KR20170096351A - 발광 소자 및 이를 포함하는 발광 소자 패키지 - Google Patents

발광 소자 및 이를 포함하는 발광 소자 패키지 Download PDF

Info

Publication number
KR20170096351A
KR20170096351A KR1020160017631A KR20160017631A KR20170096351A KR 20170096351 A KR20170096351 A KR 20170096351A KR 1020160017631 A KR1020160017631 A KR 1020160017631A KR 20160017631 A KR20160017631 A KR 20160017631A KR 20170096351 A KR20170096351 A KR 20170096351A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
emitting device
capping
semiconductor layer
Prior art date
Application number
KR1020160017631A
Other languages
English (en)
Other versions
KR102455091B1 (ko
Inventor
서재원
임우식
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160017631A priority Critical patent/KR102455091B1/ko
Priority to PCT/KR2017/001229 priority patent/WO2017135763A1/ko
Priority to US16/075,490 priority patent/US10892390B2/en
Publication of KR20170096351A publication Critical patent/KR20170096351A/ko
Application granted granted Critical
Publication of KR102455091B1 publication Critical patent/KR102455091B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예의 발광 소자는 기판과, 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물과, 제2 도전형 반도체층 아래에 배치되는 반사층 및 반사층 아래에 배치된 캡핑층을 포함하고, 캡핑층은 반사층의 아래에 배치된 하부 캡핑층; 및 하부 캡핑층으로부터 반사층의 측부까지 연장되어 배치된 측부 캡핑층을 포함한다.

Description

발광 소자 및 이를 포함하는 발광 소자 패키지{Light emitting device and light emitting device package including the device}
실시 예는 발광 소자 및 이를 포함하는 발광 소자 패키지에 관한 것이다.
발광 다이오드(LED:Light Emitting Diode)는 화합물 반도체의 특성을 이용하여 전기를 적외선 또는 빛으로 변환시켜서 신호를 주고 받거나, 광원으로 사용되는 반도체 소자의 일종이다.
Ⅲ-Ⅴ족 질화물 반도체(group Ⅲ-Ⅴ nitride semiconductor)는 물리적 및 화학적 특성으로 인해 발광 다이오드(LED) 또는 레이저 다이오드(LD:Laser Diode) 등 발광소자의 핵심 소재로 각광을 받고 있다.
이러한 발광 다이오드는 백열등과 형광등 등의 기존 조명기구에 사용되는 수은(Hg)과 같은 환경 유해물질이 포함되어 있지 않아 우수한 친환경성을 가지며, 긴 수명과 저전력 소비특성 등과 같은 장점이 있기 때문에 기존의 광원들을 대체하고 있다.
플립칩 본딩 구조를 갖는 기존의 발광 소자 패키지의 경우, 활성층에서 방출된 광을 반사시키기 위해 p-GaN층 하부에 배치되는 반사층의 원자들이 마이그레이션(migration)되어 소자에 치명적인 영향을 미칠 수 있어 신뢰성의 개선이 요구된다.
실시 예는 개선된 신뢰성을 갖는 발광 소자 및 이를 포함하는 발광 소자 패키지를 제공한다.
실시 예에 의한 발광 소자는, 기판; 상기 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물; 상기 제2 도전형 반도체층 아래에 배치되는 반사층; 및 상기 반사층 아래에 배치된 캡핑층을 포함하고, 상기 캡핑층은 상기 반사층의 아래에 배치된 하부 캡핑층; 및 상기 하부 캡핑층으로부터 상기 반사층의 측부까지 연장되어 배치된 측부 캡핑층을 포함할 수 있다.
예를 들어, 상기 발광 소자는, 상기 제2 도전형 반도체층과 상기 반사층 사이에 배치된 투광 전극층을 더 포함할 수 있다.
예를 들어, 상기 측부 캡핑층은 상기 제2 도전형 반도체층 아래에 배치될 수 있다. 상기 캡핑층은 투명 전도성 산화막(TCO), 금속 또는 SiO2 중 적어도 하나를 포함할 수 있다. 상기 투명 전도성 산화막은 다층 구조를 가질 수 있다.
예를 들어, 상기 발광 소자는, 상기 발광 구조물과 상기 캡핑층을 감싸도록 배치된 절연층을 더 포함할 수 있다. 상기 캡핑층의 열 팽창 계수는 상기 반사층의 열 팽창 계수와 상기 절연층의 열 팽창 계수 사이의 값일 수 있다.
예를 들어, 상기 발광 소자는, 상기 제2 도전형 반도체층과 상기 활성층을 관통하여 상기 제1 도전형 반도체층을 노출시키는 콘텍홀에서, 상기 제1 도전형 반도체층 아래에 배치된 제1 전극을 더 포함할 수 있다. 상기 반사층은 상기 콘택홀의 가장 자리로부터 소정 거리만큼 이격되어 배치될 수 있다. 상기 소정 거리는 3 ㎛ 내지 30 ㎛일 수 있다.
다른 실시 예에 의한 발광 소자 패키지는, 상기 발광 소자; 상기 제1 도전형 반도체층과 전기적으로 연결된 제1 본딩 패드; 및 상기 제1 본딩 패드로부터 이격되어 배치되고, 상기 제2 도전형 반도체층과 전기적으로 연결된 제2 본딩 패드를 포함할 수 있다.
예를 들어, 상기 제2 본딩 패드는 상기 제2 도전형 반도체층 아래에 배치된 상기 절연층을 관통하여 상기 캡핑층과 접촉할 수 있다.
실시 예에 따른 발광 소자 및 발광 소자 패키지는 반사층을 감싸도록 캡핑층을 배치하여 반사층의 원자들이 마이그레이션됨을 방지할 수 있고, 캡핑층이 배치됨으로써 반사층과 그 주변의 층들간의 열 팽창 계수의 간격을 줄일 수 있어 박리 현상을 방지하거나 최소화시킬 수 있고 공정을 간소화시킬 수 있고, 캡핑층이 전류 스프레딩시키는 역할을 하여 전기적 특성을 개선시킬 수 있고, 캡핑층을 금속 물질 대신에 TCO로 구현하여 광을 투과시키거나 반사시킴으로써 광 추출 효율을 개선시킬 수 있다.
도 1은 일 실시 예에 의한 발광 소자의 평면도를 나타낸다.
도 2a는 일 실시 예에 의한 발광 소자 패키지의 단면도를 나타낸다.
도 2b는 다른 실시 예에 의한 발광 소자 패키지의 단면도를 나타낸다.
도 3a 및 도 3b는 도 2a 및 도 2b에 도시된 'A' 부분의 실시 예들을 확대 도시한 단면도를 나타낸다.
도 4는 도 2a 및 도 2b에 도시된 캡핑층의 다른 실시 예의 단면도를 나타낸다.
도 5는 산소의 유량율에 따른 면 저항의 변화를 보이는 그래프이다.
도 6a 내지 도 6e는 도 2a 및 도 2b에 도시된 발광 소자의 제조 방법을 설명하기 위한 실시 예에 의한 공정 단면도를 나타낸다.
도 7a 내지 도 7f는 비교 례에 의한 발광 소자 제조 방법을 설명하기 위한 공정 단면도이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시 예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명에 따른 실시 예의 설명에 있어서, 각 element의 " 상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "제1" 및 "제2," "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서 이용될 수도 있다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 일 실시 예에 의한 발광 소자(100)의 평면도를 나타내고, 도 2a는 일 실시 예에 의한 발광 소자 패키지(200)의 단면도를 나타내고, 도 2b는 다른 실시 예에 의한 발광 소자 패키지(200)의 단면도를 나타내고, 도 3a 및 도 3b는 도 2a 및 도 2b에 도시된 'A' 부분의 실시 예들을 확대 도시한 단면도를 나타낸다.
도 2a 및 도 2b에 각각 도시된 발광 소자(100)는 도 1에 도시된 발광 소자(100)를 I-I'선을 따라 절취한 단면도에 해당한다.
도 1, 도 2a 및 도 2b를 참조하면, 실시 예에 의한 발광 소자(100)는 기판(110), 발광 구조물(120), 절연층(130), 반사층(140), 캡핑층(142), 투광 전극층(144) 및 제1 전극(150)을 포함할 수 있다.
기판(110) 아래에 발광 구조물(120)이 배치될 수 있다. 기판(110)은 도전형 물질 또는 비도전형 물질을 포함할 수 있다. 예를 들어, 기판(110)은 사파이어(Al203), GaN, SiC, ZnO, GaP, InP, Ga203, GaAs 및 Si 중 적어도 하나를 포함할 수 있다. 또한, 활성층(124)에서 방출된 광이 발광 소자(100)로부터 탈출함을 도울 수 있도록 예를 들어, 기판(110)은 패턴(112)을 갖는 PSS(Patterned Sapphire Substrate)일 수 있으나, 실시 예는 이에 국한되지 않는다.
기판(110)과 발광 구조물(120) 간의 열 팽창 계수의 차이 및 격자 부정합을 개선하기 위해, 이들(110, 120) 사이에 버퍼층(또는, 전이층)(미도시)이 배치될 수 있다. 버퍼층은 예를 들어 Al, In, N 및 Ga로 구성되는 군으로부터 선택되는 적어도 하나의 물질을 포함할 수 있으나, 이에 국한되지 않는다. 또한, 버퍼층은 단층 구조 또는 다층 구조를 가질 수도 있다.
발광 구조물(120)은 기판(110) 아래에 순차적으로 배치된 제1 도전형 반도체층(122), 활성층(124) 및 제2 도전형 반도체층(126)을 포함할 수 있다.
제1 도전형 반도체층(122)은 제1 도전형 도펀트가 도핑된 Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체로 구현될 수 있다. 제1 도전형 반도체층(122)이 n형 반도체층인 경우, 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
예를 들어, 제1 도전형 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 제1 도전형 반도체층(122)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상을 포함할 수 있다.
활성층(124)은 제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이에 배치되며, 제1 도전형 반도체층(122)을 통해서 주입되는 전자(또는, 정공)와 제2 도전형 반도체층(126)을 통해서 주입되는 정공(또는, 전자)이 서로 만나서, 활성층(124)을 이루는 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다. 활성층(124)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
활성층(124)의 우물층/장벽층은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 우물층은 장벽층의 밴드갭 에너지보다 낮은 밴드갭 에너지를 갖는 물질로 형성될 수 있다.
활성층(124)의 위 또는/및 아래에는 도전형 클래드층(미도시)이 형성될 수 있다. 도전형 클래드층은 활성층(124)의 장벽층의 밴드갭 에너지보다 더 높은 밴드갭 에너지를 갖는 반도체로 형성될 수 있다. 예를 들어, 도전형 클래드층은 GaN, AlGaN, InAlGaN 또는 초격자 구조 등을 포함할 수 있다. 또한, 도전형 클래드층은 n형 또는 p형으로 도핑될 수 있다.
제2 도전형 반도체층(126)은 활성층(124) 아래에 배치되며, 반도체 화합물로 형성될 수 있다. Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체로 구현될 수 있다. 예컨대, 제2 도전형 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 제2 도전형 반도체층(126)에는 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(126)이 p형 반도체층인 경우, 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
제1 도전형 반도체층(122)은 n형 반도체층으로, 제2 도전형 반도체층(126)은 p형 반도체층으로 구현할 수 있다. 또는, 제1 도전형 반도체층(122)은 p형 반도체층으로, 제2 도전형 반도체층(126)은 n형 반도체층으로 구현할 수도 있다.
발광 구조물(120)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
도 1, 도 2a 및 도 2b에 도시된 발광 소자(100)는 플립 칩 본딩 구조이기 때문에, 활성층(124)에서 방출된 광은 기판(110) 및 제1 도전형 반도체층(122)을 통해 출사된다. 이를 위해, 기판(110) 및 제1 도전형 반도체층(122)은 투광성을 갖는 물질로 이루어지고, 제2 도전형 반도체층(126)은 투광성이나 비투광성을 갖는 물질로 이루어질 수 있다.
제1 전극(150)은 제2 도전형 반도체층(126)과 활성층(124)을 관통하는 콘택홀(CH)에서 노출된 제1 도전형 반도체층(122) 아래에 배치되어, 제1 도전형 반도체층(122)과 전기적으로 연결될 수 있다. 여기서, 콘택홀(CH)에 대해서는 도 6d에서 보다 상세히 살펴본다. 이해를 돕기 위해, 도 1에서 제1 및 제2 본딩 패드(162, 164)에 의해 덮여진 제1 전극(150)을 점선으로 도시하였고, 제2 본딩 패드(164)에 의해 덮여진 반사층(140)을 점선으로 도시하였다.
제1 전극(150)은 오믹 접촉하는 물질을 포함하여 오믹 역할을 수행하여 별도의 오믹층(미도시)이 배치될 필요가 없을 수도 있고, 별도의 오믹층이 제1 전극(150)과 제1 도전형 반도체층(122) 사이에 배치될 수도 있다.
또한, 제1 전극(150)은 활성층(124)에서 방출된 광을 흡수하지 않고 반사시키거나 투과시킬 수 있고, 제1 도전형 반도체층(122)에 양질로 성장될 수 있는 어느 물질로 형성될 수 있다. 예를 들어, 제1 전극(150)은 금속으로 형성될 수 있으며, Ag, Ni, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, Cr 및 이들의 선택적인 조합으로 이루어질 수 있다. 예를 들어, 제1 전극(150)은 Cr/Ni/Au일 수 있으나, 실시 예는 이에 국한되지 않는다.
절연층(30)은 후술되는 제1 본딩 패드(162)를 캡핑층(142)과 전기적으로 이격시키고, 제1 본딩 패드(162)를 콘택홀(CH)에서 노출된 발광 구조물(120)의 내측면 및 투광 전극층(144)의 측면과 각각 전기적으로 이격시키는 역할을 한다. 이를 위해, 절연층(130)은 발광 구조물(120)과 캡핑층(142)을 감싸도록 배치될 수 있다.
구체적으로, 절연층(130)은 캡핑층(142)에서 제2 본딩 패드(164)가 접촉할 부분을 노출시키고 제1 전극(150)을 노출시키면서 발광 구조물(120)과 캡핑층(142)을 감싸도록 배치될 수 있다. 즉, 절연층(130)은 제1 본딩 패드(162)와 캡핑층(142) 사이에도 배치되고, 메사 식각에 의해 노출된 발광 구조물(120) 및 투광 전극층(144) 각각과 제1 본딩 패드(162) 사이에도 배치될 수 있다. 또한, 절연층(130)은 제2 본딩 패드(164)와 제1 전극(150) 사이에 배치되어 이들(150, 164)을 서로 전기적으로 분리하는 역할을 수행할 수 있다.
또한, 절연층(130)은 일종의 전류 차단층(CBL:Current Blocking Layer)의 역할을 수행할 수 있다. 또한, 절연층(130)은 발광 구조물(120)을 외부의 이물질로부터 보호하는 역할을 수행할 수도 있다.
또한, 반사층(140)이 배치되지 않은 영역으로 새어 나가는 광을 반사시켜 광 추출 효율을 개선시키기 위해, 절연층(130)은 전기적 절연성과 반사성을 모두 갖는 물질로 구현될 수 있다. 예를 들어, 절연층(130)은 분산 브래그 반사층(DBR:Distributed Bragg Reflector)으로 구현될 수 있으나, 실시 예는 이에 국한되지 않는다.
예를 들어, 절연층(130)은 SiO2, TiO2, ZrO2, Si3N4, Al2O3, 또는 MgF2 중 적어도 하나를 포함할 수 있다.
도 2a 및 도 2b에 도시된 반사층(140)과 투광 전극층(144)은 일종의 제2 전극의 역할을 수행할 수 있다.
투광 전극층(144)은 제2 도전형 반도체층(126)과 반사층(140) 사이에 배치될 수 있다. 즉, 투광 전극층(144)은 제2 도전형 반도체층(126) 아래에 발광 구조물(120)의 두께 방향(예를 들어, x축 방향)으로 중첩되어 배치될 수 있다.
도 2a 및 도 2b의 경우 투광 전극층(144)은 단일층인 것으로 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 투광 전극층(144)은 다층 구조일 수도 있다.
투광 전극층(144)은 오믹층의 역할을 수행할 수 있다. 투광 전극층(144)의 두께가 두꺼우면 광 흡수가 야기될 수 있으므로 얇을수록 바람직하다. 예를 들어, 투광 전극층(144)의 두께는 수 ㎚ 내지 수백 ㎚일 수 있으나, 실시 예는 이에 국한되지 않는다.
투광 전극층(144)은 투명 전도성 산화막(TCO:Tranparent Conductive Oxide)일 수도 있다. 예를 들어, 투광 전극층(144)은 ZnO(zinc oxide), ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있으며, 이러한 재료로 한정하지는 않는다.
경우에 따라, 투광 전극층(144)은 생략될 수도 있다.
반사층(140)은 제2 도전형 반도체층(126) 아래에 배치되며, 투광 전극층(144)을 통해 제2 도전형 반도체층(126)과 전기적으로 연결될 수 있다.
반사층(140)은 알루미늄(Al), 금(Au), 은(Ag), 니켈(Ni), 백금(Pt), 로듐(Rh), 티타늄(Ti), 크롬(Cr) 혹은 Al이나 Ag이나 Pt나 Rh를 포함하는 합금을 포함하는 금속층으로 이루어질 수 있다. 예를 들어, 반사층(140)은 Ag/Ni/Ti일 수 있으나, 실시 예는 이에 국한되지 않는다.
이와 같이, 반사층(140)이 발광 구조물(120)의 아래에 배치됨으로써, 활성층(124)에서 방출된 후 기판(110)을 향해 위로 출사되지 않고 제1 및 제2 리드 프레임(182, 184)을 향해 아래로 향하는 광이 반사층(140)에서 반사되어 출사됨으로서 광 추출 효율이 향상될 수 있다.
또한, 반사층(140)은 콘택홀(CH)의 가장 자리로부터 소정 거리(d)만큼 이격되어 배치될 수 있다. 예를 들어, 소정 거리(d)가 작을 경우 반사층(140)의 구성 물질이 발광 구조물(120)의 메사 식각된 콘택 홀(CH)쪽으로 마이그레이션될 수도 있다. 예를 들어, 소정 거리(d)는 3 ㎛ 내지 30 ㎛ 예를 들어, 19㎛일 수 있으나, 실시 예는 이에 국한되지 않는다. 만일, 절연층(130)을 DBR로 구현할 경우, 반사층(140)의 면적(즉, 폭)이 작아도 광속에 큰 영향을 미치지 않을 수 있다.
한편, 반사층(140)의 구성 물질은 환원 반응 또는 열에 의해 마이그레이션(migration) 또는 확산(diffusion)될 수 있다. 예를 들어, 반사층(140)의 구성 물질이 은(Ag)일 경우, 은의 마이그레이션 또는 확산에 의해 발광 소자(100)가 전기적으로 단락될 수 있다. 이를 방지하기 위해 반사층(140)의 아래에 캡핑층(142:142A, 142B)이 배치될 수 있다.
일 실시 예에 의하면, 캡핑층(142A)은 도 3a에 도시된 바와 같이 하부 캡핑층(LP:Lower Part) 및 측부 캡핑층(SP:Side Part)을 모두 포함할 수 있다.
하부 캡핑층(LP)은 반사층(140)의 아래에 배치되고, 측부 캡핑층(SP)은 하부 캡핑층(LP)으로부터 반사층(140)의 측부까지 연장되어 배치될 수 있다. 반사층(140)의 측부를 덮는 측부 캡핑층(LP)은 제2 도전형 반도체층(126) 아래에 위치할 수 있다.
다른 실시 예에 의하면, 캡핑층(142B)은 도 3b에 도시된 바와 같이 하부 캡핑층(LP)만을 포함할 수도 있다. 이와 같이 측부 캡핑층(SP)이 생략되고 하부 캡핑층(LP)만이 배치될 경우, 반사층(140)의 구성 물질이 마이그레이션됨을 방지하거나 줄일 수 있는 확률은 도 3a에 도시된 캡핑층(142A) 대비 약할 수 있으나, 후술되는 바와 같이 반사층(140)과 그(140)의 주변에 배치된 층들 간의 열 팽창 계수의 차이를 급격한 변화를 해소하거나 해소시킬 수 있다.
캡핑층(142A, 142B)은 투명 전도성 산화막(TCO), 금속 또는 SiO2 중 적어도 하나를 포함할 수 있다.
예를 들어, 캡핑층(142A, 142B)은 W, Ti, Ni 등의 금속 물질을 포함하거나 이들의 합금으로 구현될 수 있다. 예를 들어, 캡핑층(142A, 142B)은 TiW 또는 Ni/Ti 페어(pair) 구조를 갖도록 구현될 수 있다. 또는, 캡핑층(142A, 142B)은 ZnO, ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, GZO, IrOx, RuOx, RuOx/ITO와 같은 TCO로 이루어질 수도 있으나, 실시 예는 이에 국한되지 않는다.
만일, 캡핑층(142A, 142B)이 금속 물질로 이루어질 경우, 활성층(124)에서 방출된 광이 캡핑층(142A, 142B)에서 흡수되어 캡핑층(142A, 142B)에서 반사되는 광량이 감소할 수 있다. 특히, 활성층(124)에서 방출된 광은 캡핑층(142A, 142B)의 모서리 즉, 하부 캡핑층(LP)과 측부 캡핑층(SP)이 만나는 지점에서 흡수될 수 있다.
전술한 광의 흡수를 방지하기 위해, 캡핑층(142A, 142B)은 금속 물질 대신에 TCO로 구현될 경우, 금속 물질로 구현될 때와 비교해서 캡핑층(142A, 142B)에서 광이 흡수되는 량은 감소하고 캡핑층(142A, 142B)에서 광이 반사되거나 투과되는 량이 증가하여, 광 광 추출 효율이 개선될 수 있다. 예를 들어, TCO의 경우 광 투과율은 95% 이상이므로, 캡핑층(142A, 142B)에서 투과된 광이 DBR로 구현될 수 있는 절연층(130)에서 반사됨으로써 광 추출 효율이 개선될 수 있다.
또한, 캡핑층(142A, 142B)이 SiO2와 같은 전기적 절연성을 갖는 물질로 구현될 경우, 도 2a 및 도 2b에 도시된 바와 달리 제2 본딩 패드(164)가 반사층(140)과 직접 접촉하는 대신에, 제2 본딩 패드(164)가 캡핑층(142A, 142B)을 관통하여 반사층(140)과 직접 콘택할 수 있다. 이 경우, 캡핑층(142A, 142B)을 식각하는 BOE(Buffered Oxide Echant) 식각 공정이 추가될 수 있다. 반면에, 캡핑층(142A, 142B)이 금속 물질 또는 TCO와 같은 전기적 전도성을 갖는 물질로 구현될 경우, 도 2a 및 도 2b에 도시된 바와 같이 제2 본딩 패드(164)는 캡핑층(142A, 142B)과 직접 접촉하여 반사층(140)과 전기적으로 연결될 수 있어, BOE 식각 공정을 요구하지 않으므로 공정이 간소화될 수 있다.
또한, 캡핑층(142A, 142B)을 TCO에 의해 구현할 경우, SiO2와 같은 절연 물질에 의해 캡핑층(142A, 142B)을 구현할 때보다 공정 시간이 단축될 수 있다.
또한, 반사층(140) 아래에 배치된 캡핑층(142A, 142B)의 두께(t)는 캡핑층(142A, 142B)이 금속 물질로 구현될 때보다 TCO로 구현될 때 더 얇아질 수 있다. 예를 들어, 금속 물질로 구현된 캡핑층(142A, 142B)의 두께는 TCO로 구현된 캡핑층(142A, 142B)의 두께보다 10배 이상 두꺼워질 수 있다.
캡핑층(142A, 142B)을 TCO로 구현할 경우, 캡핑층(142A, 142B)의 두께(t)가 두꺼우면 광 흡수에 영향을 미칠 수 있으므로, 두께(t)를 얇게 형성할 수 있다. 예를 들어, TCO에 의해 형성된 캡핑층(142A, 142B)의 두께(t)는 1 ㎚ 내지 50 ㎚일 수 있으나, 실시 예는 이에 국한되지 않는다.
또한, 스텝 커버리지(step-coverage)의 특성의 한계로 인해, 도 3a에 예시된 바와 같이 캡핑층(142A)에서 측부 캡핑층(SP)의 두께는 하부 캡핑층(LP)의 두께보다 더 얇게 증착될 수 있다.
도 4는 도 2a 및 도 2b에 도시된 캡핑층(142)의 다른 실시 예의 단면도를 나타낸다.
도 1, 도 2a, 도 2b, 도 3a 및 도 3b에 도시된 바와 같이, 캡핑층(142:142A, 142B)은 단일층 구조를 가질 수 있지만, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예에 의하면, 캡핑층(142:142A, 142B)은 다층 구조를 가질 수 있다. 특히, 캡핑층(142A, 142B)이 TCO로 구현될 경우, 캡핑층(142A, 142B)은 복수의 ITO층이 적층된 구조를 가질 수 있다. 예를 들어, 도 4에 도시된 바와 같이 캡핑층(142:142A, 142B)은 복수개의 제1, 제2 및 제3 ITO층(142-1, 142-2, 142-3)을 포함할 수 있다.
도 5는 산소의 유량율(flow rate)에 따른 면 저항(surface resistance)의 변화를 보이는 그래프로서, 횡축은 산소의 유량율을 나타내고 종축은 면 저항을 각각 나타낸다.
도 5는 캡핑층(142: 142A, 142B)이 반사층(140)의 아래 대신에 기판(110)에 배치될 경우, 기판(110)의 온도 변화별 ITO층의 표면 저항을 나타낸다. 여기서, RT는 실온(RT:Room Temperature)를 의미할 수 있다, 그러나, 캡핑층(142: 142A, 142B)이 기판(110) 대신에 반사층(140)에 배치될 경우에도 도 5에 도시된 그래프는 적용될 수 있다.
스퍼터링(sputtering) 방식으로 산소의 유량율을 변화시키면서 ITO를 반사층(140)에 증착시키면서 캡핑층(142: 142A, 142B)을 형성할 수 있다. 도 5를 참조하면, 산소량이 증가함에 따라 산소 베이컨시(Oxygen vacancies)가 생성되어, 각 ITO층(142-1, 142-2, 142-3)의 표면 저항이 증가함을 알 수 있다. 이와 같이, 일정한 산소량 이상이 되면 표면 저항이 증가하는 성질을 이용하여 ITO 층(142-1 내지 142-3)을 다층으로 적층하여 캡핑층(142: 142A, 142B)을 구현함으로써, 캡핑층(142)은 전류를 스프레딩시키는 역할을 수행할 수 있다.
예를 들어, 제1 ITO층(142-1)을 형성할 때의 산소의 유량율은 0 내지 2 sccm이고, 제2 ITO층(142-2)을 형성할 때의 산소의 유량율은 4 sccm이고, 제3 ITO층(142-3)을 형성할 때의 산소의 유량율은 0 내지 2 sccm일 수 있으나, 실시 예는 이러한 특정한 산소의 유량율에 국한되지 않는다.
도 3a에 도시된 바와 같이, 하부 및 측부 캡핑층(LP, SP)이 반사층(140)을 감싸도록 배치될 경우, 반사층(140)의 구성 물질 예를 들어 은(Ag)의 마이그레이션되는 현상이 방지되거나 마이그레이션을 최소화시킬 수 있다.
또는, 도 3a 또는 3b에 도시된 바와 같이, 하부 캡핑층(LP)이 반사층(140)의 아래에 배치될 경우, 반사층(140)과 그의 주변층(130, 164) 간의 열 팽창 계수의 차이가 완화되어 박리 현상이 방지되거나 최소화될 수 있다.
예를 들어, 캡핑층(142:142A, 142B)의 제1 열 팽창 계수는 반사층(140)의 제2 열 팽창 계수와 절연층(130)의 제3 열 팽창 계수 사이의 값일 수도 있다.
다음 표 1은 여러 물질의 열 팽창 계수를 나타낸다.
물질 TCE (10-6/℃)
TiO2 0.8
SiO2 0.55
ITO 8.5
Ni 13
Ag 19.5
ITO 8.5
GaN 3.17
만일, 발광 소자(100)가 캡핑층(142: 142A, 142B)을 포함하지 않는다면, 절연층(130)은 반사층(140)과 직접 접하게 된다. 이 경우, 반사층(140)이 은(Ag)으로 구현되고, 절연층(130)이 SiO2로 구현된다면, 표 1의 값으로부터 알 수 있듯이 이들(130, 140) 간의 열 팽창 계수의 차는 '18.95'이다.
반면에, 실시 예에서와 같이, 발광 소자(100)가 캡핑층(142: 142A, 142B)을 포함한다면, 즉, 캡핑층(142:142A, 142B)이 반사층(140)과 절연층(130) 사이에 배치된다면, 이들(130, 140) 간의 열 팽창 계수의 차이는 완화될 수 있다. 이 경우, 반사층(140)이 은(Ag)으로 구현되고, 절연층(130)이 SiO2로 구현되고, 캡핑층(142)이 ITO로 구현될 경우 표 1을 참조하면 반사층(140)과 캡핑층(142) 간의 열 팽창 계수의 차는 '11'이고, 캡핑층(142)과 절연층(130) 간의 열 팽창 계수의 차는 '7.95'이다. 이와 같이, 열 팽창 계수의 차는 '18.95'로부터 '11' 및 '7.95'로 완화되어, 열에 의한 반사층(140)과 절연층(130) 간의 박리 현상이 발생하지 않거나 발생할 가능성이 낮아질 수 있다.
또한, 표 1을 참조하면, 캡핑층(142:142A, 142B)이 금속 물질로 구현될 경우 캡핑층(142)과 반사층(140) 간의 열 팽창 계수의 차는 캡핑층(142:142A, 142B)이 TCO로 구현될 때보다 감소할 수 있지만, 캡핑층(142:142A, 142B)과 절연층(130) 간의 열 팽창 계수의 차가 캡핑층(142)이 ITO로 구현될 때보다 커지게 된다. 따라서, 캡핑층(142:142A, 142B)이 TCO로 구현될 때보다 금속 물질로 구현될 때, 박리 현상이 발생할 가능성이 상대적으로 더 많을 수 있다.
따라서, 반사층(140)의 열 팽창 계수와 절연층(130)의 열 팽창 계수의 중간값에 근사한 열 팽창 계수를 갖는 물질(예를 들어 TCO)로 캡핑층(142)이 구현될 수 있다.
한편, 도 2a에 도시된 발광 소자 패키지(200)는 칩 스케일 패키지(CSP:Chip Scale Package) 형태를 가지며, 발광 소자(100), 제1 및 제2 본딩 패드(162, 164), 제1 및 제2 솔더부(172, 174), 제1 및 제2 리드 프레임(182, 184) 및 절연부(186)를 포함할 수 있다. CSP 형태의 발광 소자 패키지(200)의 경우 발광 소자(100)가 제1 및 제2 리드 프레임(182, 184)에 마운팅된 형태를 갖는다.
그러나, 다른 실시 예에 의하면, 도 2b에 도시된 발광 소자 패키지(200)는 발광 소자(100), 제1 및 제2 본딩 패드(162, 164), 제1 및 제2 솔더부(172, 174), 제1 및 제2 리드 프레임(182, 184) 및 절연부(186) 뿐만 아니라, 패키지 몸체(188) 및 몰딩 부재(190)를 더 포함할 수 있다. 이와 같이, 도 2b에 도시된 발광 소자 패키지(200)는 도 2a에 도시된 발광 소자 패키지(200)와 달리 패키지 몸체(188) 및 몰딩 부재(190)를 더 포함한다. 이를 제외하면, 도 2a 및 도 2b에 도시된 발광 소자 패키지(200)는 서로 동일하다.
제1 본딩 패드(162)는 제2 도전형 반도체층(126)과 활성층(124)을 관통하여 제1 도전형 반도체층(122)을 노출시키는 콘택홀(CH)에 매립되어, 제1 전극(150)을 통해 도전형 반도체층(122)과 전기적으로 연결될 수 있다.
제2 본딩 패드(164)는 제2 도전형 반도체층(126) 아래에 배치되는 절연층(130)을 관통하여 캡핑층(142)과 직접 접촉할 수 있다. 이와 같이, 제2 본딩 패드(164)는 캡핑층(142), 반사층(140) 및 투광 전극층(144)을 통해 제2 도전형 반도체층(126)과 전기적으로 연결될 수 있다.
제1 본딩 패드(162)와 제2 본딩 패드(164)는 발광 구조물(120)의 두께 방향과 교차(예를 들어, 직교)하는 방향으로 서로 이격되어 배치될 수 있다.
제1 및 제2 본딩 패드(162, 164) 각각은 전기적 전도성을 갖는 금속 물질을 포함할 수 있으며, 제1 전극(150)의 구성 물질과 동일하거나 다른 물질을 포함할 수 있다. 제1 및 제2 본딩 패드(162, 164) 각각은 Ti, Ni, 또는 Au 중 적어도 하나를 포함할 수 있으나, 실시 예는 이에 국한되지 않는다.
제1 솔더부(172)는 제1 본딩 패드(162)와 제1 리드 프레임(182) 사이에 배치되어, 이들(162, 182)을 전기적으로 연결하는 역할을 한다. 제2 솔더부(174)는 제2 본딩 패드(164)와 제2 리드 프레임(184) 사이에 배치되어, 이들(164, 184)을 전기적으로 연결하는 역할을 한다.
제1 및 제2 솔더부(172, 174) 각각은 솔더 페이스트(solder paste) 또는 솔더 볼(solder ball)일 수 있으나, 실시 예는 이에 국한되지 않는다. 예를 들어, 제1 및 제2 솔더부(172, 174) 각각은 Ti, Ag 또는 Cu 중 적어도 하나를 포함할 수 있다. 예를 들어, 제1 및 제2 솔더부(172, 174) 각각은 SAC 계열(96.5%의 Ti, 3%의 Ag 및 0.5%의 Cu)일 수 있으나, 실시 예는 이에 국한되지 않는다.
전술한 제1 솔더부(172)는 제1 본딩 패드(162)를 통해 제1 도전형 반도체층(122)을 제1 리드 프레임(182)에 전기적으로 연결시키고, 제2 솔더부(174)는 제2 본딩 패드(164)를 통해 제2 도전형 반도체층(126)을 제2 리드 프레임(184)에 전기적으로 연결시켜, 와이어의 필요성을 없앨 수 있다. 그러나, 다른 실시 예에 의하면, 와이어를 이용하여 제1 및 제2 도전형 반도체층(122, 126)을 제1 및 제2 리드 프레임(182, 184)에 각각 연결시킬 수도 있다.
제1 리드 프레임(182)은 제1 솔더부(172)를 통해 제1 본딩 패드(162)와 전기적으로 연결되고, 제2 리드 프레임(184)은 제2 솔더부(174)를 통해 제2 본딩 패드(164)와 전기적으로 연결될 수 있다. 제1 및 제2 리드 프레임(182, 184)은 절연부(186)에 의해 서로 전기적으로 이격될 수 있다. 제1 및 제2 리드 프레임(182, 184) 각각은 도전형 물질 예를 들면 금속으로 이루어질 수 있으며, 실시 예는 제1 및 제2 리드 프레임(182, 184) 각각의 물질의 종류에 국한되지 않는다.
도 2a 및 도 2b에 도시된 발광 소자 패키지(200)는 제1 및 제2 솔더부(172, 174)를 포함하는 솔더 본딩(solder bonding) 방식에 해당한다. 그러나, 실시 예는 이에 국한되지 않는다. 즉, 다른 실시 예는 유테틱 본딩(eutetic bonding) 방식으로서, 발광 소자 패키지(200)에서 제1 솔더부(172) 및 제2 솔더부(174)는 생략될 수도 있다. 이 경우, 제1 본딩 패드(162)가 제1 솔더부(172)의 역할을 수행하고, 제2 본딩 패드(164)가 제2 솔더부(174)의 역할을 수행할 수 있다. 즉, 제1 솔더부(172)와 제2 솔더부(174)가 생략될 경우, 도 2a 및 도 2b에 도시된 제1 본딩 패드(162)는 제1 리드 프레임(182)과 직접 연결되고, 제2 본딩 패드(164)는 제2 리드 프레임(184)과 직접 연결될 수 있다. 이 경우, 제1 및 제2 본딩 패드(162, 164) 각각은 Ti, Ni, Au 또는 Sn 중 적어도 하나를 포함할 수 있다. 예를 들어, 제1 및 제2 본딩 패드(162, 164) 각각은 Ti/Ni/Au/Sn/Au일 수 있으나, 실시 예는 이에 국한되지 않는다.
절연부(186)는 제1 및 제2 리드 프레임(182, 184) 사이에 배치되어, 제1 및 제2 리드 프레임(182, 184)을 전기적으로 절연시킨다. 이를 위해, 절연부(186)는 SiO2, TiO2, ZrO2, Si3N4, Al2O3, 또는 MgF2 중 적어도 하나를 포함할 수 있지만, 실시 예는 이에 국한되지 않는다.
또한, 패키지 몸체(188)는 제1 및 제2 리드 프레임(182, 184)과 함께 캐비티(C)를 형성할 수 있으나, 실시 예는 이에 국한되지 않는다. 다른 실시 예에 의하면, 패키지 몸체(188)만으로 캐비티(C)를 형성할 수도 있다. 또는, 상부면이 평평한 패키지 몸체(188) 위에 격벽(barrier wall)(미도시)이 배치되고, 격벽과 패키지 몸체(188)의 상부면에 의해 캐비티가 정의될 수도 있다.
캐비티(C) 내에 도 2b에 도시된 바와 같이 발광 소자(100)가 배치될 수 있다.
패키지 몸체(188)는 실리콘, 합성수지, 또는 금속을 포함하여 형성될 수 있다. 만일, 패키지 몸체(188)가 도전형 물질 예를 들면 금속 물질로 이루어질 경우, 제1 및 제2 리드 프레임(182, 184)은 패키지 몸체(188)의 일부일 수도 있다. 이 경우에도, 제1 및 제2 리드 프레임(182, 184)을 형성하는 패키지 몸체(188)는 절연부(186)에 의해 서로 전기적으로 분리될 수 있다.
또한, 몰딩 부재(190)는 캐비티(C) 내에 배치된 발광 소자(100)를 포위하여 보호하도록 배치될 수 있다. 몰딩 부재(190)는 예를 들어 실리콘(Si)으로 구현될 수 있으며, 형광체를 포함하므로 발광 소자(100)에서 방출된 광의 파장을 변화시킬 수 있다. 형광체로는 발광 소자(100)에서 발생된 빛을 백색광으로 변환시킬 수 있는 YAG계, TAG계, Silicate계, Sulfide계 또는 Nitride계 중 어느 하나의 파장변환수단인 형광물질이 포함될 수 있으나, 실시 예는 형광체의 종류에 국한되지 않는다.
YAG 및 TAG계 형광물질에는 (Y, Tb, Lu, Sc ,La, Gd, Sm)3(Al, Ga, In, Si, Fe)5(O, S)12:Ce 중에서 선택하여 사용가능하며, Silicate계 형광물질에는 (Sr, Ba, Ca, Mg)2SiO4: (Eu, F, Cl) 중에서 선택 사용 가능하다.
또한, Sulfide계 형광물질에는 (Ca,Sr)S:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu 중에서 선택하여 사용가능하며, Nitride계 형광체는 (Sr, Ca, Si, Al, O)N:Eu (예, CaAlSiN4:Eu β-SiAlON:Eu) 또는 Ca-α SiAlON:Eu계인 (Cax,My)(Si,Al)12(O,N)16, 여기서 M 은 Eu, Tb, Yb 또는 Er 중 적어도 하나의 물질이며 0.05<(x+y)<0.3, 0.02<x<0.27 and 0.03<y<0.3, 형광체 성분 중에서 선택하여 사용 할 수 있다.
적색 형광체로는, N(예,CaAlSiN3:Eu)을 포함하는 질화물(Nitride)계 형광체를 사용할 수 있다. 이러한 질화물계 적색 형광체는 황화물(Sulfide)계 형광체보다 열, 수분 등의 외부 환경에 대한 신뢰성이 우수할 뿐만 아니라 변색 위험이 작다.
이하, 도 2a 및 도 2b에 도시된 발광 소자(100)의 제조 방법을 첨부된 도면을 참조하여 다음과 같이 살펴본다. 그러나, 도 2a 및 도 2b에 도시된 발광 소자(100)는 다른 제조 방법에 의해서도 제조될 수 있음은 물론이다.
도 6a 내지 도 6e는 도 2a 및 도 2b에 도시된 발광 소자(100)의 제조 방법을 설명하기 위한 실시 예에 의한 공정 단면도를 나타낸다.
도 6a를 참조하면, 기판(110) 위에 발광 구조물(120)을 형성한다. 기판(110)은 도전형 물질 또는 비도전형 물질을 포함할 수 있다. 예를 들어, 기판(110)은 사파이어(Al203), GaN, SiC, ZnO, GaP, InP, Ga203, GaAs 및 Si 중 적어도 하나를 포함할 수 있다.
기판(110) 위에 제1 도전형 반도체층(122), 활성층(124) 및 제2 도전형 반도체층(126)을 순차적으로 적층하여 발광 구조물(120)을 형성할 수 있다.
제1 도전형 반도체층(122)은 제1 도전형 도펀트가 도핑된 Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체를 이용하여 형성될 수 있다. 제1 도전형 반도체층(122)이 n형 반도체층인 경우, 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
예를 들어, 제1 도전형 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 이용하여 형성될 수 있다. 제1 도전형 반도체층(122)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상을 이용하여 형성될 수 있다.
활성층(124)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
활성층(124)의 우물층/장벽층은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 우물층은 장벽층의 밴드갭 에너지보다 낮은 밴드갭 에너지를 갖는 물질로 형성될 수 있다.
활성층(124)의 위 또는/및 아래에는 도전형 클래드층(미도시)이 형성될 수 있다. 도전형 클래드층은 활성층(124)의 장벽층의 밴드갭 에너지보다 더 높은 밴드갭 에너지를 갖는 반도체로 형성될 수 있다. 예를 들어, 도전형 클래드층은 GaN, AlGaN, InAlGaN 또는 초격자 구조 등을 포함할 수 있다. 또한, 도전형 클래드층은 n형 또는 p형으로 도핑될 수 있다.
제2 도전형 반도체층(126)은 반도체 화합물로 형성될 수 있으며, Ⅲ-Ⅴ 족 또는 Ⅱ-Ⅵ 족 등의 화합물 반도체를 이용하여 형성될 수 있다. 예컨대, 제2 도전형 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 제2 도전형 반도체층(126)에는 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(126)이 p형 반도체층인 경우, 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
계속해서, 도 6a를 참조하면, 발광 구조물(120)의 상부에 투광 전극층(144)을 형성한다. 도 6a의 경우 투광 전극층(144)은 단일층인 것으로 도시되어 있지만, 실시 예는 이에 국한되지 않는다. 즉, 투광 전극층(144)을 다층 구조로 형성할 수도 있다. 예를 들어, 수 ㎚ 내지 수백 ㎚의 두께로 투광 전극층(144)을 형성할 수 있으나, 실시 예는 이에 국한되지 않는다. 투광 전극층(144)은 투명 전도성 산화막(TCO)으로 형성될 수도 있다. 경우에 따라, 투광 전극층(144)은 생략될 수도 있다. 만일, 투광 전극층(144)이 ITO로 구현될 경우, ITO를 형성한 후 열처리를 진행할 수 있다.
이후, 도 6b를 참조하면, 투광 전극층(144) 위에 반사층(140)을 형성한다.
예를 들어, 반사층(140)을 형성하기 위한 반사 물질층을 투광 전극층(144) 위에 전면(all surface)에 형성하고, 반사층(140)이 형성될 영역을 덮고 다른 부분은 노출시키는 패턴을 갖는 제1-1 마스크(미도시)를 반사 물질층 위에 형성한다. 이후, 제1-1 마스크를 이용한 사진 식각 공정에 의해 반사 물질층을 식각한 후, 제1-1 마스크를 제거함으로써, 도 6b에 도시된 바와 같은 형태로 반사층(140)이 형성될 수 있다. 여기서, 반사 물질층은 알루미늄(Al), 금(Au), 은(Ag), 니켈(Ni), 백금(Pt), 로듐(Rh), 티타늄(Ti), 크롬(Cr) 혹은 Al이나 Ag이나 Pt나 Rh를 포함하는 합금으로 형성할 수 있다. 예를 들어, 반사 물질층은 Ag/Ni/Ti의 형태로 형성될 수 있으나, 실시 예는 이에 국한되지 않는다.
또한, 반사층(140)은 콘택홀(CH)이 형성될 콘택홀 영역(CHA)으로부터 소정 거리(d)만큼 이격되어 형성될 수 있다. 예를 들어, 소정 거리(d)는 3 ㎛ 내지 30 ㎛ 예를 들어, 19㎛일 수 있으나, 실시 예는 이에 국한되지 않는다.
이후, 도 6c에 도시된 바와 같이, 반사층(140)의 상부와 투광 전극층(144)의 상부에 캡핑층(142A)을 형성한다. 캡핑층(142A)은 투명 전도성 산화막(TCO), 금속 또는 SiO2 중 적어도 하나를 이용하여 형성할 수 있다.
예를 들어, 투광 전극층(144) 및 캡핑층(142A) 각각을 ITO를 이용하여 형성할 수 있다. 이때, 투광 전극층(144)을 형성하기 위해 도 6a에 도시된 바와 같이 ITO를 제2 도전형 반도체층(126) 위에 형성한 후 열처리를 진행하며, 이러한 열처리는 제2 도전형 반도체층(126)과 오믹 특성을 생성하기 위해 필수적이다.
반면에, 캡핑층(142A)을 형성하기 위해 도 6c에 도시된 바와 같이 ITO를 반사층(140)의 상부와 투광 전극층(144)의 상부에 형성한 후 열처리를 반드시 해야 하는 것은 아니다.
이후, 도 6d에 도시된 바와 같이, 제1 도전형 반도체층(122)을 노출시키는 콘택홀(CH)을 콘택홀 영역(CHA)에 형성할 수 있다.
예를 들어, 콘택홀 영역(CHA)을 노출시키고 다른 부분을 덮는 패턴을 갖는 제1-2 마스크(미도시)를 도 6c에 도시된 캡핑층(142A)의 상부에 형성한다. 이후, 제1-2 마스크를 이용한 사진 식각 공정에 의해 캡핑층(142A), 투광 전극층(144), 제2 도전형 반도체층(126), 활성층(124) 및 제1 도전형 반도체층(122)을 메사 식각(Mesa etching)한 후, 제1-2 마스크를 제거함으로써, 도 6d에 도시된 바와 같은 형태로 콘택홀(CH)을 형성할 수 있다.
이후, 도 6e를 참조하면, 콘택홀(CH)에서 노출된 제1 도전형 반도체층(122) 위에 제1 전극(150)을 형성한다.
예를 들어, 도 6d에 도시된 콘택홀(CH)과 캡핑층(142A) 위에 전극 형성용 물질층을 형성하고, 제1 전극(150)이 형성될 영역을 덮고 그 이외의 영역을 노출시키는 패턴을 갖는 제1-3 마스크(미도시)를 전극 형성용 물질층 위에 형성하고, 제1-3 마스크를 이용한 통상의 사진 식각 공정에 의해 전극 형성용 물질층을 식각하고, 제1-3 마스크를 제거함으로써 도 6e에 도시된 바와 같이 제1 전극(150)을 형성할 수 있다.
여기서, 전극 형성용 물질층은 금속을 포함할 수 있으며, Ag, Ni, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, Cr 및 이들의 선택적인 조합으로 이루어질 수 있다. 예를 들어, 전극 형성용 물질층은 Cr/Ni/Au일 수 있으나, 실시 예는 이에 국한되지 않는다.
이후, 도 6e에 도시된 캡핑층(142A), 콘택홀(CH) 및 제1 전극(150) 위에 절연 물질층을 형성하고, 제2 본딩 패드(164)가 캡핑층(142A)과 콘택할 영역 및 제1 전극(150)을 각각 노출시키고 나머지 부분을 덮는 패턴을 갖는 제1-4 마스크(미도시)를 절연 물질층 위에 형성하고, 제1-4 마스크를 이용한 통상의 사진 식각 공정에 의해 절연 물질층을 식각하고, 제1-4 마스크를 제거함으로써 도 2a 및 도 2b에 도시된 바와 같이 절연층(130)을 형성할 수 있다. 여기서, 절연 물질층은 SiO2, TiO2, ZrO2, Si3N4, Al2O3, 또는 MgF2 중 적어도 하나를 포함할 수 있다.
이하, 비교 례에 의한 발광 소자를 제조하는 방법을 첨부된 도 7a 내지 도 7f를 참조하여 다음과 같이 설명한다. 여기서, 중복되는 설명을 피하기 위해, 도 6a 내지 도 6e에 도시된 공정 단면도에서 보여진 부재와 동일한 부재는 동일한 참조부호를 사용한다.
도 7a 내지 도 7f는 비교 례에 의한 발광 소자 제조 방법을 설명하기 위한 공정 단면도이다.
도 7a를 참조하면, 기판(110) 위에 발광 구조물(120)을 형성한다. 이는 도 6a에 도시된 바와 같으므로, 중복되는 설명을 생략한다.
이후, 도 7b를 참조하면, 제2 도전형 반도체층(126), 활성층(124) 및 제1 도전형 반도체층(122)을 메사 식각하여 콘택홀(CH)을 형성한다.
예를 들어, 콘택홀 영역(CHA)을 노출시키고 그 이외의 영역을 덮는 제2-1 마스크(미도시)를 제2 도전형 반도체층(126) 위에 형성하고, 제2-1 마스크를 이용한 통상의 사진 식각 공정에 의해 발광 구조물(120)을 메사 식각한 후, 제2-1 마스크를 제거함으로써 도 7b에 도시된 바와 같이 콘택홀(CH)을 형성할 수 있다.
이후, 도 7c를 참조하면, 콘택홀(CH)을 포함하여 발광 구조물(120)의 위에 절연 물질층을 도포하고, 절연 물질층 위에 제2-2 마스크(미도시)를 배치하고, 제2-2 마스크를 이용한 통상의 사진 식각 공정에 의해 절연 물질층을 식각하고, 제2-2 마스크를 제거함으로써 절연층(130)을 형성할 수 있다.
이후, 도 7d를 참조하면, 절연층(130)에 의해 노출된 제2 도전형 반도체층(126)의 상부에 투광 전극층(144)을 형성한다.
예를 들어, 도 7c에 도시된 발광 구조물(120)과 절연층(130)의 상부 전면에 투광 전극층(144) 형성용 물질층을 도포하고, 투광 전극층(144) 형성용 물질층의 상부에서 투광 전극층(144)이 형성될 영역 이외의 영역을 노출시키는 패턴을 갖는 제2-3 마스크를 형성하고, 제2-3 마스크를 이용한 통상의 사진 식각 공정에 의해 투광 전극층(144) 형성용 물질층을 식각하고, 제2-3 마스크를 제거함으로써 도 7d에 도시된 바와 같이 투광 전극층(144)을 형성할 수 있다.
이후, 도 7e를 참조하면, 투광 전극층(144) 위에 반사층(140)을 형성한다.
예를 들어, 도 7d에 도시된 투광 전극층(144)과 절연층(130)과 노출된 제1 도전형 반도체층(122) 위에 반사층 형성용 물질층을 도포하고, 반사층 형성용 물질층 위에 제2-4 마스크(미도시)를 형성하고, 제2-4 마스크를 이용한 통상의 사진 식각 공정을 수행하고, 제2-4 마스크를 제거함으로써 도 7e에 도시된 바와 같은 반사층(140)이 형성될 수 있다.
이후, 도 7f를 참조하면 콘택홀(CH)에서 노출된 제1 도전형 반도체층(122) 위에 제1 전극(150)을 형성한다.
예를 들어, 도 7e에 도시된 절연층(130), 투광 전극층(144), 반사층(140), 콘택홀(CH)에 제1 전극(150) 형성용 물질층을 도포하고, 제1 전극(150) 형성용 물질층 위에 제2-5 마스크(미도시)를 형성하고, 제2-5 마스크를 이용한 통상의 사진 식각 공정에 의해 제1 전극(150) 형성용 물질층을 식각하고, 제2-5 마스크를 제거함으로써 도 7f에 도시된 바와 같은 제1 전극(150)을 형성할 수 있다.
전술한 바와 같이, 제1 전극(150)을 형성할 때까지, 비교 례에 의한 제조 방법의 경우 도 7a 내지 도 7f에 도시된 바와 같이 5개의 제2-1 내지 제2-5 마스크가 필요하다. 반면에, 도 6a 내지 도 6e에 도시된 실시 예에 의한 제조 공정의 경우 제1 전극(150)을 형성할 때까지 3개의 제1-1 내지 제1-3 마스크가 사용된다. 이와 같이, 실시 예에 의한 제조 방법의 경우 비교 례에 의한 제조 방법보다 필요한 마스크의 개수가 작기 때문에, 공정이 간소화되어 원가 절감에 기여할 수도 있다.
실시 예에 따른 발광 소자 패키지는 복수 개가 기판 상에 어레이될 수 있고, 발광 소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광 소자 패키지, 기판, 광학 부재는 백라이트 유닛으로 기능할 수 있다.
또한, 실시 예에 따른 발광 소자 패키지는 표시 장치, 지시 장치, 조명 장치에 적용될 수 있다.
여기서, 표시 장치는 바텀 커버와, 바텀 커버 상에 배치되는 반사판과, 광을 방출하는 발광 모듈과, 반사판의 전방에 배치되며 발광 모듈에서 발산되는 빛을 전방으로 안내하는 도광판과, 도광판의 전방에 배치되는 프리즘 시트들을 포함하는 광학 시트와, 광학 시트 전방에 배치되는 디스플레이 패널과, 디스플레이 패널과 연결되고 디스플레이 패널에 화상 신호를 공급하는 화상 신호 출력 회로와, 디스플레이 패널의 전방에 배치되는 컬러 필터를 포함할 수 있다. 여기서 바텀 커버, 반사판, 발광 모듈, 도광판, 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.
또한, 조명 장치는 기판과 실시 예에 따른 발광 소자 패키지를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열체, 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 예를 들어, 조명 장치는, 램프, 헤드 램프, 또는 가로등을 포함할 수 있다.
헤드 램프는 기판 상에 배치되는 발광 소자 패키지들을 포함하는 발광 모듈, 발광 모듈로부터 조사되는 빛을 일정 방향, 예컨대, 전방으로 반사시키는 리플렉터(reflector), 리플렉터에 의하여 반사되는 빛을 전방으로 굴절시키는 렌즈, 및 리플렉터에 의하여 반사되어 렌즈로 향하는 빛의 일부분을 차단 또는 반사하여 설계자가 원하는 배광 패턴을 이루도록 하는 쉐이드(shade)를 포함할 수 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
100: 발광 소자 110: 기판
120: 발광 구조물 130: 절연층
140: 반사층 142: 캡핑층
144: 투광 전극층 150: 제1 전극
162, 164: 본딩 패드 172, 174: 솔더부
182, 184: 리드 프레임 186: 절연부
188: 패키지 몸체 190: 몰딩 부재
200: 발광 소자 패키지

Claims (12)

  1. 기판;
    상기 기판 아래에 배치되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물;
    상기 제2 도전형 반도체층 아래에 배치되는 반사층; 및
    상기 반사층 아래에 배치된 캡핑층을 포함하고,
    상기 캡핑층은
    상기 반사층의 아래에 배치된 하부 캡핑층; 및
    상기 하부 캡핑층으로부터 상기 반사층의 측부까지 연장되어 배치된 측부 캡핑층을 포함하는 발광 소자.
  2. 제1 항에 있어서, 상기 제2 도전형 반도체층과 상기 반사층 사이에 배치된 투광 전극층을 더 포함하는 발광 소자.
  3. 제1 항에 있어서, 상기 측부 캡핑층은 상기 제2 도전형 반도체층 아래에 배치된 발광 소자.
  4. 제1 항에 있어서, 상기 캡핑층은 투명 전도성 산화막(TCO), 금속 또는 SiO2 중 적어도 하나를 포함하는 발광 소자.
  5. 제4 항에 있어서, 상기 투명 전도성 산화막은 다층 구조를 갖는 발광 소자.
  6. 제1 항 또는 제2 항에 있어서, 상기 발광 구조물과 상기 캡핑층을 감싸도록 배치된 절연층을 더 포함하는 발광 소자.
  7. 제6 항에 있어서, 상기 캡핑층의 열 팽창 계수는 상기 반사층의 열 팽창 계수와 상기 절연층의 열 팽창 계수 사이의 값인 발광 소자.
  8. 제1 항에 있어서, 상기 제2 도전형 반도체층과 상기 활성층을 관통하여 상기 제1 도전형 반도체층을 노출시키는 콘텍홀에서, 상기 제1 도전형 반도체층 아래에 배치된 제1 전극을 더 포함하는 발광 소자.
  9. 제8 항에 있어서, 상기 반사층은 상기 콘택홀의 가장 자리로부터 소정 거리만큼 이격되어 배치된 발광 소자.
  10. 제9 항에 있어서, 상기 소정 거리는 3 ㎛ 내지 30 ㎛인 발광 소자.
  11. 제1 항 또는 제2 항에 기재된 상기 발광 소자;
    상기 제1 도전형 반도체층과 전기적으로 연결된 제1 본딩 패드; 및
    상기 제1 본딩 패드로부터 이격되어 배치되고, 상기 제2 도전형 반도체층과 전기적으로 연결된 제2 본딩 패드를 포함하는 발광 소자 패키지.
  12. 제11 항에 있어서, 상기 제2 본딩 패드는 상기 제2 도전형 반도체층 아래에 배치된 상기 절연층을 관통하여 상기 캡핑층과 접촉하는 발광 소자 패키지.
KR1020160017631A 2016-02-05 2016-02-16 발광 소자 및 이를 포함하는 발광 소자 패키지 KR102455091B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160017631A KR102455091B1 (ko) 2016-02-16 2016-02-16 발광 소자 및 이를 포함하는 발광 소자 패키지
PCT/KR2017/001229 WO2017135763A1 (ko) 2016-02-05 2017-02-03 발광소자 및 이를 포함하는 발광소자 패키지
US16/075,490 US10892390B2 (en) 2016-02-05 2017-02-03 Light-emitting element and light-emitting element package including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160017631A KR102455091B1 (ko) 2016-02-16 2016-02-16 발광 소자 및 이를 포함하는 발광 소자 패키지

Publications (2)

Publication Number Publication Date
KR20170096351A true KR20170096351A (ko) 2017-08-24
KR102455091B1 KR102455091B1 (ko) 2022-10-14

Family

ID=59758147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160017631A KR102455091B1 (ko) 2016-02-05 2016-02-16 발광 소자 및 이를 포함하는 발광 소자 패키지

Country Status (1)

Country Link
KR (1) KR102455091B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017120505A1 (de) 2016-09-12 2018-03-15 Hyundai Motor Company System zur Verifikation einer unregistrierten Vorrichtung basierend auf Informationen eines Ethernet-Switchs und Verfahren für dasselbige
CN110416380A (zh) * 2018-04-26 2019-11-05 厦门乾照光电股份有限公司 发光二极管的倒装芯片及其制造方法和发光方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019140A (ja) * 2010-07-09 2012-01-26 Showa Denko Kk 半導体発光素子およびランプ、電子機器、機械装置
KR20150093493A (ko) * 2014-02-07 2015-08-18 엘지이노텍 주식회사 발광소자
KR20150142327A (ko) * 2014-06-11 2015-12-22 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019140A (ja) * 2010-07-09 2012-01-26 Showa Denko Kk 半導体発光素子およびランプ、電子機器、機械装置
KR20150093493A (ko) * 2014-02-07 2015-08-18 엘지이노텍 주식회사 발광소자
KR20150142327A (ko) * 2014-06-11 2015-12-22 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017120505A1 (de) 2016-09-12 2018-03-15 Hyundai Motor Company System zur Verifikation einer unregistrierten Vorrichtung basierend auf Informationen eines Ethernet-Switchs und Verfahren für dasselbige
CN110416380A (zh) * 2018-04-26 2019-11-05 厦门乾照光电股份有限公司 发光二极管的倒装芯片及其制造方法和发光方法

Also Published As

Publication number Publication date
KR102455091B1 (ko) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6712474B2 (ja) 発光素子及びこれを含む発光素子パッケージ
US10651345B2 (en) Light emitting device, light emitting device package including the device, and lighting apparatus including the package
KR101888608B1 (ko) 발광 소자 패키지 및 조명 장치
US10205058B2 (en) Light-emitting device package and light-emitting apparatus comprising same
US10892390B2 (en) Light-emitting element and light-emitting element package including the same
KR20160115301A (ko) 발광 소자 패키지
KR101669122B1 (ko) 발광 소자 패키지
KR101646666B1 (ko) 발광 소자, 이 소자를 포함하는 발광 소자 패키지, 및 이 패키지를 포함하는 조명 장치
US10535804B2 (en) Light-emitting device package
KR102464028B1 (ko) 발광 소자 패키지 및 이를 포함하는 발광 장치
KR102408617B1 (ko) 발광 소자 패키지 및 이를 포함하는 발광 장치
KR20160115868A (ko) 발광 소자, 이 소자를 포함하는 발광 소자 패키지, 및 이 패키지를 포함하는 조명 장치
KR102455091B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102445547B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR102343497B1 (ko) 발광 소자 및 이를 포함하는 발광 소자 패키지
KR101977281B1 (ko) 발광 소자 패키지 및 조명 장치
KR101941034B1 (ko) 발광 소자 패키지 및 조명 장치
KR20160124064A (ko) 발광 소자 패키지
KR20160118039A (ko) 발광 소자 및 발광 소자 패키지
KR20160079275A (ko) 발광 소자 및 발광 소자 패키지
KR20160115308A (ko) 발광 소자
KR20160036293A (ko) 발광 소자 패키지
KR20160035226A (ko) 발광 소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant