KR20170087411A - 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 - Google Patents
금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 Download PDFInfo
- Publication number
- KR20170087411A KR20170087411A KR1020170007064A KR20170007064A KR20170087411A KR 20170087411 A KR20170087411 A KR 20170087411A KR 1020170007064 A KR1020170007064 A KR 1020170007064A KR 20170007064 A KR20170007064 A KR 20170007064A KR 20170087411 A KR20170087411 A KR 20170087411A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- oxide
- carbon
- air battery
- indium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
- H01M4/0426—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8668—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8673—Electrically conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8817—Treatment of supports before application of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8867—Vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8689—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/128—
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Hybrid Cells (AREA)
- Inert Electrodes (AREA)
Abstract
본 발명은 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극 및 이의 제조방법에 관한 것으로, 보다 상세하게는 표면에 산발적으로 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극 및 이의 제조방법에 관한 것이다. 본 발명에 따른 리튬-공기 전지는 양극 활물질과 전해질 계면에서의 부반응을 억제함으로써, 충전시 과전압을 효과적으로 저감시킬 수 있으며, 이에 따라 전해액 분해를 야기하지 않으므로 사이클 수명이 향상되는 효과가 있다.
Description
본 출원은 2016년 1월 20일자 한국 특허 출원 제10-2016-0006885호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 표면에 산발적으로 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극 및 이의 제조방법에 관한 것이다.
금속-공기 전지는 금속 연료극(음극)에 리튬(Li), 아연(Zn), 알루미늄(Al), 마그네슘(Mg), 철(Fe), 칼슘(Ca) 및 나트륨(Na)과 같은 금속을 사용하고, 양극 활물질로 공기 중의 산소를 이용하는 전지이다. 또한, 금속-공기 전지는 음극의 금속 이온을 산소와 반응시켜 전기를 생산하며, 기존의 이차전지와 다르게 전지 내부에 양극 활물질을 미리 가지고 있을 필요가 없기 때문에 경량화가 가능하다. 또한, 용기 내에 음극 물질을 대량으로 저장할 수 있어 이론적으로 큰 용량과 높은 에너지 밀도를 나타낼 수 있다.
금속-공기 전지는 금속 연료극(음극)과 산소 공기극(양극)으로 구성되어 있다. 방전 시, 금속 연료극의 산화로 인해 금속 이온이 형성되고, 생성된 금속 이온은 전해질을 가로질러 산소 공기극으로 이동하게 된다. 산소 공기극에서는, 외부의 산소가 산소 양극의 공극 내부의 전해질에 용해되어 환원된다.
금속-공기 전지 중, 특히 리튬-공기 전지는 일반적으로 리튬 이온의 흡장/방출이 가능한 음극, 공기 중의 산소를 양극 활물질로 하여 산소의 산화 환원 촉매를 포함하는 양극을 구비하고, 상기 양극과 음극 사이에 리튬 이온 전도성 매체를 구비한다. 리튬-공기 전지의 이론 에너지 밀도는 3000Wh/kg 이상이며, 이는 리튬 이온 전지보다 대략 10배의 에너지 밀도에 해당한다. 아울러, 리튬-공기 전지는 친환경적이며, 리튬 이온 전지보다 개선된 안전성을 제공할 수 있어 많은 개발이 이루어지고 있다.
리튬-공기 전지의 전기화학적 특성을 결정하는 중요한 요인들로는 전해질 시스템, 양극 구조, 우수한 공기 환원극 촉매, 탄소 지지체의 종류, 산소 압력 등이 있으며, 리튬-공기 이차전지에서 일어나는 반응식은 하기 반응식 1과 같다.
[반응식 1]
산화극: Li(s) ↔ Li+ + e-
환원극: 4Li + O2 → 2Li2O V = 2.91 V
2Li + O2 → Li2O2 V = 3.10 V
즉, 방전시 음극으로부터 생성된 리튬이 양극의 산소 기체와 만나 리튬 산화물이 생성되며, 산소는 환원(Oxygen Reduction Reaction: ORR)되어 산소 음이온이 발생한다. 반대로 충전시 리튬 산화물이 환원되며, 산소가 산화(Oxygen Evolution Reaction: OER)되면서 산소 기체가 발생한다.
방전 동안에 형성되는 상기 고체 리튬 산화물은 유기 용매에 잘 용해되지 않으며 고체 산화물로 존재하여 양극인 탄소 전극의 반응 사이트에 축적이 되어 산소의 채널을 막아 산소의 확산을 저해한다. 즉, 산소와 리튬 이온의 접촉을 방해할 뿐만 아니라 양극인 탄소의 기공(Pore)을 막기 때문에 리튬 산화물의 형성이 어려워져 용량 발현을 어렵고 2차 전지의 특성이 떨어진다. 또한 충전 시 부반응 퇴적물로 인해 전하 전달이 저해되어 고저항, 고전압이 형성되고, 이로 인한 전해액 분해 반응으로 전지 열화가 발생하는 문제점이 있다.
상술한 바와 같이, 리튬-공기 전지의 고체 리튬 산화물과 부반응 퇴적물은 충전 시 과전압을 상승시켜 충방전 에너지 효율을 저하시키고 전해액 내 용매의 분해를 야기하는데, 이러한 반응은 주로 탄소계 도전재 표면의 결함(Defect)에서 발생 된다. 이러한 반응을 방지하기 위하여 금속 또는 금속 산화물계 촉매가 주로 사용되고 있으나, 여전히 문제점을 해결하지 못하고 있는 실정이다.
따라서 본 발명의 목적은 탄소계 도전재와 전해액 간의 계면을 원천적으로 차단함으로써, 충전 과전압이 감소되고 사이클 수명이 개선된 리튬-공지 전지를 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명은 다공성 집전체의 일면에 코팅되는 탄소계 도전재; 상기 탄소계 도전재의 표면에 코팅되는 부반응 방지막; 및 상기 부반응 방지막의 표면에 산발적으로 부분 도입되는 금속 촉매를 포함하되, 상기 부반응 방지막은 전도성 금속 산화물인 것을 특징으로 하는 리튬-공기 전지용 양극을 제공한다.
또한 본 발명은 상기 양극을 포함하는 리튬-공기 전지를 제공한다.
또한 본 발명은 i) 다공성 집전체에 탄소계 도전재를 코팅하는 단계; ii) 상기 탄소계 도전재의 표면에 부반응 방지막을 증착하는 단계; 및 iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계;를 포함하며, 상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극의 제조방법을 제공한다.
본 발명에 따른 리튬-공기 전지는 전도성 탄소 표면과 전해질 계면에서의 부반응을 억제함으로써, 전해액 분해를 야기하지 않아 장기적으로 안정화되어 사이클 수명이 향상된다. 또한 부반응 방지막 표면에 추가로 담지된 촉매 입자에 의해 과전압이 효과적으로 저감되어 고전압에 의한 전해액 분해 억제 효과를 갖는다.
도 1은 본 발명의 리튬-공기 전지의 개략적인 단면 이미지이다.
도 2는 본 발명에 따른 실시예 1과 비교예 1 및 2의 충방전 곡선을 비교한 데이터이다.
도 3은 본 발명에 따른 실시예 1과 비교예 1 및 2의 사이클 용량을 비교한 데이터이다.
도 2는 본 발명에 따른 실시예 1과 비교예 1 및 2의 충방전 곡선을 비교한 데이터이다.
도 3은 본 발명에 따른 실시예 1과 비교예 1 및 2의 사이클 용량을 비교한 데이터이다.
본 발명은 양극 활물질인 탄소계 도전재의 표면을 부반응 방지막으로 코팅하여 전해액과의 접촉을 차단하고, 여기에 금속 촉매를 도입(導入)하여 산소의 산화 환원 반응을 도모하고자 하는 것이다.
이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거하여 상세히 설명한다. 이러한 도면은 본 발명을 설명하기 위한 일 구현예에 속하며 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다. 이때 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
본 명세서에 있어서, 「~」를 사용하여 나타낸 수치 범위는 「~」의 전후에 기재되는 수치를 각각 최소치 및 최대치로서 포함하는 범위를 나타낸다. 또한 본 명세서에 있어서, 「이들의 조합」이란 특별한 언급이 없는 한, 둘 이상을 혼합 또는 결합하여 하나의 요소로 적용하거나, 각각을 개별의 요소로 적용하는 것 모두를 포함하는 의미이며, 상기 적용 형태를 불문하고 각각의 조합은 1종으로 간주된다.
리튬-공기 전지용 양극
도 1은 본 발명에서 제시하는 리튬-공기 전지의 개략적인 단면도로서, 이를 참조하여 보다 구체적으로 설명하면, 양극(100), 음극(200), 이들 사이에 개재되는 분리막(300) 및 전해액(400)을 포함하여 구성된 리튬-공기 전지에 있어서, 상기 양극(100)은 다공성 집전체(10); 다공성 집전체(10)의 일면에 코팅되는 탄소계 도전재(20); 상기 탄소계 도전재(20)의 표면에 코팅되는 부반응 방지막(30); 및 상기 부반응 방지막(30)의 표면에 금속 촉매(40)가 산발적으로 부분 도입되는 구조를 갖는다.
본 발명에서 도입이란 상기 부반응 방지막(30)과 상기 금속 촉매(40)간의 정전기적 인력 또는 반데르발스(van der Waals) 인력에 의해, 금속 촉매(40)가 부반응 방지막(30)으로 이끌려 파묻히듯 담지되거나 코팅된 상태를 의미한다.
본 발명의 다공성 집전체(10)는 기체 투과성을 가지는 다공성 집전체로서, 바람직하게는 다공성 카본 펄프, 다공성 카본 페이퍼일 수 있으며, 이외에도 발포 금속(Foamed metal), 금속 파이버(Metal fiber), 다공성 금속(Porous metal), 에칭된 금속(Etched metal), 앞뒤로 요철화된 금속 등의 다공성 3차원 집전체나 부직포체 등이 가능하다. 또한 탄소계 도전재(20) 내부에도 다수의 기공이 존재할 수 있으며, 이러한 기공은 산소를 포함하는 공기의 투과율을 높여, 다수의 활성 자리(Active site), 큰 공극 부피(Pore volume) 및 고 비표면적(High specific surface area)을 가지므로, 양극 반응 사이트를 제공하는데 바람직하다.
본 발명에서 탄소계 도전재(20)는 나노 단위의 크기를 갖는 입자 또는 구조체로서, 비표면적이 넓고, 전기 전도도가 높은 다공성 탄소 분말 또는 탄소 구조체를 사용하는 것이 바람직하며, 예컨대 흑연계, 활성탄계, 카본 블랙(Carbon black)계, 탄소 섬유계, 탄소 나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것이 바람직하나, 이에 제한되지는 않는다.
특히 본 발명에서 부반응 방지막(30)으로서 전도성 금속 산화물을 이용하여 상술한 탄소계 도전재(20)를 코팅하여, 탄소계 도전재(20)와 전해액(400)과의 물리적인 차단을 통해 부반응 생성물의 퇴적을 억제하고자 한다. 이러한 전도성 금속 산화물로 코팅하여 표면을 개질하는 경우, 전해질과의 계면 반응 외에 계면의 낮은 저항 특성이 전지의 성능 향상에 기여하게 된다.
본 발명에 따른 전도성 금속 산화물은 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 안티몬주석산화물(ATO, Antimony Tin Oxide), 불화주석산화물(FTO, Fluoro Tin Oxide), 알루미늄아연산화물(AZO, Aluminum Zinc Oxide), 마그네슘인듐산화물(Magnesium Indium Oxide), 아연갈륨산화물(GZO, Gallium Zinc Oxide), 갈륨인듐산화물(Galliumm Indium Oxide), 인듐-갈륨-아연산화물(IGZO, Indium Gallium Zinc Oxide), 니오븀-스트론튬-티타늄산화물(Nb-STO, Niobium Strontium Titanium Oxide), 인듐카드뮴산화물(Indium Cadmium Oxide), BZO(Boron Zinc Oxide), SZO(SiO2-ZnO), 인듐 산화물(In2O3) 및 이들의 조합 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 인듐주석산화물(ITO), 인듐아연산화물(IZO)을 적용한다.
전도성 금속 산화물 중에서, 인듐주석산화물(ITO)이나 인듐아연산화물(IZO)과 같이, 넓은 밴드갭, 낮은 저항값, 가시광선 영역에서의 높은 투과율을 가지는 투명 전도성 산화물(TCO)은 태양 전지(Solar cell), 터치 패널(Touch panels), Heat mirrors, OLED(Organic electroluminescence devices), LCD(Liquid crystal displays)에 이용되고 있으며, 이들은 금속 산화물임에도 금속에 준하는 전기 전도성을 가지기 때문에, 양극에 전도성을 부여하면서도, 탄소 결함(Defect) 부분을 완전히 피복하여 전해액(400)과의 물리적 차단이 가능하므로, 본 발명의 부반응 방지막(30)으로서 가장 바람직하다.
또한 상기 부반응 방지막(30)의 두께는 5 ~ 30 nm 범위 내인 것이 바람직한데, 5 nm 미만인 경우에는 탄소계 도전재(20)가 전해액(400)으로 노출될 위험이 있으며, 30 nm를 초과하는 경우에는 탄소계 도전재(20)의 미세 공극(Pore)의 구조를 변화시키고 크기를 감소시켜 많은 양의 방전 생성물(예컨대 Li2O2)을 담지하기 어렵기 때문이다.
본 발명의 금속 촉매(40)는 방전 시 생성되는 리튬산화물(Li2O2 또는 Li2O)의 결합을 약하게 하거나 파괴시킬 수 있는 공지의 금속 또는 금속 화합물을 사용하는 것이 바람직하다. 예컨대, 금속 촉매(40)는 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 금(Au), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 납(Pb), 카드뮴(Cd), 주석(Sn), 티타늄(Ti) 및 이들의 합금, 이의 산화물, 황화물 또는 셀레늄화물이며, 바람직하게는 산화루테늄(RuO2)을 적용한다.
상기 금속 촉매(40)는 상기 탄소계 도전재(20) 100 중량부에 대해 10 ~ 50 중량부로 포함되도록 하며, 이러한 금속 촉매(40)는 평균 입경이 1 ~ 10 nm인 것을 사용하는 것이 본 발명에 따른 효과를 확보하는데 바람직하다.
리튬-공기 전지용 양극의 제조방법
전술한 바의 구성요소를 갖는 리튬 공기 전지용 양극은 i) 다공성 집전체에 탄소 도전재를 코팅하는 단계; ii) 상기 탄소 도전재를 포함하도록 이의 표면에 부반응 방지막으로 전도성 금속 산화물을 증착하는 단계; 및 iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계를 거쳐 제조할 수 있으며, 이하 각 단계별로 상세히 설명한다.
먼저 다공성 집전체에 탄소 도전재를 코팅한다. 상술한 탄소계 도전재와 바인더를 각각 9 : 1 ~ 7 : 3의 중량비로 섞고 용매에 분산하여 슬러리 조성물을 만든 뒤, 다공성 집전체 위에 도포하고 건조할 수 있다.
상기 바인더는 탄소계 도전재 간의 결합을 도모하고, 집전체에 이들을 고정시키는 역할을 한다. 본 발명에서 그 종류를 특별히 한정하지 않고, 당 업계에서 공지된 바인더라면 어느 것이든 사용 가능하다. 예컨대, 아크릴계 바인더, 불소수지계 바인더, 고무계 바인더, 셀룰로오스계 바인더, 폴리알코올계 바인더, 폴리올레핀계 바인더, 폴리이미드계 바인더, 폴리에스테르계 바인더, 실리콘계 바인더 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상이 가능하며, 보다 구체적으로는 폴리테트라플루오르에틸렌 (Polytetrafluoroethylene, PTFE), 폴리비닐리덴 플루오라이드 (PVDF: Polyvinylidene fluoride) 및 그 공중합체 또는 셀룰로오즈를 적용 가능하며, 보다 바람직하게는 폴리비닐리덴플루오라이드(PVDF: poly vinylidene fluoride)를 사용할 수 있다.
상기 슬러리 형성을 위한 용매로는 물 또는 유기 용매가 가능하며, 유기 용매는 이소프로필 알코올, N-메틸피롤리돈(N-Methyl-2-pyrrolidone: NMP), 아세톤 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 적용하는 것이 가능하다.
다음으로, 상기 코팅된 탄소계 도전재를 포함하도록 다공성 집전체 전면에 걸쳐 전도성 금속 산화물을 증착하여 부반응 방지막을 형성한다.
상기 다공성 기재 위에 코팅하는 방법에는 제한이 없으나, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등으로 코팅할 수 있다.
또한 상기 코팅 후, 100 ~ 150℃로 가열된 진공 오븐에서 12 ~ 36 시간 동안 건조할 수 있다. 상기 건조하는 단계를 통해, 슬러리 중에 포함된 용매를 증발시킴으로 인해서, 탄소계 도전재와 집전체의 결착력을 도모함과 동시에 다공성 집전체의 내부 프레임까지 탄소계 도전재를 고르게 분산시켜 결합시키게 된다.
다음으로, 상기 코팅된 탄소계 도전재를 포함하도록 다공성 집전체 전면에 걸쳐 전도성 금속 산화물을 증착하여 부반응 방지막을 형성한다. 바람직하게는 상기 탄소계 도전재가 코팅된 다공성 집전체에 상술한 전도성 금속 산화물 중 선택된 1종을 건식 증착하며, 일례로 스퍼터링(Sputtering) 또는 열 기상 증착(Thermal Evaporation) 방법으로 증착할 수 있다.
보다 구체적으로는 이온빔 스퍼터링(Ion beam sputtering), DC 스퍼터링(dcsputtering), RF-스퍼터링(RF-sputtering) 또는 열 증발 진공 증착(Thermal evaporation deposition)으로 증착할 수 있으며, 이러한 방법은 상온에서 높은 증착율과 비독성 가스의 방출, 작업의 용이성, 안전성 등이 있으며, 대면적의 기판에 증착이 가능하다는 특징이 있다. 또한 이러한 방법은 부반응 방지막의 두께 조절이 용이할 뿐만 아니라, 원자층 증착법(ALD)에 비해 비용이 저렴하고, 비교적 고른 증착 표면을 양산할 수 있는 장점이 있다.
다음으로, 상기 부반응 방지막에 금속 촉매를 도입하여 리튬-공기 전지용 양극을 제조한다. 금속 촉매를 부반응 방지막에 도입시키는 방법에는 제한이 없으며, 일례로, 상기 제조된 부반응 방지막이 코팅된 탄소계 도전재를 금속 전구체가 담긴 비커에 침지한 후, 증류수에 침지하는 과정의 반복을 통해 금속 산화물을 도입하는 것이 가능하다. 상기 금속 전구체가 담긴 비커에서 금속 양이온을 수득하고, 증류수에서 산소 음이온을 수득하는 간단한 공정을 통해 금속 산화물의 도입이 가능하다.
상기한 공정을 거쳐 제조된 양극은 리튬-공기 전지에 용이하게 도입하여 전해질과 탄소계 도전재 간의 접촉을 원천적으로 차단한다.
리튬-공기 전지
본 발명은 도 1에 도시된 바와 같이, 양극(100); 음극(200); 그 사이에 개재되는 분리막(300) 및 이들에 함침되는 전해액(400) 구비하는 리튬-공기 전지를 제공한다. 본 발명의 일 구현예에 따른 리튬-공기 전지는 전술한 실시 상태들에 따른 다공성 코팅층 적어도 일면에 구비된 분리막을 포함하는 것으로, 금속 공기 전지의 통상적인 구성 및 성분을 가질 수 있다. 이때 상기 양극(100)에서 다공성 집전체(10)의 탄소계 도전재(20), 부반응 방지막(30) 및 금속 촉매(40)가 형성되는 일면은 전해액(400)에 함침되도록 배치되는 것이 바람직하다.
리튬-공기 전지의 구동시 전극(100, 200)은 이와 접하는 전해액(400)에 의해 부반응이 발생한다. 즉, 리튬 이온과 전해액 내 용매와 반응하여 리튬 카보네이트 또는 리튬 카르복실레이트의 물질이 생성되며, 이는 전지 특성의 저하를 야기한다. 상기 부반응은 음극(200)보다는 주로 양극(100)에서 발생한다. 이에 본 발명에서는 부반응 방지막(30)과 금속 촉매(40)를 전해액(400)에 함침되도록 배치함으로써 상기 양극(100)에서 발생하는 부반응을 억제하거나 생성된 반응물의 분해를 촉진한다. 더불어 금속 촉매(40) 자체의 전기화학적 반응성을 향상시키는 효과를 나타내, 결과적으로 리튬-공기 전지의 전지 용량을 증가시킴과 동시에 사이클 특성을 향상시킨다.
도 1에서 본 발명의 일 구현예에 따른 리튬-공기 전지의 단면 구조를 개략적으로 나타내었다. 이때 양극, 음극 및 전해질은 당 기술 분야에 공지된 것들을 적용할 수 있다.
본 발명의 리튬-공기 전지는 전술한 양극(100)을 적용하며, 상기 양극(100)의 두께는 특별히 한정하지 않으나, 바람직하게는 10 ~ 100㎛일 수 있으며, 보다 바람직하게는 상기 양극의 두께는 20 ~ 60㎛일 수 있다.
본 발명의 일 구현예에 따르면, 상기 음극(200)의 음극 활물질은 리튬 금속, 리튬 금속 기반의 합금, 리튬 화합물 및 리튬 삽입(Intercalation) 물질로 이루어진 군으로부터 선택될 수 있다.
특히 리튬 금속 기반의 합금으로는 예컨대, Na, K, Rb, Cs, Fr, Be, Ma, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 1종 이상의 물질과 리튬과의 합금일 수 있으며, 리튬 화합물은 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성하는 물질일 수 있으며, 예컨대, 산화주석(SnO2), 티타늄나이트레이트(TiN) 또는 리콘(Recon)일 수 있다. 또한 리튬 삽입 물질이란 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션 할 수 있는 물질을 의미하며, 예컨대, 결정질 탄소, 비정질 탄소 또는 이들의 혼합물 일 수 있다.
상기 음극(200)의 두께는 특별히 한정되지 않으나, 50㎛ 이상일 수 있다. 상기 음극의 두께의 상한치는 특별히 한정하지 않고 두꺼울수록 좋으나. 상용화 가능성을 고려할 때, 상기 음극의 두께는 50 ~ 500㎛일 수 있다.
상기 양극(100)과 음극(200) 사이는 통상적인 분리막(300)이 개재될 수 있다. 상기 분리막(300)은 전극을 물리적으로 분리하는 기능을 갖는 것으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 낮은 저항성을 갖고, 전해액 함습 능력이 우수한 것이 바람직하다.
또한 상기 분리막(300)은 양극(100)과 음극(200)을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막(300)은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 전해액(400)은 이온화 가능한 리튬염 및 유기 용매를 포함하는 비수성 전해액이다. 예컨대, 상기 비수성 전해액의 용매는 에틸렌카보네이트(Ethylene carbonate: EC), 프로필렌카보네이트(Propylene carbonate: PC) 등의 카보네이트, 디에틸렌카보네이트(Diethylene carbonate) 등의 쇄상 카보네이트, 1,2-디옥산(1,2-Dioxane) 등의 에테르류, 아세토니트릴(Acetonitrile: AN) 등의 니트릴류, 아미드류를 사용할 수 있으나, 이에 한정되는 것은 아니다. 이들 중 하나 또는 복수개를 조합하여 사용할 수 있다.
또한, 상기 리튬염으로는 LiPF6 , LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiF, LiBr, LiCl, LiI 및 LiB(C2O4)2, LiCF3SO3, LiN(SO2CF3)2(Li-TFSI), LiN(SO2C2F5)2 및 LiC(SO2CF3)3으로 이루어진 군에서 선택되는 하나 또는 둘 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 리튬염의 농도는 0.1 ~ 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로, 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
본 발명에 따른 리튬-공기 전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다. 또한, 전기 자동차 등 대형 전지에 적용하는 것도 가능하다. 또한 본 발명에 따른 리튬-공기 전지는 금속 1차 전지, 금속 2차 전지에 모두 사용 가능하다. 또한, 전기 자동차 등에 이용하는 대형 전지에도 적용할 수 있다. 이에 나아가 본 발명에 따른 리튬-공기 전지를 단위 셀로 포함하는 전지 모듈을 제작하는 것도 가능하다.
상기한 리튬-황 전지를 포함하는 전지팩은 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전력 저장장치의 전원으로 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
Step 1. 다공성 집전체에 양극 활물질 코팅
탄소계 도전재(CNT) 0.8g에 바인더(PVDF)가 N-메틸피롤리돈(N-Methyl-2-pyrrolidone: NMP) 용매에 용해된 kf1100 를 1.695g 첨가하여 도전재 대 바인더 비율을 8 : 2가 되도록 1차 슬러리를 제조하였다. 이후, N-메틸피롤리돈(NMP)를 추가로 25g 첨가하여 코팅이 가능한 2차 슬러리를 제조하였다. 상기 2차 슬러리를 이용하여 카본 페이퍼(Carbon paper) 위에 블레이드 코팅하였다. 코팅 후 미리 120℃로 가열된 진공 오븐에서 24시간 이상 건조시켰다.
Step 2. 부반응 방지막 코팅
부반응 방지막으로써 인듐주석산화물(ITO, Indium Tin Oxide) 층을 코팅하기 위해 스퍼터링 공정을 이용하였다. 증착 공정은 상온에서 진행되었으며, 아르곤(Ar) 분위기에서 약 10 nm의 두께를 갖도록 진행하였다.
Step 3. 금속 촉매 도입
산화루테늄 촉매를 도입하기 위해 루테늄 전구체 용액을 준비하였다. 비이커에 염화루테늄(RuCl2)을 증류수에 10mM 농도를 갖도록 용해시킨 전구체 용액을 준비하였다. 또 다른 비이커에는 같은 양의 증류수를 준비하고 60℃로 가열하였다.
상기 Step 2에서 부반응 방지막이 코팅된 양극을 루테늄 이온이 포함된 수용액과 60℃로 가열된 증류수에 각각 15초, 30초간 침지 하였다가 꺼내는 과정을 5회 반복하였다. 산소 음이온이 증류수로부터 담지되기 때문에 별도의 세척 과정은 포함시키지 않았다. 상기 금속 촉매가 도입된 리튬-공기 전지용 양극을 미리 120℃로 가열된 진공 오븐에서 24시간 이상 건조시켰다.
Step 4. 리튬-공기 전지 제조
상기 Step 3에서 제조된 양극을 이용하여, 아르곤(Ar) 분위기의 글러브박스(Glove box)에서 코인셀(Coin cell)형태로 조립하였다. 스테인레스틸 재질의 타공된 하판에 양극, 분리막(Glass fiber), 리튬 음극, 가스킷(Gasket), 스테인레스스틸 코인, 스프링, 상판을 차례로 올려놓고 압력을 가해 코인셀을 조립하였다. 전해액은 1M LiTFSI가 용해된 테트라에틸렌글리콜 디메틸에테르(TEGDME: tetraethylenglycol dimethylether)를 사용하였다.
<비교예 1>
탄소계 도전재만이 코팅된 양극을 이용하여 상기 실시예 1과 동일한 방법(Step 2 와 Step 3 제외)으로 리튬-공기 전지를 제조하였다.
<비교예 2>
상기 실시예 1의 탄소계 도전재에 금속촉매인 산화루테늄이 코팅된 양극을 이용하여 상기 실시예 1과 동일한 방법(Step 2 제외)으로 리튬-공기 전지를 제조하였다.
<실험예 1>
완성된 코인셀은 1기압의 산소 분위기에서 방전 및 충전 실험을 진행하였다. 방전, 충전 실험은 탄소 무게 대비 1,000mAh/g의 용량 기준, 0.3C/0.1C의 방/충전 속도로 진행하였다. 탄소계 도전재(CNT) 양극과 부반응 방지막 및 촉매층을 담지한 양극을 사용한 리튬 공기 전지의 충방전 곡선 및 사이클 용량 비교는 도 2 및 도 3에 나타나었다.
도 2의 충방전 곡선을 살펴보면, 실시예 1의 리튬-공기 전지가 비교예 1의 리튬-공기 전지에 비하여 전압이 낮으므로, 과전압이 저감된 것을 확인할 수 있으며, 비교예 2에 비해서는 다소 과전압이 높게 측정되었으나, 이는 무시할 만한 수준인 것으로 나타났다. 또한 도 3의 사이클 용량 곡선을 살펴보면, 비교예 1의 방전 용량이 30 사이클 진행 시 크게 하락하였으며, 비교예 2는 20 사이클을 진행하기도 전에 크게 하락하는 반면, 실시예 1의 방전 용량은 50 사이클이 진행될 때까지 처음 상태를 유지하는 것을 확인하였다.
이상에서 본 발명의 바람직한 실시예 1에 대하여 상세하게 설명하였지만, 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
10. 다공성 집전체
20. 탄소계 도전재
30. 부반응 방지막
40. 금속 촉매
100. 양극
200. 음극
300. 분리막
400. 전해액
20. 탄소계 도전재
30. 부반응 방지막
40. 금속 촉매
100. 양극
200. 음극
300. 분리막
400. 전해액
Claims (11)
- 다공성 집전체;
상기 다공성 집전체의 일면에 코팅되는 탄소계 도전재;
상기 탄소계 도전재의 표면에 코팅되는 부반응 방지막; 및
상기 부반응 방지막의 표면에 산발적으로 부분 도입되는 금속 촉매;를 포함하며,
상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 전도성 금속 산화물은 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 안티몬주석산화물(ATO, Antimony Tin Oxide), 불화주석산화물(FTO, Fluoro Tin Oxide), 알루미늄아연산화물(AZO, Aluminum Zinc Oxide), 마그네슘인듐산화물(Magnesium Indium Oxide), 아연갈륨산화물(GZO, Gallium Zinc Oxide), 갈륨인듐산화물(Galliumm Indium Oxide), 인듐-갈륨-아연산화물(IGZO, Indium Gallium Zinc Oxide), 니오븀-스트론튬-티타늄산화물(Nb-STO, Niobium Strontium Titanium Oxide), 인듐카드뮴산화물(Indium Cadmium Oxide), BZO(Boron Zinc Oxide), SZO(SiO2-ZnO), 인듐 산화물(In2O3) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 부반응 방지막의 두께는 5 ~ 30 nm인 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 탄소계 도전재는 흑연계, 활성탄계, 카본 블랙(Carbon black)계, 탄소 섬유, 탄소 나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 금속 촉매는 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 금(Au), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 납(Pb), 카드뮴(Cd), 주석(Sn), 티타늄(Ti) 및 이들의 합금, 이의 산화물, 황화물 또는 셀레늄화물인 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 금속 촉매는 상기 탄소계 도전재 100 중량부에 대해 10 ~ 50 중량부로 포함되는 것을 특징으로 하는 리튬-공기 전지용 양극.
- 제1항에 있어서,
상기 금속 촉매의 평균 입경은 1 ~ 10 nm인 것을 특징으로 하는 리튬-공기 전지용 양극.
- 리튬-공기 전지용 양극 제조방법에 있어서,
i) 다공성 집전체에 탄소계 도전재를 코팅하는 단계;
ii) 상기 탄소계 도전재의 표면에 부반응 방지막을 증착하는 단계; 및
iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계;를 포함하며,
상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극 제조방법.
- 제8항에 있어서,
상기 ii) 단계의 증착은 스퍼터링(Sputtering) 또는 열 기상 증착(Thermal Evaporation)으로 수행하는 것을 특징으로 하는 리튬-공기 전지용 양극 제조방법.
- 제8항에 있어서,
상기 전도성 금속 산화물은 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 안티몬주석산화물(ATO, antimony tin oxide), 불화주석산화물(FTO, fluoro tin oxide), 알루미늄아연산화물(AZO, aluminum zinc oxide), 마그네슘인듐산화물(magnesium indium oxide), 아연갈륨산화물(GZO, Gallium Zinc Oxide), 갈륨인듐산화물(Galliumm indium oxide), 인듐-갈륨-아연산화물(IGZO, Indium Gallium Zinc Oxide), 니오븀-스트론튬-티타늄산화물(Nb-STO, Niobium Strontium Titanium Oxide), 인듐카드뮴산화물(Indium Cadmium Oxide), BZO(Boron Zinc Oxide), SZO(SiO2-ZnO), 인듐 산화물(In2O3) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.
- 리튬 음극; 양극; 이들 사이에 개재되는 분리막 및 전해질을 포함하는 리튬-공기 전지에 있어서,
상기 양극은 제1항 내지 제7항 중 어느 한 항의 리튬-공기 전지용 양극인 것을 특징으로 하는 리튬-공기 전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018500714A JP6494854B2 (ja) | 2016-01-20 | 2017-01-16 | 金属触媒が部分導入された副反応防止膜を有するリチウム−空気電池の正極、これを含むリチウム−空気電池及びこの製造方法 |
PCT/KR2017/000535 WO2017126855A1 (ko) | 2016-01-20 | 2017-01-16 | 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 |
US15/743,387 US10505203B2 (en) | 2016-01-20 | 2017-01-16 | Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160006885 | 2016-01-20 | ||
KR20160006885 | 2016-01-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170087411A true KR20170087411A (ko) | 2017-07-28 |
KR102024899B1 KR102024899B1 (ko) | 2019-09-24 |
Family
ID=59422540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170007064A KR102024899B1 (ko) | 2016-01-20 | 2017-01-16 | 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10505203B2 (ko) |
EP (1) | EP3316366B1 (ko) |
JP (1) | JP6494854B2 (ko) |
KR (1) | KR102024899B1 (ko) |
CN (1) | CN108028392B (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200040988A (ko) * | 2018-10-11 | 2020-04-21 | 현대자동차주식회사 | 리튬공기전지 및 그 제조방법 |
US11909028B2 (en) | 2019-10-23 | 2024-02-20 | Samsung Electronics Co., Ltd. | Cathode for metal-air battery, preparing method thereof, and metal-air battery comprising the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102452946B1 (ko) * | 2017-07-26 | 2022-10-11 | 삼성전자주식회사 | 금속 공기 전지용 기체 확산층, 이를 포함하는 금속 공기 전지 및 그 제조방법 |
KR20210051537A (ko) * | 2019-10-30 | 2021-05-10 | 삼성전자주식회사 | 양극, 이를 포함하는 금속-공기전지 |
KR20240117142A (ko) * | 2021-12-17 | 2024-07-31 | 유니버시티 오브 오리건 | 전해조 및 연료 전지의 부동태화된 전극 |
CN115377582A (zh) * | 2022-08-30 | 2022-11-22 | 华为数字能源技术有限公司 | 电池单体、电池模组、电池包、储能系统及电动汽车 |
WO2024117421A1 (en) * | 2022-11-28 | 2024-06-06 | Samsung Electro-Mechanics Co., Ltd. | Solid oxide cell stack |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090076276A (ko) * | 2008-01-08 | 2009-07-13 | 주식회사 엘지화학 | 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지 |
KR20150022095A (ko) | 2013-08-22 | 2015-03-04 | 주식회사 엘지화학 | 금속 공기 전지용 양극재 및 이를 포함하는 금속 공기 전지 |
KR20150031213A (ko) * | 2013-09-13 | 2015-03-23 | 주식회사 엘지화학 | 리튬 공기 전지용 양극 및 그의 제조방법 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0154468B1 (en) * | 1984-02-24 | 1989-10-04 | Kabushiki Kaisha Toshiba | Oxygen permeable membrane |
JP4415241B2 (ja) * | 2001-07-31 | 2010-02-17 | 日本電気株式会社 | 二次電池用負極およびそれを用いた二次電池、および負極の製造方法 |
CN1306637C (zh) * | 2004-11-11 | 2007-03-21 | 南亚塑胶工业股份有限公司 | 多层烧结结构的空气电极及其制法 |
JP5198080B2 (ja) * | 2008-01-31 | 2013-05-15 | 株式会社オハラ | 固体電池 |
WO2010084614A1 (ja) * | 2009-01-26 | 2010-07-29 | トヨタ自動車株式会社 | 空気電池 |
KR101338142B1 (ko) * | 2010-04-27 | 2013-12-06 | 한양대학교 산학협력단 | 리튬 공기 전지 |
CN103026545A (zh) * | 2010-05-28 | 2013-04-03 | 丰田自动车株式会社 | 用于可充电金属空气电池的阴极催化剂和可充电金属空气电池 |
US9093721B2 (en) * | 2010-09-24 | 2015-07-28 | The United States Of America, As Represented By The Secretary Of The Navy | Dual-function air cathode nanoarchitectures for metal-air batteries with pulse-power capability |
CN102074709B (zh) * | 2010-12-17 | 2013-10-16 | 武汉泓元伟力新能源科技有限公司 | 空气电极及制造方法和具有该空气电极的金属空气电池 |
KR101227796B1 (ko) | 2011-01-11 | 2013-01-29 | 경기대학교 산학협력단 | 카본 미소구체 및 촉매 산화물을 복합화한 리튬-공기 이차전지용 나노복합체 및 그 제조방법 |
US9088049B2 (en) * | 2012-01-23 | 2015-07-21 | Florida State University Research Foundation, Inc. | Bifunctional hollandite Ag2Mn8O16 catalyst for lithium-air batteries |
KR101309577B1 (ko) | 2012-04-18 | 2013-09-17 | 연세대학교 산학협력단 | 리튬-공기전지용 공기극 및 이를 포함하는 리튬-공기전지 |
KR20140030482A (ko) | 2012-08-30 | 2014-03-12 | 한국과학기술연구원 | 리튬 공기 이차전지용 양극, 그 제조 방법 및 이를 이용한 리튬 공기 이차전지 |
KR20140039755A (ko) | 2012-09-25 | 2014-04-02 | 현대자동차주식회사 | 리튬공기전지 양극용 복합산화물 촉매, 이를 포함한 리튬공기전지용 양극 및 리튬공기전지 |
JP2014075269A (ja) | 2012-10-04 | 2014-04-24 | Toyota Motor Corp | 金属空気電池 |
KR101955040B1 (ko) | 2012-10-19 | 2019-03-07 | 한양대학교 산학협력단 | 리튬 공기 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 공기 전지 |
KR101599124B1 (ko) | 2014-03-05 | 2016-03-15 | 한국과학기술원 | 리튬-공기 전지용 촉매로서 나노섬유 형상의 페롭스카이트 금속산화물이 사용된 공기 전극 및 그 제조방법 |
-
2017
- 2017-01-16 CN CN201780003170.7A patent/CN108028392B/zh active Active
- 2017-01-16 US US15/743,387 patent/US10505203B2/en active Active
- 2017-01-16 EP EP17741621.1A patent/EP3316366B1/en active Active
- 2017-01-16 JP JP2018500714A patent/JP6494854B2/ja active Active
- 2017-01-16 KR KR1020170007064A patent/KR102024899B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090076276A (ko) * | 2008-01-08 | 2009-07-13 | 주식회사 엘지화학 | 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지 |
KR20150022095A (ko) | 2013-08-22 | 2015-03-04 | 주식회사 엘지화학 | 금속 공기 전지용 양극재 및 이를 포함하는 금속 공기 전지 |
KR20150031213A (ko) * | 2013-09-13 | 2015-03-23 | 주식회사 엘지화학 | 리튬 공기 전지용 양극 및 그의 제조방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200040988A (ko) * | 2018-10-11 | 2020-04-21 | 현대자동차주식회사 | 리튬공기전지 및 그 제조방법 |
US11909028B2 (en) | 2019-10-23 | 2024-02-20 | Samsung Electronics Co., Ltd. | Cathode for metal-air battery, preparing method thereof, and metal-air battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR102024899B1 (ko) | 2019-09-24 |
JP6494854B2 (ja) | 2019-04-03 |
US20180212256A1 (en) | 2018-07-26 |
US10505203B2 (en) | 2019-12-10 |
EP3316366B1 (en) | 2018-12-12 |
EP3316366A4 (en) | 2018-05-02 |
CN108028392A (zh) | 2018-05-11 |
EP3316366A1 (en) | 2018-05-02 |
CN108028392B (zh) | 2021-08-17 |
JP2018520487A (ja) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102024899B1 (ko) | 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 | |
US9634317B2 (en) | Reactive separator for a metal-ion battery | |
KR101632793B1 (ko) | 리튬 공기 전지용 양극 및 그의 제조방법 | |
CN102082249B (zh) | 隔膜及其制造方法、电池、微孔膜及其制造方法 | |
KR101670580B1 (ko) | 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
US20130149567A1 (en) | Lithium ion battery with amorphous electrode materials | |
KR20140004640A (ko) | 충전가능한 전기화학 에너지 저장 장치 | |
WO2006026585A2 (en) | Improvement i cycling stability of li-ion battery with molten salt electrolyte | |
KR20190078882A (ko) | 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지 | |
US20140093791A1 (en) | Air electrode for metal air battery | |
JPWO2015015883A1 (ja) | リチウム二次電池及びリチウム二次電池用電解液 | |
KR20190056844A (ko) | 표면 개질된 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 | |
CN115699385A (zh) | 蓄电装置及其中使用的电极或分隔件 | |
JP7062188B2 (ja) | リチウム-硫黄電池用正極及びこれを含むリチウム-硫黄電池 | |
US20200220234A1 (en) | Elimination of gaseous reactants in lithium ion batteries | |
KR101849828B1 (ko) | 금속 공기 전지용 분리막, 이를 포함하는 금속 공기 전지, 금속 공기 전지용 분리막의 제조방법 및 금속 공기 전지의 제조방법 | |
JP6150256B2 (ja) | リチウムイオン二次電池 | |
KR101416807B1 (ko) | 이온성 액체 전해액을 포함하는 하이브리드 커패시터 및 이의 제조 방법 | |
KR102207523B1 (ko) | 리튬 이차전지 | |
US20240213527A1 (en) | Battery cell | |
WO2017126855A1 (ko) | 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법 | |
US20140065495A1 (en) | Metal-air battery | |
KR102050833B1 (ko) | 금속-공기 전지용 분리막, 이를 포함하는 금속-공기 전지 | |
CN115699354A (zh) | 阴极活性材料和具有该阴极活性材料的锂离子电池 | |
CN118073557A (zh) | 锂二次电池用负极活性物质及包含该负极活性物质的锂二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |