WO2016136305A1 - 冷凍サイクルの油戻し回路および油戻し方法 - Google Patents

冷凍サイクルの油戻し回路および油戻し方法 Download PDF

Info

Publication number
WO2016136305A1
WO2016136305A1 PCT/JP2016/050793 JP2016050793W WO2016136305A1 WO 2016136305 A1 WO2016136305 A1 WO 2016136305A1 JP 2016050793 W JP2016050793 W JP 2016050793W WO 2016136305 A1 WO2016136305 A1 WO 2016136305A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
circuit
compressor
temperature
refrigerant
Prior art date
Application number
PCT/JP2016/050793
Other languages
English (en)
French (fr)
Inventor
善彰 宮本
央幸 木全
洋悟 高須
一樹 高橋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16755055.7A priority Critical patent/EP3249317B1/en
Priority to CN201680012020.8A priority patent/CN107532824A/zh
Priority to AU2016225575A priority patent/AU2016225575B2/en
Priority to KR1020177022335A priority patent/KR102099665B1/ko
Publication of WO2016136305A1 publication Critical patent/WO2016136305A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Definitions

  • a motor 21 including a stator 22 and a rotor 23 is fixedly installed below the scroll compression mechanism 15.
  • the drive shaft 24 is integrally coupled to the rotor 23 of the motor 21, and a crank pin provided at the upper end of the drive shaft 24 drives and bushes the drive bush against the back surface of the orbiting scroll 17 of the scroll compression mechanism 15.
  • the scroll compression mechanism 15 can be driven by being connected via a bearing.
  • the refrigeration cycle 1 the high temperature / high pressure refrigerant gas discharged from the compressor 2 is circulated by the four-way switching valve 4 to the outdoor heat exchanger 6 side, and the outdoor heat exchanger 6 is a condenser, heat exchange inside the room
  • the cooling operation is performed by causing the heat exchanger 11 to function as an evaporator, and the high temperature / high pressure refrigerant gas is circulated to the indoor heat exchanger 11 side by the four-way switching valve 4 to heat the indoor heat exchanger 11 as a condenser.
  • a heating operation can be performed by causing the exchanger 6 to function as an evaporator.
  • the viscosity of oil depends on the pressure and the solubility to the refrigerant determined by the temperature, and the temperature and pressure are measured by the oil temperature sensor 40 and the low pressure sensor 41 as described above, / It can be grasped by finding the solubility from the solubility characteristic chart etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

 吐出ガス温度が高くなるR32冷媒を用いた場合でも、圧縮機内の油温の上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができるとともに、油循環率の増大や冷凍サイクルの能力や性能への影響を抑制する。 低圧ハウジングタイプの圧縮機(2)を備え、R32冷媒が充填された冷凍サイクル(1)と、圧縮機の吐出回路(13A)に設けた油分離器(3)と、油分離器で分離された油を圧縮機のハウジング内部の油溜まりに戻す油戻し回路(31)とを備え、油戻し回路は、油をハウジング内の油溜まりに直接戻す直接回路(32)と、油冷却器(37)で冷却して戻す冷却回路(35)との並列回路とされ、冷媒の吐出温度、圧縮機内の油温度または油粘度の1つを検出し、それが閾値を超えたとき、油戻し回路を直接回路から冷却回路に切換え、油温を所定温度以下に冷却して戻す油温制御部(42)を備えている。

Description

冷凍サイクルの油戻し回路および油戻し方法
 本発明は、地球温暖化係数(以下、GWPという。)が低いR32冷媒またはR32冷媒リッチの混合冷媒(以下、単にR32冷媒という。)を用いた冷凍サイクルの油戻し回路および油戻し方法に関するものである。
 R32冷媒は、オゾン破壊係数(ODP)がゼロであって、かつGWPがR410A冷媒に比べ、約1/3程度の低いことから、環境負荷の低減に寄与し得るものであり、R410A冷媒の代替冷媒として用いられている。しかし、R32冷媒は、R410A冷媒に比べて吐出ガス温度が10~20℃程上昇し、吸入圧力と吐出圧力との圧力比が高くなる程吐出ガス温度が上昇する傾向があり、油分離器からの戻し油によって圧縮機内の油温が上昇する。これに伴い油粘度が低下することから、R410A冷媒対比で許容運転範囲ないし条件を制限しなければならなかった。
 特許文献1には、圧縮機の吐出回路に油分離器を設け、冷房時には、圧縮機から吐出された油を含む冷媒を、そのまま油分離器から第1バイパス流路を介して冷却器で冷却した後、圧縮機のハウジング内に戻し、そこで油を分離して冷媒のみを第2バイパス流路を経て凝縮器に循環させることにより、圧縮機内の油温上昇を抑制することが記載されている。
 暖房時には、油分離器により冷媒と油とを分離し、冷媒を凝縮器に循環させて暖房に供するとともに、油を第1バイパス流路、冷却器を経て冷却した後、圧縮機に戻すことによって、油温の上昇と暖房能力の低下を抑制するようにしている。
 一方、R410A冷媒等を用いた冷凍サイクルにおいては、従来から、圧縮機の吐出回路に油分離器を設け、油分離器で冷媒ガス中に含まれる油を分離した後、冷媒を凝縮器に循環させるようにしたものが、特許文献2-5により提供されている。
 これらにおいては、分離した油を油戻し回路により圧縮機または圧縮機の吸入回路に戻すようにしたもの、あるいはその油戻し回路中に油冷却器を設け、必要に応じて油を冷却して圧縮機側に戻すようにしている。
特開2014-85104号公報 特開平6-337171号公報 特開平11-83204号公報 特開2005-214515号公報 特開2006-170570号公報
 しかしながら、上記特許文献1のものは、圧縮機のハウジング内を高圧雰囲気とするだけでなく、油分離機能を有するものとしなければならず、ダイレクトサクション、ダイレクトディスチャージ構造の圧縮機としなければならない。しかも、第1バイパス流路および第2バイパス流路をそれぞれ比較的径の大きい高圧ガス配管としなければならず、圧縮機構造やその周りの配管構造が複雑化、高コスト化するとともに、低圧ハウジングタイプの圧縮機を用いた冷凍サイクルには適用できない等の課題があった。
 一方、ハウジング内が低圧雰囲気下とされる低圧ハウジングタイプの圧縮機を用いたものでは、特許文献2-5に示すように、油分離器で分離した油のみを油戻し回路を介して圧縮機側に戻すことができる。この際、油を圧縮機の吸入回路に戻すことにより、低圧冷媒ガスで油を冷却し、油温を下げて圧縮機を戻すことができる。しかし、この場合、油と冷媒ガスが再混合し、圧縮機内で再び分離しなければならず、油の分離効率が低下することにより油上がり、すなわち油循環率が増大してしまう等の課題がある。
 また、油戻し回路中に油冷却器を設け、そこで冷却した油を直接圧縮機ハウジングの油溜まりに戻すようにしたものも提案されているが、この場合、油冷却器により常に油が冷却されるため、油冷却器での冷熱源として冷媒を用いたものでは、冷凍サイクルの能力や性能に影響を及ぼすことになる等の課題がある。
 本発明は、このような事情に鑑みてなされたものであって、吐出ガス温度が高くなるR32冷媒を用いた場合でも、圧縮機内の油温の上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができるとともに、油循環率の増大や冷凍サイクルの能力や性能への影響を抑制することができる冷凍サイクルの油戻し回路および油戻し方法を提供することを目的とする。
 上記した課題を解決するために、本発明の冷凍サイクルの油戻し回路および油戻し方法は以下の手段を採用する。
 すなわち、本発明にかかる冷凍サイクルの油戻し回路は、油溜まりを有するハウジング内部が低圧雰囲気とされる圧縮機を備え、そのサイクル内にR32冷媒ないしR32リッチの混合冷媒が充填された冷凍サイクルと、前記圧縮機からの吐出回路に設けられた油分離器と、前記油分離器で分離された油を減圧して前記ハウジング内の前記油溜まりに戻す油戻し回路と、を備え、前記油戻し回路は、油を前記油分離器から前記油溜まりに直接戻す直接回路と、油冷却器により冷却して戻す冷却回路との並列回路とされ、前記冷媒の吐出温度、前記圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、前記油戻し回路を前記直接回路から前記冷却回路に切換え、戻し油の温度を所定温度以下に冷却して戻す油温制御部を備えている。
 本発明によれば、R32冷媒ないしR32リッチの混合冷媒を用いることにより吐出ガス温度が上昇することがあっても、冷媒の吐出温度、圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、油戻し回路を直接回路から冷却回路に切換えて油を油冷却器により冷却し、所定温度以下に冷却して圧縮機のハウジング内の油溜まり戻すことにより、圧縮機内部の油温上昇を規定値以下に制限することができる。従って、圧縮機内の油温の上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができる。また、油分離器で分離された油を直接ハウジング内の油溜まりに戻すことができるため、冷媒ガスとの再混合を防止して、油上がりによる油循環率の増大を抑制することができるとともに、必要時のみ油を冷却すればよく、冷凍サイクルの能力や性能への影響を最小化することができる。
 さらに、本発明の冷凍サイクルの油戻し回路は、上記の冷凍サイクルの油戻し回路において、前記圧縮機は、密閉型または開放型のいずれかの低圧ハウジングタイプのスクロール圧縮機とされ、そのハウジング内部の前記油溜まりにPVE油、POE油、PAG油のいずれか、もしくはそれらを主成分とする混合油が充填されている。
 本発明によれば、冷凍サイクル側からの低圧冷媒ガスをハウジング内に吸込み、その冷媒を吸入して圧縮し、吐出チャンバーに吐出する構成とされたR410A冷媒用の密閉型または開放型の低圧ハウジングタイプのスクロール圧縮機をそのまま適用することができる。
 この場合、その冷媒に適応したPVE油(ポリビニルエーテル系油)、POE油(ポリオールエステル系油)、PAG油(ポリアルキレングリコール系油)またはそれらの混合油を充填することにより、R32冷媒ないしR32リッチの混合冷媒を用いた冷凍サイクルを構成し、該冷凍サイクルをR410A冷媒対比同等の許容運転範囲ないし条件を確保して運転することができる。
 従って、圧縮機内の油温上昇による油粘度の低下に起因する潤滑不良等を確実に解消することができる。また、圧縮機が開放型圧縮機とされている場合においては、メカニカルシールまたはリップシールによるシャフトシール部での摺動部温度の上昇に伴う油のスラッジ化を抑制し、冷媒漏れを防止することができる等の効果を奏する。
 さらに、本発明にかかる冷凍サイクルの油戻し方法は、低圧ハウジングタイプの圧縮機を備え、そのサイクル内にR32冷媒ないしR32リッチの混合冷媒が充填された冷凍サイクルの前記圧縮機の吐出回路に油分離器を設け、その油分離器で分離された油を油戻し回路を介して前記圧縮機のハウジング内の油溜まりに戻す冷凍サイクルの油戻し方法において、前記冷媒の吐出温度、前記圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、その検出値が予め設定されている閾値を超えたとき、前記油戻し回路に設けられている油冷却器で戻し油の温度を所定温度以下に冷却して戻すことにより、前記圧縮機内部の油温上昇を規定値以下に制限する。
 本発明によれば、R32冷媒ないしR32リッチの混合冷媒を用いることにより吐出ガス温度が上昇することがあっても、冷媒の吐出温度、圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、その検出値が予め設定されている閾値を超えたとき、油戻し回路に設けられている油冷却器で戻し油の温度を所定温度以下に冷却して圧縮機のハウジング内の油溜まり戻すことにより、圧縮機内部の油温上昇を規定値以下に制限することができる。
 従って、圧縮機内の油温の上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができる。また、油分離器で分離された油を直接ハウジング内の油溜まりに戻すことができるため、冷媒ガスとの再混合を防止し、油上がりによる油循環率の増大を抑制することができるとともに、必要時のみ油を冷却すればよく、冷凍サイクルの能力や性能への影響を最小化することができる。
 さらに、本発明の冷凍サイクルの油戻し方法は、上記の冷凍サイクルの油戻し方法において、前記油戻し回路が、油を前記油分離器から前記油溜まりに直接戻す直接回路と、油冷却器により冷却して戻す冷却回路との並列回路とされており、前記冷媒の吐出温度、前記圧縮機内の油温度もしくは油粘度の少なくともいずれか1つの検出値が前記閾値を超えたとき、前記油戻し回路を前記直接回路から前記冷却回路に切換え、前記油冷却器により戻し油の温度を所定温度以下に冷却して戻す。
 本発明によれば、冷媒の吐出温度、圧縮機内の油温度または油粘度のいずれか1つの検出値が閾値以下のときは、直接回路を介して油分離器から直接油溜まりに油を戻し、上記検出値が閾値を超えたときは、冷却回路の油冷却器で油を所定温度以下に冷却して油溜まりに戻すことができる。従って、圧縮機内部の油温上昇を確実に規定値以下に制限することができるとともに、必要時のみ油冷却器で油を冷却すればよく、冷凍サイクルの能力や性能への影響を最小化することができる。
 本発明の冷凍サイクルの油戻し回路および油戻し方法によると、R32冷媒ないしR32リッチの混合冷媒を用いることにより吐出ガス温度が上昇することがあっても、冷媒の吐出温度、圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、油戻し回路を直接回路から冷却回路に切換えて油を油冷却器により冷却し、所定温度以下に冷却して圧縮機のハウジング内の油溜まり戻すことによって、圧縮機内部の油温上昇を規定値以下に制限することができる。
 このため、圧縮機内の油温上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができる。また、油分離器で分離された油を直接圧縮機内部の油溜まりに戻すことができるため、冷媒ガスとの再混合を防止し、油上がりによる油循環率の増大を抑制することができるとともに、必要時のみ油を冷却すればよく、冷凍サイクルの能力や性能への影響を最小化することができる。
本発明の一実施形態に係る冷凍サイクルの油戻し回路を含む冷媒回路図である。 上記冷凍サイクルに適用する低圧ハウジングタイプの圧縮機の縦断面図である。
 以下、本発明の一実施形態について、図1および図2を用いて説明する。
 図1には、本発明の一実施形態に係る冷凍サイクルの油戻し回路を含む冷媒回路図が示され、図2には、その冷凍サイクルに適用する低圧ハウジングタイプの圧縮機の縦断面図が示されている。
 ここでの冷凍サイクル1は、冷媒としてR32冷媒ないしR32リッチの混合冷媒(以下、単にR32冷媒という。)が充填されたものであり、四方切換弁4を備え、冷媒循環方向を切換えることにより冷暖房が可能なヒートポンプサイクルとされているが、冷凍またはヒートポンプの単独サイクルとしたものであってもよい。
 冷凍サイクル1は、低圧ハウジングタイプの圧縮機2と、圧縮機2の吐出回路13A中に設けられている油分離器3と、冷媒循環方向を切換える四方切換弁4と、送風機5が付設されている室外側熱交換器6と、暖房用の電子膨張弁7と、レシーバ8と、冷房用の電子膨張弁9と、送風機10が付設されている室内側熱交換器11と、圧縮機2の吸入回路13B中に設けられたアキュームレータ12と、を冷媒配管13により順次接続した閉サイクルの冷媒回路により構成されている。
 圧縮機2は、図2に示されるように、密閉型電動スクロール圧縮機2とされている。この密閉型電動スクロール圧縮機2は、外殻を構成する密閉構造とされた縦長円筒形状のハウジング14を備え、そのハウジング14内部の上方部に、スクロール圧縮機構15が組み込まれた圧縮機とされている。スクロール圧縮機構15は、公知の如く、一対の固定スクロール16および旋回スクロール17を備え、ハウジング14内に固定設置された軸受部材18を介して組み込まれている。このスクロール圧縮機構15で圧縮された高圧冷媒ガスは、吐出チャンバー19内に吐出され、吐出管20を介して冷凍サイクル1側の吐出回路13Aに送出される構成とされている。
 ハウジング14内には、スクロール圧縮機構15の下部に、固定子22および回転子23からなるモータ21が固定設置されている。モータ21の回転子23には、駆動軸24が一体に結合され、その駆動軸24の上端に設けられているクランクピンが、スクロール圧縮機構15の旋回スクロール17の背面に対してドライブブッシュ、旋回軸受を介して連結されることにより、スクロール圧縮機構15が駆動可能とされている。
 駆動軸24の上端側は、軸受部材18により支持され、下端部は、ハウジング14内の下方部に設置された軸受部材25により支持されている。この駆動軸24の下端部と軸受部材25との間に給油ポンプ26が設けられ、ハウジング14の内底部の油溜まり27に充填されている潤滑油(油)を駆動軸24内に設けられている給油孔28を介してスクロール圧縮機構15の摺動部に給油可能な構成とされている。かかる給油機構を備えた密閉型電動スクロール圧縮機2は、よく知られたものである。
 なお、圧縮機2は、上記の如く密閉型電動スクロール圧縮機2である必要はなく、ハウジング内部に油溜まりを有する開放型のスクロール圧縮機であってもよく、あるいはスクロール圧縮機以外の他型式の圧縮機であってもよい。
 ハウジング14内の油溜まり27に充填される潤滑油(油)は、R32冷媒に対して適応性を有するPVE油(ポリビニルエーテル系油)、POE油(ポリオールエステル系油)、PAG油(ポリアルキレングリコール系油)もしくはそれらを主成分とする混合油とされ、40℃での粘度が20~150cP程度の油が用いられる。
 本実施形態においては、モータ21とスクロール圧縮機構15との間の空間部に開口するように吸入管29がハウジング14の外周部に設けられており、この吸入管29を介して冷凍サイクル1側の吸入回路13Bと接続されるようになっている。これによって、上記密閉型電動スクロール圧縮機2は、ハウジング14内が低圧雰囲気となる低圧ハウジング型の圧縮機2とされている。
 密閉型電動スクロール圧縮機2のハウジング14には、図1に示されるように、冷凍サイクル1側の吐出回路13A中に設けられている油分離器3で分離された油を圧縮機2側の油溜まり27に戻すための油戻し回路31が接続されている。この油戻し回路31は、油分離器3で分離された油を電磁弁33、減圧および流量調整用のキュピラリチューブ34を介して直接油溜まり27に戻す直接回路32と、その直接回路32と並列に接続され、油分離器3からの油を電磁弁36、油冷却器37、減圧および流量調整用のキュピラリチューブ38を介して油溜まり27に戻す冷却回路35との並列回路により構成されている。
 上記油冷却器37により油を冷却する冷熱源としては、冷凍サイクル1の冷媒回路内を循環されている高圧液冷媒、膨張弁により減圧された気液2相冷媒、低圧ガス冷媒等の一部を利用し、冷媒との熱交換により冷却する冷媒冷却方式あるいは室外側熱交換器6に付設されている送風機5を利用して空冷により冷却する空冷方式等を採用することが可能である。
 油戻し回路31は、圧縮機2のハウジング14内部での油温上昇を規定値以下に制限するため、冷媒の吐出温度、圧縮機2内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、油戻し回路31を直接回路32から冷却回路35に切換え、戻し油の温度を所定温度以下に冷却して油溜まり27に戻すことができる構成とされている。
 つまり、油戻し回路31は、冷凍サイクル1の吐出回路13Aに設けられている吐出温度センサ39の検出値、圧縮機2のハウジング底部に設けられている油温センサ40の検出値、あるいは冷凍サイクル1の吸入回路13Bに設けられた低圧圧力センサ41と油温センサ40との検出値に基づいて算出される油粘度等の少なくともいずれか1つが、予め設定されている閾値を超えたとき、電磁弁33,36を開閉制御し、油戻し回路31を直接回路32から冷却回路35に切換える油温制御部42を備え、油分離器3からの戻し油を油冷却器37により所定温度以下に冷却して戻す構成とされている。
 以上に説明の構成により、本実施形態によると、以下の作用効果を奏する。
 上記冷凍サイクル1においては、圧縮機2から吐出された高温高圧の冷媒ガスを四方切換弁4により室外側熱交換器6側に循環させ、室外側熱交換器6を凝縮器、室内側熱交換器11を蒸発器として機能させることにより冷房運転を行い、高温高圧の冷媒ガスを四方切換弁4により室内側熱交換器11側に循環させ、室内側熱交換器11を凝縮器、室外側熱交換器6を蒸発器として機能させることにより、暖房運転を行うことができる。
 この間、圧縮機2からの吐出冷媒ガス中に含まれる油は、吐出回路13A中に設けられている油分離器3により分離され、油戻し回路31を介して低圧ハウジングタイプとされた密閉型電動スクロール圧縮機2の油溜まり27に戻される。
 油戻し回路31は、油を直接油溜まり27に戻す直接回路32と、油冷却器37により冷却して油溜まり27に戻す冷却回路35の並列回路とされている。このため、圧縮機2から吐出される冷媒の吐出温度が上昇し、圧縮機2内部の油温が予め設定されている閾値を超える可能性がある場合、それを検出して油戻し回路31を直接回路32から冷却回路35に切換え、戻し油を油冷却器37により所定温度以下に冷却して油溜まり27に戻すことができる。
 つまり、圧縮機2から吐出される冷媒の吐出温度、圧縮機2内の油温あるいは油粘度の少なくともいずれか1つを油温制御部42が吐出温度センサ39、油温センサ40および低圧圧力センサ41の検出値に基づいて検出し、それらが予め設定されている閾値を超えたとき、電磁弁33を開から閉、電磁弁36を閉から開とし、油戻し回路31を直接回路32から冷却回路35に切換え、戻し油の温度を所定温度以下に冷却して油溜まり27に戻すことによって、圧縮機2内部の油温上昇を規定値以下に制限するように機能する。
 ここで、上記閾値の設定例について説明する。
 冷媒と冷凍機油の組み合わせを、R410A/PVE油A、R32/PVE油Bとした場合、例えばHP/LP=3.8/1.8[MPa]、SH=10[deg]のとき、
(1)冷媒の吐出温度は、R410Aでは85℃、R32では100℃となるので、閾値を例えば90℃に設定する。
(2)圧縮機内油温は、R410Aでは70℃、R32では85℃となるので、閾値を例えば75℃に設定する。
(3)油粘度は、R410A/PVE油Aでは8mm/s、R32/PVE油Bでは6mm/sとなるので、閾値を例えば7.5mm/sに設定する。
 上記の如く、冷媒の吐出温度、圧縮機内油温、油粘度の閾値を設定し、油温制御部42を介してそれぞれの検出値が閾値を超えたとき、油戻し回路31を直接回路32から冷却回路35に切換え、戻し油を油冷却器37で冷却し、温度を15deg程度低下させて油溜まり27に戻すように制御することによって、油温をR410A冷媒の場合と同等温度まで低減し、油粘度をR410A冷媒対比で同等程度にすることができ、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができる。
 油の粘度は、圧力および温度によって決まる冷媒に対する溶解度に依存することが知られており、上記の如く油温センサ40および低圧圧力センサ41により温度および圧力を計測し、その温度をパラメータとした圧力/溶解度特性図等から溶解度を求めることによって把握することができる。
 以上のように、R410A冷媒に代えてR32冷媒を用いることにより、圧縮機2から吐出される冷媒の吐出ガス温度が上昇することがあっても、冷媒の吐出温度、圧縮機2内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、油戻し回路31を油分離器3から圧縮機2の油溜まり27に直接油を戻す直接回路32から、油冷却器37により油を冷却して油溜まり27に戻す冷却回路36側に切換えて油を油冷却器37により冷却し、所定温度以下に冷却して圧縮機2のハウジング14内の油溜まり27戻すことによって、圧縮機2内の油温上昇を規定値以下に制限することができる。
 従って、圧縮機2内の油温の上昇を抑制し、R410A冷媒対比同等の許容運転範囲ないし条件を確保することができる。また、油分離器3で分離された油を直接圧縮機2のハウジング14内の油溜まり27に戻すことができるため、冷媒ガスとの再混合を防止し、油上がりによる油循環率の増大を抑制することができるとともに、必要時のみ油を冷却すればよく、冷凍サイクル1の能力や性能への影響を最小化することができる。
 圧縮機2が密閉型または開放型のいずれかの低圧ハウジングタイプのスクロール圧縮機2とされ、そのハウジング14内の油溜まり27にPVE油、POE油、PAG油のいずれかの油もしくはそれらを主成分とする混合油を充填したものとされている。このため、冷凍サイクル1側からの低圧冷媒ガスをハウジング14内に吸込み、その冷媒を吸入して圧縮し、吐出チャンバー19に吐出する構成のR410A冷媒用の密閉型または開放型の低圧ハウジングタイプのスクロール圧縮機2をそのまま適用し、その冷媒に適応したPVE油、POE油、PAG油またはそれらの混合油を充填することにより、R32冷媒を用いた冷凍サイクル1を構成し、その冷凍サイクル1をR410A冷媒対比同等の許容運転範囲ないし条件を確保して運転することができる。
 これによって、圧縮機2内の油温上昇による油粘度の低下に起因する潤滑不良等の懸念を確実に解消することができる。特に、圧縮機2が開放型圧縮機とされている場合においては、メカニカルシールまたはリップシールによるシャフトシール部での摺動部温度の上昇に伴う油のスラッジ化を抑制し、冷媒漏れを防止することができる等の効果をも期待することができる。
 さらに、油戻し回路31を、油分離器3で分離した油を油分離器3から油溜まり27に直接戻す直接回路32と、油冷却器37により冷却して戻す冷却回路35との並列回路としており、冷媒の吐出温度、圧縮機2内の油温度もしくは油粘度の少なくともいずれか1つの検出値が閾値を超えたとき、油戻し回路31を直接回路32から冷却回路35に切換える。
 これによって、油冷却器37により戻し油の温度を所定温度以下に冷却して戻すようにしているため、圧縮機2内部の油温上昇を確実に規定値以下に制限することができるとともに、必要時のみ油冷却器37で油を冷却すればよく、冷凍サイクル1の能力や性能への影響を最小化することができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、吐出温度センサ39、油温センサ40、低圧圧力センサ41を設け、冷媒の吐出温度、圧縮機2内の油温度または油粘度を検出するようにしているが、これらのセンサは、冷凍サイクル1の運転制御用に設けられるセンサ類を流用し、その検出値を利用して電磁弁33,36を制御するようにすればよく、新たにセンサを設置する必要はない。
1 冷凍サイクル
2 圧縮機(密閉型電動スクロール圧縮機)
3 油分離器
13A 吐出回路
14 ハウジング
27 油溜まり
31 油戻し回路
32 直接回路
33,36 電磁弁
34,38 キャピラリチューブ
35 冷却回路
37 油冷却器
39 吐出温度センサ
40 油温センサ
41 低圧圧力センサ
42 油温制御部

Claims (4)

  1.  油溜まりを有するハウジング内部が低圧雰囲気とされる圧縮機を備え、そのサイクル内にR32冷媒ないしR32リッチの混合冷媒が充填された冷凍サイクルと、
     前記圧縮機からの吐出回路に設けられた油分離器と、
     前記油分離器で分離された油を減圧して前記ハウジング内の前記油溜まりに戻す油戻し回路と、を備え、
     前記油戻し回路は、油を前記油分離器から前記油溜まりに直接戻す直接回路と、油冷却器により冷却して戻す冷却回路との並列回路とされ、
     前記冷媒の吐出温度、前記圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、それが予め設定されている閾値を超えたとき、前記油戻し回路を前記直接回路から前記冷却回路に切換え、戻し油の温度を所定温度以下に冷却して戻す油温制御部を備えている冷凍サイクルの油戻し回路。
  2.  前記圧縮機は、密閉型または開放型のいずれかの低圧ハウジングタイプのスクロール圧縮機とされ、そのハウジング内部の前記油溜まりにPVE油、POE油、PAG油のいずれか、もしくはそれらを主成分とする混合油が充填されている請求項1に記載の冷凍サイクルの油戻し回路。
  3.  低圧ハウジングタイプの圧縮機を備え、そのサイクル内にR32冷媒ないしR32リッチの混合冷媒が充填された冷凍サイクルの前記圧縮機の吐出回路に油分離器を設け、その油分離器で分離された油を油戻し回路を介して前記圧縮機のハウジング内の油溜まりに戻す冷凍サイクルの油戻し方法において、
     前記冷媒の吐出温度、前記圧縮機内の油温度または油粘度の少なくともいずれか1つを検出し、
     その検出値が予め設定されている閾値を超えたとき、前記油戻し回路に設けられている油冷却器で戻し油の温度を所定温度以下に冷却して戻すことにより、
     前記圧縮機内部の油温上昇を規定値以下に制限する冷凍サイクルの油戻し方法。
  4.  前記油戻し回路が、油を前記油分離器から前記油溜まりに直接戻す直接回路と、油冷却器により冷却して戻す冷却回路との並列回路とされており、
     前記冷媒の吐出温度、前記圧縮機内の油温度もしくは油粘度の少なくともいずれか1つの検出値が前記閾値を超えたとき、前記油戻し回路を前記直接回路から前記冷却回路に切換え、前記油冷却器により戻し油の温度を所定温度以下に冷却して戻す請求項3に記載の冷凍サイクルの油戻し方法。
PCT/JP2016/050793 2015-02-26 2016-01-13 冷凍サイクルの油戻し回路および油戻し方法 WO2016136305A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16755055.7A EP3249317B1 (en) 2015-02-26 2016-01-13 Oil return circuit and oil return method for refrigerating cycle
CN201680012020.8A CN107532824A (zh) 2015-02-26 2016-01-13 制冷循环的回油回路及回油方法
AU2016225575A AU2016225575B2 (en) 2015-02-26 2016-01-13 Oil return circuit and oil return method for refrigerating cycle
KR1020177022335A KR102099665B1 (ko) 2015-02-26 2016-01-13 냉동 사이클의 오일 복귀 회로 및 오일 복귀 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036885A JP6495048B2 (ja) 2015-02-26 2015-02-26 冷凍サイクルの油戻し回路および油戻し方法
JP2015-036885 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136305A1 true WO2016136305A1 (ja) 2016-09-01

Family

ID=56788097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050793 WO2016136305A1 (ja) 2015-02-26 2016-01-13 冷凍サイクルの油戻し回路および油戻し方法

Country Status (6)

Country Link
EP (1) EP3249317B1 (ja)
JP (1) JP6495048B2 (ja)
KR (1) KR102099665B1 (ja)
CN (1) CN107532824A (ja)
AU (1) AU2016225575B2 (ja)
WO (1) WO2016136305A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483449A (zh) * 2021-07-09 2021-10-08 青岛海尔空调器有限总公司 室内机回油控制方法
US20220049879A1 (en) * 2019-09-13 2022-02-17 Carrier Corporation Vapor compression system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704526B2 (ja) * 2017-07-25 2020-06-03 三菱電機株式会社 冷凍サイクル装置
JP6956791B2 (ja) * 2017-08-04 2021-11-02 三菱電機株式会社 冷凍サイクル装置および熱源ユニット
CN109163479A (zh) * 2018-10-18 2019-01-08 中国科学院广州能源研究所 一种自动回油燃气热泵系统
KR20200071975A (ko) * 2018-12-12 2020-06-22 엘지전자 주식회사 공기조화기
CN110440402B (zh) * 2019-07-02 2021-09-21 青岛海尔空调电子有限公司 空调器及其回油控制方法
WO2022085125A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 冷凍サイクル装置
CN114353360B (zh) * 2022-01-06 2024-02-23 青岛海尔空调电子有限公司 双压缩机制冷剂循环系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719634A (ja) * 1993-06-30 1995-01-20 Mitsubishi Electric Corp 圧縮機ユニット
JP2005083704A (ja) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp 冷凍サイクル、空気調和機
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2009079820A (ja) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2011133209A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP2011196594A (ja) * 2010-03-18 2011-10-06 Panasonic Corp 冷凍サイクル装置
JP2012247134A (ja) * 2011-05-27 2012-12-13 Sanyo Electric Co Ltd 超低温冷凍装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337171A (ja) 1993-03-30 1994-12-06 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH08152207A (ja) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd 空気調和機
JPH1183204A (ja) 1997-09-12 1999-03-26 Mitsubishi Heavy Ind Ltd 空気調和機
JP2002139261A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005214515A (ja) * 2004-01-29 2005-08-11 Mitsubishi Heavy Ind Ltd 冷凍サイクル装置、冷凍サイクル装置の圧縮機、油戻し運転制御方法
JP2006170570A (ja) 2004-12-17 2006-06-29 Hitachi Ltd 冷凍装置
JP4975052B2 (ja) * 2009-03-30 2012-07-11 三菱電機株式会社 冷凍サイクル装置
CN101576337B (zh) * 2009-04-28 2010-09-08 浙江盾安机电科技有限公司 智能油路控制系统
DK2339266T3 (en) * 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
JP5988828B2 (ja) 2012-10-29 2016-09-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719634A (ja) * 1993-06-30 1995-01-20 Mitsubishi Electric Corp 圧縮機ユニット
JP2005083704A (ja) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp 冷凍サイクル、空気調和機
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2009079820A (ja) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2011133209A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 冷凍装置
JP2011196594A (ja) * 2010-03-18 2011-10-06 Panasonic Corp 冷凍サイクル装置
JP2012247134A (ja) * 2011-05-27 2012-12-13 Sanyo Electric Co Ltd 超低温冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249317A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220049879A1 (en) * 2019-09-13 2022-02-17 Carrier Corporation Vapor compression system
CN113483449A (zh) * 2021-07-09 2021-10-08 青岛海尔空调器有限总公司 室内机回油控制方法
CN113483449B (zh) * 2021-07-09 2022-09-06 青岛海尔空调器有限总公司 室内机回油控制方法

Also Published As

Publication number Publication date
JP6495048B2 (ja) 2019-04-03
EP3249317A4 (en) 2018-03-14
AU2016225575A1 (en) 2017-08-24
EP3249317A1 (en) 2017-11-29
EP3249317B1 (en) 2019-04-24
KR102099665B1 (ko) 2020-04-10
JP2016161138A (ja) 2016-09-05
KR20170102987A (ko) 2017-09-12
CN107532824A (zh) 2018-01-02
AU2016225575B2 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2016136305A1 (ja) 冷凍サイクルの油戻し回路および油戻し方法
JP5798830B2 (ja) 超臨界サイクルヒートポンプ
KR101841869B1 (ko) 냉동 사이클 장치
KR101892880B1 (ko) 냉동 사이클 장치
JP5906461B2 (ja) 密閉型圧縮機
CN107429949B (zh) 制冷循环装置
CN107076466B (zh) 制冷循环装置
EP2015003A1 (en) Refrigerating apparatus
WO2015025515A1 (ja) 冷凍装置
CN110953754A (zh) 制冷空调装置及用于该制冷空调装置的密闭型电动压缩机
JP2008209036A (ja) 冷凍装置
JP2013024447A (ja) 冷凍装置
JP2018040517A (ja) 空気調和機
US10851787B2 (en) Compressor bearing housing drain
JP2007322022A (ja) 圧縮機装置および冷媒循環装置
US9796398B2 (en) Air-conditioning apparatus and railway vehicle air-conditioning apparatus
JP2019020080A (ja) 空気調和装置及びその運転方法
JP2010031733A (ja) ロータリ圧縮機
JP2006189185A (ja) 冷凍サイクル装置
US20230014957A1 (en) Refrigerant apparatus
JP2017089982A (ja) 冷凍装置
JPH08312533A (ja) 冷凍装置用圧縮機及び冷凍装置
JP2005090800A (ja) 冷凍装置
CN110926050A (zh) 制冷空调装置及用于该制冷空调装置的密闭型电动压缩机
JP4720593B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022335

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016225575

Country of ref document: AU

Date of ref document: 20160113

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755055

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE