방사선방출영역(I)의 설치방식도 본 실시예에 한정되지 않는다. 예컨대, 방사선방출영역(I)은 교차적인 배열방식으로 설치할 수 있거나, 또는 서로 인접하는 행 및/또는 열의 방사선방출영역(I)의 개수는 상이할 수 있다. 구체적으로, 에피택셜 구조(20)의 최상층, 즉 본 실시예에서 접촉층(24)은 에피택셜 구조(20) 중 제1 층인 발광소자에서 제한된 전류를 전도하는 반도체층이다.
도 21a는 본 공개된 내용의 실시예 11에 따른 발광소자의 평면도이고, 도 21b는 본 공개된 내용에 따른 발광소자의 도 21a의 A-A'선에 따른 단면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 11의 발광소자는 실시예 10과 대체로 동일한 구조를 포함하고, 상이한 점은, 본 실시예의 발광소자 중, 적어도 하나의 접촉영역(241)의 제3 폭(W3')은 기타 접촉영역(241)의 제3 폭(W3)과 다르고, 이에 따라 복수의 상이한 레이저 임계 전류(Ith)를 갖는다. 본 실시예에서, 도 21b에 도시한 바와 같이, 중간 열의 접촉영역(241)의 제3 폭(W3')은 기타 접촉영역(241)의 제3 폭(W3)보다 작다. 중간 열의 접촉영역(241)의 제3 폭(W3')과 기타 두 열의 접촉영역(241)의 제3 폭(W3)의 차이는 3마이크로미터(μm) 이상이고, 바람직하게는 8마이크로미터보다 크고, 더 바람직하게는 40마이크로미터보다 작다. 도 21에 도시한 바와 같이, 중간 열의 접촉영역(241)에 나란히 정렬되는 제2 개구(25)는 기타 제2 개구(25)보다 작다. 접촉영역(241)의 제3 폭 및 접촉영역(241)에 대응하는 각 제2 개구(25)의 제2 최대 폭(W2)의 비율은 0.1 내지 3 이고, 바람직하게는 0.5 내지 1.1 이고, 더 바람직하게는 0.6 내지 0.8 이다. 발광소자는 복수의 상이한 레이저 임계 전류(Ith)를 포함한다. 각각의 레이저 임계 전류(Ith)는 그 중 하나의 방사선방출영역(I)이 간섭광을 발생하도록 사용된다. 구체적으로, 중간 열의 접촉영역(241)의 제3 폭(W3')은 기타 접촉영역(241)의 제3 폭(W3)보다 작으므로, 중간 열의 그 중 하나의 방사선방출영역(I)이 간섭광을 방출하도록 하는 레이저 임계 전류(Ith)는 기타 두 열 중 하나의 방사선방출영역(I)이 간섭광을 방출하도록 하는 레이저 임계 전류(Ith)보다 작다. 따라서, 본 실시예에서, 순방향 전류가 중간 열 중 하나의 방사선방출영역(I)이 간섭광을 방출하도록 하는 레이저 임계 전류(Ith)보다 크고 기타 두 열 중 하나의 방사선방출영역(I)이 간섭광을 방출하도록 하는 레이저 임계 전류(Ith)보다 작은 경우, 중간 열의 방사선방출영역(I)이 방출하는 방사선은 원거리장 각도가 15도보다 작은 간섭광이고, 다만, 기타 방사선방출영역(I)에서 방출되는 방사선은 원거리장 각도가 60도보다 큰 비간섭광이다. 따라서, 발광소자는 원거리 및 근거리 특성이 동시에 필요한 응용(예컨대 모니터)에 적용된다. 상이한 제3 폭을 갖는 접촉영역(241)의 설치방법은 본 실시예에 의해 한정되지 않는다. 예컨대, 기타 접촉영역(241)의 제3 폭에 비해 작은 제3 폭을 갖는 접촉영역(241)은 제1 열에 설치할 수 있다. 또는, 작은 제3 폭을 갖는 접촉영역(241) 및 큰 제3 폭을 갖는 접촉영역(241)은 일열에 간격을 두고 설치하여, 교차적으로 배열되는 형태를 형성한다.
도 22는 본 공개된 내용의 실시예 12의 발광소자의 평면도이다. 본 명세서에서, 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 12에 따른 발광소자는 실시예 11과 대체로 동일한 구조를 포함하고, 상이한 점은, 본 실시예의 발광소자 중 복수의 서로 동일한 레이저 임계 전류(Ith)를 포함하는 것이다. 각각의 레이저 임계 전류(Ith)는 그 중 하나의 방사선방출영역(I)이 간섭광을 발생하도록 사용된다. 제1 전극(40)의 서로 다른 레이아웃에 의하여 서로 다른 양의 전류가 서로 다른 접촉영역(241)으로 유입되도록 제어하고, 전류가 발광소자에 유입되면, 기타 접촉영역(241)에 유입되는 전류에 비해, 그 중 하나의 접촉영역(241)에 보다 많은 전류가 유입된다. 구체적으로, 본 실시예에서, 중간 열의 접촉영역(241)의 폭은 기타 접촉영역(241)의 폭과 대체로 동일하다. 중간열과 나란히 정렬되는 접촉영역(241)의 제2 개구(25)의 폭은 기타 제2 개구(25)의 폭과 대체로 동일하다. 도 21a에 도시된 제1 전극(40)에 비해, 본 실시예의 도전층(60) 상에 위치한 제1 전극(40)은 서로 다른 레이아웃을 갖는다. 구체적으로, 제1 전극은 와이어 본딩 부분(41), 복수의 제1 연신 전극(44) 및 제2 연신전극(45)을 포함한다. 와이어 본딩 부분(41)은 리드선과 접합된다. 각각의 제1 연신전극(44)은 그 중 하나의 제2 개구(25)를 감싼다. 각각의 제2 연신전극(45)은 와이어 본딩 부분(41)에서 대체로 수직으로 연장되어 적어도 3개의 제1 연신 전극(44)과 연결된다. 본 실시예에서, 각각의 제1 연신 전극(44)의 폭은 대체로 서로 동일하다. 각각의 제2 연신전극(45)의 폭은 대체로 서로 동일하다. 중간 열에 위치한 제2 개구(25)를 감싸는 제1 연신 전극(44)은 2개의 제2 연신전극(45)에 연결되고, 기타 두 열에 위치한 제2 개구(25)를 감싸는 제1 연신전극(44)은 하나의 제2 연신전극(45)에만 연결된다. 따라서, 발광소자를 구동시키면, 기타 접촉영역(241)에 유입되는 전류에 비해, 중간 열에 위치한 각각의 접촉영역(241)에 보다 많은 전류가 유입된다. 중간 열의 각각의 접촉영역(241)에 흐르는 순방향 전류가 대응하는 방사선방출영역(I)의 레이저 임계 전류(Ith)에 도달할 때, 기타 두 열의 각각의 접촉영역(241)을 흐르눈 순방향 전류는 여전히 대응하는 방사선방출영역(I)의 레이저 임계 전류(Ith)보다 낮다. 따라서, 중간 열의 방사선방출영역(I)에서 방출되는 방사선은 원거리장 각도가 15도보다 작은 간섭광이고, 기타 방사선방출영역(I)에서 방출되는 방사선은 원거리장 각도가 60도보다 큰 비간섭광이다. 따라서, 발광소자는 원거리 및 근거리 특성이 동시에 필요한 응용(예컨대 모니터)에 적용된다. 다른 일 실시예에서, 유사한 결과에 도달하기 위하여, 중간 열 중 하나의 제1 연신전극(44)의 폭은 기타 두 열 중 하나의 제1 연신전극(44)의 폭보다 클 수 있다. 다른 일 실시예에서, 유사한 결과에 도달하기 위하여, 중간 열 중 하나의 제2 연신전극(45)의 폭은 기타 두 열 중 하나의 제2 연신전극(45)의 폭보다 클 수 있고, 중간 열의 제1 연신전극(44)에 연결되는 2개의 제2 연신전극(45)을 포함하는 것은 아니다. 제1 연신전극(44) 및 제2 연신전극(45)의 설치방법은 본 실시예에 의해 한정되지 않는다. 예컨대, 제1열 중 제2 개구(25)를 감싸는 제1 연신전극(44)은 2개의 제2 연신전극(45)과 연결될 수도 있고, 제1 연신전극(44)의 폭 및 제2 연신전극(45)의 폭은 상응하게 변경될 수 있다.
도 23은 본 공개된 내용의 실시예 13의 발광소자의 평면도이다. 특정 설명을 제외하고, 동일한 소자 부호는 상이한 도면 중에서, 본 공개된 내용의 모든 설명과 동일하거나 대체로 동일한 구조, 재료, 재료조성 및/또는 제조방법을 갖는다. 본 공개된 내용의 실시예 13의 발광소자는 실시예 12와 대체로 동일한 구조를 포함하고, 상이한 점은, 본 실시예의 발광소자의 도전층(60) 상에 위치한 제1 전극(40)은 상이한 패턴을 갖는 것이다. 제1 전극(40)은 일정 폭을 갖는 제3 연신전극(46)을 포함하고, 제3 연신전극(46)의 폭은 제1 연신 전극(44)의 폭보다 크고 제2 연신전극(45)의 폭보다 크다. 따라서, 제2 개구(25)의 주변의 제1 연신전극(44) 및 제2 연신전극(45)에 의해 커버되는 영역에 비해, 제3 연신전극(46)이 제2 개구(25)의 주변의 비교적 큰 영역을 커버한다. 따라서, 중간 열을 감싸는 제2 개구(25)의 도전층(60)과 제1 전극(40) 사이의 접촉면적은 기타 제2 개구(25)를 감싸는 도전층(60)과 제1 전극(40) 사이의 접촉면적보다 크다. 따라서, 발광소자를 구동시키면, 기타 접촉영역(241)에 유입되는 전류에 비해, 중간 열에 위치한 각각의 접촉영역(241)에 보다 많은 전류가 유입된다. 중간 열의 각각의 접촉영역(241)에 흐르는 순방향 전류가 대응하는 방사선방출영역(I)의 레이저 임계 전류(Ith)에 도달할 때, 기타 두 열의 각각의 접촉영역(241)을 흐르는 순방향 전류는 여전히 대응하는 방사선방출영역(I)의 레이저 임계 전류(Ith)보다 낮다. 따라서, 중간 열의 방사선방출영역(I)에서 방출되는 방사선은 원거리장 각도가 15도보다 작은 간섭광이고, 기타 방사선방출영역(I)에서 방출되는 방사선은 원거리장 각도가 60도보다 큰 비간섭광이다. 따라서, 발광소자는 원거리 및 근거리 특성이 동시에 필요한 응용(예컨대 모니터)에 적용된다. 제1 연신전극(44) 및 제2 연신전극(45)의 패턴은 본 실시예에 의해 한정되지 않는다. 예컨대, 제1 전극(40)은 중간 열의 제2 개구(25)가 아닌, 제1 열의 제2 개구(25)의 비교적 많은 주변영역을 커버할 수 있다.
발광 적층(22)은 싱글 헤테로 구조(single heterostructure, SH), 더블 헤테로 구조(double heterostructure, DH) 또는 다중양자우물(MQW)을 포함하는 활성영역을 포함한다. 바람직하게는, 활성영역은 교대로 배치된 우물층 및 차단층을 포함하는 다중양자우물(MQW)을 포함한다. 각각의 차단층의 에너지 레벨은 그 중 하나의 우물층의 에너지 레벨보다 크다. 활성영역이 방출하는 피크 파장은 우물층의 두께 또는 재료를 변경하는 것을 통해 변경될 수 있다. 바람직하게는, 우물층의 재료는 III-V 반도체 재료, 예컨대 알루미늄갈륨비소(AlGaAs)를 포함한다. 차단층의 재료는 III-V 반도체 재료, 예컨대 알루미늄갈륨비소(AlGaAs)를 포함한다. 발광 적층(22)은 활성영역과 제1 DBR 적층(21) 사이 및/또는 활성영역과 제2 DBR 적층(23) 사이에 위치하는 이격층을 더 포함함으로써, 발광 적층(22)의 두께를 대체로 nλ/2에 근접하거나 동일하게 조절하고, 여기서 λ은 발광 적층(22)이 방출하는 방사선의 피크 파장이고, n은 양의 정수이다. 이격층 재료는 III-V 반도체 재료, 예컨대 알루미늄갈륨비소(AlGaAs)를 포함한다.
제1 DBR 적층(21) 및 제2 DBR 적층(23)은 복수의 교대로 배치된 고굴절률 반도체층 및 저굴절률 반도체층을 포함한다. 제1 DBR 적층(21) 및 제2 DBR 적층(23)의 재료는 III-V 반도체 재료, 예컨대 알루미늄갈륨비소(AlxGa(1-x)As/AlyGa(1-y)As)를 포함하고, 여기서 x≠y이고, 알루미늄과 갈륨의 함량은 소정의 파장범위를 반사하도록 조절할 수 있다. 각각의 반도체층은 λ/4n에 근접하거나 동일한 두께를 가지며, 여기서 λ은 발광 적층(22)이 방출하는 방사선의 피크 파장이고, n은 층의 굴절률이다. 제1 DBR 적층(21)은 피크 파장에서 99%을 초과하는 반사율을 갖는다. 제2 DBR 적층(23)은 피크 파장에서 98%를 초과하는 반사율을 갖는다. 바람직하게는, 제1 DBR 적층(21)의 반사율은 제2 DBR 적층(23)의 반사율보다 크다. 제1 DBR 적층(21)의 대수(對數)는 제2 DBR 적층(23)의 대수보다 크고, 그 중 고굴절률 반도체층와 저굴절률 반도체층은 한 쌍으로 간주한다. 바람직하게는, 제1 DBR 적층(21)의 대수는 15보다 크고, 더 바람직하게는 30보다 크고 80보다 작다. 제1 DBR 적층(21)의 대수는 15보다 크고, 더 바람직하게는 20보다 크고 80보다 작다.
본 실시예에서, 기판(10)은 에피택셜 구조(20)를 에피택셜 성장시키기 위한 상면을 제공한다. 기판(10)은 이후 기판(10) 상에 성장시키는 층 또는 구조를 지지하도록 충분한 구께를 갖는다. 기판(10)의 두께는 100마이크로미터 이상인 것이 바람직하고, 250마이크로미터를 초과하지 않는 것이 바람직하다. 기판(10)은 단일 다이고 반도체 재료를 포함하고, 예컨대, 하나의 III-V 반도체 재료 또는 IV 반도체 재료를 포함한다. 일 실시예에서, 기판(10)은 n형 또는 p형을 구비한 III-V 반도체 재료를 포함한다. 본 실시예에서, III-V 반도체 재료는 n형의 갈륨비소(GaAs)를 포함하고, n형 도펀트는 규소(Si)이다.
영구기판(80)은 도전성 영구기판(80)으로, 제1 전극(40) 및 제2 전극(50) 사이에서 전류를 전도한다. 영구기판(80)은 그 위의 층 또는 구조를 지지하도록 충분한 두께를 갖는다. 예컨대, 100 마이크로미터보다 크다. 영구기판(80)은 규소(Si), 게르마늄(Ge), 구리(Cu), 몰리브덴(Mo), 텅스텐 몰리브덴(MoW), 질화알루미늄(AlN), 산화아연(ZnO) 또는 구리텅스텐(CuW)을 포함하는 도전성 재료를 포함한다. 바람직하게는, 영구기판(80)은 규소 또는 구리텅스텐(CuW)을 포함한다.
제1 전극(40) 및 제2 전극(50)은 외부전원과 연결되어 둘 사이의 전류를 전도한다. 제1 전극(40) 및 제2 전극(50)의 재료는 투명 도전성 재료 또는 금속재료를 포함한다. 투명 도전성 재료는 투명 도전성 산화물을 포함하고, 금속 재료는 금(Au), 백금(Pt), 게르마늄금니켈(GeAuNi), 티타늄(Ti), 베릴륨금(BeAu), 게르마늄금(GeAu), 알루미늄(Al), 아연금(ZnAu) 또는 니켈을 포함한다.
제1 전극(40)은 접촉층(24)에 의해 제2 DBR 적층(23)과 저저항접촉 또는 오믹접촉을 형성하되, 제1 전극(40)과 제2 DBR 적층(23) 사이의 저항은 10-2 ohm-cm보다 낮다. 접촉층(24)의 도전형태는 제2 DBR 적층(23)의 도전형태와 동일하다. 일 실시예에서, 접촉층(24)은 p형이며 높은 p형 도핑농도를 가지며, 예컨대 1018/cm3보다 높으며 바람직하게는 1019/cm3보다 높고, 더 바람직하게는 1×1019/cm3 내지 5×1022/cm3(둘 모두 포함)이다. 접촉층(24)의 재료는 III-V 반도체 재료, 예컨대 갈륨비소(GaAs) 또는 알루미늄갈륨비소(AlGaAs)를 포함한다.
접착층(100) 및/또는 임시 접착층(80)은 투명 도전성 산화물, 금속재료, 절연산화물 또는 고분자를 포함한다. 투명 도전성 산화물은 인듐주석산화물(ITO), 인듐산화물(InO), 주석산화물(SnO), 카드뮴주석산화물(CTO), 안티몬주석산화물(ATO), 알루미늄아연산화물(AZO), 아연주석산화물(ZTO), 갈륨아연산화물(GZO), 인듐텅스텐산화물(IWO), 아연산화물(ZnO) 또는 인듐아연산화물(IZO)을 포함한다. 금속재료는 인듐, 주석, 금, 티타늄, 니켈, 백금, 텅스텐 또는 이들의 합금이다. 절연산화물은 산화알루미늄(AlOx), 산화규소(SiOx) 또는 질산화규소(SiOxNy)를 포함한다. 고분자 재료는 에폭시(epoxy), 폴리미이드(polyimide), 퍼플루오로 시클로부탄(perfluorocyclobutane), 벤조시클로부텐(benzocyclobutene, BCB) 또는 실리콘(silicone)을 포함한다. 접착층(100)은 400나노미터 내지 5000나노미터의 두께를 갖는다.
에피택셜의 방법은 MOCVD(metal-organic chemical vapor deposition), HVPE(hydride vapor phase epitaxy), MBE(molecular beam epitaxy,) 또는 LPE(liquid-phase epitaxy,)을 포함하나, 이에 한정되지 않는다.
본 공개된 내용의 또 하나의 실시예에 따르면, 상술한 실시예 중의 구조는 결합 또는 변경될 수 있다. 예를 들어 설명하면, 도 1a 또는 도 1b에 도시한 발광소자는 보호층을 포함할 수 있다.
주의할 것은, 본 발명에서 예로 든 각 실시예는 본 발명을 설명하기 위한 것일 뿐, 본 발명의 범위를 한정하기 위한 것은 아니다. 누구든지 본 발명에 대해 자명한 수정 또는 변경을 할 경우 모두 본 발명은 정신과 범위를 벗어나지 않는다. 상이한 실시예 중 동일하거나 유사한 구조, 또는 상이한 실시예 중 동일한 부호를 갖는 부품은 모두 동일한 물리적 또는 화학적 특성을 갖는다. 또한, 본 발명 중 상술한 실시예는 적절한 상황에서 서로 조합 또는 대체될 수 있고, 상술한 특정 실시예에 의해 한정되지 않는다. 일 실시예에서 상세하게 설명한 특정 부품과 기타 부품의 연결관계는 모두 기타 실시예에 응용될 수 있고, 모두 본 발명의 청구범위에 포함된다.
10:기판 20:에피택셜 구조
30:전류 차단층 40: 제1 전극
50:제2 전극 60:도전층
21:제1 DBR 적층 31:제1 개구
22:발광 적층 23:제2 DBR적층
24:접촉층 25:제2개구
W1:제1 최대폭 W2:제2 최대폭
R:방사선 41:와이어 본딩 부분
42:전류 주입부 43:브리지부
I:방사선방출영역 26:돌출부
261:플랫폼 측벽 301:내부
302:외부 W3:제3 폭
W4:제4 폭 W5:제5 폭
W3' :제3 폭 Ith:레이저 임계 전류
110:보호층 111:개공
90:영구기판 100:접착층
70:임시 기판 44:제1 연신전극
45:제2 연신전극 46:제3 연신전극
241:접촉영역 Isat:포화 전류Isat

Claims (10)

  1. 방사선을 방출할 수 있는 발광소자로서,
    기판;
    상기 기판 상에 위치하고 제1 DBR 적층, 발광적층, 제2 DBR 적층 및 접촉층을 순차적으로 포함하는 에피택셜 구조;
    전극;
    상기 접촉층과 상기 전극 사이에 위치하는 전류 차단층;
    상기 전류 차단층에 형성된 제1 개구; 및
    상기 전극에 형성되며 상기 제1 개구 내에 위치한 제2 개구
    를 포함하되,
    상기 전극의 일부분은 상기 제1 개구 내에 충전되어 상기 접촉층에 접촉하고, 상기 발광소자는 상기 제2 DBR 중에 산화층이 결여되고 또한 이온 주입층이 결여되는,
    발광소자.
  2. 제1항에 있어서,
    상기 제2 DBR 적층의 상기 제1 개구의 바로 아래측에 위치하는 부위의 전도율은 상기 제2 DBR 적층의 상기 전류 차단층에 의해 커버되는 기타 부위의 전도율과 대체로 동일한, 발광소자.
  3. 제1항에 있어서,
    상기 발광소자는 순방향 전압, 레이저 임계 전류 및 상기 레이저 임계 전류보다 큰 포화전류를 가지며, 상기 발광소자는 상기 순방향 전압보다 큰 작동전압에서 순방향 전류를 전도하고, 상기 순방향 전류가 상기 레이저 임계 전류와 상기 포화전류 사이에 있을 때, 상기 방사선은 원거리장 각도가 15도보다 작은 간섭광인, 발광소자.
  4. 제1항에 있어서,
    상기 제2 DBR 적층의 각각의 층은 대체로 III-V 족 반도체 재료로 조성되는, 발광소자.
  5. 발광소자로서,
    기판; 및
    제1 DBR 적층, 발광적층, 제2 DBR 적층 및 접촉층을 순차적으로 포함하는 에피택셜 구조
    를 포함하되,
    상기 발광소자는 순방향 전압, 레이저 임계 전류 및 상기 레이저 임계 전류보다 큰 포화전류를 가지며, 상기 발광소자는 상기 순방향 전압보다 큰 작동전압에서 순방향 전류를 전도하고, 상기 순방향 전류가 상기 레이저 임계 전류와 상기 포화전류 사이에 있을 때, 상기 발광소자는 15도보다 작은 원거리장 각도를 갖는 간섭광을 방출하고, 상기 순방향 전류가 상기 레이저 임계 전류보다 작을 때, 상기 발광소자는 비간섭광을 방출하는,
    발광소자.
  6. 제5항에 있어서,
    상기 접촉층은 제3 폭을 가지며, 상기 제2 DBR 적층은 상기 제3 폭보다 큰 제2 폭을 가지며, 상기 발광소자는 상기 접촉층을 커버하는 도전층을 더 포함하는, 발광소자.
  7. 제6항에 있어서,
    상기 도전층 상에 위치한 제1 전극을 더 포함하고, 상기 제1 전극은 상기 도전층을 노출시키는 개구가 구비되는, 발광소자.
  8. 제7항에 있어서,
    상기 개구는 최대 폭을 가지며, 상기 제3 폭과 상기 최대 폭의 비율은 0.1 내지 3인, 발광소자.
  9. 제5항에 있어서,
    상기 발광소자는 상기 제2 DBR 적층 중에 산화층이 결여되고 또한 이온 주입층이 결여되는, 발광소자.
  10. 제5항에 있어서,
    상기 제2 DBR 적층의 상기 접촉층 바로 아래측에 위치한 부위의 전도율은 상기 제2 DBR 적층의 기타 상기 접촉층에 의해 커버되지 않은 부위의 전도율과 대체로 동일한, 발광소자.
KR1020170028823A 2016-03-07 2017-03-07 발광소자 KR102336974B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/062,995 US9837792B2 (en) 2016-03-07 2016-03-07 Light-emitting device
US15/062,995 2016-03-07

Publications (2)

Publication Number Publication Date
KR20170104401A true KR20170104401A (ko) 2017-09-15
KR102336974B1 KR102336974B1 (ko) 2021-12-08

Family

ID=59650704

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170028823A KR102336974B1 (ko) 2016-03-07 2017-03-07 발광소자

Country Status (6)

Country Link
US (3) US9837792B2 (ko)
JP (3) JP7068772B2 (ko)
KR (1) KR102336974B1 (ko)
CN (2) CN118712879A (ko)
DE (1) DE102017101731A1 (ko)
TW (3) TWI734750B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11381060B2 (en) 2017-04-04 2022-07-05 Apple Inc. VCSELs with improved optical and electrical confinement
EP3769382B1 (en) * 2018-03-19 2024-10-09 Ricoh Company, Ltd. Surface-emitting laser array, detection device, and laser device
CN113396486B (zh) 2019-02-21 2024-09-13 苹果公司 具有电介质dbr的磷化铟vcsel
US11418010B2 (en) * 2019-04-01 2022-08-16 Apple Inc. VCSEL array with tight pitch and high efficiency
US20200365767A1 (en) * 2019-05-17 2020-11-19 Shin-Etsu Opto Electronic Co., Ltd. Light-emitting diode structure and method for forming the same
US11374381B1 (en) 2019-06-10 2022-06-28 Apple Inc. Integrated laser module
JP7056628B2 (ja) * 2019-06-28 2022-04-19 セイコーエプソン株式会社 発光装置およびプロジェクター
CN113410349B (zh) * 2021-04-30 2022-05-13 华灿光电(苏州)有限公司 具有双层布拉格反射镜的发光二极管芯片及其制备方法
CN113488568B (zh) * 2021-05-12 2022-06-14 华灿光电(浙江)有限公司 倒装发光二极管芯片及其制备方法
CN116565093A (zh) * 2023-07-11 2023-08-08 江西兆驰半导体有限公司 一种led芯片制备方法及led芯片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1533005A (zh) * 2003-03-19 2004-09-29 富士施乐株式会社 表面发射半导体激光器及使用其的通信系统
US20090310637A1 (en) * 2007-03-29 2009-12-17 The Furukawa Electric Co, Ltd. Surface emitting laser element and method of fabricating the same

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835415A (en) * 1972-06-28 1974-09-10 Ibm High radiance semiconductor laser
US5008889A (en) * 1989-11-06 1991-04-16 Wilson Keith E High-accuracy wavelength stabilization of angled-stripe super luminescent laser diode sources
JP3635880B2 (ja) * 1997-07-25 2005-04-06 セイコーエプソン株式会社 面発光型半導体レーザおよびその製造方法
JP3551718B2 (ja) * 1997-08-18 2004-08-11 富士ゼロックス株式会社 面発光型半導体レーザ
JP4114236B2 (ja) * 1998-07-08 2008-07-09 沖電気工業株式会社 半導体発光装置
JP2000277852A (ja) * 1999-03-24 2000-10-06 Fuji Xerox Co Ltd 表面発光型半導体レーザ、及びその製造方法
JP2000299492A (ja) 1999-04-15 2000-10-24 Daido Steel Co Ltd 量子井戸型発光ダイオード
JP3837969B2 (ja) * 1999-07-06 2006-10-25 富士ゼロックス株式会社 面発光型半導体レーザとその製造方法
JP2002289976A (ja) * 2001-03-23 2002-10-04 Ricoh Co Ltd 半導体構造およびその製造方法および半導体レーザ素子および半導体レーザアレイおよび光インターコネクションシステムおよび光lanシステム
EP2105977B1 (en) * 2002-01-28 2014-06-25 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
JP4366522B2 (ja) * 2002-11-29 2009-11-18 信越半導体株式会社 発光素子
JP2004193330A (ja) * 2002-12-11 2004-07-08 Sharp Corp モノリシック多波長レーザ素子とその製法
TW200505120A (en) * 2003-07-29 2005-02-01 Copax Photonics Corp Single transverse mode vertical cavity surface emitting laser device with array structure and method for fabricating the same
KR20050019485A (ko) * 2003-08-19 2005-03-03 삼성전자주식회사 광검출소자가 일체적으로 형성되는 수직 면발광 레이저
JP4138629B2 (ja) * 2003-11-06 2008-08-27 株式会社東芝 面発光型半導体素子及びその製造方法
DE102004004781A1 (de) * 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
US7889774B2 (en) * 2004-03-05 2011-02-15 The Trustees Of Princeton University Organic polariton laser
JP4899344B2 (ja) 2004-06-29 2012-03-21 富士ゼロックス株式会社 表面発光型半導体レーザおよびその製造方法
US7366220B2 (en) * 2005-03-17 2008-04-29 Fujitsu Limited Tunable laser
JP2007294732A (ja) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd 半導体レーザ装置及びその製造方法
JP2008028120A (ja) * 2006-07-20 2008-02-07 Sumitomo Electric Ind Ltd 面発光型半導体素子
JP2008172002A (ja) * 2007-01-11 2008-07-24 Fuji Xerox Co Ltd 光送信モジュール
DE102008012859B4 (de) * 2007-12-21 2023-10-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laserlichtquelle mit einer Filterstruktur
JP2009246291A (ja) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 面発光レーザアレイ素子
KR101438818B1 (ko) * 2008-04-01 2014-09-05 엘지이노텍 주식회사 발광다이오드 소자
JP2010219287A (ja) * 2009-03-17 2010-09-30 Sony Corp 半導体発光素子およびその製造方法
JP5475398B2 (ja) * 2009-05-15 2014-04-16 日本オクラロ株式会社 半導体発光素子
JP2011165869A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 半導体発光素子及びその製造方法
KR20120131983A (ko) * 2011-05-27 2012-12-05 삼성전자주식회사 전류제한층을 구비한 반도체 발광 소자
JP6303255B2 (ja) * 2011-12-02 2018-04-04 株式会社リコー 面発光レーザ素子及び原子発振器
JP2013171892A (ja) * 2012-02-20 2013-09-02 Ricoh Co Ltd 光学センサ及び画像形成装置
JP2015103727A (ja) * 2013-11-27 2015-06-04 株式会社村田製作所 垂直共振器型面発光レーザの製造方法
US20150255954A1 (en) * 2014-03-05 2015-09-10 The Board Of Trustees Of The University Of Illinois Method And Device For Producing Laser Emission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1533005A (zh) * 2003-03-19 2004-09-29 富士施乐株式会社 表面发射半导体激光器及使用其的通信系统
US20090310637A1 (en) * 2007-03-29 2009-12-17 The Furukawa Electric Co, Ltd. Surface emitting laser element and method of fabricating the same

Also Published As

Publication number Publication date
TW201801431A (zh) 2018-01-01
CN107171180A (zh) 2017-09-15
US20180048119A1 (en) 2018-02-15
KR102336974B1 (ko) 2021-12-08
TWI794849B (zh) 2023-03-01
JP2017163140A (ja) 2017-09-14
CN118712879A (zh) 2024-09-27
JP2022093631A (ja) 2022-06-23
US10090643B2 (en) 2018-10-02
TW202139549A (zh) 2021-10-16
US20180358780A1 (en) 2018-12-13
DE102017101731A1 (de) 2017-09-07
JP7068772B2 (ja) 2022-05-17
US9837792B2 (en) 2017-12-05
JP2024100918A (ja) 2024-07-26
US10511140B2 (en) 2019-12-17
TWI847513B (zh) 2024-07-01
TW202322503A (zh) 2023-06-01
TWI734750B (zh) 2021-08-01
US20170256914A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
KR102336974B1 (ko) 발광소자
US7714343B2 (en) Light emitting device
KR101493321B1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
US20150021626A1 (en) Light-emitting device
US8891569B2 (en) VCSEL array with increased efficiency
JP2006108698A (ja) フリップチップ発光デバイス用のコンタクト及び全方向反射ミラー
US11699774B2 (en) Semiconductor device
CN108630718B (zh) 发光元件
US10756960B2 (en) Light-emitting device
US20210036049A1 (en) Light emitting device and manufacturing method thereof
US20240186449A1 (en) Semiconductor device, semiconductor component and display panel including the same
US20130181187A1 (en) Semiconductor light emitting device
US10553759B2 (en) Light-emitting device
TW202437627A (zh) 發光元件
US20230058195A1 (en) Semiconductor device
US20220158413A1 (en) Semiconductor laser
TW202429786A (zh) 光電半導體元件
JP2022139394A (ja) 発光素子とその製造方法
TW202406173A (zh) 半導體元件
JP2020010056A (ja) 半導体発光部品

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant