KR20170082719A - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
KR20170082719A
KR20170082719A KR1020160001833A KR20160001833A KR20170082719A KR 20170082719 A KR20170082719 A KR 20170082719A KR 1020160001833 A KR1020160001833 A KR 1020160001833A KR 20160001833 A KR20160001833 A KR 20160001833A KR 20170082719 A KR20170082719 A KR 20170082719A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
ohmic
disposed
ohmic layer
Prior art date
Application number
KR1020160001833A
Other languages
English (en)
Other versions
KR102465406B9 (ko
KR102465406B1 (ko
Inventor
송현돈
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160001833A priority Critical patent/KR102465406B1/ko
Priority to CN201780006154.3A priority patent/CN108701739B/zh
Priority to PCT/KR2017/000179 priority patent/WO2017119754A1/ko
Priority to JP2018535275A priority patent/JP6967292B2/ja
Priority to US16/068,557 priority patent/US10541351B2/en
Priority to EP17736126.8A priority patent/EP3401965B1/en
Publication of KR20170082719A publication Critical patent/KR20170082719A/ko
Application granted granted Critical
Publication of KR102465406B1 publication Critical patent/KR102465406B1/ko
Publication of KR102465406B9 publication Critical patent/KR102465406B9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예의 발광 소자는 기판과, 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물과, 기판에 대향하여 배치된 서브 마운트와, 서브 마운트 위에 서로 이격되어 배치된 제1 및 제2 금속 패드와, 제1 금속 패드 위에 배치된 제1 범프와, 제2 금속 패드 위에 서로 이격되어 배치된 복수의 제2 범프와, 제1 도전형 반도체층과 제1 범프 사이에 배치된 제1 오믹층과, 제2 도전형 반도체층과 복수의 제2 범프 사이에 배치된 제2 오믹층과, 제1 오믹층과 제1 범프 사이에 배치된 제1 스프레드층과, 제2 오믹층과 복수의 제2 범프 사이에 배치된 제2 스프레드층 및 복수의 제2 범프 사이의 공간과 발광 구조물의 두께 방향으로 오버랩되는 제2 오믹층의 최대 발열 부위에서 제2 오믹층을 두께 방향과 교차하는 수평방향으로 단절시키기 않고 배치되는 논-오믹층을 포함한다.

Description

발광 소자{Light emitting device}
실시 예는 발광 소자에 관한 것이다.
발광 다이오드(LED:Light Emitting Diode)는 화합물 반도체의 특성을 이용하여 전기를 적외선 또는 빛으로 변환시켜서 신호를 주고 받거나, 광원으로 사용되는 반도체 소자의 일종이다.
Ⅲ-Ⅴ족 질화물 반도체(group Ⅲ-Ⅴ nitride semiconductor)는 물리적 및 화학적 특성으로 인해 발광 다이오드(LED:Light Emitting Diode) 또는 레이저 다이오드(LD:Laser Diode) 등의 발광 소자의 핵심 소재로 각광을 받고 있다.
이러한 발광 다이오드는 백열등과 형광등 등의 기존 조명기구에 사용되는 수은(Hg)과 같은 환경 유해물질이 포함되어 있지 않아 우수한 친환경성을 가지며, 긴 수명과 저전력 소비특성 등과 같은 장점이 있기 때문에 기존의 광원들을 대체하고 있다.
전술한 발광 소자 및 이를 포함하는 발광 소자 패키지의 경우, 캐리어가 공급되는 경로와 열이 방출되는 경로가 동일하기 때문에 열이 외부로 방출되기 어려운 열화(thermal degradation) 현상이 발생할 수 있다. 특히, 발광 소자에서 심자외선 파장 대역의 광을 방출시키고자 할 경우, 높은 구동 전압으로 인해 열 손실률이 더욱 높아질 수 있다.
실시 예는 개선된 신뢰성을 갖는 발광 소자를 제공한다.
일 실시 예에 의한 발광 소자는, 기판; 상기 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물; 상기 기판에 대향하여 배치된 서브 마운트; 상기 서브 마운트 위에 서로 이격되어 배치된 제1 및 제2 금속 패드; 상기 제1 금속 패드 위에 배치된 제1 범프; 상기 제2 금속 패드 위에 서로 이격되어 배치된 복수의 제2 범프; 상기 제1 도전형 반도체층과 상기 제1 범프 사이에 배치된 제1 오믹층; 상기 제2 도전형 반도체층과 상기 복수의 제2 범프 사이에 배치된 제2 오믹층; 상기 제1 오믹층과 상기 제1 범프 사이에 배치된 제1 스프레드층; 상기 제2 오믹층과 상기 복수의 제2 범프 사이에 배치된 제2 스프레드층; 및 상기 복수의 제2 범프 사이의 공간과 상기 발광 구조물의 두께 방향으로 오버랩되는 상기 제2 오믹층의 최대 발열 부위에서 상기 제2 오믹층을 상기 두께 방향과 교차하는 수평방향으로 단절시키기 않고 배치되는 논-오믹층을 포함할 수 있다.
예를 들어, 상기 제2 오믹층은 상기 최대 발열 부위에 해당하는 제1 영역; 및 상기 발광 구조물의 두께 방향과 교차하는 수평 방향으로 상기 제1 영역에 인접한 제2 영역을 포함할 수 있다.
예를 들어, 상기 논-오믹층은 상기 제1 영역으로부터 상기 제2 영역까지 연장되어 배치될 수 있다.
예를 들어, 상기 논-오믹층은 상기 최대 발열 부위인 상기 제1 영역에 배치된 제1 세그먼트를 포함할 수 있다. 상기 논-오믹층은 상기 제1 세그먼트로부터 상기 제2 영역까지 연장되고, 상기 발광 구조물의 두께 방향으로 상기 복수의 제2 범프와 오버랩되는 제2 세그먼트를 더 포함할 수 있다.
예를 들어, 상기 논-오믹층의 폭은 상기 최대 발열 부위의 폭 이상일 수 있다.
예를 들어, 상기 논-오믹층은 상기 제2 도전형 반도체층과 접하는 제1 면; 및 상기 발광 구조물의 두께 방향으로 상기 제2 스프레딩층과 마주하고 상기 제1 면의 반대측인 제2 면을 포함할 수 있다.
예를 들어, 상기 제2 오믹층은 투광 전도성 물질을 포함하고, 상기 논-오믹층의 상기 제2 면으로부터 상기 제2 스프레딩층까지의 최단 거리는 1 ㎚ 내지 10 ㎚일 수 있다. 또는, 상기 제2 오믹층은 금속 물질을 포함하고, 상기 논-오믹층의 상기 제2 면으로부터 상기 제2 스프레딩층까지의 최단 거리는 200 ㎚ 이상일 수 있다.
예를 들어, 상기 제1 세그먼트의 폭은 10 ㎛ 내지 90 ㎛이고, 상기 제2 세그먼트의 폭은 5 ㎛ 내지 25 ㎛일 수 있다. 상기 제2 세그먼트의 폭은 15 ㎛일 수 있다.
예를 들어, 상기 논-오믹층은 공기를 포함하거나, 상기 제2 도전형 반도체층과 쇼트키 접촉하는 물질을 포함하거나, 플라즈마 데미지에 의해 형성될 수 있다. 플라즈마 데미지를 갖는 경우, 상기 논-오믹층은 아르곤, 플로우르 또는 산소 원자 중 적어도 하나를 포함할 수 있다. 또는, 상기 논-오믹층은 절연 물질을 포함할 수 있다.
예를 들어, 상기 활성층은 심자외선 파장 대역의 광을 방출할 수 있다.
예를 들어, 상기 논-오믹층은 상기 복수의 제2 범프 사이에 걸쳐 상기 수평 방향으로 배치된 복수의 논-오믹층을 포함할 수 있다. 상기 복수의 논-오믹층은 등간격으로 이격되어 배치될 수 있다. 상기 복수의 논-오믹층의 상기 수평 방향의 폭은 서로 동일할 수 있다.
다른 실시 예에 의한 발광 소자는, 서로 대향하여 배치된 기판 및 서브 마운트; 상기 서브 마운트 위에 서로 이격되어 배치된 복수의 금속 패드; 상기 기판과 상기 서브 마운트 사이에 배치된 발광 구조물; 상기 발광 구조물과 상기 복수의 금속 패드 사이에 배치된 복수의 범프; 상기 발광 구조물과 상기 복수의 범프 사이에 배치된 전극층; 및 상기 복수의 범프 사이의 공간과 상기 발광 구조물의 두께 방향으로 중첩되는 상기 전극층의 최대 발열 부위에서 상기 전극층을 상기 두께 방향과 교차하는 방향으로 단절시키지 않고 배치된 논-오믹층을 포함할 수 있다.
예를 들어, 상기 전극층은 상기 발광 구조물과 상기 복수의 범프 사이에 배치된 오믹층; 및 상기 오믹층과 상기 복수의 범프 사이에 배치된 스프레드층을 포함하고, 상기 논-오믹층은 상기 오믹층에 배치될 수 있다.
예를 들어, 상기 발광 구조물은 상기 기판 아래에 배치된 제1 도전형 반도체층; 상기 제1 도전형 반도체층 아래에 배치된 활성층; 및 상기 활성층의 아래에 배치된 제2 도전형 반도체층을 포함할 수 있다.
예를 들어, 상기 오믹층은 제1 및 제2 오믹층을 포함하고, 상기 스프레드층은 제1 및 제2 스프레드층을 포함하고, 상기 복수의 금속 패드는 제1 및 제2 금속 패드를 포함하고, 상기 복수의 범프는 상기 제1 스프레드층과 상기 제1 금속 패드 사이에 배치된 제1 범프; 및 상기 제2 스프레드층과 상기 제2 금속 패드 사이에 배치된 복수의 제2 범프를 포함하고, 상기 논-오믹층은 상기 제2 오믹층에 위치한 상기 최대 발열 부위에 배치될 수 있다.
예를 들어, 상기 논-오믹층은 상기 최대 발열 부위로부터 상기 복수의 제2 범프와 상기 두께 방향으로 중첩되는 영역까지 연장되어 배치될 수 있다.
실시 예에 따른 발광 소자 및 이를 포함하는 발광 소자 패키지는 오믹층에 논-오믹층을 배치함으로써 열 방출이 원할히 이루어져서 열화 현상을 방지할 수 있고, 높은 구동 전압에서도 열 손실률을 개선시켜 긴 수명을 갖는 등, 개선된 신뢰성을 갖는다.
도 1은 일 실시 예에 의한 발광 소자의 단면도를 나타낸다.
도 2는 도 1에 도시된 'A' 부분을 확대하여 도시한 단면도를 나타낸다.
도 3은 도 1에 도시된 발광 소자의 예시적인 저면도를 나타낸다.
도 4는 다른 실시 예에 의한 발광 소자의 단면도를 나타낸다.
도 5는 도 4에 도시된 'B' 부분을 확대하여 도시한 단면도를 나타낸다.
도 6은 또 다른 실시 예에 의한 발광 소자의 단면도를 나타낸다.
도 7a 및 도 7b는 제1 및 제2 비교 례에 의한 발광 소자의 단면도를 나타낸다.
도 8은 시간의 경과에 따른 비교 례에 의한 발광 소자 및 실시 예에 의한 발광 소자의 순방향 전압 변동량을 나타내는 그래프이다.
도 9는 제3 비교 례에 의한 발광 소자의 단면도를 나타낸다.
도 10a 내지 도 10c는 비교 례에 의한 발광 소자와 실시 예에 의한 발광 소자 각각의 회로 결선도를 나타낸다.
도 11은 일 실시 예에 의한 발광 소자 패키지의 단면도를 나타낸다.
이하, 본 발명을 구체적으로 설명하기 위해 실시 예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명에 따른 실시 예의 설명에 있어서, 각 element의 " 상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "제1" 및 "제2," "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.
도 1은 일 실시 예에 의한 발광 소자(100A)의 단면도를 나타내고, 도 2는 도 1에 도시된 'A' 부분을 확대하여 도시한 단면도를 나타내고, 도 3은 도 1에 도시된 발광 소자(100A)의 예시적인 저면도를 나타낸다.
도 1은 도 3에 도시된 I-I' 선을 따라 절취한 단면도에 해당하지만, 실시 예는 이에 국한되지 않는다. 즉, 도 1에 도시된 발광 소자(100A)는 도 3에 도시된 저면도 이외에 다양한 형태의 저면도를 가질 수도 있다.
도 1에 도시된 발광 소자(100A)는 기판(110), 발광 구조물(120), 제1 및 제2 오믹층(또는, 콘택층 또는 전극)(132, 134A), 제1 및 제2 스프레드(spread)층(142, 144), 적어도 하나의 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174), 서브 마운트(180) 및 논-오믹(non-ohmic)층(190A)을 포함할 수 있다.
도 1에 도시된 제1 및 제2 스프레드층(142, 144), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174) 및 서브 마운트(180)의 도시는 도 3에서 생략되었다. 도 3은 도 1에 도시된 발광 소자(100A)를 서브 마운트(180)로부터 발광 구조물(120) 쪽으로 바라본 저면도에 해당한다.
기판(110)은 도전형 물질 또는 비도전형 물질을 포함할 수 있다. 예를 들어, 기판(110)은 사파이어(Al203), GaN, SiC, ZnO, GaP, InP, Ga203, GaAs 또는 Si 중 적어도 하나를 포함할 수 있으나, 실시 예는 기판(110)의 물질에 국한되지 않는다.
기판(110)과 발광 구조물(120) 간의 열 팽창 계수(CTE:Coefficient of Thermal Expansion)의 차이 및 격자 부정합을 개선하기 위해, 이들(110, 120) 사이에 버퍼층(또는, 전이층)(미도시)이 더 배치될 수도 있다. 버퍼층은 예를 들어 Al, In, N 및 Ga로 구성되는 군으로부터 선택되는 적어도 하나의 물질을 포함할 수 있으나, 이에 국한되지 않는다. 또한, 버퍼층은 단층 또는 다층 구조를 가질 수도 있다.
발광 구조물(120)은 기판(110) 아래에 배치된다. 즉, 기판(110)과 서브 마운트(180)는 서로 대향하여 배치되고, 발광 구조물(120)은 기판(110)과 서브 마운트(180) 사이에 배치될 수 있다.
발광 구조물(120)은 제1 도전형 반도체층(122), 활성층(124) 및 제2 도전형 반도체층(126)을 포함할 수 있다.
제1 도전형 반도체층(122)은 기판(110) 아래에 배치된다. 제1 도전형 반도체층(122)은 제1 도전형 도펀트가 도핑된 Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체로 구현될 수 있다. 제1 도전형 반도체층(122)이 n형 반도체층인 경우, 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
예를 들어, 제1 도전형 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 제1 도전형 반도체층(122)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, 또는 InP 중 적어도 하나를 포함할 수 있다.
활성층(124)은 제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이에 배치되며, 제1 도전형 반도체층(122)을 통해서 주입되는 전자(또는, 정공)와 제2 도전형 반도체층(126)을 통해서 주입되는 정공(또는, 전자)이 서로 만나서, 활성층(124)을 이루는 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다. 활성층(124)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물 구조(MQW:Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
활성층(124)의 우물층/장벽층은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 우물층은 장벽층의 밴드갭 에너지보다 낮은 밴드갭 에너지를 갖는 물질로 형성될 수 있다.
활성층(124)의 위 또는/및 아래에는 도전형 클래드층(미도시)이 형성될 수 있다. 도전형 클래드층은 활성층(124)의 장벽층의 밴드갭 에너지보다 더 높은 밴드갭 에너지를 갖는 반도체로 형성될 수 있다. 예를 들어, 도전형 클래드층은 GaN, AlGaN, InAlGaN 또는 초격자 구조 등을 포함할 수 있다. 또한, 도전형 클래드층은 n형 또는 p형으로 도핑될 수 있다.
실시 예에 의하면, 활성층(124)은 자외선 파장 대역의 광을 방출할 수 있다. 여기서, 자외선 파장 대역이란, 100 ㎚ 내지 400 ㎚의 파장 대역을 의미할 수 있다. 특히, 활성층(124)은 100 ㎚ 내지 280 ㎚의 심자외선 파장 대역의 광을 방출할 수 있다. 그러나, 실시 예는 활성층(124)에서 방출되는 광의 파장 대역에 국한되지 않는다.
제2 도전형 반도체층(126)은 활성층(124) 아래에 배치되며, 반도체 화합물로 형성될 수 있다. 제2 도전형 반도체층(126)은 Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체로 구현될 수 있다. 예컨대, 제2 도전형 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 제2 도전형 반도체층(126)에는 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(126)이 p형 반도체층인 경우, 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
제1 도전형 반도체층(122)은 n형 반도체층으로, 제2 도전형 반도체층(126)은 p형 반도체층으로 구현할 수 있다. 또는, 제1 도전형 반도체층(122)은 p형 반도체층으로, 제2 도전형 반도체층(126)은 n형 반도체층으로 구현할 수도 있다.
발광 구조물(120)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
도 1 내지 도 3에 예시된 발광 소자 패키지(100A)는 플립 칩 본딩(flip chip bonding) 구조이기 때문에, 활성층(124)에서 방출된 광은 제1 오믹층(132), 제1 도전형 반도체층(122) 및 기판(110)을 통해 출사될 수 있다. 이를 위해, 제1 오믹층(132), 제1 도전형 반도체층(122) 및 기판(110)은 광 투과성을 갖는 물질로 이루어질 수 있다. 이때, 제2 도전형 반도체층(126)과 제2 오믹층(134)은 광 투과성이나 비투과성을 갖는 물질 또는 반사성을 갖는 물질로 이루어질 수 있으나, 실시 예는 특정한 물질에 국한되지 않을 수 있다.
서브 마운트(180)는 기판(110)을 대향하여 배치될 수 있다. 즉, 서브 마운트(180)는 기판(110) 아래에 배치될 수 있다. 서브 마운트(180)는 예를 들어 AlN, BN, 탄화규소(SiC), GaN, GaAs, Si 등의 반도체 기판으로 이루어질 수 있으며, 이에 국한되지 않고 열전도도가 우수한 반도체 물질로 이루어질 수도 있다. 또한, 서브 마운트(180) 내에 제너 다이오드 형태의 정전기(ESD:Electro Static Discharge) 방지를 위한 소자가 포함될 수도 있다.
복수의 금속 패드가 서브 마운트(180) 위에 배치될 수 있다. 도 1에 도시된 바와 같이, 복수의 금속 패드는 제1 및 제2 금속 패드(162, 164)를 포함할 수 있다. 제1 및 제2 금속 패드(162, 164)는 서브 마운트(180) 위에 배치되며, 서로 전기적으로 이격될 수 있다. 제1 및 제2 금속 패드(162, 164) 각각은 전기적 전도성을 갖는 금속 물질로 이루어질 수 있다.
제1 및 제2 절연층(172, 174)은 제1 및 제2 금속 패드(162, 164)와 서브 마운트(180) 사이에 각각 배치된다. 만일, 서브 마운트(180)가 Si와 같이 전기적 전도성을 갖는 물질로 이루어질 경우, 제1 및 제2 금속 패드(162, 164)와 서브 마운트(180)를 전기적으로 절연시키기 위해 제1 및 제2 절연층(172, 174)이 배치될 수 있다. 여기서, 제1 및 제2 절연층(172, 174)은 전기적인 절연성을 갖는 물질을 포함할 수 있다. 또한, 제1 및 제2 절연층(172, 174)은 전기적인 절연성을 가질 뿐만 아니라 광 반사 특성을 함께 갖는 물질로 이루어질 수도 있다.
예를 들어, 제1 및 제2 절연층(172, 174) 각각은 분산 브래그 반사층(DBR:Distributed Bragg Reflector)을 포함할 수 있다. 이 경우, 분산 브래그 반사층은 절연 기능을 수행할 수도 있고, 반사 기능을 수행할 수도 있다. 분산 브래그 반사층은 굴절률이 서로 다른 제1 층 및 제2 층이 교대로 적어도 1회 이상 적층된 구조일 수 있다. 분산 브래그 반사층 각각은 전기 절연 물질일 수 있다. 예컨대, 제1 층은 TiO2와 같은 제1 유전체층이고, 제2 층은 SiO2와 같은 제2 유전체층을 포함할 수 있다. 예컨대, 분산 브래그 반사층은 TiO2/SiO2층이 적어도 1회 이상 적층된 구조일 수 있다. 제1 층 및 제2 층 각각의 두께는 λ/4이고, λ는 발광 셀에서 발생하는 광의 파장일 수 있다.
또한, 제1 및 제2 절연층(172, 174) 각각은 SiO2, TiO2, ZrO2, Si3N4, Al2O3, 또는 MgF2 중 적어도 하나를 포함할 수 있으나, 실시 예는 이에 국한되지 않는다. 만일, 서브 마운트(180)가 전기적 절연성을 갖는 물질로 구현될 경우, 제1 및 제2 절연층(172, 174)은 생략될 수도 있다.
발광 구조물(120)과 복수의 금속 패드 사이에 복수 개의 범프가 배치될 수 있다. 여기서, 복수 개의 범프는 제1 범프(152) 및 복수의 제2 범프(154)를 포함할 수 있다. 발광 구조물(120)과 제1 금속 패드(162) 사이에 제1 범프(152)가 배치되고, 발광 구조물(120)과 제2 금속 패드(164) 사이에 복수의 제2 범프(154)가 배치될 수 있다.
제1 범프(152)는 제1 금속 패드(162)와 제1 스프레드층(142) 사이에 배치될 수 있다. 제1 범프(152)의 개수는 도 1에 도시된 바와 같이 한 개일 수 있으나, 실시 예는 제1 범프(152)의 개수에 국한되지 않는다.
복수의 제2 범프(154)는 제2 금속 패드(164)와 제2 스프레드층(144) 사이에 배치될 수 있다. 복수의 제2 범프(154)의 개수는 도 1에 도시된 바와 같이 2개일 수 있으나, 실시 예는 제2 범프(154)의 개수에 국한되지 않는다. 즉, 복수의 제2 범프(154)는 서로 전기적으로 공간적으로 이격된 제2-1 범프(154-1) 및 제2-2 범프(154-2)를 포함할 수 있다.
발광 구조물(120)과 복수의 범프 사이에 전극층이 배치될 수 있다. 즉, 전극층은 오믹층 및 스프레드(spread)층을 포함할 수 있다. 전극층은 제1 및 제2 전극층을 포함할 수 있다. 발광 구조물(120)과 복수의 범프 사이에 배치된 오믹층은 제1 및 제2 오믹층(132, 134A)을 포함하고, 오믹층과 복수의 범프 사이에 배치된 스프레드층은 제1 및 제2 스프레드층(142, 144)을 포함할 수 있다. 제1 전극층은 제1 오믹층(132) 및 제1 스프레드층(142)을 포함하고, 제2 전극층은 제2 오믹층(134A) 및 제2 스프레드층(144)을 포함할 수 있다.
발광 구조물(120)과 제1 범프(152) 사이에 제1 오믹층(132)이 배치되고, 발광 구조물(120)과 복수의 제2 범프(154) 사이에 제2 오믹층(134A)이 배치될 수 있다.
제1 오믹층(132)은 메사 식각(Mesa etching)에 의해 노출된 제1 도전형 반도체층(122) 아래에 배치되며, 제1 스프레드층(142)을 경유하여 제1 범프(152)와 전기적으로 연결될 수 있다. 즉, 제1 오믹층(132)은 제1 범프(152)와 제1 도전형 반도체층(122) 사이에 배치될 수 있다. 또한, 제1 오믹층(132)과 제1 범프(152) 사이에 제1 스프레드층(142)이 개재되며, 제1 오믹층(132)은 제1 스프레드층(142)과 제1 도전형 반도체층(122)을 전기적으로 서로 연결시킬 수 있다. 도시된 바와 같이 제1 오믹층(132)은 제1 도전형 반도체층(122)과 접촉할 수 있다.
제2 오믹층(134A)은 제2 스프레드층(144)을 경유하여 제2 범프(154)와 전기적으로 연결될 수 있다. 즉, 제2 오믹층(134A)은 복수의 제2 범프(154)와 제2 도전형 반도체층(126) 사이에 배치될 수 있다. 또한, 제2 오믹층(134A)과 복수의 제2 범프(154) 사이에 제2 스프레드층(144)이 개재되며, 제2 오믹층(134A)은 제2 스프레드층(144)과 제2 도전형 반도체층(126)을 전기적으로 서로 연결시킬 수 있다. 도시된 바와 같이 제2 오믹층(134A)은 제2 도전형 반도체층(126)과 접촉할 수 있다.
제1 및 제2 오믹층(132, 134A) 각각은 제1 및 제2 도전형 반도체층(122, 126) 상에 양질로 성장될 수 있는 어느 물질로 형성될 수 있다. 예를 들어, 제1 및 제2 오믹층(132, 134A) 각각은 금속으로 형성될 수 있으며, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 이루어질 수 있다.
제1 오믹층(132)은 오믹 특성을 가질 수 있으며, 제1 도전형 반도체층(122)과 오믹 접촉하는 물질을 포함할 수 있다. 또한, 제2 오믹층(134A)은 오믹 특성을 가질 수 있으며, 제2 도전형 반도체층(126)과 오믹 접촉하는 물질을 포함할 수 있다.
특히, 제2 오믹층(134A)은 투광 전도성 물질 또는 금속 물질 중 적어도 하나를 포함할 수 있다. 예를 들어, 투광 전도성 물질은 투명 전도성 산화막(TCO:Transparent Conductive Oxide)일 수 있다. 예를 들어, 투광 전도성 물질은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있으며, 이러한 재료로 한정하지는 않는다. 또한, 금속 물질은 알루미늄(Al), 금(Au) 또는 은(Ag) 중 적어도 하나를 포함할 수 있다.
또한, 제2 오믹층(134A)은 투명 전극(미도시) 및 반사층(미도시)을 포함할 수 있다. 투명 전극은 전술한 투광 전도성 물질로 이루어지고, 반사층은 은(Ag)과 같은 금속 물질로 구현될 수 있지만, 실시 예는 이에 국한되지 않는다. 투명 전극은 반사층과 제2 도전형 반도체층(126) 사이에 배치되고, 반사층은 투명 전극 아래에 배치될 수 있다.
한편, 제1 스프레드층(142)은 제1 오믹층(132)과 제1 범프(152) 사이에 배치될 수 있다. 제2 스프레드층(144)은 제2 오믹층(134A)과 복수의 제2 범프(154) 사이에 배치될 수 있다. 제1 및 제2 스프레드층(142, 144)은 발광 구조물(120)에서 발생하는 열에 의해 발광 구조물(120)의 저항이 증가하여 전기적인 특성이 악화될 수 있기 때문에 이를 방지하는 역할을 수행할 수 있다. 이를 위해, 제1 및 제2 스프레드층(142, 144) 각각은 전기 전도성이 우수한 물질로 이루어질 수 있다.
도 1에 도시된 발광 소자(100A)의 경우 캐리어는 제1 및 제2 범프(152, 154)를 통해 발광 구조물(120)로 공급된다. 이때, 발광 구조물(120)에서 발생된 열은 제1 및 제2 범프(152, 154)를 통해 방출될 수 있다. 이와 같이, 캐리어가 공급되는 경로와 열이 방출되는 경로가 동일하기 때문에 열이 외부로 방출되기 어려운 열화(thermal degradation) 현상이 발생할 수 있다. 특히, 활성층(124)으로부터 심자외선 파장 대역의 광을 방출시키고자 할 경우, 높은 구동 전압으로 인해 열 손실률이 더욱 높아질 수 있다.
이를 해결하기 위해, 실시 예에 의한 발광 소자(100A)는 논-오믹층(190A)을 더 포함할 수 있다. 논-오믹층(190A)은 제2 도전형 반도체층(126)과 제2 스프레드층(144) 사이에 배치된 제2 오믹층(134A)에서 최대 발열 부위(MHA:Maximum Heating Area)에 배치될 수 있다. 여기서, 최대 발열 부위(MHA)란, 발광 구조물(120)에서 복수의 제2 범프(154) 사이의 공간과 발광 구조물(120)이 두께 방향(이하, '수직 방향'이라 함)으로 오버랩되는 부위를 의미할 수 있다.
실시 예의 경우, 최대 발열 영역(MHA)이란, 복수의 제2 범프(154)와 수직 방향으로 중첩되지 않은 전극층(예를 들어, 제2 오믹층(134A))의 영역을 의미할 수 있다.
논-오믹층(190A)은 수직 방향과 교차하는 방향(이하, '수평 방향'이라 함)으로 전극층(예를 들어, 제2 오믹층(134A))을 단절시키지 않고 제2 오믹층(134A)의 최대 발열 부위(MHA)에 배치될 수 있다. 도 2에 도시된 후술되는 최단 거리(T)가 '0'일 경우, 제2 오믹층(134A)은 논-오믹층(190A)에 의해 수평 방향으로 단절될 수 있다. 따라서, 실시 예에 의하면, 최단 거리(T)는 0보다 클 수 있다.
도 2를 참조하면, 제2 오믹층(134A)은 제1 영역(A1) 및 제2 영역(A2)을 포함할 수 있다.
제2 오믹층(134A)에서 제1 영역(A1)이란 최대 발열 부위에 속하는 영역을 의미하고, 제2 영역(A2)이란 수평 방향으로 제1 영역(A1)에 인접한 영역으로서 제2-1 및 제2-2 영역(A21, A22)을 포함할 수 있다.
또한, 논-오믹층(190A)은 제1 세그먼트(S1)를 포함할 수 있다. 제1 세그먼트(S1)는 제2 오믹층(134A)의 최대 발열 부위인 제1 영역(A1)에 배치될 수 있다.
또한, 논-오믹층(190A)의 하면보다 상면이 더 넓을 수 있다. 예를 들어, 도 2를 참조하면, 논-오믹층(190A)의 상면의 폭(WT:Width of Top)은 하면의 폭(WB:Width of Bottom)보다 더 넓을 수 있다.
도 4는 다른 실시 예에 의한 발광 소자(100B)의 단면도를 나타내고, 도 5는 도 4에 도시된 'B' 부분을 확대하여 도시한 단면도를 나타낸다.
도 1에 도시된 발광 소자(100A)와 마찬가지로, 도 4에 도시된 발광 소자(100B)는 도 3에 도시된 I-I' 선을 따라 절취한 단면도에 해당하지만, 실시 예는 이에 국한되지 않는다. 즉, 도 4에 도시된 발광 소자(100B)는 도 3에 도시된 저면도 이외에 다양한 형태의 저면도를 가질 수도 있다.
도 4에 도시된 발광 소자(100B)는 기판(110), 발광 구조물(120), 제1 및 제2 오믹층(132, 134B), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174), 서브 마운트(180) 및 논-오믹층(190B)을 포함할 수 있다.
여기서, 도 4에 도시된 기판(110), 발광 구조물(120), 제1 오믹층(132), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174) 및 서브 마운트(180)는 도 1에 도시된 기판(110), 발광 구조물(120), 제1 오믹층(132), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174) 및 서브 마운트(180)와 각각 동일하므로, 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 1 및 도 2에 도시된 바와 달리, 도 4 및 도 5에 도시된 발광 소자(100B)의 경우, 논-오믹층(190B)은 제2 오믹층(134B)의 제1 영역(A1)에도 배치되고, 제1 영역(A1)으로부터 제2 영역(A2)까지 연장되어 배치될 수 있다. 즉, 논-오믹층(190B)은 최대 발열 부위(MHA)에 배치될 뿐만 아니라, 최대 발열 부위(MHA)로부터 복수의 제2 범프(154-1, 154-2)와 두께 방향으로 중첩되는 영역까지 연장되어 배치될 수 있다. 이 경우, 논 오믹층(190B)은 제1 세그먼트(S1)뿐만 아니라 제2 세그먼트를 더 포함할 수 있다. 제2 세그먼트는 제2-1 세그먼트(S21) 및 제2-2 세그먼트(S22)를 포함할 수 있다. 제2-1 및 제2-2 세그먼트(S21, S22)는 제1 세그먼트(S1)가 배치된 제2 오믹층(134B)의 제1 영역(A1)으로부터 수평 방향으로 제2 영역(A21, A22)까지 연장되는 부분이다. 제2-1 및 제2-2 세그먼트(S21, S22)는 수직 방향으로 제2-1 및 제2-2 범프(154-1, 154-2)와 각각 오버랩되는 부분이다.
이와 같이, 도 1 및 도 2에 도시된 발광 소자(100A)에서 논 오믹층(190A)은 제1 세그먼트(S1)만을 갖는 반면, 도 4 및 도 5에 도시된 발광 소자(100B)에서 논 오믹층(190B)은 제1 세그먼트(S1)뿐만 아니라 제2-1 및 제2-2 세그먼트(S21, S22)를 더 포함할 수 있다. 이를 제외하면, 도 4 및 도 5에 도시된 발광 소자(100B)는 도 1 및 도 2에 도시된 발광 소자(100A)와 각각 동일하므로, 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 1에 도시된 발광 소자(100A)에서 논-오믹층(190A)의 수평 방향으로의 폭은 제1 세그먼트(S1)의 제1 폭(W1) 즉, 최대 발열 부위(MHA)의 폭과 동일하다. 여기서, 제1 폭(W1)은 10 ㎛ 내지 90 ㎛ 예를 들어, 75 ㎛일 수 있으나, 실시 예는 이에 국한되지 않는다. 반면에, 도 4에 도시된 발광 소자(100B)에서 논-오믹층(190B)의 수평 방향으로의 폭은 제1 세그먼트(S1)의 제1 폭(W1)과 제2 세그먼트(S21, S22)의 제2 폭(W21, W22)의 총 합일 수 있다.
만일, 도 1 및 도 4에 각각 도시된 논-오믹층(190A, 190B)의 폭이 최대 발열 부위(MHA)의 폭보다 작을 경우, 제1 및 제2 범프(152, 154)에 인접한 제2 오믹층(134A, 134B)으로 전류가 집중되기 때문에 열화에 의해 발광 구조물(120) 및 제2 오믹층(134A, 134B)이 파괴되어 발광 소자(100A, 100B)의 수명이 단축되고 기계적 불량이 발생할 수 있다. 따라서, 논-오믹층(190A, 190B)의 전체 폭은 최대 발열 부위(MHA)의 폭과 동일하거나 최대 발열 부위(MHA)의 폭보다 클 수 있다.
논-오믹층(190B)의 제1 세그먼트(S1)의 제1 폭(W1)은 전술한 논-오믹층(190A)의 제1 세그먼트(S1)의 제1 폭(W1)과 동일하다.
논-오믹층(190B)의 제2-1 및 제2-2 폭(W21, W22) 각각이 25 ㎛보다 클 경우, 이론적으로 활성 영역 및 제2 오믹층(134B)에 의해 전기적으로 재결합(recombination)이 발생하는 실질적인 발광부의 면적 즉, 발광 소자의 발광 영역이 감소할 수 있다. 이로 인해, 활성층(124)에 가해지는 전류 밀도가 증가하여 동작 전압이 상승할 수 있다.
또한, 제2-1 및 제2-2 폭(W21, W22) 각각이 25 ㎛보다 클 경우, 실험적으로 도 4에 도시된 발광 소자(100B)의 전기적 특성은 도 1에 도시된 발광 소자(100A)의 전기적 특성과 유사해질 수 있다. 즉, 제2-1 및 제2-2 폭(W21, W22) 각각이 25 ㎛보다 클 경우, 도 4에 도시된 발광 소자(100B)에서의 순방향 전압 변동량(ΔVf)은 도 1에 도시된 발광 소자(100A)에서 순방향 전압 변동량(ΔVf)과 유사해질 수 있다.
또한, 제조 공차를 고려할 때, 논-오믹층(190B)의 제2-1 및 제2-2 세그먼트(S21, S22) 각각의 제2-1 및 제2-2 폭(W21, W22)은 5 ㎛보다 작게 하기 어려울 수 있다. 따라서, 제2-1 및 제2-2 폭(W21, W22) 각각은 5 ㎛ 내지 25 ㎛ 바람직하게는 15 ㎛일 수 있으나, 실시 예는 이에 국한되지 않는다.
도 2 및 도 4에 도시된 전술한 발광 소자(100A, 100B)의 논-오믹층(190A, 190B)은 제1 면(SU1) 및 제2 면(SU2)을 포함할 수 있다. 제1 면(SU1)이란 제2 도전형 반도체층(126)과 접하는 면으로서 정의하고, 제2 면(SU2)이란 수직 방향으로 제2 스프레딩층(144)과 마주하는 면으로서 제1 면(SU1)의 반대측 면인 것으로 정의한다.
논-오믹층(190A, 190B)의 제2 면(SU2)으로부터 수직 방향으로 제2 스프레딩층(144)까지의 최단 거리(이하, '두께(T)'라 함)는 제2 오믹층(134A, 134B)의 구성 물질에 따라 달라지 수 있다. 여기서, 최단 거리(T)란, 논-오믹층(190A, 190B)이 수직 방향으로 제2 스프레딩층(144)와 이격된 거리를 의미하고, 논-오믹층(190A, 190B)과 제2 스프레딩층(144) 사이에 개재된 제2 오믹층(134A, 134B)의 두께를 의미할 수도 있다.
예를 들어, 제2 오믹층(134A, 134B)이 투광 전도성 물질을 포함할 경우, 논-오믹층(190A, 190B)의 제2 면(SU2)으로부터 제2 스프레딩층(144)까지의 최단 거리(T)는 1 ㎚ 내지 10 ㎚일 수 있으나, 실시 예는 이에 국한되지 않는다.
또는, 제2 오믹층(134A, 134B)이 금속 물질을 포함할 경우, 논-오믹층(190A, 190B)의 제2 면(SU2)으로부터 제2 스프레딩층(144)까지의 최단 거리(T)의 최소값은 200 ㎚일 수 있으나, 실시 예는 이에 국한되지 않는다.
도 6은 또 다른 실시 예에 의한 발광 소자(100C)의 단면도를 나타낸다.
도 1에 도시된 발광 소자(100A)와 마찬가지로, 도 6에 도시된 발광 소자(100C)는 도 3에 도시된 I-I' 선을 따라 절취한 단면도에 해당하지만, 실시 예는 이에 국한되지 않는다. 즉, 도 6에 도시된 발광 소자(100C)는 도 3에 도시된 저면도 이외에 다양한 형태의 저면도를 가질 수도 있다.
도 6에 도시된 발광 소자(100C)는 기판(110), 발광 구조물(120), 제1 및 제2 오믹층(132, 134C), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174), 서브 마운트(180) 및 논-오믹층(190C)을 포함할 수 있다.
도 6에 도시된 기판(110), 발광 구조물(120), 제1 오믹층(132), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174) 및 서브 마운트(180)는 도 4에 도시된 기판(110), 발광 구조물(120), 제1 오믹층(132), 제1 및 제2 스프레드층(142, 144), 제1 범프(152), 복수의 제2 범프(154), 제1 및 제2 금속 패드(162, 164), 제1 및 제2 절연층(172, 174) 및 서브 마운트(180)와 각각 동일하므로, 동일한 참조부호를 사용하였으며 중복되는 설명을 생략한다.
도 1 및 도 4에 도시된 발광 소자(100A, 100B)에서 제2-1 범프(154-1)와 제2-2 범프(154-2) 사이에 걸쳐 있는 논-오믹층(190A, 190B)의 개수는 한 개이다. 이와 달리, 발광 소자(100C)에서 제2-1 범프(154-1)와 제2-2 범프(154-2) 사이에 걸쳐 있는 논-오믹층(190C)의 개수는 복수일 수 있다. 예를 들어, 도 6에 도시된 발광 소자(100C)의 논-오믹층(190C)은 제1, 제2 및 제3 논-오믹층(190-1, 190-2, 190-3)을 포함할 수 있다. 이와 같이 논-오믹층(190C)의 개수가 다름을 제외하면, 도 6에 도시된 발광 소자(100C)는 도 4에 도시된 발광 소자(100B)와 동일하므로 중복되는 설명을 생략한다.
도 6의 경우 3개의 제1, 제2 및 제3 논-오믹층(190-1, 190-2, 190-3)만이 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 논-오믹층(190C)의 개수는 3개보다 많을 수도 있고, 2개일 수도 있다.
또한, 제1 및 제3 논-오믹층(190-1, 190-3)은 제2-1 및 제2-2 범프(154)와 각각 수직 방향으로 중첩됨은 도 4에 도시된 발광 소자(100B)의 논-오믹층(190B)과 동일하다.
또한, 복수의 논-오믹층(190-1, 190-2, 190-3)은 제2 오믹층(134C) 내에서 등간격으로 서로 이격되어 배치될 수 있다. 즉, 제1 논-오믹층(190-1)과 제2 논-오믹층(190-2)이 수평 방향으로 이격된 거리를 제1 거리(D1)라 하고, 제2 논-오믹층(190-2)이 제3 논-오믹층(190-3)과 수평 방향으로 이격된 거리를 제2 거리(D2)라 하자. 이때, 제1 거리(D1)와 제2 거리(D2)는 동일할 수 있다. 그러나, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 제1 및 제2 거리(D1, D2)는 서로 다를 수도 있다.
또한, 논-오믹층(190A, 190B, 190C)의 제3-1, 제3-2 및 제3-3 폭(W31, W32, W33) 각각은 최대 발열 영역(MHA)의 폭(W1) 이하일 수 있으나, 실시 예는 이에 국한되지 않는다. 또한, 도 6에 도시된 제1, 제2 및 제3 논-오믹층(190-1, 190-2, 190-3) 각각의 제3-1, 제3-2 및 제3-3 폭(W31, W32, W33)은 서로 동일할 수도 있고 서로 다를 수도 있다.
한편, 실시 예에 의하면, 논-오믹층(190A, 190B, 190C)은 공기를 포함할 수 있다. 또는, 논-오믹층(190A, 190B, 190C)은 제2 도전형 반도체층(126)과 쇼트키 접촉(schottky contact)하는 물질을 포함할 수도 있다. 또는, 논-오믹층(190A, 190B, 190C)은 플라즈마 데미지(plasma damage)에 의한 표면 결함(surface defect), 표면 전하(surface charge), 페르미 레벨(Fermi-level) 피닝(pinning) 등의 현상으로 형성될 수 있다 이 경우, 논-오믹층(190A, 190B, 190C)은 아르곤(Ar), 플루오르(F) 또는 산소(O) 원자 중 적어도 하나를 포함할 수 있다. 또는, 논-오믹층(190A, 190B, 190C)은 산화물이나 질화물과 같은 절연 물질을 포함할 수도 있다.
그러나, 실시 예는 전술한 논-오믹층(190A, 190B, 190C)의 물질에 국한되지 않는다. 즉, 논-오믹층(190A, 190B, 190C)이 논 오믹(non-ohmic) 특성을 가질 수만 있다면, 논-오믹층(190A, 190B, 190C)은 다양한 물질을 포함할 수 있다.
이하, 비교 례에 의한 발광 소자와 실시 예에 의한 발광 소자(100A, 100B, 100C)의 전기적 및 광학적 특성을 첨부된 도면을 참조하여 다음과 같이 설명한다.또한, 이하의 설명에서, 제2-1 범프(152-1) 및 제2-2 범프(152-2) 각각의 폭(WB1, WB2)은 120 ㎛인 것으로 가정하지만, 실시 예는 이에 국한되지 않으며 120 ㎛보다 작거나 큰 경우에도 아래의 설명은 변형되어 적용될 수 있음은 물론이다.
도 7a 및 도 7b는 제1 및 제2 비교 례에 의한 발광 소자(10A, 10B)의 단면도를 나타낸다. 도 7a 및 도 7b는 제1 및 제2 비교 례에 의한 발광 소자(10A, 10B)에서 도 2에 도시된 'A' 부분(또는, 도 5에 도시된 'B' 부분)에 대응하는 부분이다.
도 7a 및 도 7b에 각각 도시된 제1 및 제2 비교 례에 의한 발광 소자(10A, 10B)에서, 실시 예에 의한 발광 소자(100A, 100B)와 동일한 부분에 대해서는 동일한 참조부호를 사용하였으며, 이에 대해 중복되는 설명을 생략한다. 즉, 제2 오믹층(134D, 134E)의 구조가 다름을 제외하면, 도 7a 및 도 7b에 각각 도시된 제1 및 제2 비교 례에 의한 발광 소자(10A, 10B)는 실시 예에 의한 발광 소자(100A, 100B, 100C)와 동일하다.
도 7a에 도시된 제1 비교 례에 의한 발광 소자(10A)에서, 제2 오믹층(134D)은 실시 예서와 같은 논-오믹층(190A, 190B, 190C)을 갖지 않는다.
또한, 도 7b에 도시된 제2 비교 례에 의한 발광 소자(10B)에서 제2 오믹층(134E)은 논-오믹층(194)을 갖지만, 실시 예에 의한 발광 소자(100A, 100B, 100C)와 달리 논-오믹층(194)의 제2 면(SU2)은 제2 스프레딩층(144)과 접촉한다. 즉, 최단 거리(T)는 '0'이다. 또한, 실시 예에 의한 발광 소자(100B)의 논-오믹층(190B)과 달리, 도 7b에 도시된 제2 오믹층(134E)에서 논-오믹층(194)의 폭은 최대 발열 부위(MHA)의 폭과 동일하다.
도 8은 시간의 경과(aging time)에 따른 비교 례에 의한 발광 소자 및 실시 예에 의한 발광 소자(100A, 100B)의 순방향 전압 변동량(ΔVf)을 나타내는 그래프로서, 횡축은 시간의 경과(aging time)를 나타내고, 종축은 순방향 전압 변동량(ΔVf)을 % 단위로 나타낸다.
일반적으로 플립 칩 본딩형 발광 소자(10A, 10B, 100A, 100B, 100C)에서 발생된 열은 주로 제2 범프(154)를 통해 방출된다. 이때, 발광 소자(10A, 10B, 100A, 100B, 100C)에서 제2 범프(154)로부터 거리가 먼 부분일수록 열의 방출이 용이하지 않아 신뢰성 저하의 원인이 될 수 있다.
도 7a에 도시된 제1 비교 례에 의한 발광 소자(10A)의 경우, 제2 범프(154:154-1, 154-2)를 통해 전류가 흐름과 동시에 열이 방출되므로, 제2 오믹층(134D)에서 제2 범프(154)와 수직방향으로 중첩되지 않은 최대 발열 부위(MHA)에서 열의 방출이 용이하지 않아 열화 현상이 발생할 수 있다. 이로 인해, 도 8에 예시된 바와 같이, 제1 비교 례에 의한 발광 소자(10A)의 순방향 전압 변동량(ΔVf)(202)은 시간이 경과할수록 크게 변함을 알 수 있다. 특히, 활성층에서 심자외선 파장 대역의 광을 방출한다면, 발광 소자(10A)의 높은 구동 전압으로 인해, 제2 오믹층(134D)에서 열화가 발생되어 도 8에 도시된 바와 같이 순방향 전압 변동량(ΔVf)이 크게 변할 수 있다. 이와 같이 시간이 경과함에 따라 순방향 전압 변동량(ΔVf)이 크게 변할 경우 동작 전압이 저하되고 단락(short)성 불량이 야기될 수도 있어, 발광 소자(10A)의 수명이 단축될 수 있다.
반면에, 도 7b에 도시된 바와 같이 발광 소자(10B)가 논-오믹층(194)을 포함할 경우, 순방향 전압 변동량(ΔVf)(204)은 순방향 전압 변동(ΔVf)(202)보다 그 변화폭이 상대적으로 개선됨을 알 수 있다. 즉, 동작 전압의 초기치(VO)와 시간이 경과함에 따른 동작 전압 값(V) 간의 순방향 전압 변동량(ΔVf)이 안정적으로 될 수 있다. 이는, 최대 발열 부위(MHA)에 논-오믹층(194)를 배치하여 제1 오믹층(134E)을 수평 방향으로 복수 개로 분리함으로써, 발광 소자(10B)의 열 방출이 원할해지기 때문이다. 즉, 도 7a에 도시된 제1 비교 례의 발광 소자(10A)의 경우보다, 도 7b에 도시된 제2 비교 례에 의한 발광 소자(10B)의 경우 순방향 전압 변동(ΔVf)(204)의 량이 적어진다.
그러나, 도 7b에 도시된 바와 같이, 논-오믹층(194)이 배치되어 있다고 하더라도, 논 오믹층(194)의 제2 면(SU2)이 제2 스프레딩층(144)에 접촉할 경우, 제2 오믹층(134E)이 논-오믹층(194)에 의해 서로 수평 방향으로 단절(또는, 양분)됨으로 인해 전류가 균일하게 전달되기 어려울 수 있다.
반면에, 도 1에 도시된 바와 같이, 논-오믹층(190A)의 제2 면(SU2)이 제2 스프레딩층(144)과 수직 방향으로 이격되어 형성될 경우, 제2 스프레딩층(144)을 통해 주입된 정공이 제2 오믹층(134A)에 전기적으로 균일하게 전달될 수 있다. 또한, 제2 도전형 반도체층(126)과 제2 오믹층(134A) 사이에만 논-오믹층(190A)이 배치될 경우 전기적으로 유리할 수 있다. 따라서, 시간이 경과함에 따라 순방향 전압 변동(ΔVf)의 량(205)은 제2 비교 례에 의한 발광 소자(10B)(204)보다 일 실시 예에 의한 발광 소자(100A)가 더 적다.
또한, 도 1에 도시된 발광 소자(100A)와 달리, 도 4 또는 도 6에 도시된 바와 같이, 논-오믹층(190B, 190C)이 제2 세그먼트(S21, S22)를 더 포함할 경우, 시간이 경과함에 따라 순방향 전압 변동량(ΔVf)(206)은 일 실시 예에 의한 발광 소자(100A)(205)보다 더 적어진다. 그 이유는 다음과 같다.
비열 특성이 다른 경우에는 수직 방향으로의 열 흐름이 주도적이지만, 발광 소자에 적용되는 금속의 경우 비열의 차이가 거의 없다고 볼 수 있다. 즉, 제2 오믹층(134B, 134C)에서 발생한 열은 수직 방향으로의 흐름이 주도적이기는 하지만, 수평 방향으로의 열 퍼짐 현상이 존재한다. 이를 고려할 때, 도 4 및 도 6에 도시된 바와 같이 논-오믹층(190B, 190C)이 제2 세그먼트(S21, S22)를 더 가질 경우, 열에 의한 금속 성분의 부식이나 산화 현상이 발생하지 않아 열에 의한 오믹층(134B, 134C)의 변형을 막을 수 있기 때문이다.
결국, 도 8에 도시된 바와 같이, 순방향 전압 변동(ΔVf)의 량이 적어질수록 전류 크라우딩(current crowding) 혹은 열적 크라우딩(thermal crowdin)에 의해 야기될 수 있는 제2 도전형 반도체층(126)과 제2 오믹층(134A, 134B, 134C)에서의 저항의 증가와 같은 물성 변화가 작아진다. 이로 인해 발광 소자(100A, 100B, 100C)의 수명이 증가할 수 있다.
도 9는 제3 비교 례에 의한 발광 소자(10C)의 단면도를 나타낸다.
도 9에 도시된 제3 비교 례에 의한 발광 소자(10C)는 기판(10), 발광 구조물(20), 제1 오믹층(32), 제2-1 오믹층(34-1), 제2-2 오믹층(34-2), 제1 스프레드층(42), 제2-1 스프레드층(44-1), 제2-2 스프레드층(44-2), 제1 범프(52), 제2-1 범프(54-1), 제2-2 범프(54-2), 제1 금속 패드(62), 제2 금속 패드(64), 제1 절연층(72), 제2 절연층(74) 및 서브 마운트(80)를 포함한다. 또한, 발광 구조물(20)은 제1 도전형 반도체층(22), 활성층(24) 및 제2 도전형 반도체층(26)을 포함할 수 있다.
도 8에 도시된 기판(10), 발광 구조물(20), 제1 오믹층(32), 제1 스프레드층(42), 제1 범프(52), 제2 범프(54), 제1 금속 패드(62), 제2 금속 패드(64), 제1 절연층(72), 제2 절연층(74) 및 서브 마운트(80)는 도 1에 도시된 기판(110), 발광 구조물(120), 제1 오믹층(132), 제1 스프레드층(142), 제1 범프(152), 제2 범프(54), 제1 금속 패드(162), 제2 금속 패드(164), 제1 절연층(172), 제2 절연층(174) 및 서브 마운트(180)에 각각 해당하며 동일한 기능을 수행하므로 이들에 대한 중복되는 설명은 생략한다.
도 1에 도시된 발광 소자(100A)와 도 8에 도시된 제3 비교 례에 의한 발광 소자(10C)의 차이점은 다음과 같다.
도 1에 도시된 발광 소자(100A)의 경우, 제2 오믹층(134A)에 논-오믹층(190A)이 배치된 반면, 도 9에 도시된 제3 비교 례에 의한 발광 소자(10C)의 경우 메사 식각에 의해 형성된 리세스(R:Recess)에 의해 분할된 제2-1 오믹층(34-1) 및 제2-2 오믹층(34-2)이 존재한다. 또한, 도 1에 도시된 발광 소자(100A)의 경우 제2 스프레드층(144)은 분할되지 않은 반면, 도 8에 도시된 발광 소자(10C)의 경우 리세스(R)에 의해 분할된 제2-1 스프레드층(44-1) 및 제2-2 스프레드층(44-2)이 존재한다.
도 10a 내지 도 10c는 비교 례에 의한 발광 소자와 실시 예에 의한 발광 소자 각각의 회로 결선도를 나타낸다.
만일, 도 7a에 도시된 바와 같이, 발광 소자(10A)가 논-오믹층을 포함하지 않을 경우, 도 10a에 도시된 바와 같이 하나의 발광 다이오드(D0)로서 동작한다. 이 경우, 발광 다이오드(D0)로부터 열이 방출되는 경로와 제1 도전형 캐리어가 공급되는 경로가 모두 제2 범프(154)를 통해서이므로, 전술한 바와 같이 열화에 의해 열 방출이 악화될 수 있다.
이러한 열 방출을 해소하기 위해, 도 9에 도시된 바와 같이 병렬 구조로 발광 소자(10C)를 구현할 경우, 이 발광 소자(10C)는 도 10b에 도시된 바와 같이 병렬 연결된 2개의 발광 다이오드(D1, D2)로서 동작한다. 이 경우, 도 7a에 도시된 제1 비교 례에 의한 발광 소자(10A)보다 열 방출이 개선될 수 있으나, 저항의 구성으로 인해 동작 전압이 상승할 수 밖에 없다. 게다가, 발광 다이오드(D1, D2) 각각에 주입되는 정전류가 동일하기 위해서는 발광 구조물(20)에 존재하는 발광 다이오드(D1, D2)의 면 저항이 동일해야 한다. 그렇지 않을 경우, 2개의 발광 다이오드(D1, D2) 중에서 하나가 파괴될 경우 다른 하나의 발광 다이오드로 과전류가 주입되어 연쇄적으로 파괴될 수 있는 문제점이 있다. 이와 같이, 도 9 및 도 10b에 도시된 제3 비교 례에 의한 발광 소자(10C)의 경우, 회로의 파괴가 발생할 수 있을 뿐만 아니라 소비 전력이 증가하고 전류 주입 효율이 감소할 수 있다.
반면에, 도 1, 도 4 및 도 6에 도시된 실시 예에 의한 발광 소자(100A, 100B, 100C)의 경우 논-오믹층(190A, 190B, 190C)을 포함함으로써, 도 10c에 도시된 바와 같이 2개의 발광 다이오드(D1, D2)로서 동작함은 도 9에 도시된 발광 소자(10C)와 같다. 이때, 실시 예에 의한 발광 소자(100A, 100B, 100C)에서, 발광 구조물(120)에 존재하는 발광 다이오드(D1, D2)의 면 저항이 동일하지 않다고 하더라도, 제2 스프레드층(144)이 분리되어 있지 않으므로 캐리어의 주입은 제2 스프레드층(144)을 통해 이루어질 수 있다. 즉, 제2 스프레드층(144)은 도 10c에 도시된 별도의 발광 다이오드(D3)로서 역할을 수행할 수 있다. 따라서, 전술한 면 저항이 동일하지 않을 때 발광 다이오드(D1, D2) 중에서 상대적으로 저항이 낮은 발광 다이오드로 과전류가 주입되지 않으며, 2개의 발광 다이오드(D1, D2) 중에서 하나의 다이오드가 파괴되면 나머지 다이오드들에 과전류가 주입되어 연쇄 파괴 현상이 해소될 수 있다.
즉, 도 10c에 도시된 실시 예에 의한 발광 소자(100A, 100B, 100C)의 경우, 도 10b에 도시된 바와 같은 병렬 구조의 발광 소자(10C)에서 발생 가능한 과전류 주입 및 연쇄적인 작동 불량 현상이 방지될 수 있고, 도 10a에 도시된 바와 같은 발광 소자(10A)에서 열 방출의 어려움이 개선될 수 있다. 따라서, 실시 예에 의한 발광 소자(100A, 100B, 100C)는 도 10a에 도시된 직렬 구조와 도 10b에 도시된 병렬 구조의 복합체 구조를 가짐으로써, 열 방출이 원할히 이루어질 수 있고, 열화가 방지되어 신뢰성이 개선될 수 있다.
도 11은 일 실시 예에 의한 발광 소자 패키지(300)의 단면도를 나타낸다.
도 11을 참조하면, 발광 소자 패키지(300)는 발광 소자(100A), 패키지 몸체(310), 제1 및 제2 리드 프레임(322, 324), 제3 절연층(330), 몰딩 부재(340), 제1 및 제2 와이어(352, 354)를 포함할 수 있다.
여기서, 발광 소자(100A)는 도 1에 도시된 발광 소자(100A)에 해당하지만, 도 4 또는 도 6에 도시된 발광 소자(100B, 100C)가 도 1에 도시된 발광 소자(100A) 대신에 도 11에 도시된 바와 같은 패키지 형태로 배치될 수 있다.
도 11에 도시된 패키지 몸체(310)는 캐비티(C:Cavity)를 형성할 수 있다. 예를 들어, 도 11에 도시된 바와 같이, 패키지 몸체(310)는 제1 및 제2 리드 프레임(322, 324)과 함께 캐비티(C)를 형성할 수 있다. 즉, 캐비티(C)는 패키지 몸체(310)의 측면(312)과 제1 및 제2 리드 프레임(322, 324)의 각 상부면에 의해 정의될 수 있다. 그러나, 실시 예는 이에 국한되지 않는다. 다른 실시 예에 의하면, 도 11에 도시된 바와 달리, 패키지 몸체(310)만으로 캐비티(C)를 형성할 수도 있다. 또는, 상부면이 평평한 패키지 몸체(310) 위에 격벽(barrier wall)(미도시)이 배치되고, 격벽과 패키지 몸체(310)의 상부면에 의해 캐비티가 정의될 수도 있다. 패키지 몸체(310)는 EMC(Epoxy Molding Compound) 등으로 구현될 수 있으나, 실시 예는 패키지 몸체(310)의 재질에 국한되지 않는다. 발광 소자(100A)는 캐비티(C)의 내부에 배치될 수 있다.
제1 및 제2 리드 프레임(322, 324)은 수평 방향으로 서로 이격되어 배치될 수 있다. 제1 및 제2 리드 프레임(322, 324) 각각은 도전형 물질 예를 들면 금속으로 이루어질 수 있으며, 실시 예는 제1 및 제2 리드 프레임(322, 324) 각각의 물질의 종류에 국한되지 않는다. 제1 및 제2 리드 프레임(322, 324)을 전기적으로 분리시키기 위해, 제1 및 제2 리드 프레임(322, 324) 사이에는 제3 절연층(330)이 배치될 수도 있다.
또한, 패키지 몸체(310)가 도전형 물질 예를 들면 금속 물질로 이루어질 경우, 제1 및 제2 리드 프레임(322, 324)은 패키지 몸체(310)의 일부일 수도 있다. 이 경우에도, 제1 및 제2 리드 프레임(322, 324)을 형성하는 패키지 몸체(310)는 제3 절연층(330)에 의해 서로 전기적으로 분리될 수 있다.
또한, 제1 및 제2 도전형 반도체층(122, 126)과 제1 및 제2 범프(152, 154)를 통해 각각 연결된 제1 및 제2 금속 패드(162, 164)는 제1 및 제2 와이어(352, 354)를 통해 제1 및 제2 리드 프레임(322, 324)에 각각 전기적으로 연결될 수 있다.
몰딩 부재(340)는 예를 들어 실리콘(Si)으로 구현될 수 있으며, 형광체를 포함하므로 발광 소자(100A)에서 방출된 광의 파장을 변화시킬 수 있다. 형광체로는 발광 소자(100A)에서 발생된 빛을 백색광으로 변환시킬 수 있는 YAG계, TAG계, Silicate계, Sulfide계 또는 Nitride계 중 어느 하나의 파장변환수단인 형광물질이 포함될 수 있으나, 실시 예는 형광체의 종류에 국한되지 않는다.
YAG 및 TAG계 형광물질에는 (Y, Tb, Lu, Sc ,La, Gd, Sm)3(Al, Ga, In, Si, Fe)5(O, S)12:Ce 중에서 선택하여 사용가능하며, Silicate계 형광물질에는 (Sr, Ba, Ca, Mg)2SiO4: (Eu, F, Cl) 중에서 선택 사용 가능하다.
또한, Sulfide계 형광물질에는 (Ca,Sr)S:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu 중에서 선택하여 사용가능하며, Nitride계 형광체는 (Sr, Ca, Si, Al, O)N:Eu (예, CaAlSiN4:Eu β-SiAlON:Eu) 또는 Ca-α SiAlON:Eu계인 (Cax,My)(Si,Al)12(O,N)16, 여기서 M 은 Eu, Tb, Yb 또는 Er 중 적어도 하나의 물질이며 0.05<(x+y)<0.3, 0.02<x<0.27 and 0.03<y<0.3, 형광체 성분 중에서 선택하여 사용 할 수 있다.
적색 형광체로는, N(예,CaAlSiN3:Eu)을 포함하는 질화물(Nitride)계 형광체를 사용할 수 있다. 이러한 질화물계 적색 형광체는 황화물(Sulfide)계 형광체보다 열, 수분 등의 외부 환경에 대한 신뢰성이 우수할 뿐만 아니라 변색 위험이 작다.
실시 예에 따른 발광 소자 패키지는 복수 개가 기판 상에 어레이될 수 있고, 발광 소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광 소자 패키지, 기판, 광학 부재는 백라이트 유닛으로 기능할 수 있다.
또한, 실시 예에 따른 발광 소자 패키지는 표시 장치, 지시 장치, 조명 장치에 적용될 수 있다.
여기서, 표시 장치는 바텀 커버와, 바텀 커버 상에 배치되는 반사판과, 광을 방출하는 발광 모듈과, 반사판의 전방에 배치되며 발광 모듈에서 발산되는 빛을 전방으로 안내하는 도광판과, 도광판의 전방에 배치되는 프리즘 시트들을 포함하는 광학 시트와, 광학 시트 전방에 배치되는 디스플레이 패널과, 디스플레이 패널과 연결되고 디스플레이 패널에 화상 신호를 공급하는 화상 신호 출력 회로와, 디스플레이 패널의 전방에 배치되는 컬러 필터를 포함할 수 있다. 여기서 바텀 커버, 반사판, 발광 모듈, 도광판, 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
또한, 조명 장치는 기판과 실시 예에 따른 발광 소자 패키지를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열체, 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 예를 들어, 조명 장치는, 램프, 해드 램프, 또는 가로등을 포함할 수 있다.
해드 램프는 기판 상에 배치되는 발광 소자 패키지들을 포함하는 발광 모듈, 발광 모듈로부터 조사되는 빛을 일정 방향, 예컨대, 전방으로 반사시키는 리플렉터(reflector), 리플렉터에 의하여 반사되는 빛을 전방으로 굴절시키는 렌즈, 및 리플렉터에 의하여 반사되어 렌즈로 향하는 빛의 일부분을 차단 또는 반사하여 설계자가 원하는 배광 패턴을 이루도록 하는 쉐이드(shade)를 포함할 수 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
10A, 10B, 10C, 100A, 100B, 100C: 발광 소자
110: 기판 120: 발광 구조물
122: 제1 도전형 반도체층 124: 활성층
126: 제2 도전형 반도체층 132: 제1 오믹층
134A, 134B, 134C: 제2 오믹층 142: 제1 스프레드층
144: 제2 스프레드층 152: 제1 범프
154: 제2 범프 162: 제1 금속 패드
164: 제2 금속 패드 172: 제1 절연층
174: 제2 절연층 180: 서브 마운트
190A, 190B, 190C, 190-1, 190-2, 190-3: 논-오믹층
300: 발광 소자 패키지 310: 패키지 몸체
322: 제1 리드 프레임 324: 제2 리드 프레임
330: 제3 절연층 340: 몰딩 부재
352: 제1 와이어 354: 제2 와이어

Claims (25)

  1. 기판;
    상기 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물;
    상기 기판에 대향하여 배치된 서브 마운트;
    상기 서브 마운트 위에 서로 이격되어 배치된 제1 및 제2 금속 패드;
    상기 제1 금속 패드 위에 배치된 제1 범프;
    상기 제2 금속 패드 위에 서로 이격되어 배치된 복수의 제2 범프;
    상기 제1 도전형 반도체층과 상기 제1 범프 사이에 배치된 제1 오믹층;
    상기 제2 도전형 반도체층과 상기 복수의 제2 범프 사이에 배치된 제2 오믹층;
    상기 제1 오믹층과 상기 제1 범프 사이에 배치된 제1 스프레드층;
    상기 제2 오믹층과 상기 복수의 제2 범프 사이에 배치된 제2 스프레드층; 및
    상기 복수의 제2 범프 사이의 공간과 상기 발광 구조물의 두께 방향으로 오버랩되는 상기 제2 오믹층의 최대 발열 부위에서 상기 제2 오믹층을 상기 두께 방향과 교차하는 수평방향으로 단절시키기 않고 배치되는 논-오믹층을 포함하는 발광 소자.
  2. 제1 항에 있어서, 상기 제2 오믹층은
    상기 최대 발열 부위에 해당하는 제1 영역; 및
    상기 발광 구조물의 두께 방향과 교차하는 수평 방향으로 상기 제1 영역에 인접한 제2 영역을 포함하는 발광 소자.
  3. 제2 항에 있어서, 상기 논-오믹층은 상기 제1 영역으로부터 상기 제2 영역까지 연장되어 배치된 발광 소자.
  4. 제2 항에 있어서, 상기 논-오믹층은
    상기 최대 발열 부위인 상기 제1 영역에 배치된 제1 세그먼트를 포함하는 발광 소자.
  5. 제4 항에 있어서, 상기 논-오믹층은
    상기 제1 세그먼트로부터 상기 제2 영역까지 연장되고, 상기 발광 구조물의 두께 방향으로 상기 복수의 제2 범프와 오버랩되는 제2 세그먼트를 더 포함하는 발광 소자.
  6. 제1 항에 있어서, 상기 논-오믹층의 폭은 상기 최대 발열 부위의 폭 이상인 발광 소자.
  7. 제1 항에 있어서, 상기 논-오믹층은
    상기 제2 도전형 반도체층과 접하는 제1 면; 및
    상기 발광 구조물의 두께 방향으로 상기 제2 스프레딩층과 마주하고 상기 제1 면의 반대측인 제2 면을 포함하는 발광 소자.
  8. 제7 항에 있어서, 상기 제2 오믹층은 투광 전도성 물질을 포함하고, 상기 논-오믹층의 상기 제2 면으로부터 상기 제2 스프레딩층까지의 최단 거리는 1 ㎚ 내지 10 ㎚인 발광 소자.
  9. 제7 항에 있어서, 상기 제2 오믹층은 금속 물질을 포함하고, 상기 논-오믹층의 상기 제2 면으로부터 상기 제2 스프레딩층까지의 최단 거리는 200 ㎚ 이상인 발광 소자.
  10. 제5 항에 있어서, 상기 제1 세그먼트의 폭은 10 ㎛ 내지 90 ㎛이고, 상기 제2 세그먼트의 폭은 5 ㎛ 내지 25 ㎛인 발광 소자.
  11. 제10 항에 있어서, 상기 제2 세그먼트의 폭은 15 ㎛인 발광 소자.
  12. 제1 항에 있어서, 상기 논-오믹층은 공기를 포함하는 발광 소자.
  13. 제1 항에 있어서, 상기 논-오믹층은 상기 제2 도전형 반도체층과 쇼트키 접촉하는 물질을 포함하는 발광 소자.
  14. 제1 항에 있어서, 상기 논-오믹층은 플라즈마 데미지에 의해 형성된 발광 소자.
  15. 제14 항에 있어서, 상기 논-오믹층은 아르곤, 플로우르 또는 산소 원자 중 적어도 하나를 포함하는 발광 소자.
  16. 제1 항에 있어서, 상기 논-오믹층은 절연 물질을 포함하는 발광 소자.
  17. 제1 항에 있어서, 상기 활성층은 심자외선 파장 대역의 광을 방출하는 발광 소자.
  18. 제1 항에 있어서, 상기 논-오믹층은 상기 복수의 제2 범프 사이에 걸쳐 상기 수평 방향으로 배치된 복수의 논-오믹층을 포함하는 발광 소자.
  19. 제18 항에 있어서, 상기 복수의 논-오믹층은 등간격으로 이격되어 배치된 발광 소자.
  20. 제18 항에 있어서, 상기 복수의 논-오믹층의 상기 수평 방향의 폭은 서로 동일한 발광 소자.
  21. 서로 대향하여 배치된 기판 및 서브 마운트;
    상기 서브 마운트 위에 서로 이격되어 배치된 복수의 금속 패드;
    상기 기판과 상기 서브 마운트 사이에 배치된 발광 구조물;
    상기 발광 구조물과 상기 복수의 금속 패드 사이에 배치된 복수의 범프;
    상기 발광 구조물과 상기 복수의 범프 사이에 배치된 전극층; 및
    상기 복수의 범프 사이의 공간과 상기 발광 구조물의 두께 방향으로 중첩되는 상기 전극층의 최대 발열 부위에서 상기 전극층을 상기 두께 방향과 교차하는 방향으로 단절시키지 않고 배치된 논-오믹층을 포함하는 발광 소자.
  22. 제21 항에 있어서, 상기 전극층은
    상기 발광 구조물과 상기 복수의 범프 사이에 배치된 오믹층; 및
    상기 오믹층과 상기 복수의 범프 사이에 배치된 스프레드층을 포함하고,
    상기 논-오믹층은 상기 오믹층에 배치된 발광 소자.
  23. 제22 항에 있어서, 상기 발광 구조물은
    상기 기판 아래에 배치된 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 아래에 배치된 활성층; 및
    상기 활성층의 아래에 배치된 제2 도전형 반도체층을 포함하는 발광 소자.
  24. 제23 항에 있어서, 상기 오믹층은 제1 및 제2 오믹층을 포함하고, 상기 스프레드층은 제1 및 제2 스프레드층을 포함하고, 상기 복수의 금속 패드는 제1 및 제2 금속 패드를 포함하고,
    상기 복수의 범프는
    상기 제1 스프레드층과 상기 제1 금속 패드 사이에 배치된 제1 범프; 및
    상기 제2 스프레드층과 상기 제2 금속 패드 사이에 배치된 복수의 제2 범프를 포함하고,
    상기 논-오믹층은 상기 제2 오믹층에 위치한 상기 최대 발열 부위에 배치된 발광 소자.
  25. 제24 항에 있어서, 상기 논-오믹층은 상기 최대 발열 부위로부터 상기 복수의 제2 범프와 상기 두께 방향으로 중첩되는 영역까지 연장되어 배치된 발광 소자.
KR1020160001833A 2016-01-07 2016-01-07 발광 소자 KR102465406B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020160001833A KR102465406B1 (ko) 2016-01-07 2016-01-07 발광 소자
CN201780006154.3A CN108701739B (zh) 2016-01-07 2017-01-06 发光器件
PCT/KR2017/000179 WO2017119754A1 (ko) 2016-01-07 2017-01-06 발광 소자
JP2018535275A JP6967292B2 (ja) 2016-01-07 2017-01-06 発光素子
US16/068,557 US10541351B2 (en) 2016-01-07 2017-01-06 Light emitting diode having a current blocking layer
EP17736126.8A EP3401965B1 (en) 2016-01-07 2017-01-06 Light emitting diode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160001833A KR102465406B1 (ko) 2016-01-07 2016-01-07 발광 소자

Publications (3)

Publication Number Publication Date
KR20170082719A true KR20170082719A (ko) 2017-07-17
KR102465406B1 KR102465406B1 (ko) 2022-11-09
KR102465406B9 KR102465406B9 (ko) 2023-04-12

Family

ID=59273846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160001833A KR102465406B1 (ko) 2016-01-07 2016-01-07 발광 소자

Country Status (6)

Country Link
US (1) US10541351B2 (ko)
EP (1) EP3401965B1 (ko)
JP (1) JP6967292B2 (ko)
KR (1) KR102465406B1 (ko)
CN (1) CN108701739B (ko)
WO (1) WO2017119754A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936574B2 (ja) * 2016-12-07 2021-09-15 日機装株式会社 光半導体装置
CN113380932A (zh) * 2020-03-10 2021-09-10 隆达电子股份有限公司 覆晶式发光二极管的结构及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347728A (ja) * 2004-06-03 2005-12-15 Samsung Electro Mech Co Ltd フリップチップ用窒化物半導体発光素子
US20100072487A1 (en) * 2008-09-22 2010-03-25 Industrial Technology Research Institute Light emitting diode, package structure and manufacturing method thereof
KR20110118819A (ko) * 2009-02-24 2011-11-01 파나소닉 전공 주식회사 발광 장치
KR20120037636A (ko) * 2010-10-12 2012-04-20 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR20150146161A (ko) * 2014-06-23 2015-12-31 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6903376B2 (en) 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
TWI257714B (en) 2004-10-20 2006-07-01 Arima Optoelectronics Corp Light-emitting device using multilayer composite metal plated layer as flip-chip electrode
JP2006147630A (ja) * 2004-11-16 2006-06-08 Matsushita Electric Works Ltd 半導体装置およびその評価方法
US7989834B2 (en) * 2008-04-30 2011-08-02 Lg Innotek Co., Ltd. Light emitting device and method for manufacturing the same
DE102008039360B4 (de) * 2008-08-22 2021-05-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
JP5608340B2 (ja) * 2009-05-19 2014-10-15 パナソニック株式会社 半導体発光素子
JP5719110B2 (ja) * 2009-12-25 2015-05-13 日亜化学工業株式会社 発光素子
KR101014155B1 (ko) * 2010-03-10 2011-02-10 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
JP2012064759A (ja) * 2010-09-16 2012-03-29 Showa Denko Kk 半導体発光装置、半導体発光装置の製造方法
EP2439793B1 (en) * 2010-10-11 2016-03-16 LG Innotek Co., Ltd. Light emitting device and lighting instrument including the same
KR102114932B1 (ko) * 2013-11-12 2020-05-25 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102319734B1 (ko) * 2014-10-23 2021-11-01 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 포함하는 발광 소자 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347728A (ja) * 2004-06-03 2005-12-15 Samsung Electro Mech Co Ltd フリップチップ用窒化物半導体発光素子
US20100072487A1 (en) * 2008-09-22 2010-03-25 Industrial Technology Research Institute Light emitting diode, package structure and manufacturing method thereof
KR20110118819A (ko) * 2009-02-24 2011-11-01 파나소닉 전공 주식회사 발광 장치
KR20120037636A (ko) * 2010-10-12 2012-04-20 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR20150146161A (ko) * 2014-06-23 2015-12-31 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지

Also Published As

Publication number Publication date
EP3401965A1 (en) 2018-11-14
EP3401965B1 (en) 2024-05-01
EP3401965A4 (en) 2019-02-27
KR102465406B9 (ko) 2023-04-12
US10541351B2 (en) 2020-01-21
WO2017119754A1 (ko) 2017-07-13
US20190027647A1 (en) 2019-01-24
KR102465406B1 (ko) 2022-11-09
CN108701739B (zh) 2021-07-30
JP6967292B2 (ja) 2021-11-17
CN108701739A (zh) 2018-10-23
JP2019501533A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
KR102594189B1 (ko) 발광 소자, 이 소자를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 발광 장치
US10418523B2 (en) Light-emitting device and light-emitting device package
CN105932134B (zh) 发光器件封装和包括该发光器件封装的照明设备
KR20160115302A (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR20150142327A (ko) 발광 소자 및 발광 소자 패키지
KR102569249B1 (ko) 발광 소자 패키지
KR102464028B1 (ko) 발광 소자 패키지 및 이를 포함하는 발광 장치
KR102408617B1 (ko) 발광 소자 패키지 및 이를 포함하는 발광 장치
KR20170025035A (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR102465406B1 (ko) 발광 소자
KR102319734B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
US20160190391A1 (en) Light-emitting device
KR102445547B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102362306B1 (ko) 발광 소자
KR102087948B1 (ko) 발광 소자 패키지
KR20170096351A (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102343497B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102302321B1 (ko) 발광 소자
KR20170082872A (ko) 발광소자
KR20170023478A (ko) 자외선 발광 소자
KR20160118039A (ko) 발광 소자 및 발광 소자 패키지
KR20200086590A (ko) 발광 소자 및 발광 소자 패키지
KR20200086520A (ko) 발광 소자 및 발광 소자 패키지
KR20160035226A (ko) 발광 소자 패키지
KR20130010384A (ko) 발광소자

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
G170 Re-publication after modification of scope of protection [patent]