KR20170056823A - 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 - Google Patents
반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 Download PDFInfo
- Publication number
- KR20170056823A KR20170056823A KR1020150160106A KR20150160106A KR20170056823A KR 20170056823 A KR20170056823 A KR 20170056823A KR 1020150160106 A KR1020150160106 A KR 1020150160106A KR 20150160106 A KR20150160106 A KR 20150160106A KR 20170056823 A KR20170056823 A KR 20170056823A
- Authority
- KR
- South Korea
- Prior art keywords
- error
- pages
- control circuit
- page
- memory device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
- G06F11/1068—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices in sector programmable memories, e.g. flash disk
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
- G11C29/42—Response verification devices using error correcting codes [ECC] or parity check
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0619—Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
- G06F3/064—Management of blocks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0673—Single storage device
- G06F3/0679—Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/52—Protection of memory contents; Detection of errors in memory contents
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/78—Masking faults in memories by using spares or by reconfiguring using programmable devices
- G11C29/783—Masking faults in memories by using spares or by reconfiguring using programmable devices with refresh of replacement cells, e.g. in DRAMs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/78—Masking faults in memories by using spares or by reconfiguring using programmable devices
- G11C29/785—Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes
- G11C29/789—Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes using non-volatile cells or latches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0409—Online test
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0411—Online error correction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Computer Security & Cryptography (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Abstract
반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 회로, 에러 로그 레지스터 및 제어 회로를 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 제어 회로는 외부의 메모리 컨트롤러로부터의 제1 커맨드와 적어도 하나의 제1 액세스 어드레스 응답하여 제p차 (p는 1 이상의 자연수) 에러 체크 및 스크럽(error check and scrub; 이하 'ECS') 모드에서 상기 적어도 하나의 액세스 어드레스가 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 상기 에러 정정 회로를 제어한다. 상기 제어 회로는 상기 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 상기 에러 로그 레지스터의 각 로우에 기록하는 에러 로깅 동작을 수행한다.
Description
본 발명은 메모리 분야에 관한 것으로, 보다 상세하게는 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법에 관한 것이다.
반도체 메모리 장치는 플래시 메모리 장치와 같은 불휘발성 메모리 장치와 DRAM과 같은 휘발성 메모리 장치로 구분될 수 있다. DRAM과 같은 휘발성 메모리 장치는 가격이 비교적 저렴하기 때문에 시스템 메모리와 같은 대용량 데이터를 저장하는데 사용되고 있다. 또한 DRAM과 같은 휘발성 반도체 메모리 장치에서는 집적도를 높이기 위하여 공정 스케일을 축소시키고 있다. 공정 스케일의 축소에 따라 비트 에러 비율(bit error rate)을 급격하게 증가하고 수율이 낮아질 것으로 예상된다.
본 발명의 일 목적은 에러를 효율적으로 관리할 수 있는 반도체 메모리 장치를 제공하는 것이다.
본 발명의 일 목적은 상기 반도체 메모리 장치를 포함하여 에러를 효율적으로 관리할 수 있는 메모리 시스템을 제공하는 것이다.
본 발명의 일 목적은 에러를 효율적으로 관리할 수 있는 메모리 시스템의 동작 방법을 제공하는 것이다.
상기 일 목적을 달성하기 위한 본 발명의 일 실시예에 따른 반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 회로, 에러 로그 레지스터 및 제어 회로를 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 제어 회로는 외부의 메모리 컨트롤러로부터의 제1 커맨드와 적어도 하나의 제1 액세스 어드레스 응답하여 제p차 (p는 1 이상의 자연수) 에러 체크 및 스크럽(error check and scrub; 이하 'ECS') 모드에서 상기 적어도 하나의 액세스 어드레스가 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 상기 에러 정정 회로를 제어한다. 상기 제어 회로는 상기 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 상기 에러 로그 레지스터의 각 로우에 기록하는 에러 로깅 동작을 수행한다.
실시예에 있어서, 기 제어 회로는 상기 제p차 ECS 모드에서 상기 일부 페이지들 중 제1 페이지를 구성하는 복수의 서브 페이지들 각각으로부터 메인 데이터와 패리티 데이터를 구비하는 제1 유닛의 데이터를 독출하여 상기 ECC 디코딩을 순차적으로 수행하도록 상기 에러 정정 회로를 제어할 수 있다. 상기 에러 정정 회로는 상기 제1 유닛의 데이터에 대하여 상기 ECC 디코딩을 수행한 후 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 에러 발생 신호를 상기 제어 회로에 제공할 수 있다.
상기 제어 회로는 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 상기 에러를 정정하고, 상기 정정된 제1 유닛의 데이터를 상기 해당하는 서브 페이지에 재기입하는 스크러빙 동작을 수행하도록 상기 에러 정정 회로를 제어할 수 있다.
상기 제어 회로는 상기 에러 발생 신호를 카운팅하여 상기 제1 페이지에 대한 에러 발생 횟수를 적어도 포함하는 제1 페이지 에러 정보를 상기 에러 로그 레지스터에 기록할 수 있다.
상기 제어 회로는 상기 제p차 ECS 모드에서 상기 제1 페이지에 대한 상기 에러 로깅 동작이 완료되면, 상기 일부 페이지들 중 제2 페이지에 대하여 상기 ECC 동작을 수행하도록 상기 에러 정정 회로를 제어할 수 있다. 상기 제어 회로는 상기 제2 페이지에 대한 에러 발생 횟수를 적어도 포함하는 제2 페이지 에러 정보를 상기 에러 로그 레지스터에 기록할 수 있다.
실시예에 있어서, 상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 얼러트 신호를 이용하여 상기 메모리 컨트롤러에 상기 제1 상황을 즉시 통지할 수 있다. 상기 메모리 컨트롤러는 상기 얼러트 신호에 응답하여 스크러빙 커맨드를 상기 반도체 메모리 장치에 인가할 수 있다. 상기 제어 회로는 상기 하나의 페이지에 대하여 스크러빙 동작이 수행되도록 상기 에러 정정 회로를 제어할 수 있다.
상기 제어 회로는 상기 제1 상황이 발생한 경우, 상기 얼러트 신호를 미리 정해진 인터벌 동안 하이 레벨로 유지시킬 수 있다.
상기 제어 회로는 상기 얼러트 신호를 전용 핀을 통하여 상기 메모리 컨트롤러에 전달할 수 있다.
상기 제어 회로는 상기 스크러빙 커맨드에 응답하여 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작을 연속적으로 수행하도록 상기 에러 정정 회로를 제어할 수 있다.
실시예에 있어서, 상기 에러 로그 레지스터는 제1 내지 제5 칼럼들을 포함할 수 있다. 상기 제1 칼럼에는 상기 일부 페이지들 각각의 어드레스 정보가 기록될 수 있다. 상기 제2 칼럼에는 상기 일부 페이지들 각각의 에러 발생 횟수가 기록될 수 있다. 상기 제3 칼럼에는 상기 일부 페이지들 각각에서 상기 에러를 포함하는 서브 페이지들의 수가 기록될 수 있다. 상기 제4 칼럼에는 상기 일부 페이지들 각각의 에러 정보가 상기 p차 ECS 모드에서 최초로 기록되는지 여부를 나타내는 플래그 신호가 기록될 수 있다. 상기 제5 칼럼에는 상기 일부 페이지들 각각의 에러 발생 횟수에 기초하여 상기 에러 발생 횟수의 순위를 나타내는 랭킹 정보가 기록될 수 있다.
상기 어드레스 정보는 상기 일부 페이지들 각각의 뱅크 그룹 어드레스, 뱅크 어드레스 및 로우 어드레스를 포함할 수 있다.
상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 정보가 상기 p차 ECS 모드에서 상기 에러 로그 레지스터에 처음으로 기록되는 경우 상기 제4 칼럼에 기록되는 상기 플래그 신호의 레벨을 제1 레벨로 기록할 수 있다.
상기 제1 커맨드와 상기 제1 액세스 어드레스에 기초하는 상기 제p차 ECS 모드에서 상기 에러 로깅 동작이 완료된 후, 상기 제어 회로는 상기 메모리 컨트롤러로부터의 제2 커맨드와 적어도 하나의 제2 액세스 어드레스에 응답하여 제(p+1)차 ECS 모드에서 상기 제2 액세스 어드레스가 지정하는 다른 일부 페이지들에 대하여 상기 ECC 디코딩 동작을 수행하도록 상기 에러 정정 회로를 제어하여 상기 에러 로깅 동작을 수행할 수 있다. 상기 에러 로그 레지스터는 상기 제p차 ECS 모드와 상기 제(p+1)차 ECS 모드에서 지정되는 동일한 페이지의 에러 발생 횟수의 변화가 기록되는 제6 칼럼을 더 포함할 수 있다.
실시예에 있어서, 상기 제어 회로는 상기 메모리 컨트롤러로부터의 레지스터 독출 커맨드에 응답하여 상기 에러 로그 레지스터에 기록되는 상기 일부 페이지들의 상기 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 제공할 수 있다.
상기 제어 회로는 상기 에러 정보 신호를 데이터 입출력 핀을 통하여 상기 메모리 컨트롤러에 제공할 수 있다.
실시예에 있어서, 상기 메모리 셀 어레이는 3차원 메모리 셀 어레이이고, 상기 뱅크 어레이들 각각은 동적 메모리 셀들 또는 저항성 메모리 셀들을 구비할 수 있다.
상기 일 목적을 달성하기 위한 본 발명의 일 실시예에 따른 메모리 시스템은 적어도 하나의 반도체 메모리 장치 및 메모리 컨트롤러를 포함한다. 상기 메모리 컨트롤러는 상기 적어도 하나의 반도체 메모리 장치를 제어한다. 상기 적어도 하나의 반도체 메모리 장치는 메모리 셀 어레이, 에러 정정 회로, 에러 로그 레지스터 및 제어 회로를 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 메모리 셀 어레이는 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함한다. 상기 제어 회로는 상기 메모리 컨트롤러로부터의 제1 커맨드와 적어도 하나의 제1 액세스 어드레스 응답하여 제p차 (p는 1 이상의 자연수) 에러 체크 및 스크럽(error check and scrub; 이하 'ECS') 모드에서 상기 적어도 하나의 액세스 어드레스가 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 상기 에러 정정 회로를 제어한다. 상기 제어 회로는 상기 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 상기 에러 로그 레지스터의 각 로우에 기록하는 에러 로깅 동작을 수행한다.
실시예에 있어서, 상기 에러 로그 레지스터는 제1 내지 제5 칼럼들을 포함할 수 있다. 상기 제1 칼럼에는 상기 일부 페이지들 각각의 어드레스 정보가 기록될 수 있다. 상기 제2 칼럼에는 상기 일부 페이지들 각각의 에러 발생 횟수가 기록될 수 있다. 상기 제3 칼럼에는 상기 일부 페이지들 각각에서 상기 에러를 포함하는 서브 페이지들의 수가 기록될 수 있다. 상기 제4 칼럼에는 상기 일부 페이지들 각각의 에러 정보가 상기 p차 ECS 모드에서 최초로 기록되는지 여부를 나타내는 플래그 신호가 기록될 수 있다. 상기 제5 칼럼에는 상기 일부 페이지들 각각의 에러 발생 횟수에 기초하여 상기 에러 발생 횟수의 순위를 나타내는 랭킹 정보가 기록될 수 있다.
실시예에 있어서, 상기 제어 회로는 상기 메모리 컨트롤러로부터의 레지스터 독출 명령에 응답하여 상기 에러 로그 레지스터에 기록되는 상기 일부 페이지들의 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 제공할 수 있다. 상기 메모리 컨트롤러는 레지스터 및 제어 로직을 포함할 수 있다. 상기 레지스터는 상기 에러 정보 신호를 저장할 수 있다. 상기 제어 로직은 상기 레지스터에 저장된 에러 정보 신호에 기초하여 상기 반도체 메모리 장치의 동작의 에러 관리 정책을 결정할 수 있다. 상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 얼러트 신호를 이용하여 상기 메모리 컨트롤러의 상기 제어 로직에 상기 제1 상황을 즉시 통지할 수 있다.
상기 본 발명의 일 목적을 달성하기 위한 본 발명의 실시예들에 따른 반도체 메모리 장치와 상기 반도체 메모리 장치를 제어하는 메모리 컨트롤러를 구비하는 메모리 시스템의 동작 방법에서는, 상기 메모리 컨트롤러에서 커맨드와 액세스 어드레스를 생성하는 단계;
상기 반도체 메모리 장치에서 상기 커맨드에 응답하여 에러 체크 및 스크럽(error check and scrub, 이하 'ECS) 모드에서, 상기 액세스 어드레스가 지정하는 메모리 셀 어레이의 일부 페이지들에 대하여 에러 정정 코드(error correction code; 이하 ECC) 디코딩을 수행하여 에러 발생 신호를 생성하고, 상기 반도체 메모리 장치에서 상기 에러 발생 신호에 기초하여 상기 일부 페이지들 각각의 페이지 에러 정보를 상기 반도체 메모리 장치의 에러 로그 레지스터에 기록하고, 상기 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 전송한다.
실시예에 있어서, 상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 상기 반도체 메모리 장치에서 얼러트 신호를 일정 인터벌 동안 하이 레벨로 유지하고, 상기 얼러트 신호에 응답하여 상기 메모리 컨트롤러에서 스크러빙 커맨드를 상기 반도체 메모리 장치에 인가할 수 있다. 상기 반도체 메모리 장치는 상기 스크러빙 커맨드에 응답하여 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작을 연속적으로 수행할 수 있다.
본 발명의 예시적인 실시예들에 따르면, ECS 모드에서 에러 발생 확률이 높은 일부 페이지들 각각에 대하여 ECC 디코딩을 수행하여 에러의 개수를 카운팅하고, 상기 카운팅된 에러를 각 페이지별로 에러 로그 레지스터에 기록하고, 상기 에러 로그 레지스터를 액세스하여 반도체 메모리 장치의 에러를 효율적으로 관리할 수 있다.
도 1은 본 발명의 실시예들에 따른 전자 시스템을 나타내는 블록도이다.
도 2는 본 발명의 실시예들에 따른 도 1의 메모리 시스템의 개략적인 구성을 나타내는 블록도이다.
도 3은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치의 구성을 나타내는 블록도이다.
도 4a 내지 도 4e는 도 3에 도시된 메모리 셀을 예시적으로 나타내는 회로도들이다.
도 5는 본 발명의 실시예들에 따른 도 3의 반도체 메모리 장치에서 메모리 셀의 예를 나타낸다.
도 6a 및 도 6b는 도 5의 MTJ 소자의 기입된 데이터에 따른 자화 방향을 나타낸다.
도 7은 도 2의 메모리 시스템에서 메모리 컨트롤러의 구성을 나타내는 블록도이다.
도 8은 노멀 모드에서 도 3의 반도체 메모리 장치의 일부를 나타낸다.
도 9는 도 3의 반도체 메모리 장치의 하나의 뱅크 어레이와 에러 정정 회로를 나타낸다.
도 10은 ECS 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 11은 도 3의 반도체 메모리 장치에서 에러 로그 레지스터를 나타낸다.
도 12는 ECS 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 13은 노멀 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 14는 ECS 모드에서 도 7의 반도체 메모리 장치에서 스크러빙 동작이 수행되는 것을 나타낸다.
도 15는 도 13의 에러 정정 회로에서 ECC 인코더를 나타낸다.
도 16은 도 12 및 도 13의 에러 정정 회로에서 ECC 디코더를 나타낸다.
도 17은 본 발명의 실시예들에 따른 반도체 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 18은 도 17의 반도체 메모리 장치의 동작 방법에서 ECS 동작을 구체적으로 나타내는 흐름도이다.
도 19는 본 발명의 실시예들에 따른 반도체 메모리 장치를 나타내는 구조도이다.
도 20은 ECS 모드에서 도 2의 메모리 시스템을 나타낸다.
도 21은 도 20의 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 22는 본 발명의 실시예에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 23은 본 발명의 실시예들에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 24는 본 발명의 실시예들에 따른 반도체 메모리 장치를 컴퓨팅 시스템에 응용한 예를 나타내는 블록도이다.
도 2는 본 발명의 실시예들에 따른 도 1의 메모리 시스템의 개략적인 구성을 나타내는 블록도이다.
도 3은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치의 구성을 나타내는 블록도이다.
도 4a 내지 도 4e는 도 3에 도시된 메모리 셀을 예시적으로 나타내는 회로도들이다.
도 5는 본 발명의 실시예들에 따른 도 3의 반도체 메모리 장치에서 메모리 셀의 예를 나타낸다.
도 6a 및 도 6b는 도 5의 MTJ 소자의 기입된 데이터에 따른 자화 방향을 나타낸다.
도 7은 도 2의 메모리 시스템에서 메모리 컨트롤러의 구성을 나타내는 블록도이다.
도 8은 노멀 모드에서 도 3의 반도체 메모리 장치의 일부를 나타낸다.
도 9는 도 3의 반도체 메모리 장치의 하나의 뱅크 어레이와 에러 정정 회로를 나타낸다.
도 10은 ECS 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 11은 도 3의 반도체 메모리 장치에서 에러 로그 레지스터를 나타낸다.
도 12는 ECS 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 13은 노멀 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 14는 ECS 모드에서 도 7의 반도체 메모리 장치에서 스크러빙 동작이 수행되는 것을 나타낸다.
도 15는 도 13의 에러 정정 회로에서 ECC 인코더를 나타낸다.
도 16은 도 12 및 도 13의 에러 정정 회로에서 ECC 디코더를 나타낸다.
도 17은 본 발명의 실시예들에 따른 반도체 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 18은 도 17의 반도체 메모리 장치의 동작 방법에서 ECS 동작을 구체적으로 나타내는 흐름도이다.
도 19는 본 발명의 실시예들에 따른 반도체 메모리 장치를 나타내는 구조도이다.
도 20은 ECS 모드에서 도 2의 메모리 시스템을 나타낸다.
도 21은 도 20의 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 22는 본 발명의 실시예에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 23은 본 발명의 실시예들에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 24는 본 발명의 실시예들에 따른 반도체 메모리 장치를 컴퓨팅 시스템에 응용한 예를 나타내는 블록도이다.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 실시예들에 따른 전자 시스템을 나타내는 블록도이다.
도 1을 참조하면, 전자 시스템(또는, 전자 장치, 10)은 호스트(15) 및 메모리 시스템(20)을 포함할 수 있다. 메모리 시스템(20)은 메모리 컨트롤러(100) 및 복수의 반도체 메모리 장치들(200a~200n)을 포함할 수 있다.
호스트(15)는 PCI-E(Peripheral Component Interconnect - Express), ATA(Advanced Technology Attachment), SATA(Serial ATA), PATA(Parallel ATA), 또는 SAS(serial attached SCSI)와 같은 인터페이스 프로토콜을 사용하여 메모리 시스템(20)과 통신할 수 있다. 또한 호스트(15)와 메모리 시스템(20)간의 인터페이스 프로토콜들은 상술한 예에 한정되지 않으며, USB(Universal Serial Bus), MMC(Multi-Media Card), ESDI(Enhanced Small Disk Interface), 또는 IDE(Integrated Drive Electronics) 등과 같은 다른 인터페이스 프로토콜들 중 하나일 수 있다.
메모리 컨트롤러(Memory Controller; 100)는 메모리 시스템(Memory System; 20)의 동작을 전반적으로 제어하며, 호스트(15)와 메모리 장치들(200a~200n) 사이의 전반적인 데이터 교환을 제어한다. 예컨대, 메모리 컨트롤러(100)는 호스트(15)의 요청에 따라 반도체 메모리 장치들(200a~200n)을 제어하여 데이터를 기입하거나(write) 데이터를 독출한다(read).
또한, 메모리 컨트롤러(100)는 반도체 메모리 장치들(200a~200n)을 제어하기 위한 동작 커맨드(command)들을 인가하여, 반도체 메모리 장치들(200a~200n)의 동작을 제어한다.
실시예에 따라, 반도체 메모리 장치들(200a~200n) 각각은 저항성 메모리 셀들을 구비하는 PRAM(Phase change Random Access Memory), RRAM(Resistive Random Access Memory), MRAM(Magnetic Random Access Memory) 및 FRAM(Ferroelectric Random Access Memory) 중 하나일 일 수 있다. 다른 실시예에서, 반도체 메모리 장치들(200a~200n) 각각은 동적 메모리 셀들을 구비하는 DRAM(dynamic random access memory) 일 수 있다.
MRAM은 자기저항(magnetoresistance) 기반의 비휘발성 컴퓨터 메모리 기술이다. MRAM은 여러 가지 면에서 휘발성 RAM과 다르다. MRAM은 비휘발성이기 때문에, 메모리 장치 전원이 오프되어도 MRAM은 메모리 내용을 유지할 수 있다.
일반적으로 비휘발성 RAM이 휘발성 RAM 보다 느리다고 하지만, MRAM은 휘발성 RAM의 독출 및 기입 응답 시간들에 견줄만한 독출 및 기입 응답 시간을 갖는다. 전하로서 데이터를 저장하는 전형적인 RAM 기술과는 달리, MRAM 데이터는 자기저항 요소들에 의해 데이터를 저장한다. 일반적으로, 자기저항 요소들은 2개 자성층들로 이루어지고, 각 자성층은 자화(magnetization)를 가진다.
MRAM은 두 개의 자성층과 그 사이에 개재된 절연막을 포함하는 자기 터널 접합 패턴(magnetic tunnel junction pattern)을 사용하여 데이터를 읽고 쓰는 불휘발성 메모리 장치이다. 자성층의 자화 방향에 따라 자기 터널 접합 패턴의 저항값이 달라질 수 있는데, 이러한 저항값의 차이를 이용하여 데이터를 프로그래밍 또는 제거할 수 있다.
스핀 전달 토크(spin transfer torque: STT) 현상을 이용한 MRAM은 한쪽 방향으로 스핀(spin)이 분극화(polarized)된 전류를 흘려줄 때, 전자의 스핀 전달에 의해 자성층의 자화 방향이 달라지는 방식을 이용한다. 하나의 자성층(고정 층, pinned layer)의 자화 방향이 고정되고, 다른 하나의 자성층(자유 층, free layer)은 프로그램 전류에 의해 발생되는 자기장에 의해 자화 방향이 변할 수 있다.
프로그램 전류의 자기장은 두 자성층의 자화 방향을 평행(parallel) 하거나 반-평행(anti-parallel) 하게 배열할 수 있다. 자화 방향이 평행하면, 두 자성층들 사이의 저항이 낮은 로우("0") 상태를 나타낸다. 자화 방향이 반-평행하면, 두 자성층들 사이의 저항이 높은 하이("1") 상태를 나타낸다. 자유 층의 자화 방향 스위칭과 그 결과 자성층들 사이의 하이 또는 로우 저항 상태는 MRAM의 기입 및 독출 동작을 제공한다.
MRAM 기술이 비휘발성과 빠른 응답 시간을 제공하지만, MRAM 셀은 스케일링 한계에 부딪히고 기입 디스터번스(disturbance)에 민감하다. MRAM에서 자성층들 사이의 하이와 로우 저항 상태를 스위칭하기 위하여 인가되는 프로그램 전류는 전형적으로 높다(high). 이에 따라, MRAM 어레이 내 다수개의 셀들이 배열될 때, 하나의 메모리 셀로 인가되는 프로그램 전류는 인접한 셀의 자유 층의 필드 변화를 유발한다. 이러한 기입 디스터번스 문제는 STT 현상을 이용하여 해결할 수 있다. 전형적인 STT-MRAM(Spin Transfer Torque Magnetoresistive Random Access Memory)은 자기 터널 접합(magnetic tunnel junction, MTJ) 소자를 포함할 수 있다. MTJ 소자는 2개의 자성층들(고정 층, 자유 층)과 자성층들 사이의 절연층을 포함하는 자기 저항 데이터 저장 소자이다.
프로그램 전류는 전형적으로 MTJ 소자를 통해 흐른다. 고정 층은 프로그램 전류의 전자 스핀을 분극화하고, 스핀-분극된 전자 전류가 MTJ를 통과함에 따라 토크가 생성된다. 스핀-분극된 전자 전류는 자유 층에 토크를 가하면서 자유 층과 상호 작용한다. MTJ 소자를 통과하는 스핀-분극화된 전자 전류의 토크가 임계 스위칭 전류 밀도보다 크면, 스핀-분극된 전자 전류에 의해 가해지는 토크는 자유 층의 자화 방향을 스위치하기에 충분하다. 이에 따라, 자유 층의 자화 방향은 고정층에 대하여 평행 또는 반-평행으로 배열할 수 있고, MTJ 사이의 저항 상태가 변화된다.
STT-MRAM은, 스핀-분극된 전자 전류가 자기 저항 소자 내 자유 층을 스위치하기 위한 외부 자기장의 필요를 없애주는 특징을 갖는다. 게다가, 셀 사이즈 감소와 함께 프로그램 전류 감소에 따라 스케일링이 향상되고, 기입 디스터번스 문제를 해결한다. 추가적으로, STT-MRAM은 높은 터널 자기 저항 비가 가능하고, 하이와 로우 저항 상태들 사이의 높은 비를 허용하여, 자기 도메인(magnetic domain) 내 독출 동작을 향상시킨다.
MRAM은 DRAM (Dynamic Random Access Memory)의 저비용, 고용량 특성과 SRAM (Static Random Access Memory)의 고속 동작 특성, 그리고 플래쉬 메모리(Fresh Memory)의 불휘발성 특성을 모두 갖는 메모리 장치이다.
도 2는 본 발명의 실시예들에 따른 도 1의 메모리 시스템의 개략적인 구성을 나타내는 블록도이다.
도 2에서는 메모리 컨트롤러(100)에 대응되는 하나의 반도체 메모리 장치(200a)만을 예로 들어 설명한다.
도 2를 참조하면, 메모리 시스템(20)은 메모리 컨트롤러(100)와 반도체 메모리 장치(200a)를 포함할 수 있다. 메모리 컨트롤러(100)와 반도체 메모리 장치(200a)는 각각 대응하는 커맨드 핀(101, 201), 어드레스 핀(102, 202), 데이터 핀(103, 203) 및 별도의 핀(104, 204)을 통하여 서로 연결될 수 있다. 커맨드 핀(101, 201)들은 커맨드 전송선(TL1)을 통하여 커맨드 신호(CMD)를 전송하고, 어드레스 핀들(102, 202)은 어드레스 전송선(TL2)을 통하여 어드레스 신호(ADDR)를 전송하고, 데이터 핀들(103, 203)은 데이터 전송선(TL3)을 통하여 노멀 모드에서는 메인 데이터(MD)를 교환하고 에러 체크 및 스크럽(error check and scrub, 이하 ECS) 모드에서는 에러 정보 신호(EIS)를 반도체 메모리 장치(200a)에서 메모리 컨트롤러(100)로 전송하고, 별도의 핀들(104, 204)은 전송선(TL4)을 통하여 ECS 모드에서 얼러트 신호(ALRT)를 전송할 수 있다.
반도체 메모리 장치(200a)는 메인 데이터(MD)가 저장되는 메모리 셀 어레이(300), 에러 정정 회로(400), 에러 로그 레지스터(460) 및 에러 정정 회로(400)를 제어하는 제어 회로(210)를 포함할 수 있다.
반도체 메모리 장치(200a)의 제어 회로(210)는 커맨드(CMD)가 ECS 모드를 나타내는 경우에 어드레스 신호(ADDR)가 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 (에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 에러 정정 회로(400)를 제어할 수 있다. 제어 회로(210)는 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 에러 로그 레지스터(460)에 기록할 수 있다. 또한 반도체 메모리 장치(200a)는 메모리 컨트롤러(100)로부터의 커맨드(CMD)가 레지스터 독출 커맨드(RRD)인 경우에, 에러 로그 레지스터(460)에 저장된 페이지 에러 정보를 에러 정보 신호(EIS)로서 메모리 컨트롤러(100)에 전송할 수 있다.
도 3은 본 발명의 실시예들에 따른 도 2의 반도체 메모리 장치의 구성을 나타내는 블록도이다.
도 3을 참조하면, 반도체 메모리 장치(200a)는 제어 회로(210), 어드레스 레지스터(220), 뱅크 제어 로직(230), 리프레쉬 카운터(297), 로우 어드레스 멀티플렉서(240), 컬럼 어드레스 래치(250), 로우 디코더(260), 컬럼 디코더(270), 메모리 셀 어레이(300), 센스 앰프부(285), 입출력 게이팅 회로(290), 에러 정정 회로(400), 데이터 입출력 버퍼(299) 및 에러 로그 레지스터(460)를 포함할 수 있다.
실시예에 따라서, 리프레쉬 카운터(297)는 반도체 메모리 장치(200a)에 포함되지 않을 수도 있다. 즉 메모리 셀 어레이(300)가 복수의 저항성 메모리 셀들로 구현되는 경우, 리프레쉬 카운터(297)는 반도체 메모리 장치(200a)에 포함되지 않을 수도 있다.
상기 메모리 셀 어레이(300)는 제1 내지 제4 뱅크 어레이들(310~340)을 포함할 수 있다. 제1 내지 제4 뱅크 어레이들(310~340) 각각은 워드라인(WL)각각에 연결되는 메모리 셀 로우로 구성되는 복수의 페이지들을 포함할 수 있다.
또한, 상기 로우 디코더(260)는 제1 내지 제4 뱅크 어레이들(310~340)에 각각 연결된 제1 내지 제4 뱅크 로우 디코더들(260a~260d)을 포함하고, 상기 컬럼 디코더(270)는 제1 내지 제4 뱅크 어레이들(310~340)에 각각 연결된 제1 내지 제4 뱅크 컬럼 디코더들(270a~270d)을 포함하며, 상기 센스 앰프부(285)는 제1 내지 제4 뱅크 어레이들(310~340)에 각각 연결된 제1 내지 제4 뱅크 센스 앰프들(285a~285d)을 포함할 수 있다. 제1 내지 제4 뱅크 어레이들(310~340), 제1 내지 제4 뱅크 센스 앰프들(285a~2854), 제1 내지 제4 뱅크 칼럼 디코더들(270a~270d) 및 제1 내지 제4 뱅크 로우 디코더들(260a~260d)은 제1 내지 제4 뱅크들을 각각 구성할 수 있다. 제1 내지 제4 뱅크 어레이들(310~340) 각각은 복수의 워드라인(WL)들과 복수의 비트라인(BTL)들 및 워드라인(WL)들과 비트라인(BTL)들이 교차하는 지점에 형성되는 복수의 메모리 셀(MC)들을 포함할 수 있다. 도 3에는 4개의 뱅크들을 포함하는 반도체 메모리 장치(200a)의 예가 도시되어 있으나, 실시예에 따라, 반도체 메모리 장치(200a)는 임의의 수의 뱅크들을 포함할 수 있다.
어드레스 레지스터(220)는 메모리 컨트롤러(100)로부터 뱅크 어드레스(BANK_ADDR), 로우 어드레스(ROW_ADDR) 및 컬럼 어드레스(COL_ADDR)를 포함하는 어드레스(ADDR)를 수신할 수 있다. 어드레스 레지스터(220)는 수신된 뱅크 어드레스(BANK_ADDR)를 뱅크 제어 로직(230)에 제공하고, 수신된 로우 어드레스(ROW_ADDR)를 로우 어드레스 멀티플렉서(240)에 제공하며, 수신된 컬럼 어드레스(COL_ADDR)를 컬럼 어드레스 래치(250)에 제공할 수 있다.
뱅크 제어 로직(230)은 뱅크 어드레스(BANK_ADDR)에 응답하여 뱅크 제어 신호들을 생성할 수 있다. 상기 뱅크 제어 신호들에 응답하여, 제1 내지 제4 뱅크 로우 디코더들(260a~260d) 중 뱅크 어드레스(BANK_ADDR)에 상응하는 뱅크 로우 디코더가 활성화되고, 제1 내지 제4 뱅크 컬럼 디코더들(270a~270d) 중 뱅크 어드레스(BANK_ADDR)에 상응하는 뱅크 컬럼 디코더가 활성화될 수 있다.
리프레쉬 카운터(297)는 제어 회로(210)의 제어에 따라 메모리 셀 어레이(300)에 포함되는 메모리 셀 로우들을 리프레쉬하기 위한 리프레쉬 로우 어드레스(REF_ADDR)를 생성할 수 있다. 리프레쉬 카운터(297)는 메모리 셀 어레이(300)의 메모리 셀(MC)들이 동적 메모리 셀들로 구성되는 경우에 반도체 메모리 장치(200a)에 포함될 수 있다.
로우 어드레스 멀티플렉서(240)는 어드레스 레지스터(220)로부터 로우 어드레스(ROW_ADDR)를 수신하고, 리프레쉬 카운터(297)로부터 리프레쉬 로우 어드레스(REF_ADDR)를 수신할 수 있다. 로우 어드레스 멀티플렉서(240)는 로우 어드레스(ROW_ADDR) 또는 리프레쉬 로우 어드레스(REF_ADDR)를 로우 어드레스(RA)로서 선택적으로 출력할 수 있다. 로우 어드레스 멀티플렉서(245)로부터 출력된 로우 어드레스(RA)는 제1 내지 제4 뱅크 로우 디코더들(260a~260d)에 각각 인가될 수 있다.
제1 내지 제4 뱅크 로우 디코더들(260a~260d) 중 뱅크 제어 로직(230)에 의해 활성화된 뱅크 로우 디코더는 로우 어드레스 멀티플렉서(240)로부터 출력된 로우 어드레스(RA)를 디코딩하여 상기 로우 어드레스에 상응하는 워드 라인을 활성화할 수 있다. 예를 들어, 상기 활성화된 뱅크 로우 디코더는 로우 어드레스에 상응하는 워드 라인에 워드 라인 구동 전압을 인가할 수 있다.
컬럼 어드레스 래치(250)는 어드레스 레지스터(220)로부터 컬럼 어드레스(COL_ADDR)를 수신하고, 수신된 컬럼 어드레스(COL_ADDR)를 일시적으로 저장할 수 있다. 또한, 컬럼 어드레스 래치(250)는, 버스트 모드에서, 수신된 컬럼 어드레스(COL_ADDR)를 점진적으로 증가시킬 수 있다. 컬럼 어드레스 래치(250)는 일시적으로 저장된 또는 점진적으로 증가된 컬럼 어드레스(COL_ADDR)를 제1 내지 제4 뱅크 컬럼 디코더들(270a~270d)에 각각 인가할 수 있다.
제1 내지 제4 뱅크 컬럼 디코더들(270a~270d) 중 뱅크 제어 로직(230)에 의해 활성화된 뱅크 컬럼 디코더는 입출력 게이팅 회로(290)를 통하여 뱅크 어드레스(BANK_ADDR) 및 컬럼 어드레스(COL_ADDR)에 상응하는 센스 앰프를 활성화시킬 수 있다.
입출력 게이팅 회로(290)는 입출력 데이터를 게이팅하는 회로들과 함께, 입력 데이터 마스크 로직, 제1 내지 제4 뱅크 어레이들(310~340)로부터 출력된 데이터를 저장하기 위한 독출 데이터 래치들, 및 제1 내지 제4 뱅크 어레이들(310~340)에 데이터를 기입하기 위한 기입 드라이버들을 포함할 수 있다.
제1 내지 제4 뱅크 어레이들(310~340) 중 하나의 뱅크 어레이에서 독출될 데이터는 상기 하나의 뱅크 어레이에 상응하는 센스 앰프에 의해 감지되고, 상기 독출 데이터 래치들에 저장될 수 있다. 제1 내지 제4 뱅크 어레이들(310~340) 중 하나의 뱅크 어레이에 기입될 메인 데이터(MD)는 상기 메모리 컨트롤러(100)로부터 데이터 입출력 버퍼(299)에 제공될 수 있다. 데이터 입출력 버퍼(299)에 제공된 메인 데이터(MD)는 에러 정정 회로(400)에서 코드워드(CW)로 인코딩되어 입출력 게이팅 회로(290)에 제공된다. 코드워드(CW)는 상기 기입 드라이버들을 통하여 상기 하나의 뱅크 어레이에 기입될 수 있다.
데이터 입출력 버퍼(299)는 기입 동작에서는 메모리 컨트롤러(100)로부터 제공되는 메인 데이터(MD)를 에러 정정 회로(400)에 제공하고, 독출 동작에서는 에러 정정 회로(400)로부터 제공되는 메인 데이터(MD)를 메모리 컨트롤러(100)에 제공할 수 있다.
에러 정정 회로(400)는 기입 동작에서 데이터 입출력 버퍼(299)로부터 제공되는 메인 데이터(MD)에 기초하여 패리티 데이터를 생성하고, 메인 데이터(MD)와 패리티 데이터를 포함하는 코드워드(CW)를 입출력 게이팅 회로(290)에 제공하고, 입출력 게이팅 회로(290)는 코드워드(CW)를 뱅크 어레이에 기입할 수 있다.
또한 에러 정정 회로(400)는 독출 동작에서 하나의 뱅크 어레이에서 독출된 코드워드(CW)를 입출력 게이팅 회로(290)로부터 제공받을 수 있다. 에러 정정 회로(400)는 독출된 코드워드(CW)에 포함되는 패리티 데이터를 메인 데이터(MD)에 대한 디코딩을 수행하여 메인 데이터(MD)에 포함되는 싱글 비트 에러를 정정하여 데이터 입출력 버퍼(299)에 제공할 수 있다.
또한 에러 정정 회로(400)는 ECS 모드에서 메모리 셀 어레이(300)의 일부 페이지들 각각을 구성하는 복수의 서브 페이지들 각각으로부터 메인 데이터와 패리티 데이터를 구비하는 제1 유닛의 데이터를 독출하여 ECC 디코딩을 순차적으로 수행할 수 있다. 에러 정정 회로(400)는 상기 1 유닛의 데이터에 대하여 상기 ECC 디코딩을 수행한 후 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 에러 발생 신호(EGS)를 제어 회로(210)에 제공할 수 있다.
제어 회로(210)는 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 상기 에러를 정정하고, 상기 정정된 제1 유닛의 데이터를 상기 해당하는 서브 페이지에 재기입하는 스크러빙 동작을 수행하도록 에러 정정 회로(400)를 제어할 수 있다. 제어 회로(210)는 에러 발생 신호(EGS)를 카운팅하여 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 에러 정보(EINF)를 에러 로그 레지스터(460)에 기록하는 에러 로깅 동작을 수행할 수 있다.
제어 회로(210)는 반도체 메모리 장치(200a)의 동작을 제어할 수 있다. 예를 들어, 제어 회로(210)는 반도체 메모리 장치(200a)가 기입 동작 또는 독출 동작을 수행하도록 제어 신호들을 생성할 수 있다. 제어 회로(210)는 상기 메모리 컨트롤러(100)로부터 수신되는 커맨드(CMD)를 디코딩하는 커맨드 디코더(211) 및 반도체 메모리 장치(200a)의 동작 모드를 설정하기 위한 모드 레지스터(212)를 포함할 수 있다. 제어 회로(210)는 에러 정정 회로(400)로부터의 에러 발생 신호(EGS)를 카운팅하는 카운터(213)를 더 포함할 수 있다.
예를 들어, 커맨드 디코더(211)는 기입 인에이블 신호(/WE), 로우 어드레스 스트로브 신호(/RAS), 컬럼 어드레스 스트로브 신호(/CAS), 칩 선택 신호(/CS) 등을 디코딩하여 커맨드(CMD)에 상응하는 상기 제어 신호들을 생성할 수 있다. 특히 제어 회로(210)는 커맨드(CMD)를 디코딩하여 입출력 게이팅 회로(290)를 제어하는 제1 제어 신호(CTL1)와 에러 정정 회로(400)를 제2 제어 신호(CTL2) 및 에러 로그 레지스터(460)를 제어하는 제3 제어 신호(CTL3)를 생성할 수 있다.
제어 회로(210)는 커맨드(CMD)가 ECS 모드를 지시하는 경우에, 입출력 게이팅 회로(290)와 에러 정정 회로(400)가 상술한 스크러빙 동작과 에러 로깅 동작을 수행하도록 제1 제어 신호(CTL1), 제2 제어 신호(CTL2) 및 제3 제어 신호(CTL3)를 생성할 수 있다.
또한 제어 회로(210)는 상기 ECS 모드에서 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 얼러트 신호(ALRT)를 이용하여 상기 메모리 컨트롤러(100)에 상기 제1 상황을 통지할 수 있다. 메모리 컨트롤러(100)는 스크러빙 커맨드를 반도체 메모리 장치(200a)에 발행하고, 제어 회로(210)는 상기 하나의 페이지에 대하여 스크러빙 동작이 수행되도록 에러 정정 회로(300)와 입출력 게이팅 회로(290)를 제어할 수 있다. 이 경우에, 제어 회로(210)는 핀(204)을 통하여 얼러트 신호(ALRT)를 미리 정해진 인터벌 동안 하이 레벨로 유지하여 상기 제1 상황을 메모리 컨트롤러(100)에 통지할 수 있다.
커맨드(CMD)가 스크러빙 커맨드인 경우에, 스크러빙 커맨드는 반도체 메모리 장치(200a)의 독출 동작을 위한 독출 커맨드와는 서로 다른 신호 조합으로 구성될 수 있다.
도 4a 내지 도 4e는 도 3에 도시된 메모리 셀을 예시적으로 나타내는 회로도들이다.
도 4a 내지 도 4d에서는 도 3의 메모리 셀(MC)이 저항성 메모리 셀로 구현된 경우를 나타내고, 도 4e는 도 3의 메모리 셀(MC)이 동적 메모리 셀로 구현된 경우를 나타낸다.
도 4a는 선택 소자가 없는 저항성 메모리 셀을 나타낸다. 도 4b 내지 도 4d는 선택 소자를 포함하는 저항성 메모리 셀을 나타낸다.
도 4a를 참조하면, 메모리 셀(MC)은 비트 라인(BTL) 및 워드 라인(WL)에 연결되는 저항성 소자(RE)를 포함한다. 이처럼 선택 소자가 없는 구조를 갖는 저항성 메모리 셀은 비트 라인(BTL)과 워드 라인(WL) 사이에 인가되는 전압에 의해서 데이터를 저장한다.
도 4b를 참조하면, 메모리 셀(MC)은 저항성 소자(RE)와 다이오드(D)를 포함한다. 저항성 소자(RE)는 데이터를 저장하기 위한 저항성 물질을 포함한다. 다이오드(D)는 워드 라인(WL) 및 비트 라인(BTL)의 바이어스에 따라 저항성 소자(RE)에 전류를 공급 또는 차단하는 선택 소자(또는, 스위칭 소자)이다. 다이오드(D)는 저항성 소자(RE)와 워드 라인(WL) 사이에 연결되며, 저항성 소자(RE)는 비트 라인(BTL)과 다이오드(D) 사이에 연결된다. 다이오드(D)와 저항성 소자(RE)의 위치는 서로 바뀔 수 있다. 다이오드(D)는 워드 라인(WL) 전압에 의해 턴온 또는 턴오프 된다. 따라서, 비선택된 워드 라인(WL)에 일정 레벨 이상의 전압을 제공하면, 저항성 메모리 셀은 구동되지 않는다.
도 4c를 참조하면, 메모리 셀(MC)은 저항성 소자(RE)와 양방향 다이오드(BD)를 포함한다. 저항성 소자(RE)는 데이터를 저장하기 위한 저항성 물질을 포함한다. 양방향 다이오드(BD)는 저항성 소자(RE)와 워드 라인(WL) 사이에 연결되며, 저항성 소자(RE)는 비트 라인(BTL)과 양방향 다이오드(BD) 사이에 연결된다. 양방향 다이오드(BD)와 저항성 소자(RE)의 위치는 서로 바뀔 수 있다. 양방향 다이오드(BD)는 비선택 저항성 메모리 셀에 흐르게 되는 누설 전류를 차단할 수 있다.
도 4d를 참조하면, 메모리 셀(MC)은 저항성 소자(RE)와 트랜지스터(CT)를 포함한다. 트랜지스터(CT)는 워드 라인(WL)의 전압에 따라 저항성 소자(RE)에 전류를 공급 또는 차단하는 선택 소자(또는, 스위칭 소자)이다. 트랜지스터(CT)는 저항성 소자(RE)와 워드 라인(WL) 사이에 연결되며, 저항성 소자(R)는 비트 라인(BTL)과 트랜지스터(CT) 사이에 연결된다. 트랜지스터(CT)와 저항성 소자(RE)의 위치는 서로 바뀔 수 있다. 메모리 셀(MC)은 워드 라인(WL)에 의해서 구동되는 트랜지스터(CT)의 온-오프 여부에 따라 선택 또는 비선택될 수 있다.
도 4e를 참조하면, 메모리 셀(MC)은 셀 커패시터(CC)와 트랜지스터(CT)를 포함한다. 트랜지스터(CT)는 워드 라인(WL)의 전압에 따라 셀 커패시터(CC)를 비트라인에 연결 또는 차단하는 선택 소자이다. 트랜지스터(CT)는 셀 커패시터(CC)와 워드라인(WL)과 비트라인(BTL) 사이에 연결되며, 셀 커패시터(CC)는 트랜지스터(CT)와 플레이트 전압(미도시) 사이에 연결된다.
도 5는 본 발명의 실시예들에 따른 도 3의 반도체 메모리 장치에서 메모리 셀의 예를 나타낸다.
도 5를 참조하면, 메모리 셀(30)은 STT-MRAM 셀(30)로 구성될 수 있고, STT-MRAM 셀(30)은 MTJ 소자(40)와 셀 트랜지스터(CT)를 포함할 수 있다. 셀 트랜지스터(CT)의 게이트는 워드라인(WL)에 연결되고, 셀 트랜지스터(CT)의 제1 전극은 MTJ 소자(40)를 통해 비트라인(BTL)에 연결된다. 또한 셀 트랜지스터(CT)의 제2 전극은 소스라인(SL)에 연결된다.
MTJ 소자(40)는 자유 층(41)과 고정 층(43) 및 이들 사이에 터널 층(42)을 포함할 수 있다. 고정 층(43)의 자화 방향은 고정되어 있으며, 자유 층(41)의 자화 방향은 기입된 데이터에 따라 고정 층(43)의 자화 방향과 평행이거나 반-평행 방향이 될 수 있다. 고정 층(43)의 자화 방향을 고정시켜 주기 위하여, 예컨대, 반강자성층(anti-ferromagnetic layer, 미도시)이 더 구비될 수 있다.
STT-MRAM 셀(30)의 기입 동작을 하기 위해서, 워드라인(WL)에 로직 하이의 전압을 인가하여 셀 트랜지스터(CT)를 턴 온시킨다. 비트라인(BL)과 소스 라인(SL)에는 프로그램 전류, 즉 기입 전류가 인가된다. 기입 전류의 방향은 MTJ 소자(40)에 기입될 로직 상태에 의해 결정된다.
STT-MRAM 셀의 독출 동작을 하기 위해서, 워드라인(WL)에 로직 하이의 전압을 주어 셀 트랜지스터(CT)를 턴 온시키고, 비트라인(BL)과 소스라인(SL0)으로 독출 전류를 인가한다. 이에 따라, MTJ 소자(40) 양단으로 전압이 디벨롭되고, 센스 앰프(285a)에 의해 센싱되고, MTJ 소자(40)에 기입된 로직 상태를 결정하기 위한 기준 전압과 비교된다. 이에 따라, MTJ 소자(40)에 저장된 데이터를 판별할 수 있다.
도 6a 및 도 6b는 도 5의 MTJ 소자의 기입된 데이터에 따른 자화 방향을 나타낸다.
MTJ 소자(40)의 저항 값은 자유 층(41)의 자화 방향에 따라 달라진다. MTJ 소자(40)에 독출 전류(IR)를 흘리면 MTJ 소자(40)의 저항 값에 따른 데이터 전압이 출력된다. 리드 전류(IR)의 세기는 쓰기 전류의 세기보다 매우 작기 때문에, 독출 전류(IR)에 의해 자유 층(41)의 자화 방향이 변화되지 않는다.
도 6a를 참조하면, MTJ 소자(40)에서 자유 층(41)의 자화 방향과 고정층(43)의 자화 방향이 평행(parallel)하게 배치된다. 따라서, MTJ 소자(40)는 낮은 저항 값을 가진다. 이 경우, 데이터 "0"을 독출할 수 있다.
도 6b를 참조하면, MTJ 소자(40)는 자유 층(41)의 자화 방향이 고정 층(43)의 자화 방향과 반-평행(antiparallel)으로 배치된다. 이 때, MTJ 소자(40)는 높은 저항 값을 가진다. 이 경우, 데이터 "1"을 독출할 수 있다.
본 실시예에서 MTJ 소자(40)는 자유 층(41)과 고정 층(43)을 수평 자기 소자로 도시하였으나, 다른 실시예로서 자유 층(41)과 고정 층(43)은 수직 자기 소자를 이용할 수도 있다.
도 7은 도 2의 메모리 시스템에서 메모리 컨트롤러의 구성을 나타내는 블록도이다.
도 7을 참조하면, 메모리 컨트롤러(100)는 제어 로직(110), 레지스터(120), 커맨드 생성기(130), 스케쥴러(140) 및 입출력 버퍼(150)를 포함하여 구성될 수 있다.
커맨드 생성기(130)는 반도체 메모리 장치(200a)가 액티브, 독출, 및 기입 등의 동작을 수행하도록 제어 로직(110)의 제어를 받아 커맨드 신호를 생성하여 스케쥴러(140)에 제공한다.
레지스터(120)는 반도체 메모리 장치(200a)로부터 수신된 에러 정보 신호(EIS)를 저장한다.
제어 로직(110)은 호스트(20)로부터의 커맨드 신호(CMD1)와 어드레스 신호(ADDR1)에 기초하여 커맨드 생성기(130)가 반도체 메모리 장치(200a)가 액티브, 독출, 및 기입 등의 동작을 수행하도록 커맨드 신호를 생성하도록 한다. 또한 제어 로직(110)은 반도체 메모리 장치(200a)로부터 수신된 얼러트 신호(ALRT) 신호에 응답하여 스크러빙 커맨드가 즉시 반도체 메모리 장치(200a)에 제공되도록 커맨드 생성기(130), 스케쥴러(140) 및 입출력 버퍼(150)를 제어한다. 또한 제어 로직(110)는 레지스터(120)에 저장된 에러 정보 신호(EIS)를 참조하여 반도체 메모리 장치(200a)에 대한 에러 관리 정책을 결정할 수 있다.
입출력 버퍼(150)는 메모리 장치(200a)로 전달하거나, 메모리 장치(200a)로부터 전달되는 신호들을 임시적으로 저장할 수 있다. 메모리 장치(200a)는 입출력 버퍼(150)와 커맨드 핀(101), 데이터 핀(102), 어드레스 핀(103) 및 별도의 핀(104)을 통해 연결된다. 또한, I/O 버퍼(220)를 통해 메모리 컨트롤러(200)의 데이터, 어드레스, 동작 명령 신호등을 메모리 장치(100)로 전송할 수 있다.
도 8은 노멀 모드에서 도 3의 반도체 메모리 장치의 일부를 나타낸다.
도 8에서는 제어 회로(210), 제1 뱅크 어레이(310), 입출력 게이팅 회로(290) 및 에러 정정 회로(400)가 도시되어 있다. 도 8에서는 반도체 메모리 장치(200a)의 노멀 모드에서의 기입 동작을 나타낸다.
도 8을 참조하면, 제1 뱅크 어레이(310)는 노멀 셀 어레이(NCA) 및 리던던시 셀 어레이(RCA)를 포함할 수 있다. 노멀 셀 어레이(NCA)는 복수의 제1 메모리 블록들(MB0~MB15, 311, 312, 313)을 포함할 수 있고, 리던던시 셀 어레이(RCA)는 적어도 하나의 제2 메모리 블록(314)을 포함할 수 있다. 제1 메모리 블록들(311, 312, 313)은 반도체 메모리 장치(200a)의 메모리 용량을 결정하는 블록이다. 제2 메모리 블록(314)은 ECC 용 및/또는 리던던시 리페어 용 블록이다. ECC 용 및/또는 리던던시 리페어 용 블록인 제2 메모리 블록(314)은 제1 메모리 블록들(311, 312, 313)에서 발생하는 불량 셀을 구제하기 위하여 ECC 용, 데이터 라인 리페어 용(data line repair) 및 블록 리페어용(block repair) 것으로 EDB 블록이라 칭할 수 도 있다.
제1 메모리 블록들(311, 312, 313) 각각은 행들 및 열들로 배열되는 복수의 제1 메모리 셀들을 포함하고, 제2 메모리 블록(314)도 행들 및 열들로 배열되는 복수의 제2 메모리 셀들을 포함한다.
제1 메모리 블록들(311, 312, 313) 각각의 행들은 예를 들어 8K 워드라인(WL)들로 구성되고, 열들은 예를 들어 1K 비트라인(BTL)들로 구성될 수 있다. 워드라인들(WL)과 비트라인들(BTL)의 교차점에 연결되는 제1 메모리 셀들은 동적 메모리 셀 또는 저항성 메모리 셀들로 구성될 수 있다. 제2 메모리 블록(314)의 행들은 예를 들어 8K 워드라인(WL)들로 구성되고, 열들은 예를 들어 1K 비트라인(RBTL)들로 구성될 수 있다. 워드라인들(WL)과 비트라인들(RBTL)의 교차점에 연결되는 제2 메모리 셀들은 동적 메모리 셀 또는 저항성 메모리 셀들로 구성될 수 있다.
입출력 게이팅 회로(290)는 제1 메모리 블록들(311, 312, 313) 및 제2 메모리 블록(294)과 각각 연결되는 복수의 스위칭 회로들(291a~291d)을 포함할 수 있다. 반도체 메모리 장치(200a)에서 비트라인들은 액세스할 수 있는 칼럼 로케이션의 최대 수를 나타내는 버스트 길이(burst length, BL)를 지원하기 위하여 버스트 길이에 해당하는 비트라인들이 동시에 액세스될 수 있다. 반도체 메모리 장치(200a)는 예시적으로 버스트 길이가 8로 설정될 수 있다. 이에 따라 비트라인들(BTL)은 128개의 칼럼 선택 신호들 각각에 연결되는 칼럼 선택부에 각각 연결되고 하나의 칼럼 선택부에 의하여 8개의 비트라인들이 동시에 선택될 수 있다.
에러 정정 회로(400)는 스위칭 회로들(291a~291d)과 상응하는 제1 데이터 라인들(GIO[0:127]) 및 제2 데이터 라인들(EDBIO[0:7]) 각각을 통하여 연결될 수 있다.
제어 회로(210)는 커맨드(CMD)를 디코딩하여 스위칭 회로들(291a~291d)을 제어하는 제1 제어 신호(CTL1)를 입출력 게이팅 회로(290)에 제공하고, 제2 제어 신호(CTL2)를 에러 정정 회로(400)에 제공할 수 있다.
커맨드(CMD)가 기입 커맨드인 경우에, 에러 정정 회로(400)는 메인 데이터(MD)를 인코딩하여 메인 데이터(MD)와 패리티 데이터를 포함하는 코드워드(CW)를 생성할 수 있다. 메인 데이터(MD)는 제1 메모리 블록들(311, 312, 313)에 저장되고 패리티 데이터는 제2 메모리 블록(314)에 저장될 수 있다.
도 9는 도 3의 반도체 메모리 장치의 하나의 뱅크 어레이와 에러 정정 회로를 나타낸다.
도 9에서는 제1 뱅크 어레이(310)의 구성을 도시하였으나, 제2 내지 제4 뱅크 어레이(320~340)들 각각의 구성은 제1 뱅크 어레이(310)의 구성과 실질적으로 동일할 수 있다.
도 9에서는 제1 뱅크 어레이(310)의 하나의 페이지가 8Kb의 사이즈를 가지고 서브 페이지가 128b를 갖는 예가 도시된다. 또한, 각각의 서브 페이지에 대응하여 8b의 패리티가 저장되며, 128b의 서브 페이지의 데이터와 8b의 패리티가 순차적으로 독출되어 에러 정정 회로(400)로 제공된다. 에러 검출 및 정정과 관련하여 해밍 코드가 에러 정정 회로(400)에 적용될 수 있다.
도 10은 ECS 모드에서 도 3의 반도체 메모리 장치의 일부를 나타낸다.
도 10에서는 제어 회로(210), 제1 뱅크 어레이(310), 입출력 게이팅 회로(290), 에러 정정 회로(400) 및 에러 로그 레지스터(460)가 도시되어 있다.
도 10을 참조하면, 커맨드(CMD)가 ECS 모드를 지시하는 경우에, 제어 회로(210)는 제1 제어 신호(CTL1)와 제2 제어 신호(CTL2)를 통하여 어드레스(ADDR)가 지정하는 제1 뱅크 어레이(310)의 일부 페이지들 각각을 구성하는 복수의 서브 페이지들 각각으로부터 메인 데이터와 패리티 데이터를 구비하는 제1 유닛의 데이터를 독출하여 ECC 디코딩을 순차적으로 수행하도록 입출력 게이팅 회로(290)와 에러 정정 회로(400)를 제어할 수 있다. 에러 정정 회로(400)는 상기 1 유닛의 데이터에 대하여 상기 ECC 디코딩을 수행한 후 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 에러 발생 신호(EGS)를 제어 회로(210)에 제공할 수 있다.
제어 회로(210)는 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 상기 에러를 정정하고, 상기 정정된 제1 유닛의 데이터를 상기 해당하는 서브 페이지에 재기입하는 스크러빙 동작을 수행하도록 에러 정정 회로(400)를 제어할 수 있다. 즉 에러 정정 회로(400)는 제1 페이지의 서브 페이지로부터 코드워드(RCW)를 독출하고, 코드워드(RCW)에 대하여 ECC 디코딩을 수행하고, 코드워드(RCW)가 에러를 포함하는 경우 이를 정정하여 정정된 코드워드(C_CW)를 해당 서브 페이지에 재기입하는 스크러빙 동작을 수행할 수 있다. 제어 회로(210)는 에러 발생 신호(EGS)를 카운팅하여 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 에러 정보(EINF)를 에러 로그 레지스터(460)에 기록하는 에러 로깅 동작을 수행할 수 있다.
여기서 에러 정보(EINF)는 어드레스 정보(ADDINF), 에러 발생 횟수(ECNT), 플래그 정보(FG), 랭킹 정보(RNK), 에러를 포함하는 서브 페이지들의 수(FCWCNT), 최초로 에러 로그 레지스터(460)에 기록되는지 여부를 나타내는 플래그 정보(FG) 및 에러 발생 횟수의 변화(DINF)를 포함할 수 있다.
또한 제어 회로(210)는 상기 ECS 모드에서 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 핀(204)을 통하여 얼러트 신호(ALRT)를 이용하여 상기 메모리 컨트롤러(100)에 상기 제1 상황을 통지할 수 있다. 메모리 컨트롤러(100)는 스크러빙 커맨드를 반도체 메모리 장치(200a)에 발행하고, 제어 회로(210)는 상기 하나의 페이지에 대하여 스크러빙 동작이 수행되도록 에러 정정 회로(400)와 입출력 게이팅 회로(290)를 제어할 수 있다. 이 경우에 제어 회로(210)는 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작이 연속적으로 수행되도록 입출력 게이팅 회로(290)와 에러 정정 회로(400)를 제어할 수 있다.
또한 제어 회로(210)는 상기 ECS 모드에서 상기 일부 페이지의 제1 유닛의 데이터의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 핀(204)을 통하여 얼러트 신호(ALRT)를 이용하여 상기 메모리 컨트롤러(100)에 상기 제1 상황을 통지할 수 있다.
또한 제어 회로(210)는 메모리 컨트롤러(100)로부터의 커맨드가 레지스터 독출 명령(RRD)인 경우에, 제3 제어 신호(CTL3)를 통하여 에러 로그 레지스터(460)에 기록된 에러 정보(EINF)가 에러 정보 신호(EIS)로서 메모리 컨트롤러(460)에 전송되도록 한다. 이 경우에, 에러 정보 신호(EIS)는 데이터 입출력 핀(203)을 통하여 메모리 컨트롤러(100)에 전송될 수 있다.
도 11은 도 3의 반도체 메모리 장치에서 에러 로그 레지스터를 나타낸다.
도 11을 참조하면, 에러 로그 레지스터(460)의 인덱스들(Idx1~Idxp, p는 2 이상의 자연수)은 일부 페이지들 각각의 페이지 에러 정보를 포함할 수 있다. 또한 에러 로그 레지스터(460)는 복수의 칼럼들(461~466)을 포함할 수 있다.
칼럼(461)에는 일부 페이지들 각각의 랭킹 정보(RNK)가 기록될 수 있고, 칼럼(462)에는 일부 페이지들 각각의 어드레스 정보(ADDINF)가 기록될 수 있고, 칼럼(463)에는 일부 페이지들 각각의 에러 발생 횟수(ECNT)가 기록될 수 있고, 칼럼(464)에는 일부 페이지들 각각의 에러를 포함하는 서브 페이지들의 수(FCWCNT)가 기록될 수 있고, 칼럼(465)에는 일부 페이지들 각각의 플래그 정보(FG)가 기록될 수 있고, 칼럼(466)에는 일부 페이지들 각각의 에러 발생 횟수의 변화(DINF)가 기록될 수 있다.
어드레스 정보(ADDINF)는 일부 페이지들 각각의 뱅크 그룹 어드레스(BGA), 뱅크 어드레스(BA) 및 로우 어드레스(RA)를 포함할 수 있다. 랭킹 정보(RNK)는 일부 페이지들 각각의 에러 발생 횟수(ECNT)에 기초한 일부 페이지들의 에러 발생 횟수의 순위를 나타낼 수 있다. 플래그 정보(FG)는 해당 페이지가 에러 로그 레지스터(460)에 처음으로 기록되었는지 여부를 나타낼 수 있다. 해당 페이지가 에러 로그 레지스터(460)에 처음으로 기록되는 경우, 플래그 정보(FG)는 제1 로직 레벨(하이 레벨)을 가질 수 있다. 에러 발생 횟수의 변화(DINF)는 p(p는 1 이상의 자연수)차 ECS 모드와 (p+1)차 ECS 모드에서 동일하게 지정되는 페이지의 에러 발생 횟수의 증가 또는 감소를 나타낼 수 있다.
예를 들어, p차 ECS 모드에서 에러 발생의 횟수가 가장 많은 B 페이지는 그 랭킹 정보(RNK)가 가장 높은 순위를 갖는다. 상기 B 페이지에 대하여는 (p+1)차 ECS 모드에서도 상기 ECS 동작이 수행되도록 메모리 컨트롤러(100)는 B 페이지의 어드레스를 지정할 수 있다. (p+1)차 ECS 모드에서 상기 B 페이지의 에러 발생 횟수가 p차 모드에서보다 1 증가하여 에러 발생 횟수의 변화(DINF)가 1이 되었다. 이렇게 메모리 컨트롤러(100)는 에러 로그 레지스터(460)를 액세스하여 반도체 메모리 장치(200a)에서 에러 발생 확률이 높은 페이지들을 관리할 수 있다.
에러 로그 레지스터(460)에 그 페이지 에러 정보가 기록되는 일부 페이지들은 반도체 메모리 장치(200a)에서 에러 발생 확률이 다른 페이지들보다 높은 페이지들일 수 있다. 상기 일부 페이지들은 상기 반도체 메모리 장치(200a)에 대한 테스트를 통하여 결정되거나, 상기 p차 이전에 수행된 ECS 동작에 기초하여 결정될 수 있다. 메모리 컨트롤러(100)는 에러 로그 레지스터(460)를 액세스하여 상기 일부 페이지들의 에러 발생의 추이를 파악할 수 있고, 상기 반도체 메모리 장치(200a)의 에러를 보다 효율적으로 관리할 수 있다.
도 12는 ECS 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 12를 참조하면, ECC 회로(400)는 ECC 인코더(410) 및 ECC 디코더(430)를 포함할 수 있다. 입출력 게이팅 회로(290)는 스위칭부(291), 기입 드라이버(293) 및 래치부(295)를 포함할 수 있다. 입출력 게이팅 회로(290)는 마스킹 로직(296)을 더 포함할 수 있다. 스위칭부(291)는 도 8 및 도 10의 스위치들(291a~291d)을 포함할 수 있다. 입출력 게이팅 회로(290)는 ECS 모드에서 메모리 셀 어레이(300)의 어느 하나의 페이지의 서브 페이지로부터의 독출 코드워드(RCW)를 ECC 디코더(430)에 제공할 수 있다. ECC 디코더(430)는 독출 코드워드(RCW)의 패리티 데이터를 이용하여 독출 코드워드(RCW)의 에러를 정정하여 정정된 코드워드(C_CW)를 입출력 게이팅 회로(290)에 제공할 수 있다. 입출력 게이팅 회로(290)는 ECC 디코더(430)로부터 정정된 코드워드(C_CW)를 제공받아, 에러가 정정된 코드워드(C_CW)를 상기 서브 페이지에 재기입할 수 있다. 에러 정정 회로(400)는 상기 스크러빙 동작을 수행하면서 독출 코드워드(RCW)에 에러가 발생할 때마다 에러 발생 신호(EGS)를 제어 회로(210)에 제공할 수 있다.
ECC 디코더(430)는 ECS 모드에서 제2 제어 신호(CTL2)에 응답하여 상술한 스크러빙 동작을 수행할 수 있다.
도 13은 노멀 모드에서 도 3의 반도체 메모리 장치에서 에러 정정 회로와 입출력 게이팅 회로를 나타낸다.
도 13을 참조하면, 노멀 모드의 독출 동작에서, 입출력 게이팅 회로(290)는 메모리 셀 어레이(300)의 타겟 페이지로부터의 독출 코드워드(RCW)를 ECC 디코더(430)에 제공하고, ECC 디코더(430)는 독출 코드워드(RCW)의 패리티 데이터를 이용하여 독출 코드워드(RCW)에 포함되는 에러를 정정하여 정정된 메인 데이터(C_MD)를 데이터 입출력 버퍼(299)에 제공할 수 있다.
기입 동작에서, ECC 인코더(410)는 기입 메인 데이터(MD)에 기초하여 패리티 데이터를 생성하고, 기입 메인 데이터(MD)와 패리티 데이터를 포함하는 코드워드(CW)를 입출력 게이팅 회로(290)에 제공할 수 있다. 기입 드라이버(293)는 코드워드(CW)를 타겟 페이지 기입할 수 있다.
마스킹 로직(296)은 마스크된 기입 동작 시에 메모리 컨트롤러(100)로부터 인가되는 마스크 신호(DM)에 응답하여 기입 드라이버(293)와 ECC 인코더(410)가 마스크된 기입 동작을 수행하도록 할 수 있다.
도 14는 ECS 모드에서 도 7의 반도체 메모리 장치에서 스크러빙 동작이 수행되는 것을 나타낸다.
도 7, 도 12 및 도 14를 참조하면, 커맨드(CMD)가 ECS 모드를 지시하는 경우에, 뱅크 어레이(310)의 하나의 페이지의 서브 페이지로부터 64 비트의 제1 서브 유닛(511), 64 비트의 제2 서브 유닛(513) 및 8 비트의 패리티 데이터(PRT)를 포함하는 제1 유닛의 코드워드(CW)가 독출되어(521), ECC 디코더(430)로 제공된다. 제2 서브 유닛(513)은 하나의 에러 비트(ER)를 포함할 수 있다. ECC 디코더(430)는 독출된 제1 유닛의 코드워드(CW)에 대하여 ECC 디코딩(522)을 수행하여 제2 서브 유닛(513)의 에러 비트(ER)를 정정하여 정정된 제2 서브 유닛(513')을 입출력 게이팅 회로(290)에 제공하고, 입출력 게이팅 회로(290)는 정정된 제2 서브 유닛(513')의 데이터를 서브 페이지의 해당 위치에 재기입(write back)한다.
도 15는 도 13의 에러 정정 회로에서 ECC 인코더를 나타낸다.
도 15를 참조하면, ECC 인코더(410)는 패리티 생성기(411)를 포함할 수 있다. 패리티 생성기(411)는 기입 동작에서 기입 데이터(MD)에 대하여 ECC 인코딩을 수행하여 패리티 데이터(PRT)를 생성하고, 기입 데이터(MD)와 패리티 데이터(PRT)를 포함하는 코드워드(CW)를 입출력 게이팅 회로(290)에 제공할 수 있다.
도 16은 도 12 및 도 13의 에러 정정 회로에서 ECC 디코더를 나타낸다.
도 16을 참조하면, ECC 디코더(430)는 체크 비트 생성기(431), 신드롬 생성기(433) 및 데이터 정정기(435)를 포함할 수 있다.
체크 비트 생성기(431)는 독출 데이터(RMD)를 기초로 하여 체크 비트들(CHB)을 생성할 수 있다. 신드롬 생성기(433)는 체크 비트들(CHB)과 독출 코드워드에 포함되는 패리티 데이터(PRT)를 기초로 독출 데이터(RMD)에 에러가 존재하는지 여부와 에러의 위치를 나타내는 신드롬 데이터(SDR)를 생성할 수 있다. 데이터 정정기(435)는 신드롬 데이터(SDR)에 기초하여 독출 데이터(RMD)의 에러를 정정하고, ECS 모드에서는 정정된 코드워드(C_CW)를 입출력 게이팅 회로(290)에 제공하고, 독출 동작에서는 정정된 메인 데이터(C_MD)를 데이터 입출력 버퍼(299)에 제공할 수 있다.
도 17은 본 발명의 실시예들에 따른 반도체 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 2, 도 3, 도 10, 도 11, 도 12, 도 14, 도 16 및 도 17을 참조하면, 제어 회로(210), 메모리 셀 어레이(300), 에러 정정 회로(400) 및 에러 로그 레지스터(460)를 포함하는 반도체 메모리 장치(200a)의 동작 방법에서는 메모리 컨트롤러(100)로부터 커맨드를 수신하여 반도체 메모리 장치(200a)가 ECS 모드에 진입한다(S510). 반도체 메모리 장치(200a)는 ECS 모드에 진입함과 동시에 메모리 컨트롤러(100)로부터 ECS 동작을 수행할 어드레스(ADDR)를 수신한다(S520). 어드레스(ADDR)는 메모리 셀 어레이(300)의 일부 페이지들을 지정할 수 있다.
제어 회로(210)는 입출력 게이팅 회로(290)와 에러 정정 회로(400)를 제어하여 어드레스(ADDR)가 지정하는 일부 페이지들 중 제1 페이지에 대하여 ECS 동작을 수행할 수 있다(S600). 이러한 ECS 동작은 상술한 ECC 디코딩 동작과 상술한 스크러빙 동작을 포함할 수 있다.
제어 회로(210)는 ECS 동작의 수행 결과에 따라 일부 페이지들 각각에 대한 페이지 에러 정보(EINF)를 에러 로그 레지스터(460)에 기록한다(S540). 제어 회로(210)는 어드레스(ADDR)가 지정하는 일부 페이지들 모두에 대하여 상기 ECS 동작이 완료되었는지 여부를 판단한다(S550). 상기 ECS 동작이 완료되지 않았으면(S550에서 NO), 일부 페이지들 중 제2 페이지에 대하여 ECS 동작(S600)과 에러 로깅 동작(S540)을 수행한다. 상기 ECS 동작이 완료되었으면(S550에서 YES), 메모리 컨트롤러(100)로부터 수신되는 다음 커맨드에 응답하여 다음 동작을 수행한다(S560).
도 18은 도 17의 반도체 메모리 장치의 동작 방법에서 ECS 동작을 구체적으로 나타내는 흐름도이다.
도 3, 도 10, 도 11, 도 12, 도 14, 도 16, 도 17 및 도 18을 참조하면, ECS 모드에서 어드레스(ADDR)가 지정하는 제1 페이지의 적어도 하나의 서브 페이지를 선택하고, 상기 서브 페이지로부터 메인 데이터(MD) 및 패리티 데이터(PRT)를 구비하는 제1 유닛(CW)의 데이터를 독출한다(S610).
에러 정정 회로(400)의 ECC 디코더(430)에서 신드롬 데이터(SDR)를 생성하여(S620)하여 제1 유닛(CW)의 데이터에 에러가 존재하는지 여부를 판단한다(S630). 즉 신드롬 생성기(433)는 체크 비트들(CHB)과 패리티 데이터(PRT)의 동일성 여부를 판단하여 신드롬 데이터(SDR)를 생성한다. 신드롬 데이터(SDR)의 적어도 하나의 비트가 '0'이 아닌 경우에는 제1 유닛(CW)의 데이터에 에러가 존재하는 것이다.
제1 유닛(CW)의 데이터에 에러가 존재하는 경우(S630에서 YES), 신드롬 데이터(SDR)를 기초하여 에러의 위치를 판단하고(S640), 상기 제1 유닛의 데이터(CW) 중 패리티 데이터(PRT)를 이용하여 에러를 정정하고(S650). 입출력 게이팅 회로(290)는 정정된 코드워드(C_CW)를 서브 페이지에 재기입한다(S660).
제1 유닛(CW)의 데이터에 에러가 존재하지 않는 경우(S630에서 NO), 에러 정정 회로(400)는 제1 페이지의 다음 서브 페이지에 대하여 상술한 동작을 반복할 수 있다.
도 19는 본 발명의 실시예들에 따른 반도체 메모리 장치를 나타내는 구조도이다.
도 19에 도시된 바와 같이, 반도체 메모리 장치(600)는 다수의 반도체 레이어들(LA1 내지 LAk, k는 3이상의 자연수)을 구비할 수 있으며, 가장 아래에 위치하는 반도체 레이어(LA1)는 마스터 칩인 것으로 가정하며 또한 나머지 반도체 레이어들(LA2 내지 LAk)은 슬레이브 칩인 것으로 가정한다. 다수의 반도체 레이어들(LA1 내지 LAk)은 관통 실리콘 비아(TSV)를 통해 신호를 서로 송수신하며, 마스터 칩(LA1)은 외면에 형성된 도전 수단(미도시)을 통해 외부의 메모리 컨트롤러(미도시)와 통신한다. 마스터 칩으로서 제1 반도체 레이어(610)와 슬레이브 칩으로서 제k 반도체 레이어(620)를 중심으로 하여 반도체 메모리 장치(600)의 구성 및 동작을 설명하면 다음과 같다.
제1 반도체 레이어(610)는 슬레이브 칩들에 구비되는 메모리 영역(Memory region, 621)을 구동하기 위한 각종 주변 회로들을 구비한다. 예컨데, 제1 반도체 레이어(610)는 메모리의 워드라인을 구동하기 위한 로우 드라이버(X-Driver, 6101)와, 메모리의 비트라인을 구동하기 위한 칼럼 드라이버(Y-Driver, 6102)와, 데이터의 입출력을 제어하기 위한 데이터 입출력부(6103), 외부로부터 커맨드(CMD)를 입력받아 버퍼링하는 커맨드 버퍼(6104)와, 외부로부터 어드레스를 입력받아 버퍼링하는 어드레스 버퍼(6105) 등을 구비할 수 있다. 메모리 영역은 도 3, 도 7 및 도 8을 참조하여 설명한 바와 같이 복수의 뱅크 어레이들을 포함할 수 있다.
또한 제1 반도체 레이어(610)는 제어 회로(6107)를 더 포함할 수 있다. 제어 회로(6107)는 메모리 컨트롤러(미도시)로부터 제공되는 커맨드 및 어드레스 신호에 기초하여 메모리 영역(621)에 대한 액세스를 제어하고, 제어 신호들을 생성할 수 있다.
한편, 제k 반도체 레이어(620)는, 메모리 영역(621)에 저장될 데이터에 대하여 ECC 인코딩을 수행하고, 메모리 영역(621)으로부터 독출된 데이터에 대하여 ECC 디코딩을 수행하는 에러 정정 회로(622)와 에러 로그 레지스터(623)를 포함할 수 있다. 에러 정정 회로(622)는 ECS 모드에서 메모리 영역(621)의 하나의 페이지를 활성화시키고, 활성화된 페이지의 복수의 서브 페이지들 중 하나를 선택하고, 선택된 서브 페이지로부터, 메인 데이터 및 패리티 데이터를 포함하는 제1 유닛의 데이터를 독출하고 상기 패리티 데이터를 이용하여 제1 유닛의 데이터 중 에러를 포함하는 서브 유닛의 데이터를 정정하고, 정정된 서브 유닛의 데이터를 상기 서브 페이지에 재기입(write-back)하는 스크러빙(scrubbing) 동작을 수행할 수 있다.
또한 에러 정정 회로(622)는 상기 스크러빙 동작을 수행하면서 상기 제1 유닛의 데이터가 에러를 포함하는 경우 에러 발생 신호를 제어 회로(6107)에 제공할 수 있다. 제어 회로(6107)는 상기 ECS 모드에서 메모리 영역의 일부 페이지들에 대하여 ECS 동작을 수행하여 일부 페이지들 각각의 에러 발생 횟수를 적어도 포함하는 에러 정보를 에러 로그 레지스터(623)에 기록할 수 있다.
도 20은 ECS 모드에서 도 2의 메모리 시스템을 나타낸다.
도 21은 도 20의 메모리 장치의 동작 방법을 나타내는 흐름도이다.
도 20 및 도 21을 참조하면, 본 발명의 실시예들에 따른 메모리 시스템(20)과 메모리 시스템의 동작 방법에서는, 메모리 컨트롤러(100)는 ECS 모드를 지시하는 커맨드(제1 커맨드, CMD)와 ECS 동작이 수행될 적어도 두 개의 페이지를 지정하는 어드레스(제1 어드레스, ADDR)를 반도체 메모리 장치(200)에 인가하여 반도체 메모리 장치(200a)를 ECS 모드로 진입시킬 수 있다(S710).
ECS 모드에서 반도체 메모리 장치(200a)의 제어 회로(210)는 어드레스(ADDR)가 지정하는 적어도 두 개의 페이지들에 대하여 상술한 ECC 디코딩 동작과 스크러빙 동작을 포함하는 ECS 동작이 수행(S720)되도록 에러 정정 회로(400)를 제어할 수 있다. 구체적으로, 제어 회로(210)는 상기 적어도 두 개의 페이지들 중 제1 페이지를 구성하는 서브 페이지들 각각으로부터 제1 유닛의 데이터를 독출하여 ECC 디코딩을 수행하고, 제1 유닛의 데이터가 에러를 포함하는 경우에 에러 발생 신호를 제어 회로(210)에 제공하고, 제1 유닛의 데이터의 에러를 정정하고 정정된 제1 유닛의 데이터를 해당 서브 페이지에 재기입할 수 있다. 제어 회로(210)는 상기 제1 페이지에 대한 상기 ECS 동작을 수행하면서, 상기 제1 페이지의 페이지 에러 정보를 에러 로그 레지스터(460)에 기록할 수 있다(S730).
상기 제어 회로(210)는 제1 페이지에 대한 상기 ECS 동작이 완료된 후에 상기 적어도 두 개의 페이지들 중 제2 페이지에 대하여 ECS 동작이 수행되도록 상기 에러 정정 회로(400)를 제어할 수 있다.
메모리 컨트롤러(100)는 상기 적어도 두 개의 페이지들에 대한 ECS 동작이 완료되어 에러 로그 레지스터(460)에 상기 적어도 두 개의 페이지들에 대한 페이지 에러 정보가 기록되면, 레지스터 독출 명령을 반도체 메모리 장치(200a)에 인가하고, 제어 회로(210)는 레지스터 독출 명령에 응답하여 에러 로그 레지스터(460)에 기록된 페이지 에러 정보를 에러 정보 신호(EIS)로서 메모리 컨트롤러(100)에 제공할 수 있다. 즉 메모리 컨트롤러(100)는 에러 로그 레지스터(460)에 기록된 에러 정보를 액세스할 수 있고, 반도체 메모리 장치(200a)는 에러 정보 신호(EIS)를 데이터 입출력 핀(203)을 통하여 메모리 컨트롤러(100)에 제공할 수 있다.
또한 제어 회로(210)는 상기 적어도 두 개의 페이지들에 대한 페이지 에러 정보를 에러 로그 레지스터(460)에 기록함에 있어, 적어도 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 핀(204)을 통하여 얼러트 신호(ALRT)를 정해진 인터벌 동안 하이 레벨로 유지하여 메모리 컨트롤러(100)에 상기 제1 상황을 통지할 수 있다(S740). 메모리 컨트롤러(100)는 얼러트 신호(ALRT)에 응답하여 스크러빙 커맨드를 반도체 메모리 장치(200a)에 발행하고(S750), 제어 회로(210)는 상기 하나의 페이지에 대하여 스크러빙 동작이 수행되도록 에러 정정 회로(400)를 제어할 수 있다. 이 경우에 제어 회로(210)는 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작이 연속적으로 수행되도록 에러 정정 회로(400)를 제어할 수 있다.
상기 적어도 두 개의 페이지들에 대한 ECS 동작이 완료된 후, 메모리 컨트롤러(100)는 반도체 메모리 장치(200a)에 다음 동작을 지시하는 커맨드(CMD)를 인가하거나(S760), 반도체 메모리 장치(200a)에 또 다른 ECS 모드를 지시하는 커맨드(제2 커맨드, CMD)와 ECS 동작이 수행될 적어도 두 개의 또 다른 페이지를 지정하는 어드레스(제2 어드레스, ADDR)를 반도체 메모리 장치(200)에 인가하여 반도체 메모리 장치(200a)를 ECS 모드로 진입시킬 수 있다.
도 22는 본 발명의 실시예에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 22를 참조하면, 메모리 시스템(700)은 메모리 모듈(710) 및 메모리 컨트롤러(720)를 포함할 수 있다. 메모리 모듈(710)은 모듈 보드(Module Board) 상에 장착되는 복수의 반도체 메모리 장치(730)들을 포함할 수 있다. 반도체 메모리 장치(730)들 각각은 도 3의 반도체 메모리 장치(200a)로 구현될 수 있다.
즉 반도체 메모리 장치(730)들 각각은 메모리 셀 어레이(731), 에러 정정 회로(732) 및 에러 로그 레지스터(733)를 포함하고, ECS 모드에서 메모리 셀 어레이(731)의 일부 페이지들에 대하여 ECS 동작을 수행하고, 일부 페이지들 각각의 에러 정보를 에러 정보 신호(EIS)로서 메모리 컨트롤러(720)에 제공하고, 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 경우, 얼러트 신호(ART)를 이용하여 이를 메모리 컨트롤러(720)에 통지할 수 있다. 메모리 컨트롤러(720)는 에러 정보 신호(EIS)에 기초하여 반도체 메모리 장치(730)들 각각에서 다른 페이지들보다 에러를 많이 포함하는 폴티(faulty) 페이지들의 에러 관리 정책을 결정할 수 있다. 또한 메모리 컨트롤러(720)는 얼러트 신호(ALRT)에 응답하여 스크러빙 커맨드를 해당하는 반도체 메모리 장치에 인가하여 해당 반도체 메모리 장치의 상기 하나의 페이지에 대한 스크러빙 동작이 즉시 수행되도록 할 수 있다.
또한 반도체 메모리 장치(730)들 각각에는 3차원 메모리 어레이가 제공될 수 있다. 상기 3차원 메모리 어레이는 실리콘 기판 상에 배치된 액티브 영역을 구비하는 하나 이상의 물리적 레벨의 메모리 셀 어레이들 및 상기 메모리 셀들의 동작과 관련된 회로들이 모놀리딕(monolithic) 방식으로 형성될 수 있다. 여기서 'monolithic'이라는 용어는 복수의 레이어들로 구성된 어레이의 각 레벨이 하위 레이어 위에 직접적으로 적층되는 것을 의미한다. 본 발명에 참조로서 포함되는 다음의 특허 문헌들은 상기 3차원 메모리 어레이 대한 적절한 구성들을 기술한다. 상기 3차원 메모리 어레이에서 워드라인들 및/또는 비트라인들이 레벨들 사이에서 공유된다. 상기 특허문헌들은 다음과 같다: 미국 등록 특허 7,679,133; 8,553,466; 8,654,587; 8,559,235; 및 미국 공개 특허 2011/0233648.
메모리 모듈(710)은 시스템 버스를 통해 메모리 컨트롤러(720)와 통신할 수 있다. 시스템 버스를 통하며 메인 데이터(MD), 커맨드/어드레스(CMD/ADDR) 및 클록 신호(CLK) 등이 메모리 모듈(710)과 메모리 컨트롤러(720) 사이에서 송수신될 수 있다. 또한 반도체 메모리 장치(730)들 각각은 상기 시스템 버스를 통하여 에러 정보 신호(EIS) 및 얼러트 신호(ALRT)를 메모리 컨트롤러(720)에 전송할 수 있다.
도 23은 본 발명의 실시예들에 따른 반도체 메모리 장치가 적용된 메모리 시스템 나타내는 블록도이다.
도 23을 참조하면, 메모리 시스템(800)은 메모리 모듈(810)는 메모리 컨트롤러(820)를 포함할 수 있다.
메모리 모듈(810)은 메모리 칩들(840) 및 제어 칩(830)을 포함할 수 있다. 메모리 칩들(810) 각각은 커맨드(CMD), 어드레스(ADDR) 및 클럭 신호(CLK)에 기초하여 데이터(MD)를 저장하고, 저장된 데이터(MD)를 메모리 컨트롤러(820)에 제공할 수 있다. 메모리 칩들(810) 각각은 도 3의 반도체 메모리 장치(200a)로 구현될 수 있다.
제어 칩(830)은 메모리 컨트롤러(820)로부터 전송되는 각종 신호에 응답하여, 메모리 칩들(830)을 제어할 수 있다. 예를 들어, 제어 칩(830)은 메모리 컨트롤러(820)로부터 전송되는 칩 선택 신호에 대응되는 메모리 칩을 활성화할 수 있다. 또한, 제어 칩(830)은 에러 정정 회로(831) 및 에러 로그 레지스터(833)를 포함할 수 있다. 제어 칩(830)은 각 메모리 칩들(840)에서 독출되는 데이터에 대한 ECC 디코딩 동작을 수행할 수 있다. 또한 제어 칩(830)은 ECS 모드에서 메모리 칩들(840) 중 선택된 메모리 칩의 일부 페이지들에 대하여 상술한 ECS 동작을 수행하고, 상기 일부 페이지들의 각각의 에러 정보를 에러 로그 레지스터(833)에 기록할 수 있다. 실시예에 있어서, 에러 로그 레지스터(833)는 메모리 칩들(840) 각각에 대하여 구비될 수 있다. 실시예에 있어서, 에러 로그 레지스터(833)는 메모리 칩들(840)에 대하여 하나만 구비될 수도 있다. 에러 로그 레지스터(833)가 하나만 구비되는 경우에, 에러 로그 레지스터(833)는 도 11의 에러 로그 레지스터(460)에 추가하여 선택된 메모리 칩을 나타내는 메모리 식별 정보가 기록되는 칼럼을 더 포함할 수 있다.
제어 칩(830)은 에러 로그 레지스터(833)에 기록된 메모리 칩들(840) 각각의 에러 정보를 에러 정보 신호(EIS)로서 메모리 컨트롤러(820)에 제공할 수 있다. 또한 제어 칩(830)은 선택된 메모리 칩의 에러 발생 횟수가 문턱 값에 도달하는 경우, 얼러트 신호(ALRT)를 이용하여 즉시 이를 통지할 수 있고, 메모리 컨트롤러(820)는 얼러트 신호(ALRT)에 응답하여 상기 메모리 칩에 스크러빙 커맨드를 즉시 인가할 수 있다.
메모리 컨트롤러(820)는 에러 정보 신호(EIS)에 기초하여 메모리 칩들(840)의 에러 관리 정책을 결정할 수 있다. 예를 들어, 메모리 컨트롤러(820)는 메모리 칩들(840) 중 하나의 메모리 칩의 에러가 관리할 수 없을 정도로 증가하는 경우에, 상기 메모리 칩을 칩-킬(chip-kill)할 수 있다.
도 24는 본 발명의 실시예들에 따른 반도체 메모리 장치를 컴퓨팅 시스템에 응용한 예를 나타내는 블록도이다.
도 24를 참조하면, 컴퓨팅 시스템(1100)은 프로세서(1110), 입출력 허브(1120), 입출력 컨트롤러 허브(1130), 적어도 하나의 메모리 모듈(1140) 및 그래픽 카드(1150)를 포함한다. 실시예에 따라, 컴퓨팅 시스템(1100)은 개인용 컴퓨터(Personal Computer; PC), 서버 컴퓨터(Server Computer), 워크스테이션(Workstation), 노트북(Laptop), 휴대폰(Mobile Phone), 스마트 폰(Smart Phone), 개인 정보 단말기(personal digital assistant; PDA), 휴대형 멀티미디어 플레이어(portable multimedia player; PMP), 디지털 카메라(Digital Camera), 디지털 TV(Digital Television), 셋-탑 박스(Set-Top Box), 음악 재생기(Music Player), 휴대용 게임 콘솔(portable game console), 네비게이션(Navigation) 시스템 등과 같은 임의의 컴퓨팅 시스템일 수 있다.
프로세서(1110)는 특정 계산들 또는 태스크들과 같은 다양한 컴퓨팅 기능들을 실행할 수 있다. 예를 들어, 프로세서(1110)는 마이크로프로세서 또는 중앙 처리 장치(Central Processing Unit; CPU)일 수 있다. 실시예에 따라, 프로세서(1110)는 하나의 프로세서 코어(Single Core)를 포함하거나, 복수의 프로세서 코어들(Multi-Core)을 포함할 수 있다. 예를 들어, 프로세서(1110)는 듀얼 코어(Dual-Core), 쿼드 코어(Quad-Core), 헥사 코어(Hexa-Core) 등의 멀티 코어(Multi-Core)를 포함할 수 있다. 또한, 도 21에는 하나의 프로세서(1110)를 포함하는 컴퓨팅 시스템(1100)이 도시되어 있으나, 실시예에 따라, 컴퓨팅 시스템(1100)은 복수의 프로세서들을 포함할 수 있다. 또한, 실시예에 따라, 프로세서(1110)는 내부 또는 외부에 위치한 캐시 메모리(Cache Memory)를 더 포함할 수 있다.
프로세서(1110)는 메모리 모듈(1140)의 동작을 제어하는 메모리 컨트롤러(1111)를 포함할 수 있다. 프로세서(1110)에 포함된 메모리 컨트롤러(1111)는 집적 메모리 컨트롤러(Integrated Memory Controller; IMC)라 불릴 수 있다. 메모리 컨트롤러(1111)와 메모리 모듈(1140) 사이의 메모리 인터페이스는 복수의 신호선들을 포함하는 하나의 채널로 구현되거나, 복수의 채널들로 구현될 수 있다. 또한, 각 채널에는 하나 이상의 메모리 모듈(1140)이 연결될 수 있다. 실시예에 따라, 메모리 컨트롤러(1111)는 입출력 허브(1120) 내에 위치할 수 있다. 메모리 컨트롤러(1111)를 포함하는 입출력 허브(1520)는 메모리 컨트롤러 허브(Memory Controller Hub; MCH)라 불릴 수 있다.
메모리 모듈(1140)은 메모리 컨트롤러(1111)로부터 제공된 데이터를 저장하는 반도체 메모리 장치들을 포함할 수 있다. 상기 반도체 메모리 장치들 각각은 도 2 내지 도 19를 참조하여 설명한 바와 같이, 제어 회로, 에러 정정 회로 및 에러 로그 레지스터를 포함하여 전술한 ECS 동작과 에러 로깅 동작을 수행하여 에러 정보 신호(EIS)와 얼러트 신호(ALRT)를 메모리 컨트롤러(1111)에 제공할 수 있다. 메모리 컨트롤러(1111)는 에러 정보 신호(EIS)에 기초하여 반도체 메모리 장치들에 대한 에러 관리 정책을 결정할 수 있다.
입출력 허브(1120)는 그래픽 카드(1150)와 같은 장치들과 프로세서(1110) 사이의 데이터 전송을 관리할 수 있다. 입출력 허브(1120)는 다양한 방식의 인터페이스를 통하여 프로세서(1510)에 연결될 수 있다. 예를 들어, 입출력 허브(1120)와 프로세서(1110)는, 프론트 사이드 버스(Front Side Bus; FSB), 시스템 버스(System Bus), 하이퍼트랜스포트(HyperTransport), 라이트닝 데이터 트랜스포트(Lightning Data Transport; LDT), 퀵패스 인터커넥트(QuickPath Interconnect; QPI), 공통 시스템 인터페이스(Common System Interface; CSI) 등의 다양한 표준의 인터페이스로 연결될 수 있다. 도 24에는 하나의 입출력 허브(1120)를 포함하는 컴퓨팅 시스템(1100)이 도시되어 있으나, 실시예에 따라, 컴퓨팅 시스템(1100)은 복수의 입출력 허브들을 포함할 수 있다.
입출력 허브(1120)는 장치들과의 다양한 인터페이스들을 제공할 수 있다. 예를 들어, 입출력 허브(1120)는 가속 그래픽 포트(Accelerated Graphics Port; AGP) 인터페이스, 주변 구성요소 인터페이스-익스프레스(Peripheral Component Interface-Express; PCIe), 통신 스트리밍 구조(Communications Streaming Architecture; CSA) 인터페이스 등을 제공할 수 있다.
그래픽 카드(1150)는 AGP 또는 PCIe를 통하여 입출력 허브(1520)와 연결될 수 있다. 그래픽 카드(1150)는 영상을 표시하기 위한 디스플레이 장치(미도시)를 제어할 수 있다. 그래픽 카드(1150)는 이미지 데이터 처리를 위한 내부 프로세서 및 내부 반도체 메모리 장치를 포함할 수 있다. 실시예에 따라, 입출력 허브(1120)는, 입출력 허브(1120)의 외부에 위치한 그래픽 카드(1150)와 함께, 또는 그래픽 카드(1150) 대신에 입출력 허브(1120)의 내부에 그래픽 장치를 포함할 수 있다. 입출력 허브(1520)에 포함된 그래픽 장치는 집적 그래픽(Integrated Graphics)이라 불릴 수 있다. 또한, 메모리 컨트롤러 및 그래픽 장치를 포함하는 입출력 허브(1120)는 그래픽 및 메모리 컨트롤러 허브(Graphics and Memory Controller Hub; GMCH)라 불릴 수 있다.
입출력 컨트롤러 허브(1130)는 다양한 시스템 인터페이스들이 효율적으로 동작하도록 데이터 버퍼링 및 인터페이스 중재를 수행할 수 있다. 입출력 컨트롤러 허브(1130)는 내부 버스를 통하여 입출력 허브(1120)와 연결될 수 있다. 예를 들어, 입출력 허브(1120)와 입출력 컨트롤러 허브(1130)는 다이렉트 미디어 인터페이스(Direct Media Interface; DMI), 허브 인터페이스, 엔터프라이즈 사우스브릿지 인터페이스(Enterprise Southbridge Interface; ESI), PCIe 등을 통하여 연결될 수 있다.
입출력 컨트롤러 허브(1530)는 주변 장치들과의 다양한 인터페이스들을 제공할 수 있다. 예를 들어, 입출력 컨트롤러 허브(1130)는 범용 직렬 버스(Universal Serial Bus; USB) 포트, 직렬 ATA(Serial Advanced Technology Attachment; SATA) 포트, 범용 입출력(General Purpose Input/Output; GPIO), 로우 핀 카운트(Low Pin Count; LPC) 버스, 직렬 주변 인터페이스(Serial Peripheral Interface; SPI), PCI, PCIe 등을 제공할 수 있다.
실시예에 따라, 프로세서(1110), 입출력 허브(1120) 및 입출력 컨트롤러 허브(1130)는 각각 분리된 칩셋들 또는 집적 회로들로 구현되거나, 프로세서(1110), 입출력 허브(1120) 또는 입출력 컨트롤러 허브(1130) 중 2 이상의 구성요소들이 하나의 칩셋으로 구현될 수 있다.
본 발명은 반도체 메모리 장치를 사용하는 시스템에 적용될 수 있다. 예를 들어, 본 발명은 휴대폰(Mobile Phone), 스마트 폰(Smart Phone), 개인 정보 단말기(personal digital assistant; PDA), 휴대형 멀티미디어 플레이어(portable multimedia player; PMP), 디지털 카메라(Digital Camera), 캠코더(Camcoder), 개인용 컴퓨터(Personal Computer; PC), 서버 컴퓨터(Server Computer), 워크스테이션(Workstation), 노트북(Laptop), 디지털 TV(Digital Television), 셋-탑 박스(Set-Top Box), 음악 재생기(Music Player), 휴대용 게임 콘솔(Portable Game Console), 네비게이션(Navigation) 시스템, 스마트 카드(Smart Card), 프린터(Printer) 등에 유용하게 이용될 수 있다.
상술한 바와 같이, 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 것이다.
100: 메모리 컨트롤러
200a: 반도체 메모리 장치
210: 제어 회로 290: 입출력 게이팅 회로
300: 메모리 셀 어레이 400: 에러 정정 회로
460: 에러 로그 레지스터
210: 제어 회로 290: 입출력 게이팅 회로
300: 메모리 셀 어레이 400: 에러 정정 회로
460: 에러 로그 레지스터
Claims (20)
- 복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함하는 메모리 셀 어레이;
에러 정정 회로;
에러 로그 레지스터; 및
외부의 메모리 컨트롤러로부터의 제1 커맨드와 적어도 하나의 제1 액세스 어드레스 응답하여 제p차 (p는 1 이상의 자연수) 에러 체크 및 스크럽(error check and scrub; 이하 'ECS') 모드에서 상기 적어도 하나의 액세스 어드레스가 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 상기 에러 정정 회로를 제어하는 제어 회로를 포함하고,
상기 제어 회로는 상기 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 상기 에러 로그 레지스터의 각 로우에 기록하는 에러 로깅 동작을 수행하는 반도체 메모리 장치. - 제1항에 있어서,
상기 제어 회로는 상기 제p차 ECS 모드에서 상기 일부 페이지들 중 제1 페이지를 구성하는 복수의 서브 페이지들 각각으로부터 메인 데이터와 패리티 데이터를 구비하는 제1 유닛의 데이터를 독출하여 상기 ECC 디코딩을 순차적으로 수행하도록 상기 에러 정정 회로를 제어하고,
상기 에러 정정 회로는 상기 제1 유닛의 데이터에 대하여 상기 ECC 디코딩을 수행한 후 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 에러 발생 신호를 상기 제어 회로에 제공하는 반도체 메모리 장치. - 제2항에 있어서,
상기 제어 회로는 상기 제1 유닛의 데이터가 에러를 포함하는 경우, 상기 에러를 정정하고, 상기 정정된 제1 유닛의 데이터를 상기 해당하는 서브 페이지에 재기입하는 스크러빙 동작을 수행하도록 상기 에러 정정 회로를 제어하는 반도체 메모리 장치. - 제2항에 있어서,
상기 제어 회로는 상기 에러 발생 신호를 카운팅하여 상기 제1 페이지에 대한 에러 발생 횟수를 적어도 포함하는 제1 페이지 에러 정보를 상기 에러 로그 레지스터에 기록하는 반도체 메모리 장치. - 제2항에 있어서,
상기 제어 회로는 상기 제p차 ECS 모드에서 상기 제1 페이지에 대한 상기 에러 로깅 동작이 완료되면, 상기 일부 페이지들 중 제2 페이지에 대하여 상기 ECC 동작을 수행하도록 상기 에러 정정 회로를 제어하고,
상기 제어 회로는 상기 제2 페이지에 대한 에러 발생 횟수를 적어도 포함하는 제2 페이지 에러 정보를 상기 에러 로그 레지스터에 기록하는 반도체 메모리 장치. - 제1항에 있어서,
상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 얼러트 신호를 이용하여 상기 메모리 컨트롤러에 상기 제1 상황을 즉시 통지하고,
상기 메모리 컨트롤러는 상기 얼러트 신호에 응답하여 스크러빙 커맨드를 상기 반도체 메모리 장치에 인가하고,
상기 제어 회로는 상기 하나의 페이지에 대하여 스크러빙 동작이 수행되도록 상기 에러 정정 회로를 제어하는 반도체 메모리 장치. - 제6항에 있어서,
상기 제어 회로는 상기 제1 상황이 발생한 경우, 상기 얼러트 신호를 미리 정해진 인터벌 동안 하이 레벨로 유지시키는 반도체 메모리 장치. - 제6항에 있어서,
상기 제어 회로는 상기 얼러트 신호를 전용 핀을 통하여 상기 메모리 컨트롤러에 전달하는 반도체 메모리 장치. - 제6항에 있어서,
상기 제어 회로는 상기 스크러빙 커맨드에 응답하여 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작을 연속적으로 수행하도록 상기 에러 정정 회로를 제어하는 반도체 메모리 장치. - 제1항에 있어서, 상기 에러 로그 레지스터는
상기 일부 페이지들 각각의 어드레스 정보가 기록되는 제1 칼럼;
상기 일부 페이지들 각각의 에러 발생 횟수가 기록되는 제2 칼럼;
상기 일부 페이지들 각각에서 상기 에러를 포함하는 서브 페이지들의 수가 기록되는 제3 칼럼;
상기 일부 페이지들 각각의 에러 정보가 상기 p차 ECS 모드에서 최초로 기록되는지 여부를 나타내는 플래그 신호가 기록되는 제4 칼럼; 및
상기 일부 페이지들 각각의 에러 발생 횟수에 기초하여 상기 에러 발생 횟수의 순위를 나타내는 랭킹 정보가 기록되는 제5 칼럼을 포함하는 반도체 메모리 장치. - 제10항에 있어서,
상기 어드레스 정보는 상기 일부 페이지들 각각의 뱅크 그룹 어드레스, 뱅크 어드레스 및 로우 어드레스를 포함하는 반도체 메모리 장치. - 제10항에 있어서,
상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 정보가 상기 p차 ECS 모드에서 상기 에러 로그 레지스터에 처음으로 기록되는 경우 상기 제4 칼럼에 기록되는 플래그 신호의 레벨을 제1 레벨로 기록하는 반도체 메모리 장치. - 제10항에 있어서,
상기 제1 커맨드와 상기 제1 액세스 어드레스에 기초하는 상기 제p차 ECS 모드에서 상기 에러 로깅 동작이 완료된 후,
상기 제어 회로는 상기 메모리 컨트롤러로부터의 제2 커맨드와 적어도 하나의 제2 액세스 어드레스에 응답하여 제(p+1)차 ECS 모드에서 상기 제2 액세스 어드레스가 지정하는 다른 일부 페이지들에 대하여 상기 ECC 디코딩 동작을 수행하도록 상기 에러 정정 회로를 제어하여 상기 에러 로깅 동작을 수행하고,
상기 에러 로그 레지스터는 상기 제p차 ECS 모드와 상기 제(p+1)차 ECS 모드에서 지정되는 동일한 페이지의 에러 발생 횟수의 변화가 기록되는 제6 칼럼을 더 포함하는 반도체 메모리 장치. - 제1항에 있어서,
상기 제어 회로는 상기 메모리 컨트롤러로부터의 레지스터 독출 커맨드에 응답하여 상기 에러 로그 레지스터에 기록되는 상기 일부 페이지들의 상기 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 제공하고,
상기 제어 회로는 상기 에러 정보 신호를 데이터 입출력 핀을 통하여 상기 메모리 컨트롤러에 제공하는 반도체 메모리 장치. - 제1항에 있어서,
상기 메모리 셀 어레이는 3차원 메모리 셀 어레이이고,
상기 뱅크 어레이들 각각은 동적 메모리 셀들 또는 저항성 메모리 셀들을 구비하는 반도체 메모리 장치. - 적어도 하나의 반도체 메모리 장치; 및
상기 적어도 하나의 반도체 메모리 장치를 제어하는 메모리 컨트롤러를 포함하고,
상기 적어도 하나의 반도체 메모리 장치는
복수의 페이지들을 각각 구비하는 복수의 뱅크 어레이들을 포함하는 메모리 셀 어레이;
에러 정정 회로;
에러 로그 레지스터; 및
상기 메모리 컨트롤러로부터의 제1 커맨드와 적어도 하나의 제1 액세스 어드레스 응답하여 제p차 (p는 1 이상의 자연수) 에러 체크 및 스크럽(error check and scrub; 이하 'ECS') 모드에서 상기 적어도 하나의 액세스 어드레스 지정하는 일부 페이지들 각각의 독출 데이터에 대하여 (에러 정정 코드(error correction code; 이하 'ECC') 디코딩을 순차적으로 수행하여 에러 발생 신호를 제공하도록 상기 에러 정정 회로를 제어하는 제어 회로를 포함하고,
상기 제어 회로는 상기 일부 페이지들 각각에 대한 에러 발생 횟수를 적어도 포함하는 페이지 에러 정보를 상기 에러 로그 레지스터의 각 로우에 기록하는 에러 로깅 동작을 수행하는 메모리 시스템. - 제16항에 있어서, 상기 에러 로그 레지스터는
상기 일부 페이지들 각각의 어드레스 정보가 기록되는 제1 칼럼;
상기 일부 페이지들 각각의 에러 발생 횟수가 기록되는 제2 칼럼;
상기 일부 페이지들 각각에서 상기 에러를 포함하는 서브 페이지들의 수가 기록되는 제3 칼럼;
상기 일부 페이지들 각각의 에러 정보가 상기 p차 ECS 모드에서 최초로 기록되는지 여부를 나타내는 제4 칼럼; 및
상기 복수의 페이지들 각각의 에러 발생 횟수에 기초하여 에러 발생 횟수의 순위를 나타내는 랭킹 정보가 기록되는 제5 칼럼을 포함하는 메모리 시스템. - 제16항에 있어서,
상기 제어 회로는 상기 메모리 컨트롤러로부터의 레지스터 독출 커맨드에 응답하여 상기 에러 로그 레지스터에 기록되는 상기 일부 페이지들의 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 제공하고,
상기 메모리 컨트롤러는
상기 에러 정보 신호를 저장하는 레지스터; 및
상기 레지스터에 저장된 에러 정보 신호에 기초하여 상기 반도체 메모리 장치의 동작의 에러 관리 정책을 결정하는 제어 로직을 포함하고,
상기 제어 회로는 상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우, 얼러트 신호를 이용하여 상기 메모리 컨트롤러의 상기 제어 로직에 상기 제1 상황을 즉시 통지하는 메모리 시스템. - 반도체 메모리 장치와 상기 반도체 메모리 장치를 제어하는 메모리 컨트롤러를 구비하는 메모리 시스템의 동작 방법으로서,
상기 메모리 컨트롤러에서 커맨드와 액세스 어드레스를 생성하는 단계;
상기 반도체 메모리 장치에서 상기 커맨드에 응답하여 에러 체크 및 스크럽(error check and scrub, 이하 'ECS) 모드에서, 상기 액세스 어드레스가 지정하는 메모리 셀 어레이의 일부 페이지들에 대하여 에러 정정 코드(error correction code; 이하 ECC) 디코딩을 수행하여 에러 발생 신호를 생성하는 단계;
상기 반도체 메모리 장치에서 상기 에러 발생 신호에 기초하여 상기 일부 페이지들 각각의 페이지 에러 정보를 상기 반도체 메모리 장치의 에러 로그 레지스터에 기록하는 단계; 및
상기 페이지 에러 정보를 에러 정보 신호로서 상기 메모리 컨트롤러에 전송하는 단계를 포함하는 메모리 시스템의 동작 방법. - 제19항에 있어서,
상기 일부 페이지들 중 하나의 페이지의 에러 발생 횟수가 문턱 값에 도달하는 제1 상황이 발생한 경우,
상기 반도체 메모리 장치에서 얼러트 신호를 일정 인터벌 동안 하이 레벨로 유지하는 단계; 및
상기 얼러트 신호에 응답하여 상기 메모리 컨트롤러에서 스크러빙 커맨드를 상기 반도체 메모리 장치에 인가하는 단계를 더 포함하고,
상기 반도체 메모리 장치는 상기 스크러빙 커맨드에 응답하여 상기 하나의 페이지의 서브 페이지들에 대하여 상기 스크러빙 동작을 연속적으로 수행하는 메모리 시스템의 동작 방법.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150160106A KR102435181B1 (ko) | 2015-11-16 | 2015-11-16 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 |
US15/238,216 US10037244B2 (en) | 2015-11-16 | 2016-08-16 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
CN201610991835.7A CN106971758B (zh) | 2015-11-16 | 2016-11-10 | 半导体存储装置、存储系统以及操作存储系统的方法 |
US16/015,534 US10705908B2 (en) | 2015-11-16 | 2018-06-22 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
US16/894,115 US10929225B2 (en) | 2015-11-16 | 2020-06-05 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
US17/137,535 US11231996B2 (en) | 2015-11-16 | 2020-12-30 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
US17/562,505 US11593199B2 (en) | 2015-11-16 | 2021-12-27 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
US18/164,349 US11994948B2 (en) | 2015-11-16 | 2023-02-03 | Semiconductor memory devices, memory systems including the same and methods of operating memory systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150160106A KR102435181B1 (ko) | 2015-11-16 | 2015-11-16 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170056823A true KR20170056823A (ko) | 2017-05-24 |
KR102435181B1 KR102435181B1 (ko) | 2022-08-23 |
Family
ID=58691928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150160106A KR102435181B1 (ko) | 2015-11-16 | 2015-11-16 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 |
Country Status (3)
Country | Link |
---|---|
US (6) | US10037244B2 (ko) |
KR (1) | KR102435181B1 (ko) |
CN (1) | CN106971758B (ko) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190060258A (ko) * | 2017-11-24 | 2019-06-03 | 에스케이하이닉스 주식회사 | 에러스크럽방법 및 이를 이용한 반도체모듈 |
KR20190094497A (ko) * | 2018-02-05 | 2019-08-14 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 |
KR20190112414A (ko) * | 2018-03-26 | 2019-10-07 | 에스케이하이닉스 주식회사 | 메모리 장치와 메모리 컨트롤러를 포함하는 메모리 시스템, 및 그의 동작방법 |
US10613928B2 (en) | 2017-12-19 | 2020-04-07 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
KR20200144724A (ko) * | 2019-06-19 | 2020-12-30 | 삼성전자주식회사 | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 |
US11145351B2 (en) | 2019-11-07 | 2021-10-12 | SK Hynix Inc. | Semiconductor devices |
US11164651B2 (en) | 2019-11-07 | 2021-11-02 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11249843B2 (en) | 2019-11-07 | 2022-02-15 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11327838B2 (en) | 2018-04-20 | 2022-05-10 | Samsung Electronics Co., Ltd. | Memory device having error correction function and operating method thereof |
US11354189B2 (en) | 2019-11-07 | 2022-06-07 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11734108B2 (en) | 2021-06-21 | 2023-08-22 | SK Hynix Inc. | Semiconductor memory apparatus and operation method of the semiconductor memory apparatus, and memory system having the semiconductor memory apparatus |
US11797215B2 (en) | 2021-12-09 | 2023-10-24 | SK Hynix Inc. | Memory device and memory system performing error check and scrub operation |
US12007834B2 (en) | 2021-11-17 | 2024-06-11 | SK Hynix Inc. | Semiconductor device |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10140170B2 (en) * | 2015-10-26 | 2018-11-27 | International Business Machines Corporation | Reporting errors to a data storage device |
KR102435181B1 (ko) | 2015-11-16 | 2022-08-23 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 |
US10798145B1 (en) * | 2017-04-25 | 2020-10-06 | Benjamin J. Garney | Analyzing data streams |
US10141042B1 (en) * | 2017-05-23 | 2018-11-27 | Micron Technology, Inc. | Method and apparatus for precharge and refresh control |
US10346244B2 (en) | 2017-08-10 | 2019-07-09 | Micron Technology, Inc. | Shared address counters for multiple modes of operation in a memory device |
US10379937B2 (en) * | 2017-10-31 | 2019-08-13 | Stmicroelectronics International N.V. | Memory architecture including response manager for error correction circuit |
KR20190075334A (ko) * | 2017-12-21 | 2019-07-01 | 에스케이하이닉스 주식회사 | 반도체 장치 |
US11073553B2 (en) * | 2017-12-29 | 2021-07-27 | Texas Instruments Incorporated | Dynamic generation of ATPG mode signals for testing multipath memory circuit |
KR102469098B1 (ko) * | 2018-03-21 | 2022-11-23 | 에스케이하이닉스 주식회사 | 불휘발성 메모리 장치, 불휘발성 메모리 장치의 동작 방법 및 이를 포함하는 데이터 저장 장치 |
KR102570454B1 (ko) * | 2018-04-06 | 2023-08-25 | 에스케이하이닉스 주식회사 | 반도체 메모리 장치 및 그의 동작 방법 |
KR20200018156A (ko) * | 2018-08-10 | 2020-02-19 | 에스케이하이닉스 주식회사 | 메모리장치에 대한 에러정정코드 기능을 갖는 메모리 시스템 및 그 운영방법 |
KR102657783B1 (ko) * | 2018-10-12 | 2024-04-15 | 수퍼멤, 인크. | 오류 정정 및 데이터 클리닝 회로가 구비된 메모리 시스템 |
US10957413B2 (en) | 2018-10-31 | 2021-03-23 | Micron Technology, Inc. | Shared error check and correct logic for multiple data banks |
KR102599047B1 (ko) * | 2018-11-13 | 2023-11-06 | 삼성전자주식회사 | 데이터 신뢰성을 향상한 메모리 컨트롤러, 이를 포함하는 메모리 시스템 및 메모리 컨트롤러의 동작방법 |
KR20200056732A (ko) * | 2018-11-15 | 2020-05-25 | 에스케이하이닉스 주식회사 | 반도체장치 및 반도체시스템 |
CN111383703B (zh) * | 2018-12-30 | 2022-07-01 | 北京兆易创新科技股份有限公司 | 非易失性存储器及其操作方法 |
KR20210014363A (ko) * | 2019-07-30 | 2021-02-09 | 에스케이하이닉스 주식회사 | 저장 장치 및 그 동작 방법 |
KR20210026201A (ko) * | 2019-08-29 | 2021-03-10 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 이의 리페어 제어 방법 |
US11768701B2 (en) * | 2019-09-17 | 2023-09-26 | Western Digital Technologies, Inc. | Exception analysis for data storage devices |
KR20210063561A (ko) * | 2019-11-25 | 2021-06-02 | 삼성전자주식회사 | 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법 |
KR20210088917A (ko) * | 2020-01-07 | 2021-07-15 | 삼성전자주식회사 | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 |
US11221913B2 (en) | 2020-03-11 | 2022-01-11 | Micron Technology, Inc. | Error check and scrub for semiconductor memory device |
KR20220021097A (ko) | 2020-08-13 | 2022-02-22 | 삼성전자주식회사 | 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법 |
KR20220039432A (ko) * | 2020-09-22 | 2022-03-29 | 삼성전자주식회사 | 반도체 메모리 장치 및 반도체 메모리 장치의 동작 방법 |
US11803180B2 (en) | 2020-10-15 | 2023-10-31 | Ethernovia Inc. | Determining diagnostic coverage for achieving functional safety |
US11734966B1 (en) * | 2020-10-15 | 2023-08-22 | Ethernovia Inc. | Recursive system layer analysis for achieving functional safety |
KR20220081644A (ko) | 2020-12-09 | 2022-06-16 | 삼성전자주식회사 | 메모리 장치 및 이를 포함하는 메모리 시스템 |
KR20220090794A (ko) | 2020-12-23 | 2022-06-30 | 삼성전자주식회사 | 메모리 장치, 그것을 제어하는 제어기, 그것을 갖는 메모리 시스템 및 그것의 동작 방법 |
CN112582017B (zh) * | 2020-12-30 | 2024-08-13 | 东芯半导体股份有限公司 | 半导体存储装置及其测试方法 |
US11579971B2 (en) * | 2021-07-14 | 2023-02-14 | Micron Technology, Inc. | Apparatuses, systems, and methods for forced error check and scrub readouts |
KR20230030795A (ko) * | 2021-08-26 | 2023-03-07 | 삼성전자주식회사 | 메모리 컨트롤러 및 이를 포함하는 메모리 장치 |
US12079068B2 (en) * | 2021-08-27 | 2024-09-03 | Micron Technology, Inc. | Error log indication via error control information |
US11605441B1 (en) * | 2021-08-30 | 2023-03-14 | Samsung Electronics Co., Ltd. | Memory systems having memory devices therein with enhanced error correction capability and methods of operating same |
US12094548B1 (en) * | 2023-04-13 | 2024-09-17 | Synopsys, Inc. | Diagnosing faults in memory periphery circuitry |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120173826A1 (en) * | 2009-09-25 | 2012-07-05 | Fujitsu Limited | Memory system and method for controlling memory system |
KR20120136674A (ko) * | 2011-06-09 | 2012-12-20 | 삼성전자주식회사 | 에러 정정회로를 구비한 온 칩 데이터 스크러빙 장치 및 방법 |
KR20150084244A (ko) * | 2014-01-13 | 2015-07-22 | 삼성전자주식회사 | 메모리 장치, 메모리 시스템 및 메모리 장치의 동작 방법 |
US20150212886A1 (en) * | 2014-01-30 | 2015-07-30 | International Business Machines Corporation | Error feedback and logging with memory on-chip error checking and correcting (ecc) |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134616A (en) | 1990-02-13 | 1992-07-28 | International Business Machines Corporation | Dynamic ram with on-chip ecc and optimized bit and word redundancy |
US5127014A (en) | 1990-02-13 | 1992-06-30 | Hewlett-Packard Company | Dram on-chip error correction/detection |
US5311520A (en) * | 1991-08-29 | 1994-05-10 | At&T Bell Laboratories | Method and apparatus for programmable memory control with error regulation and test functions |
DE69827949T2 (de) * | 1997-07-28 | 2005-10-27 | Intergraph Hardware Technologies Co., Las Vegas | Gerät und verfahren um speicherfehler zu erkennen und zu berichten |
JP4111762B2 (ja) | 2002-07-03 | 2008-07-02 | 株式会社ルネサステクノロジ | 半導体記憶装置 |
US7447950B2 (en) | 2003-05-20 | 2008-11-04 | Nec Electronics Corporation | Memory device and memory error correction method |
US7328377B1 (en) * | 2004-01-27 | 2008-02-05 | Altera Corporation | Error correction for programmable logic integrated circuits |
TWI309768B (en) | 2005-09-06 | 2009-05-11 | Realtek Semiconductor Corp | Error correction apparatus capable of raising memory bandwidth utilization efficiency and related method thereof |
US7861138B2 (en) * | 2006-12-05 | 2010-12-28 | Qimonda Ag | Error correction in memory devices |
KR100882484B1 (ko) * | 2007-04-10 | 2009-02-09 | 삼성전자주식회사 | 에러 검출 기능을 가지는 반도체 메모리 장치, 이를 구비한메모리 시스템 및 반도체 메모리 장치의 데이터 출력 방법 |
KR101413736B1 (ko) * | 2007-09-13 | 2014-07-02 | 삼성전자주식회사 | 향상된 신뢰성을 갖는 메모리 시스템 및 그것의웨어-레벨링 기법 |
TWI473117B (zh) * | 2008-06-04 | 2015-02-11 | A Data Technology Co Ltd | 具資料修正功能之快閃記憶體儲存裝置 |
US8533564B2 (en) | 2009-12-23 | 2013-09-10 | Sandisk Technologies Inc. | System and method of error correction of control data at a memory device |
KR101623119B1 (ko) * | 2010-02-01 | 2016-05-20 | 삼성전자주식회사 | 솔리드 스테이트 드라이브의 에러 제어 방법 |
US8438344B2 (en) * | 2010-03-12 | 2013-05-07 | Texas Instruments Incorporated | Low overhead and timing improved architecture for performing error checking and correction for memories and buses in system-on-chips, and other circuits, systems and processes |
CN102693760B (zh) * | 2011-03-24 | 2015-07-15 | 扬智科技股份有限公司 | Nand快闪存储器的错误校正方法 |
US8751905B2 (en) | 2011-09-16 | 2014-06-10 | Avalanche Technology, Inc. | Memory with on-chip error correction |
KR20130049332A (ko) | 2011-11-04 | 2013-05-14 | 삼성전자주식회사 | 메모리 시스템 및 그것의 동작 방법 |
CN103197984B (zh) * | 2012-01-10 | 2016-03-09 | 炬芯(珠海)科技有限公司 | 一种对数据进行查错的方法和装置 |
US8799569B2 (en) * | 2012-04-17 | 2014-08-05 | International Business Machines Corporation | Multiple enhanced catalog sharing (ECS) cache structure for sharing catalogs in a multiprocessor system |
US9152571B2 (en) * | 2012-07-31 | 2015-10-06 | Ati Technologies Ulc | All invalidate approach for memory management units |
US8760921B2 (en) * | 2012-08-28 | 2014-06-24 | Kabushiki Kaisha Toshiba | Storage device and control method of nonvolatile memory |
US9009566B2 (en) * | 2012-09-12 | 2015-04-14 | Macronix International Co., Ltd. | Outputting information of ECC corrected bits |
US8972826B2 (en) | 2012-10-24 | 2015-03-03 | Western Digital Technologies, Inc. | Adaptive error correction codes for data storage systems |
KR102143517B1 (ko) * | 2013-02-26 | 2020-08-12 | 삼성전자 주식회사 | 에러 정정회로를 포함하는 반도체 메모리 장치 및 반도체 메모리 장치의 동작방법 |
TWI533311B (zh) * | 2013-07-17 | 2016-05-11 | 慧榮科技股份有限公司 | 快閃記憶體裝置及其運作方法 |
US9348697B2 (en) * | 2013-09-10 | 2016-05-24 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
US9501352B2 (en) * | 2014-03-05 | 2016-11-22 | Kabushiki Kaisha Toshiba | Memory device |
US10002044B2 (en) * | 2014-08-19 | 2018-06-19 | Samsung Electronics Co., Ltd. | Memory devices and modules |
KR20170023249A (ko) * | 2015-08-19 | 2017-03-03 | 에스케이하이닉스 주식회사 | 메모리 장치 및 메모리 장치의 동작 방법 |
KR102435181B1 (ko) | 2015-11-16 | 2022-08-23 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법 |
-
2015
- 2015-11-16 KR KR1020150160106A patent/KR102435181B1/ko active IP Right Grant
-
2016
- 2016-08-16 US US15/238,216 patent/US10037244B2/en active Active
- 2016-11-10 CN CN201610991835.7A patent/CN106971758B/zh active Active
-
2018
- 2018-06-22 US US16/015,534 patent/US10705908B2/en active Active
-
2020
- 2020-06-05 US US16/894,115 patent/US10929225B2/en active Active
- 2020-12-30 US US17/137,535 patent/US11231996B2/en active Active
-
2021
- 2021-12-27 US US17/562,505 patent/US11593199B2/en active Active
-
2023
- 2023-02-03 US US18/164,349 patent/US11994948B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120173826A1 (en) * | 2009-09-25 | 2012-07-05 | Fujitsu Limited | Memory system and method for controlling memory system |
KR20120136674A (ko) * | 2011-06-09 | 2012-12-20 | 삼성전자주식회사 | 에러 정정회로를 구비한 온 칩 데이터 스크러빙 장치 및 방법 |
KR20150084244A (ko) * | 2014-01-13 | 2015-07-22 | 삼성전자주식회사 | 메모리 장치, 메모리 시스템 및 메모리 장치의 동작 방법 |
US20150212886A1 (en) * | 2014-01-30 | 2015-07-30 | International Business Machines Corporation | Error feedback and logging with memory on-chip error checking and correcting (ecc) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190060258A (ko) * | 2017-11-24 | 2019-06-03 | 에스케이하이닉스 주식회사 | 에러스크럽방법 및 이를 이용한 반도체모듈 |
US10613928B2 (en) | 2017-12-19 | 2020-04-07 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
KR20190094497A (ko) * | 2018-02-05 | 2019-08-14 | 삼성전자주식회사 | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 반도체 메모리 장치의 동작 방법 |
KR20190112414A (ko) * | 2018-03-26 | 2019-10-07 | 에스케이하이닉스 주식회사 | 메모리 장치와 메모리 컨트롤러를 포함하는 메모리 시스템, 및 그의 동작방법 |
US11327838B2 (en) | 2018-04-20 | 2022-05-10 | Samsung Electronics Co., Ltd. | Memory device having error correction function and operating method thereof |
KR20200144724A (ko) * | 2019-06-19 | 2020-12-30 | 삼성전자주식회사 | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 |
US11164651B2 (en) | 2019-11-07 | 2021-11-02 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11249843B2 (en) | 2019-11-07 | 2022-02-15 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11145351B2 (en) | 2019-11-07 | 2021-10-12 | SK Hynix Inc. | Semiconductor devices |
US11354189B2 (en) | 2019-11-07 | 2022-06-07 | SK Hynix Inc. | Semiconductor devices and semiconductor systems including the same |
US11734108B2 (en) | 2021-06-21 | 2023-08-22 | SK Hynix Inc. | Semiconductor memory apparatus and operation method of the semiconductor memory apparatus, and memory system having the semiconductor memory apparatus |
US12007834B2 (en) | 2021-11-17 | 2024-06-11 | SK Hynix Inc. | Semiconductor device |
US11797215B2 (en) | 2021-12-09 | 2023-10-24 | SK Hynix Inc. | Memory device and memory system performing error check and scrub operation |
Also Published As
Publication number | Publication date |
---|---|
US20180322008A1 (en) | 2018-11-08 |
US20170139771A1 (en) | 2017-05-18 |
US11994948B2 (en) | 2024-05-28 |
US10929225B2 (en) | 2021-02-23 |
US20210149764A1 (en) | 2021-05-20 |
CN106971758A (zh) | 2017-07-21 |
KR102435181B1 (ko) | 2022-08-23 |
US11231996B2 (en) | 2022-01-25 |
US20200301779A1 (en) | 2020-09-24 |
US10705908B2 (en) | 2020-07-07 |
US20230185664A1 (en) | 2023-06-15 |
CN106971758B (zh) | 2022-05-03 |
US11593199B2 (en) | 2023-02-28 |
US20220121518A1 (en) | 2022-04-21 |
US10037244B2 (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10929225B2 (en) | Semiconductor memory devices, memory systems including the same and methods of operating memory systems | |
US10198221B2 (en) | Methods of operating semiconductor memory devices with selective write-back of data for error scrubbing and related devices | |
KR102434053B1 (ko) | 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 이의 동작 방법 | |
US10156995B2 (en) | Semiconductor memory devices and methods of operating the same | |
KR102324769B1 (ko) | 반도체 메모리 장치의 에러 정정 회로, 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 | |
KR102238706B1 (ko) | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 | |
US10127102B2 (en) | Semiconductor memory devices and memory systems including the same | |
US10404286B2 (en) | Memory modules, memory systems including the same and methods of operating memory systems | |
KR102178137B1 (ko) | 반도체 메모리 장치, 이의 에러 정정 방법 및 이를 포함하는 메모리 시스템 | |
US10423483B2 (en) | Semiconductor memory device and method for controlling write timing of parity data | |
US20180159558A1 (en) | Error detection code generation circuits of semiconductor devices, memory controllers including the same and semiconductor memory devices including the same | |
KR20170045803A (ko) | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 | |
KR20170014109A (ko) | 반도체 메모리 장치 및 이를 포함하는 메모리 시스템 | |
US10037817B2 (en) | Semiconductor memory devices and memory systems including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |