KR20170102987A - 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법 - Google Patents

냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법 Download PDF

Info

Publication number
KR20170102987A
KR20170102987A KR1020177022335A KR20177022335A KR20170102987A KR 20170102987 A KR20170102987 A KR 20170102987A KR 1020177022335 A KR1020177022335 A KR 1020177022335A KR 20177022335 A KR20177022335 A KR 20177022335A KR 20170102987 A KR20170102987 A KR 20170102987A
Authority
KR
South Korea
Prior art keywords
oil
circuit
compressor
temperature
refrigerant
Prior art date
Application number
KR1020177022335A
Other languages
English (en)
Other versions
KR102099665B1 (ko
Inventor
요시아키 미야모토
요시유키 기마타
요고 다카스
가즈키 다카하시
Original Assignee
미츠비시 쥬코 서멀 시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 filed Critical 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤
Publication of KR20170102987A publication Critical patent/KR20170102987A/ko
Application granted granted Critical
Publication of KR102099665B1 publication Critical patent/KR102099665B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

토출 가스 온도가 높아지는 R32 냉매를 이용한 경우여도, 압축기 내의 오일 온도의 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있음과 함께, 오일 순환율의 증대나 냉동 사이클의 능력이나 성능에 대한 영향을 억제한다. 저압 하우징 타입의 압축기(2)를 구비하고, R32 냉매가 충전된 냉동 사이클(1)과, 압축기의 토출 회로(13A)에 마련한 오일 분리기(3)와, 오일 분리기에 의하여 분리된 오일을 압축기의 하우징 내부의 오일 저류부로 복귀시키는 오일 복귀 회로(31)를 구비하며, 오일 복귀 회로는, 오일을 하우징 내의 오일 저류부로 직접 복귀시키는 직접 회로(32)와, 오일 냉각기(37)에 의하여 냉각하여 복귀시키는 냉각 회로(35)의 병렬 회로로 되어 있고, 냉매의 토출 온도, 압축기 내의 오일 온도 또는 오일 점도의 하나를 검출하며, 그것이 임곗값을 초과했을 때, 오일 복귀 회로를 직접 회로로부터 냉각 회로로 전환하고, 오일 온도를 소정 온도 이하로 냉각하여 복귀시키는 오일 온도 제어부(42)를 구비하고 있다.

Description

냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법
본 발명은, 지구 온난화 계수(이하, GWP라고 함)가 낮은 R32 냉매 또는 R32 냉매 리치(rich)의 혼합 냉매(이하, 간단히 R32 냉매라고 함)를 이용한 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법에 관한 것이다.
R32 냉매는, 오존 파괴 계수(ODP)가 제로이고, 또한 GWP가 R410A 냉매에 비하여, 약 1/3 정도가 낮은 점에서, 환경 부하의 저감에 기여할 수 있는 것이며, R410A 냉매의 대체 냉매로서 이용되고 있다. 그러나, R32 냉매는, R410A 냉매에 비하여 토출 가스 온도가 10~20℃ 정도 상승하고, 흡입 압력과 토출 압력의 압력비가 높아질수록 토출 가스 온도가 상승하는 경향이 있어, 오일 분리기로부터의 복귀 오일에 의하여 압축기 내의 오일 온도가 상승한다. 이에 따라 오일 점도가 저하되는 점에서, R410A 냉매 대비로 허용 운전 범위 내지 조건을 제한해야 했다.
특허문헌 1에는, 압축기의 토출 회로에 오일 분리기를 마련하여, 냉방 시에는, 압축기로부터 토출된 오일을 포함하는 냉매를 그대로 오일 분리기로부터 제1 바이패스 유로를 통하여 냉각기에 의하여 냉각한 후, 압축기의 하우징 내로 복귀시키고, 거기에서 오일을 분리하여 냉매만을 제2 바이패스 유로를 거쳐 응축기에 순환시킴으로써, 압축기 내의 오일 온도 상승을 억제하는 것이 기재되어 있다.
난방 시에는, 오일 분리기에 의하여 냉매와 오일을 분리하고, 냉매를 응축기에 순환시켜 난방에 제공함과 함께, 오일을 제1 바이패스 유로, 냉각기를 거쳐 냉각한 후, 압축기로 복귀시킴으로써, 오일 온도의 상승과 난방 능력의 저하를 억제하도록 하고 있다.
한편, R410A 냉매 등을 이용한 냉동 사이클에 있어서는, 종래부터, 압축기의 토출 회로에 오일 분리기를 마련하여, 오일 분리기로 냉매 가스 중에 포함되는 오일을 분리한 후, 냉매를 응축기에 순환시키도록 한 것이, 특허문헌 2-5에 의하여 제공되고 있다.
이들에 있어서는, 분리한 오일을 오일 복귀 회로에 의하여 압축기 또는 압축기의 흡입 회로로 복귀시키도록 한 것, 혹은 그 오일 복귀 회로 중에 오일 냉각기를 마련하여, 필요에 따라 오일을 냉각하여 압축기측으로 복귀시키도록 하고 있다.
일본 공개특허공보 2014-85104호 일본 공개특허공보 평6-337171호 일본 공개특허공보 평11-83204호 일본 공개특허공보 2005-214515호 일본 공개특허공보 2006-170570호
그러나, 상기 특허문헌 1의 것은, 압축기의 하우징 내를 고압 분위기로 할뿐만 아니라, 오일 분리 기능을 갖는 것으로 해야 하고, 다이렉트 석션, 다이렉트 디스차지 구조의 압축기로 해야 한다. 또한, 제1 바이패스 유로 및 제2 바이패스 유로를 각각 비교적 직경이 큰 고압 가스 배관으로 해야 하고, 압축기 구조나 그 주위의 배관 구조가 복잡화, 고비용화됨과 함께, 저압 하우징 타입의 압축기를 이용한 냉동 사이클에는 적용할 수 없는 등의 과제가 있었다.
한편, 하우징 내가 저압 분위기하로 되어 있는 저압 하우징 타입의 압축기를 이용한 것에서는, 특허문헌 2-5에 나타내는 바와 같이, 오일 분리기에 의하여 분리한 오일만을 오일 복귀 회로를 통하여 압축기측으로 복귀시킬 수 있다. 이때, 오일을 압축기의 흡입 회로로 복귀시킴으로써, 저압 냉매 가스로 오일을 냉각하여, 오일 온도를 낮춰 압축기를 복귀시킬 수 있다. 그러나, 이 경우, 오일과 냉매 가스가 재혼합하여, 압축기 내에서 다시 분리해야 하고, 오일의 분리 효율이 저하됨으로써 오일 상승, 즉 오일 순환율이 증대되게 되는 등의 과제가 있다.
또, 오일 복귀 회로 중에 오일 냉각기를 마련하여, 거기에서 냉각한 오일을 직접 압축기 하우징의 오일 저류부로 복귀시키도록 한 것도 제안되고 있지만, 이 경우, 오일 냉각기에 의하여 항상 오일이 냉각되기 때문에, 오일 냉각기에서의 냉열원으로서 냉매를 이용한 것에서는, 냉동 사이클의 능력이나 성능에 영향을 미치게 되는 등의 과제가 있다.
본 발명은, 이와 같은 사정을 감안하여 이루어진 것으로서, 토출 가스 온도가 높아지는 R32 냉매를 이용한 경우여도, 압축기 내의 오일 온도의 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있음과 함께, 오일 순환율의 증대나 냉동 사이클의 능력이나 성능에 대한 영향을 억제할 수 있는 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위하여, 본 발명의 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법은 이하의 수단을 채용한다.
즉, 본 발명에 관한 냉동 사이클의 오일 복귀 회로는, 오일 저류부를 갖는 하우징 내부가 저압 분위기로 되어 있는 압축기를 구비하고, 그 사이클 내에 R32 냉매 내지 R32 리치의 혼합 냉매가 충전된 냉동 사이클과, 상기 압축기로부터의 토출 회로에 마련된 오일 분리기와, 상기 오일 분리기에 의하여 분리된 오일을 감압하여 상기 하우징 내의 상기 오일 저류부로 복귀시키는 오일 복귀 회로를 구비하며, 상기 오일 복귀 회로는, 오일을 상기 오일 분리기로부터 상기 오일 저류부로 직접 복귀시키는 직접 회로와, 오일 냉각기에 의하여 냉각하여 복귀시키는 냉각 회로의 병렬 회로로 되어 있고, 상기 냉매의 토출 온도, 상기 압축기 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하며, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 상기 오일 복귀 회로를 상기 직접 회로로부터 상기 냉각 회로로 전환하고, 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시키는 오일 온도 제어부를 구비하고 있다.
본 발명에 의하면, R32 냉매 내지 R32 리치의 혼합 냉매를 이용함으로써 토출 가스 온도가 상승하는 경우가 있어도, 냉매의 토출 온도, 압축기 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하고, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 오일 복귀 회로를 직접 회로로부터 냉각 회로로 전환하여 오일을 오일 냉각기에 의하여 냉각하며, 소정 온도 이하로 냉각하여 압축기의 하우징 내의 오일 저류부로 복귀시킴으로써, 압축기 내부의 오일 온도 상승을 규정값 이하로 제한할 수 있다. 따라서, 압축기 내의 오일 온도의 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있다. 또, 오일 분리기에 의하여 분리된 오일을 직접 하우징 내의 오일 저류부로 복귀시킬 수 있기 때문에, 냉매 가스와의 재혼합을 방지하여, 오일 상승에 의한 오일 순환율의 증대를 억제할 수 있음과 함께, 필요 시에만 오일을 냉각하면 되어, 냉동 사이클의 능력이나 성능에 대한 영향을 최소화할 수 있다.
또한, 본 발명의 냉동 사이클의 오일 복귀 회로는, 상기의 냉동 사이클의 오일 복귀 회로에 있어서, 상기 압축기는, 밀폐형 또는 개방형 중 어느 하나의 저압 하우징 타입의 스크롤 압축기로 되어 있고, 그 하우징 내부의 상기 오일 저류부에 PVE 오일, POE 오일, PAG 오일 중 어느 하나, 혹은 그들을 주성분으로 하는 혼합 오일이 충전되어 있다.
본 발명에 의하면, 냉동 사이클측으로부터의 저압 냉매 가스를 하우징 내에 빨아들이며, 그 냉매를 흡입하고 압축하여, 토출 챔버에 토출하는 구성으로 된 R410A 냉매용의 밀폐형 또는 개방형의 저압 하우징 타입의 스크롤 압축기를 그대로 적용할 수 있다.
이 경우, 그 냉매에 적응한 PVE 오일(폴리바이닐에터계 오일), POE 오일(폴리올에스터계 오일), PAG 오일(폴리알킬렌글라이콜계 오일) 또는 그들의 혼합 오일을 충전함으로써, R32 냉매 내지 R32 리치의 혼합 냉매를 이용한 냉동 사이클을 구성하고, 그 냉동 사이클을 R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보하여 운전할 수 있다.
따라서, 압축기 내의 오일 온도 상승에 의한 오일 점도의 저하에 기인하는 윤활 불량 등을 확실히 해소할 수 있다. 또, 압축기가 개방형 압축기로 되어 있는 경우에 있어서는, 메커니컬 시일 또는 립 시일에 의한 샤프트 시일부에서의 슬라이딩부 온도의 상승에 따른 오일의 슬러지화를 억제하고, 냉매 누출을 방지할 수 있는 등의 효과를 나타낸다.
또한, 본 발명에 관한 냉동 사이클의 오일 복귀 방법은, 저압 하우징 타입의 압축기를 구비하고, 그 사이클 내에 R32 냉매 내지 R32 리치의 혼합 냉매가 충전된 냉동 사이클의 상기 압축기의 토출 회로에 오일 분리기를 마련하여, 그 오일 분리기에 의하여 분리된 오일을 오일 복귀 회로를 통하여 상기 압축기의 하우징 내의 오일 저류부로 복귀시키는 냉동 사이클의 오일 복귀 방법에 있어서, 상기 냉매의 토출 온도, 상기 압축기 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하며, 그 검출값이 미리 설정되어 있는 임곗값을 초과했을 때, 상기 오일 복귀 회로에 마련되어 있는 오일 냉각기에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시킴으로써, 상기 압축기 내부의 오일 온도 상승을 규정값 이하로 제한한다.
본 발명에 의하면, R32 냉매 내지 R32 리치의 혼합 냉매를 이용함으로써 토출 가스 온도가 상승하는 경우가 있어도, 냉매의 토출 온도, 압축기 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하며, 그 검출값이 미리 설정되어 있는 임곗값을 초과했을 때, 오일 복귀 회로에 마련되어 있는 오일 냉각기에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 압축기의 하우징 내의 오일 저류부로 복귀시킴으로써, 압축기 내부의 오일 온도 상승을 규정값 이하로 제한할 수 있다.
따라서, 압축기 내의 오일 온도의 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있다. 또, 오일 분리기에 의하여 분리된 오일을 직접 하우징 내의 오일 저류부로 복귀시킬 수 있기 때문에, 냉매 가스와의 재혼합을 방지하여, 오일 상승에 의한 오일 순환율의 증대를 억제할 수 있음과 함께, 필요 시에만 오일을 냉각하면 되어, 냉동 사이클의 능력이나 성능에 대한 영향을 최소화할 수 있다.
또한, 본 발명의 냉동 사이클의 오일 복귀 방법은, 상기의 냉동 사이클의 오일 복귀 방법에 있어서, 상기 오일 복귀 회로가, 오일을 상기 오일 분리기로부터 상기 오일 저류부로 직접 복귀시키는 직접 회로와, 오일 냉각기에 의하여 냉각하여 복귀시키는 냉각 회로의 병렬 회로로 되어 있으며, 상기 냉매의 토출 온도, 상기 압축기 내의 오일 온도 혹은 오일 점도 중 적어도 어느 하나의 검출값이 상기 임곗값을 초과했을 때, 상기 오일 복귀 회로를 상기 직접 회로로부터 상기 냉각 회로로 전환하고, 상기 오일 냉각기에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시킨다.
본 발명에 의하면, 냉매의 토출 온도, 압축기 내의 오일 온도 또는 오일 점도 중 어느 하나의 검출값이 임곗값 이하일 때는, 직접 회로를 통하여 오일 분리기로부터 직접 오일 저류부로 오일을 복귀시키고, 상기 검출값이 임곗값을 초과했을 때는, 냉각 회로의 오일 냉각기에 의하여 오일을 소정 온도 이하로 냉각하여 오일 저류부로 복귀시킬 수 있다. 따라서, 압축기 내부의 오일 온도 상승을 확실히 규정값 이하로 제한할 수 있음과 함께, 필요 시에만 오일 냉각기에 의하여 오일을 냉각하면 되어, 냉동 사이클의 능력이나 성능에 대한 영향을 최소화할 수 있다.
본 발명의 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법에 의하면, R32 냉매 내지 R32 리치의 혼합 냉매를 이용함으로써 토출 가스 온도가 상승하는 경우가 있어도, 냉매의 토출 온도, 압축기 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하고, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 오일 복귀 회로를 직접 회로로부터 냉각 회로로 전환하여 오일을 오일 냉각기에 의하여 냉각하며, 소정 온도 이하로 냉각하여 압축기의 하우징 내의 오일 저류부로 복귀시킴으로써, 압축기 내부의 오일 온도 상승을 규정값 이하로 제한할 수 있다.
이로 인하여, 압축기 내의 오일 온도 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있다. 또, 오일 분리기에 의하여 분리된 오일을 직접 압축기 내부의 오일 저류부로 복귀시킬 수 있기 때문에, 냉매 가스와의 재혼합을 방지하여, 오일 상승에 의한 오일 순환율의 증대를 억제할 수 있음과 함께, 필요 시에만 오일을 냉각하면 되어, 냉동 사이클의 능력이나 성능에 대한 영향을 최소화할 수 있다.
도 1은 본 발명의 일 실시형태에 관한 냉동 사이클의 오일 복귀 회로를 포함하는 냉매 회로도이다.
도 2는 상기 냉동 사이클에 적용하는 저압 하우징 타입의 압축기의 종단면도이다.
이하, 본 발명의 일 실시형태에 대하여, 도 1 및 도 2를 이용하여 설명한다.
도 1에는, 본 발명의 일 실시형태에 관한 냉동 사이클의 오일 복귀 회로를 포함하는 냉매 회로도가 나타나 있고, 도 2에는, 그 냉동 사이클에 적용하는 저압 하우징 타입의 압축기의 종단면도가 나타나 있다.
여기에서의 냉동 사이클(1)은, 냉매로서 R32 냉매 내지 R32 리치의 혼합 냉매(이하, 간단히 R32 냉매라고 함)가 충전된 것이며, 사방 전환 밸브(4)를 구비하고, 냉매 순환 방향을 전환함으로써 냉난방이 가능한 히트 펌프 사이클로 되어 있는데, 냉동 또는 히트 펌프의 단독 사이클로 한 것이어도 된다.
냉동 사이클(1)은, 저압 하우징 타입의 압축기(2)와, 압축기(2)의 토출 회로(13A) 중에 마련되어 있는 오일 분리기(3)와, 냉매 순환 방향을 전환하는 사방 전환 밸브(4)와, 송풍기(5)가 부설되어 있는 실외측 열교환기(6)와, 난방용 전자 팽창 밸브(7)와, 리시버(8)와, 냉방용 전자 팽창 밸브(9)와, 송풍기(10)가 부설되어 있는 실내측 열교환기(11)와, 압축기(2)의 흡입 회로(13B) 중에 마련된 어큐뮬레이터(12)를 냉매 배관(13)에 의하여 순차 접속한 폐쇄 사이클의 냉매 회로에 의하여 구성되어 있다.
압축기(2)는, 도 2에 나타나는 바와 같이, 밀폐형 전동 스크롤 압축기(2)로 되어 있다. 이 밀폐형 전동 스크롤 압축기(2)는, 외각(外殼)을 구성하는 밀폐 구조로 된 세로로 긴 원통 형상의 하우징(14)을 구비하고, 그 하우징(14) 내부의 상방부에, 스크롤 압축 기구(15)가 장착된 압축기로 되어 있다. 스크롤 압축 기구(15)는, 공지와 같이, 한 쌍의 고정 스크롤(16) 및 선회 스크롤(17)을 구비하고, 하우징(14) 내에 고정 설치된 베어링 부재(18)를 통하여 장착되어 있다. 이 스크롤 압축 기구(15)에 의하여 압축된 고압 냉매 가스는, 토출 챔버(19) 내로 토출되고, 토출관(20)을 통하여 냉동 사이클(1)측의 토출 회로(13A)로 송출되는 구성으로 되어 있다.
하우징(14) 내에는, 스크롤 압축 기구(15)의 하부에, 고정자(22) 및 회전자(23)로 이루어지는 모터(21)가 고정 설치되어 있다. 모터(21)의 회전자(23)에는, 구동축(24)이 일체로 결합되고, 그 구동축(24)의 상단에 마련되어 있는 크랭크 핀이, 스크롤 압축 기구(15)의 선회 스크롤(17)의 배면에 대하여 드라이브 부시, 선회 베어링을 통하여 연결됨으로써, 스크롤 압축 기구(15)가 구동 가능하게 되어 있다.
구동축(24)의 상단측은 베어링 부재(18)에 의하여 지지되고, 하단부는 하우징(14) 내의 하방부에 설치된 베어링 부재(25)에 의하여 지지되어 있다. 이 구동축(24)의 하단부와 베어링 부재(25)의 사이에 급유 펌프(26)가 마련되어, 하우징(14)의 내바닥부의 오일 저류부(27)에 충전되어 있는 윤활유(오일)를 구동축(24) 내에 마련되어 있는 급유 구멍(28)을 통하여 스크롤 압축 기구(15)의 슬라이딩부에 급유 가능한 구성으로 되어 있다. 이러한 급유 기구를 구비한 밀폐형 전동 스크롤 압축기(2)는 잘 알려진 것이다.
또한, 압축기(2)는 상기와 같이 밀폐형 전동 스크롤 압축기(2)일 필요는 없고, 하우징 내부에 오일 저류부를 갖는 개방형의 스크롤 압축기여도 되며, 혹은 스크롤 압축기 이외의 타형식의 압축기여도 된다.
하우징(14) 내의 오일 저류부(27)에 충전되는 윤활유(오일)는, R32 냉매에 대하여 적응성을 갖는 PVE 오일(폴리바이닐에터계 오일), POE 오일(폴리올에스터계 오일), PAG 오일(폴리알킬렌글라이콜계 오일) 혹은 그들을 주성분으로 하는 혼합 오일로 되어 있고, 40℃에서의 점도가 20~150cP 정도인 오일이 이용된다.
본 실시형태에 있어서는, 모터(21)와 스크롤 압축 기구(15)의 사이의 공간부로 개구되도록 흡입관(29)이 하우징(14)의 외주부에 마련되어 있으며, 이 흡입관(29)을 통하여 냉동 사이클(1)측의 흡입 회로(13B)와 접속되도록 되어 있다. 이로써, 상기 밀폐형 전동 스크롤 압축기(2)는, 하우징(14) 내가 저압 분위기가 되는 저압 하우징형의 압축기(2)로 되어 있다.
밀폐형 전동 스크롤 압축기(2)의 하우징(14)에는, 도 1에 나타나는 바와 같이, 냉동 사이클(1)측의 토출 회로(13A) 중에 마련되어 있는 오일 분리기(3)에 의하여 분리된 오일을 압축기(2)측의 오일 저류부(27)로 복귀시키기 위한 오일 복귀 회로(31)가 접속되어 있다. 이 오일 복귀 회로(31)는, 오일 분리기(3)에 의하여 분리된 오일을 전자 밸브(33), 감압 및 유량 조정용 캐필러리 튜브(34)를 통하여 직접 오일 저류부(27)로 복귀시키는 직접 회로(32)와, 그 직접 회로(32)와 병렬로 접속되고, 오일 분리기(3)로부터의 오일을 전자 밸브(36), 오일 냉각기(37), 감압 및 유량 조정용 캐필러리 튜브(38)를 통하여 오일 저류부(27)로 복귀시키는 냉각 회로(35)의 병렬 회로에 의하여 구성되어 있다.
상기 오일 냉각기(37)에 의하여 오일을 냉각하는 냉열원으로서는, 냉동 사이클(1)의 냉매 회로 내를 순환하고 있는 고압액 냉매, 팽창 밸브에 의하여 감압된 기액 2상 냉매, 저압 가스 냉매 등의 일부를 이용하고, 냉매와의 열교환에 의하여 냉각하는 냉매 냉각 방식 혹은 실외측 열교환기(6)에 부설되어 있는 송풍기(5)를 이용하여 공랭에 의하여 냉각하는 공랭 방식 등을 채용하는 것이 가능하다.
오일 복귀 회로(31)는, 압축기(2)의 하우징(14) 내부에서의 오일 온도 상승을 규정값 이하로 제한하기 때문에, 냉매의 토출 온도, 압축기(2) 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하고, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환하며, 복귀 오일의 온도를 소정 온도 이하로 냉각하여 오일 저류부(27)로 복귀시킬 수 있는 구성으로 되어 있다.
즉, 오일 복귀 회로(31)는, 냉동 사이클(1)의 토출 회로(13A)에 마련되어 있는 토출 온도 센서(39)의 검출값, 압축기(2)의 하우징 바닥부에 마련되어 있는 오일 온도 센서(40)의 검출값, 혹은 냉동 사이클(1)의 흡입 회로(13B)에 마련된 저압 압력 센서(41)와 오일 온도 센서(40)의 검출값에 근거하여 산출되는 오일 점도 등 중 적어도 어느 하나가, 미리 설정되어 있는 임곗값을 초과했을 때, 전자 밸브(33, 36)를 개폐 제어하고, 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환하는 오일 온도 제어부(42)를 구비하며, 오일 분리기(3)로부터의 복귀 오일을 오일 냉각기(37)에 의하여 소정 온도 이하로 냉각하여 복귀시키는 구성으로 되어 있다.
이상에 설명한 구성에 의하여, 본 실시형태에 의하면, 이하의 작용 효과를 나타낸다.
상기 냉동 사이클(1)에 있어서는, 압축기(2)로부터 토출된 고온 고압의 냉매 가스를 사방 전환 밸브(4)에 의하여 실외측 열교환기(6)측으로 순환시켜, 실외측 열교환기(6)를 응축기, 실내측 열교환기(11)를 증발기로서 기능시킴으로써 냉방 운전을 행하고, 고온 고압의 냉매 가스를 사방 전환 밸브(4)에 의하여 실내측 열교환기(11)측으로 순환시켜, 실내측 열교환기(11)를 응축기, 실외측 열교환기(6)를 증발기로서 기능시킴으로써, 난방 운전을 행할 수 있다.
그 동안, 압축기(2)로부터의 토출 냉매 가스 중에 포함되는 오일은, 토출 회로(13A) 중에 마련되어 있는 오일 분리기(3)에 의하여 분리되어, 오일 복귀 회로(31)를 통하여 저압 하우징 타입으로 된 밀폐형 전동 스크롤 압축기(2)의 오일 저류부(27)로 복귀된다.
오일 복귀 회로(31)는, 오일을 직접 오일 저류부(27)로 복귀시키는 직접 회로(32)와, 오일 냉각기(37)에 의하여 냉각하여 오일 저류부(27)로 복귀시키는 냉각 회로(35)의 병렬 회로로 되어 있다. 이로 인하여, 압축기(2)로부터 토출되는 냉매의 토출 온도가 상승하여, 압축기(2) 내부의 오일 온도가 미리 설정되어 있는 임곗값을 초과할 가능성이 있는 경우, 그것을 검출하여 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환하고, 복귀 오일을 오일 냉각기(37)에 의하여 소정 온도 이하로 냉각하여 오일 저류부(27)로 복귀시킬 수 있다.
즉, 압축기(2)로부터 토출되는 냉매의 토출 온도, 압축기(2) 내의 오일 온도 혹은 오일 점도 중 적어도 어느 하나를 오일 온도 제어부(42)가 토출 온도 센서(39), 오일 온도 센서(40) 및 저압 압력 센서(41)의 검출값에 근거하여 검출하고, 그들이 미리 설정되어 있는 임곗값을 초과했을 때, 전자 밸브(33)를 개방으로부터 폐쇄, 전자 밸브(36)를 폐쇄로부터 개방으로 하며, 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환하고, 복귀 오일의 온도를 소정 온도 이하로 냉각하여 오일 저류부(27)로 복귀시킴으로써, 압축기(2) 내부의 오일 온도 상승을 규정값 이하로 제한하도록 기능한다.
여기에서, 상기 임곗값의 설정예에 대하여 설명한다.
냉매와 냉동기 오일의 조합을 R410A/PVE 오일 A, R32/PVE 오일 B로 한 경우, 예를 들면 HP/LP=3.8/1.8[MPa], SH=10[deg]일 때,
(1) 냉매의 토출 온도는, R410A에서는 85℃, R32에서는 100℃가 되므로, 임곗값을 예를 들면 90℃로 설정한다.
(2) 압축기 내 오일 온도는, R410A에서는 70℃, R32에서는 85℃가 되므로, 임곗값을 예를 들면 75℃로 설정한다.
(3) 오일 점도는, R410A/PVE 오일 A에서는 8mm2/s, R32/PVE 오일 B에서는 6mm2/s가 되므로, 임곗값을 예를 들면 7.5mm2/s로 설정한다.
상기와 같이, 냉매의 토출 온도, 압축기 내 오일 온도, 오일 점도의 임곗값을 설정하고, 오일 온도 제어부(42)를 통하여 각각의 검출값이 임곗값을 초과했을 때, 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환하며, 복귀 오일을 오일 냉각기(37)에 의하여 냉각하여, 온도를 15deg 정도 저하시켜 오일 저류부(27)로 복귀시키도록 제어함으로써, 오일 온도를 R410A 냉매의 경우와 동등 온도까지 저감시켜, 오일 점도를 R410A 냉매 대비로 동등 정도로 할 수 있고, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있다.
오일의 점도는, 압력 및 온도에 의하여 정해지는 냉매에 대한 용해도에 의존하는 것이 알려져 있으며, 상기와 같이 오일 온도 센서(40) 및 저압 압력 센서(41)에 의하여 온도 및 압력을 계측하고, 그 온도를 파라미터로 한 압력/용해도 특성 도면 등으로부터 용해도를 구함으로써 파악할 수 있다.
이상과 같이, R410A 냉매 대신에 R32 냉매를 이용함으로써, 압축기(2)로부터 토출되는 냉매의 토출 가스 온도가 상승하는 경우가 있어도, 냉매의 토출 온도, 압축기(2) 내의 오일 온도 또는 오일 점도 중 적어도 어느 하나를 검출하고, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 오일 복귀 회로(31)를 오일 분리기(3)로부터 압축기(2)의 오일 저류부(27)로 직접 오일을 복귀시키는 직접 회로(32)로부터, 오일 냉각기(37)에 의하여 오일을 냉각하여 오일 저류부(27)로 복귀시키는 냉각 회로(36)측으로 전환하여 오일을 오일 냉각기(37)에 의하여 냉각하며, 소정 온도 이하로 냉각하여 압축기(2)의 하우징(14) 내의 오일 저류부(27)로 복귀시킴으로써, 압축기(2) 내의 오일 온도 상승을 규정값 이하로 제한할 수 있다.
따라서, 압축기(2) 내의 오일 온도의 상승을 억제하여, R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보할 수 있다. 또, 오일 분리기(3)에 의하여 분리된 오일을 직접 압축기(2)의 하우징(14) 내의 오일 저류부(27)로 복귀시킬 수 있기 때문에, 냉매 가스와의 재혼합을 방지하여, 오일 상승에 의한 오일 순환율의 증대를 억제할 수 있음과 함께, 필요 시에만 오일을 냉각하면 되어, 냉동 사이클(1)의 능력이나 성능에 대한 영향을 최소화할 수 있다.
압축기(2)가 밀폐형 또는 개방형 중 어느 하나의 저압 하우징 타입의 스크롤 압축기(2)로 되어 있고, 그 하우징(14) 내의 오일 저류부(27)에 PVE 오일, POE 오일, PAG 오일 중 어느 하나의 오일 혹은 그들을 주성분으로 하는 혼합 오일을 충전한 것으로 되어 있다. 이로 인하여, 냉동 사이클(1)측으로부터의 저압 냉매 가스를 하우징(14) 내에 빨아들이며, 그 냉매를 흡입하고 압축하여, 토출 챔버(19)에 토출하는 구성의 R410A 냉매용의 밀폐형 또는 개방형의 저압 하우징 타입의 스크롤 압축기(2)를 그대로 적용하고, 그 냉매에 적응한 PVE 오일, POE 오일, PAG 오일 또는 그들의 혼합 오일을 충전함으로써, R32 냉매를 이용한 냉동 사이클(1)을 구성하여, 그 냉동 사이클(1)을 R410A 냉매 대비 동등한 허용 운전 범위 내지 조건을 확보하여 운전할 수 있다.
이로써, 압축기(2) 내의 오일 온도 상승에 의한 오일 점도의 저하에 기인하는 윤활 불량 등의 우려를 확실히 해소할 수 있다. 특히, 압축기(2)가 개방형 압축기로 되어 있는 경우에 있어서는, 메커니컬 시일 또는 립 시일에 의한 샤프트 시일부에서의 슬라이딩부 온도의 상승에 따른 오일의 슬러지화를 억제하고, 냉매 누출을 방지할 수 있는 등의 효과도 기대할 수 있다.
또한, 오일 복귀 회로(31)를, 오일 분리기(3)에 의하여 분리한 오일을 오일 분리기(3)로부터 오일 저류부(27)로 직접 복귀시키는 직접 회로(32)와, 오일 냉각기(37)에 의하여 냉각하여 복귀시키는 냉각 회로(35)의 병렬 회로로 되어 있으며, 냉매의 토출 온도, 압축기(2) 내의 오일 온도 혹은 오일 점도 중 적어도 어느 하나의 검출값이 임곗값을 초과했을 때, 오일 복귀 회로(31)를 직접 회로(32)로부터 냉각 회로(35)로 전환한다.
이로써, 오일 냉각기(37)에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시키도록 하고 있기 때문에, 압축기(2) 내부의 오일 온도 상승을 확실히 규정값 이하로 제한할 수 있음과 함께, 필요 시에만 오일 냉각기(37)에 의하여 오일을 냉각하면 되어, 냉동 사이클(1)의 능력이나 성능에 대한 영향을 최소화할 수 있다.
또한, 본 발명은, 상기 실시형태에 관한 발명에 한정되는 것은 아니며, 그 요지를 일탈하지 않는 범위에 있어서, 적절히 변형이 가능하다. 예를 들면, 상기 실시형태에서는, 토출 온도 센서(39), 오일 온도 센서(40), 저압 압력 센서(41)를 마련하여, 냉매의 토출 온도, 압축기(2) 내의 오일 온도 또는 오일 점도를 검출하도록 하고 있는데, 이들 센서는, 냉동 사이클(1)의 운전 제어용으로 마련되는 센서류를 유용(流用)하고, 그 검출값을 이용하여 전자 밸브(33, 36)를 제어하도록 하면 되어, 새롭게 센서를 마련할 필요는 없다.
1 냉동 사이클
2 압축기(밀폐형 전동 스크롤 압축기)
3 오일 분리기
13A 토출 회로
14 하우징
27 오일 저류부
31 오일 복귀 회로
32 직접 회로
33, 36 전자 밸브
34, 38 캐필러리 튜브
35 냉각 회로
37 오일 냉각기
39 토출 온도 센서
40 오일 온도 센서
41 저압 압력 센서
42 오일 온도 제어부

Claims (4)

  1. 오일 저류부를 갖는 하우징 내부가 저압 분위기로 되어 있는 압축기를 구비하고, 그 사이클 내에 R32 냉매 내지 R32 리치의 혼합 냉매가 충전된 냉동 사이클과,
    상기 압축기로부터의 토출 회로에 마련된 오일 분리기와,
    상기 오일 분리기에 의하여 분리된 오일을 감압하여 상기 하우징 내의 상기 오일 저류부로 복귀시키는 오일 복귀 회로를 구비하며,
    상기 오일 복귀 회로는, 상기 오일을 상기 오일 분리기로부터 상기 오일 저류부로 직접 복귀시키는 직접 회로와, 오일 냉각기에 의하여 냉각하여 복귀시키는 냉각 회로의 병렬 회로로 되어 있고,
    상기 압축기 내의 오일 점도를, 상기 냉동 사이클의 흡입 회로에 있어서의 상기 냉매의 압력과 상기 오일 저류부에 있어서의 오일 온도의 검출값에 근거하여 산출하며, 그것이 미리 설정되어 있는 임곗값을 초과했을 때, 상기 오일 복귀 회로를 상기 직접 회로로부터 상기 냉각 회로로 전환하고, 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시키는 오일 온도 제어부를 구비하고 있는 냉동 사이클의 오일 복귀 회로.
  2. 청구항 1에 있어서,
    상기 압축기는, 밀폐형 또는 개방형 중 어느 하나의 저압 하우징 타입의 스크롤 압축기로 되어 있고, 그 하우징 내부의 상기 오일 저류부에 PVE 오일, POE 오일, PAG 오일 중 어느 하나, 혹은 그들을 주성분으로 하는 혼합 오일이 충전되어 있는 냉동 사이클의 오일 복귀 회로.
  3. 저압 하우징 타입의 압축기를 구비하고, 그 사이클 내에 R32 냉매 내지 R32 리치의 혼합 냉매가 충전된 냉동 사이클의 상기 압축기의 토출 회로에 오일 분리기를 마련하여, 그 오일 분리기에 의하여 분리된 오일을 오일 복귀 회로를 통하여 상기 압축기의 하우징 내의 오일 저류부로 복귀시키는 냉동 사이클의 오일 복귀 방법에 있어서,
    상기 압축기 내의 오일 점도를, 상기 냉동 사이클의 흡입 회로에 있어서의 상기 냉매의 압력과 상기 오일 저류부에 있어서의 오일 온도의 검출값에 근거하여 산출하며,
    그 검출값이 미리 설정되어 있는 임곗값을 초과했을 때, 상기 오일 복귀 회로에 마련되어 있는 오일 냉각기에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시킴으로써,
    상기 압축기 내부의 오일 온도 상승을 규정값 이하로 제한하는 냉동 사이클의 오일 복귀 방법.
  4. 청구항 3에 있어서,
    상기 오일 복귀 회로가, 상기 오일을 상기 오일 분리기로부터 상기 오일 저류부로 직접 복귀시키는 직접 회로와, 오일 냉각기에 의하여 냉각하여 복귀시키는 냉각 회로의 병렬 회로로 되어 있으며,
    상기 압축기 내에 있어서의 상기 오일의 점도의 산출값이 상기 임곗값을 초과했을 때, 상기 오일 복귀 회로를 상기 직접 회로로부터 상기 냉각 회로로 전환하고, 상기 오일 냉각기에 의하여 복귀 오일의 온도를 소정 온도 이하로 냉각하여 복귀시키는 냉동 사이클의 오일 복귀 방법.
KR1020177022335A 2015-02-26 2016-01-13 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법 KR102099665B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015036885A JP6495048B2 (ja) 2015-02-26 2015-02-26 冷凍サイクルの油戻し回路および油戻し方法
JPJP-P-2015-036885 2015-02-26
PCT/JP2016/050793 WO2016136305A1 (ja) 2015-02-26 2016-01-13 冷凍サイクルの油戻し回路および油戻し方法

Publications (2)

Publication Number Publication Date
KR20170102987A true KR20170102987A (ko) 2017-09-12
KR102099665B1 KR102099665B1 (ko) 2020-04-10

Family

ID=56788097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177022335A KR102099665B1 (ko) 2015-02-26 2016-01-13 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법

Country Status (6)

Country Link
EP (1) EP3249317B1 (ko)
JP (1) JP6495048B2 (ko)
KR (1) KR102099665B1 (ko)
CN (1) CN107532824A (ko)
AU (1) AU2016225575B2 (ko)
WO (1) WO2016136305A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122615A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 공기조화기

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021360A1 (ja) * 2017-07-25 2019-01-31 三菱電機株式会社 冷凍サイクル装置
CN110892209B (zh) * 2017-08-04 2021-12-28 三菱电机株式会社 制冷循环装置和热源单元
CN109163479A (zh) * 2018-10-18 2019-01-08 中国科学院广州能源研究所 一种自动回油燃气热泵系统
CN110440402B (zh) * 2019-07-02 2021-09-21 青岛海尔空调电子有限公司 空调器及其回油控制方法
US20220049879A1 (en) * 2019-09-13 2022-02-17 Carrier Corporation Vapor compression system
JPWO2022085125A1 (ko) * 2020-10-21 2022-04-28
CN113483449B (zh) * 2021-07-09 2022-09-06 青岛海尔空调器有限总公司 室内机回油控制方法
CN114353360B (zh) * 2022-01-06 2024-02-23 青岛海尔空调电子有限公司 双压缩机制冷剂循环系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337171A (ja) 1993-03-30 1994-12-06 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH1183204A (ja) 1997-09-12 1999-03-26 Mitsubishi Heavy Ind Ltd 空気調和機
JP2002139261A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005214515A (ja) 2004-01-29 2005-08-11 Mitsubishi Heavy Ind Ltd 冷凍サイクル装置、冷凍サイクル装置の圧縮機、油戻し運転制御方法
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2006170570A (ja) 2004-12-17 2006-06-29 Hitachi Ltd 冷凍装置
JP2011133209A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP2014085104A (ja) 2012-10-29 2014-05-12 Hitachi Appliances Inc 冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719634A (ja) * 1993-06-30 1995-01-20 Mitsubishi Electric Corp 圧縮機ユニット
JPH08152207A (ja) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd 空気調和機
JP2005083704A (ja) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp 冷凍サイクル、空気調和機
JP5017037B2 (ja) * 2007-09-26 2012-09-05 三洋電機株式会社 冷凍サイクル装置
JP4975052B2 (ja) * 2009-03-30 2012-07-11 三菱電機株式会社 冷凍サイクル装置
CN101576337B (zh) * 2009-04-28 2010-09-08 浙江盾安机电科技有限公司 智能油路控制系统
EP2339266B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP5333305B2 (ja) * 2010-03-18 2013-11-06 パナソニック株式会社 冷凍サイクル装置
JP5903595B2 (ja) * 2011-05-27 2016-04-13 パナソニックIpマネジメント株式会社 超低温冷凍装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337171A (ja) 1993-03-30 1994-12-06 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH1183204A (ja) 1997-09-12 1999-03-26 Mitsubishi Heavy Ind Ltd 空気調和機
JP2002139261A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005214515A (ja) 2004-01-29 2005-08-11 Mitsubishi Heavy Ind Ltd 冷凍サイクル装置、冷凍サイクル装置の圧縮機、油戻し運転制御方法
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2006170570A (ja) 2004-12-17 2006-06-29 Hitachi Ltd 冷凍装置
JP2011133209A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP2014085104A (ja) 2012-10-29 2014-05-12 Hitachi Appliances Inc 冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122615A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 공기조화기

Also Published As

Publication number Publication date
CN107532824A (zh) 2018-01-02
EP3249317A1 (en) 2017-11-29
EP3249317B1 (en) 2019-04-24
WO2016136305A1 (ja) 2016-09-01
KR102099665B1 (ko) 2020-04-10
JP6495048B2 (ja) 2019-04-03
JP2016161138A (ja) 2016-09-05
AU2016225575A1 (en) 2017-08-24
EP3249317A4 (en) 2018-03-14
AU2016225575B2 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR102099665B1 (ko) 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법
JP5798830B2 (ja) 超臨界サイクルヒートポンプ
CN111801535B (zh) 制冷循环装置
KR101892880B1 (ko) 냉동 사이클 장치
JP2008267787A (ja) 冷凍装置
CN107429949B (zh) 制冷循环装置
JP2009127902A (ja) 冷凍装置及び圧縮機
JP5906461B2 (ja) 密閉型圧縮機
CN107076466B (zh) 制冷循环装置
JP6188918B2 (ja) 冷凍装置
JP2010127218A (ja) 圧縮機
CN110953754A (zh) 制冷空调装置及用于该制冷空调装置的密闭型电动压缩机
JP2013024447A (ja) 冷凍装置
JP2008209036A (ja) 冷凍装置
JP6759017B2 (ja) 空気調和機の管理方法
KR102103225B1 (ko) 냉동 장치
JP2013139890A (ja) 冷凍装置
JP5659403B2 (ja) 冷凍サイクル装置
JP3600108B2 (ja) 冷凍装置
JP2002139261A (ja) 冷凍サイクル装置
JP2008232564A (ja) 冷凍装置及び冷凍装置の制御方法
CN112013557B (zh) 制冷设备
JP2001255029A (ja) 冷凍装置
JP2005098611A (ja) 冷媒圧縮機及び冷凍装置
JP2022086844A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant