KR20160143851A - 열류 분포 측정 장치 - Google Patents

열류 분포 측정 장치 Download PDF

Info

Publication number
KR20160143851A
KR20160143851A KR1020167032389A KR20167032389A KR20160143851A KR 20160143851 A KR20160143851 A KR 20160143851A KR 1020167032389 A KR1020167032389 A KR 1020167032389A KR 20167032389 A KR20167032389 A KR 20167032389A KR 20160143851 A KR20160143851 A KR 20160143851A
Authority
KR
South Korea
Prior art keywords
heat flow
flow distribution
sensor
sensor module
heat
Prior art date
Application number
KR1020167032389A
Other languages
English (en)
Other versions
KR101833278B1 (ko
Inventor
요시히코 시라이시
아츠시 사카이다
노리오 고우코
도시히사 다니구치
게이지 오카모토
Original Assignee
가부시키가이샤 덴소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 덴소 filed Critical 가부시키가이샤 덴소
Publication of KR20160143851A publication Critical patent/KR20160143851A/ko
Application granted granted Critical
Publication of KR101833278B1 publication Critical patent/KR101833278B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • H01L35/32
    • H01L35/34
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

열류 분포 측정 장치는 열가소성 수지로 구성된 절연층(100, 110, 120)이 복수 적층되고, 일면(2a)과 그 반대측의 타면(2b)을 갖는 1개의 다층 기판과, 다층 기판의 내부에 형성된 복수의 열류 센서부(10)를 갖는 센서 모듈(2)을 구비한다. 복수의 열류 센서부(10)는 각각 열전 변환 소자로 구성되어 있고, 전기적으로 독립되어 있다. 연산부(3)는 복수의 열류 센서부(10)의 각각에서 발생한 기전력에 기초하여 열류 분포를 연산한다. 복수의 열전 변환 소자는 1개의 다층 기판의 내부에 형성되는 것이기 때문에 다층 기판을 제조하는 동일한 제조 공정으로 제조된다. 이 때문에, 열전 변환 소자의 성능 개체차를 작게 억제할 수 있어서, 열류 분포를 고정밀도로 측정할 수 있다.

Description

열류 분포 측정 장치{HEAT FLOW DISTRIBUTION MEASUREMENT DEVICE}
관련 출원의 상호 참조
본 출원은 2014년 6월 3일에 출원된 일본 출원 번호 제2014-114827호 및 2015년 5월 14일에 출원된 일본 출원 번호 제2015-99314호에 기초하는 것으로, 여기에 그 기재 내용을 원용한다.
본 개시는 열류 분포 측정 장치에 관한 것이다.
열류를 검출하는 열류 센서로서, 특허문헌 1에 기재된 것이 있다. 이 열류 센서는 열전 변환 소자를 이용한 것이다. 구체적으로는, 절연 기재에 복수의 관통 구멍이 형성되어 있고, 또한 복수의 관통 구멍에 이종 금속 재료의 제 1, 제 2 도전성 금속이 매립되고, 제 1, 제 2 도전성 금속이 번갈아 직렬 접속된 것이다.
특허문헌 1: 일본국 특허 공개 제2012-255717호 공보
예를 들면, 어느 플레이트 형상 히터가 어떠한 열에너지(열류) 분포로 가열하는지 알고 싶은 경우가 있다. 또한, 프린트 배선 기판 등에 설치된 방열판의 방열 분포를 알고 싶은 경우가 있다.
히터나 방열판 등의 측정 대상물의 열류 분포를 측정하고 싶은 경우에는, 상기한 열류 센서를 복수 이용하여 열류 분포를 측정하는 것이 생각된다. 예를 들면, 측정 대상물로부터 이격된 피가열체의 표면에 복수의 열류 센서를 설치하거나, 측정 대상물에 복수의 열류 센서를 부착하여 측정하는 것이 생각된다.
그러나 별개체로서 제조된 복수의 열류 센서는 성능에 개체차가 있기 때문에 열류 분포를 고정밀도로 측정하는 것이 곤란했다.
또한, 서모그래피 장치를 이용하여 열분포를 측정하는 방법이 있지만, 서모그래피로 측정할 수 있는 것은 적외선 파장으로부터 알 수 있는 표면 온도의 분포이다. 표면 온도의 분포는 열류 분포는 아니기 때문에 표면 온도의 분포를 열류 분포로 변환하는 데는, 여러 가지 요소를 계산에 넣어서 해석할 필요가 있다. 이 때문에, 이 방법으로도 열류 분포를 고정밀도로 측정하는 것이 곤란하다.
본 개시는 열류 분포를 고정밀도로 측정할 수 있는 열류 분포 측정 장치를 제공하는 것을 목적으로 한다.
본 개시의 제 1 양태에 따르면, 열류 분포 측정 장치는 열가소성 수지로 구성된 절연층이 복수 적층되고, 일면과 그 반대측의 타면을 갖는 1개의 다층 기판과, 다층 기판의 내부에 형성된 복수의 열류 센서부를 갖는 센서 모듈을 구비한다. 복수의 열류 센서부는 각각 전기적으로 독립된 열전 변환 소자로 구성되어 있고, 열류 분포의 계측 대상물에 일면을 대향시켜서 센서 모듈이 배치되었을 때에 각각의 열전 변환 소자에 의하여 일면에 수직인 방향에서 다층 기판의 내부를 통과하는 열류에 따른 전기적인 출력을 발생한다.
본 개시의 제 2 양태에 따르면, 제 1 양태에 관련되는 열류 분포 측정 장치에 있어서, 복수의 열류 센서부의 각각에서 발생한 전기적인 출력에 기초하여 열류 분포를 연산하는 연산부를 더 구비한다.
상기 제 1, 제 2 양태에 관련되는 열류 분포 측정 장치에서는 각 열류 센서부를 구성하는 열전 변환 소자는 1개의 다층 기판의 내부에 형성되는 것이기 때문에 다층 기판을 제조하는 동일한 제조 공정으로 제조된다. 이 때문에, 복수의 열류 센서가 별개체로서 제조되는 경우와 비교하여 각 열전 변환 소자의 성능 개체차를 작게 억제할 수 있다.
따라서, 별개체로서 제조된 복수의 열류 센서를 이용해서 열류 분포를 측정하는 경우와 비교하여 열류 분포를 고정밀도로 측정할 수 있다.
본 개시의 제 3 양태에 따르면, 열류 분포 측정 장치는 절연층이 복수 적층되고, 일면과 그 반대측의 타면을 갖는 1개의 다층 기판과, 다층 기판의 내부에 형성된 복수의 열류 센서부를 갖는 센서 모듈을 구비한다. 복수의 열류 센서부는 각각 전기적으로 독립된 열전 변환 소자로 구성되어 있고, 열류 분포의 계측 대상물에 일면을 대향시켜서 센서 모듈이 배치되었을 때에 각각의 열전 변환 소자에 의하여 일면과 타면의 한쪽으로부터 다른쪽을 향하는 방향에서 다층 기판의 내부를 통과하는 열류에 따른 전기적인 출력을 발생한다.
제 3 양태에 관련되는 열류 분포 측정 장치에 있어서도, 제 1, 제 2 양태에 관련되는 열류 분포 측정 장치와 동일한 이유에 의해, 별개체로서 제조된 복수의 열류 센서를 이용하여 열류 분포를 측정하는 경우와 비교하여 열류 분포를 고정밀도로 측정할 수 있다.
본 개시에 대해서의 상기 목적 및 그 밖의 목적, 특징이나 잇점은 첨부의 도면을 참조하면서 하기의 상세한 기술에 의해 보다 명확해진다. 그 도면에 있어서,
도 1은 제 1 실시 형태에 있어서의 열류 분포 측정 장치의 구성을 도시한 모식도이고,
도 2는 제 1 실시 형태에 있어서의 열류 분포 측정 장치의 평면도이고,
도 3은 도 2 중의 열류 분포 측정 장치의 화살표 Ⅲ방향에서 본 측면도이고,
도 4는 도 1 중의 센서 모듈에 있어서의 1개의 열류 센서부의 평면도이고,
도 5는 도 4 중의 Ⅴ-Ⅴ선 화살 표시 단면도이고,
도 6은 도 4 중의 Ⅵ-Ⅵ선 화살 표시 단면도이고,
도 7은 도 1 중의 센서 모듈의 표면 보호 부재를 생략한 평면도이고,
도 8은 도 7 중의 영역 Ⅷ의 확대도이고,
도 9(a)~(h)는 제 1 실시 형태의 센서 모듈의 제조 공정을 설명하기 위한 단면도이고,
도 10은 제 1 실시 형태에 있어서의 열류 분포 측정 장치의 표시 장치에 표시되는 열류 분포 화상의 일례를 도시한 도면이고,
도 11은 제 2 실시 형태에 있어서의 센서 모듈의 평면도이고,
도 12는 제 2 실시 형태에 있어서의 열류 분포 측정 장치의 평면도이고,
도 13은 도 12 중의 열류 분포 측정 장치의 화살표 ⅩⅢ방향에서 본 측면도이고,
도 14는 제 3 실시 형태에 있어서의 센서 모듈의 평면도이고,
도 15는 제 4 실시 형태에 있어서의 센서 모듈의 평면도이고,
도 16은 제 5 실시 형태에 있어서의 열류 분포 측정 장치의 측면도이고,
도 17은 제 6 실시 형태에 있어서의 열류 분포 측정 장치의 측면도이다.
이하, 본 개시의 실시 형태에 대하여 도면에 기초해서 설명한다. 또한, 이하의 각 실시 형태 상호에 있어서, 서로 동일 또는 균등한 부분에는 동일 부호를 붙여서 설명을 실시한다.
(제 1 실시 형태)
도 1에 도시한 바와 같이, 본 실시 형태의 열류 분포 측정 장치(1)는 센서 모듈(2)과, 전자 제어 장치(3)와, 표시 장치(4)를 구비하고 있다.
센서 모듈(2)은 열류를 측정하는 복수의 열류 센서부(10)가 일체화된 것이다. 센서 모듈(2)은 일면(2a)(제 1면)과 그 반대측의 타면(2b)(제 2면)(도 3 참조)을 갖는 평판 형상이다. 본 실시 형태에서는 일면(2a)에 평행한 방향에서 열류 센서부(10)가 매트릭스 형상으로 배열되어 있다. 도 1 중의 파선으로 도시한 1개의 사각이 1개의 열류 센서부(10)로서 기능하는 부분을 도시하고 있다. 도 1에 도시한 바와 같이, 복수의 열류 센서부(10)는 각각 일방향과 그에 수직인 타방향의 길이가 같다. 복수의 열류 센서부(10)는 일방향과 타방향에 정연히 나열해 있고, 이웃하는 열에 있어서 대향하는 열류 센서부(10)끼리의 위치는 일치해 있다.
복수의 열류 센서부(10)는 각각 전기적으로 독립되어 있고, 배선을 통하여 전자 제어 장치(3)와 접속되어 있다. 또한, 후술과 같이, 열류 센서부(10)는 1개의 다층 기판에 있어서, 직렬하여 접속된 열전 변환 소자가 형성된 영역이다.
전자 제어 장치(3)는 열류 분포를 연산하는 연산부로서 기능하는 것이다. 전자 제어 장치(3)는 예를 들면, 마이크로컴퓨터, 기억 수단으로서의 메모리, 그 주변 회로로 구성되고, 미리 설정된 프로그램에 따라서 사전에 결정된 연산 처리를 실시한다. 전자 제어 장치(3)는 복수의 열류 센서부(10)에 의한 열류의 검출 결과에 기초하여 측정 대상물의 열류 분포를 연산하고, 화상 처리함으로써 열류 분포를 2차원 화상으로서 표시 장치(4)에 표시시킨다.
표시 장치(4)는 열류 분포의 2차원 화상을 표시하는 것이다. 표시 장치(4)로서는, 일반적인 화상 표시 장치의 사용이 가능하다.
또한, 도 2, 도 3에 도시한 바와 같이, 열류 분포 측정 장치(1)는 센서 모듈(2)이 설치되는 센서 헤드(21)와, 센서 헤드(21)를 지지하는 지주(22)와, 측정 대상물(31)이 설치되는 스테이지(23)를 구비하고 있다.
센서 헤드(21)의 하면에 센서 모듈(2)이 설치된다. 이 때문에, 센서 모듈(2)의 타면(2b)이 센서 헤드(21)에 고정되고, 센서 모듈(2)의 일면(2a)이 측정 대상물(31)과 대향한다. 지주(22)는 높이 조정이 가능한 기구를 갖고 있고, 센서 모듈(2)과 측정 대상물(31)의 거리가 조정 가능하게 되어 있다.
다음으로, 센서 모듈(2)의 구체적인 구조에 대하여 설명한다. 센서 모듈(2)은 1개의 다층 기판에 같은 내부 구조를 갖는 열류 센서부(10)가 복수 형성된 것이다. 이 때문에, 이하에서는 1개의 열류 센서부(10)의 구조에 대하여 설명한다.
1개의 열류 센서부(10)는 도 4~도 6에 도시한 바와 같이, 절연 기재(100), 절연층(110), 표면 보호 부재(115), 이면 보호 부재(120)가 적층되어 일체화되고, 이 일체화된 것의 내부에서 제 1, 제 2 층간 접속 부재(130, 140)가 번갈아 직렬로 접속된 것이다. 또한, 도 4는 1개의 열류 센서부(10)의 평면도이지만, 이해하기 쉽게 하기 위해, 표면 보호 부재(115), 절연층(110)을 생략하여 도시하고 있다. 도 4는 단면도는 아니지만, 이해하기 쉽게 하기 위해, 제 1, 제 2 층간 접속 부재(130, 140)에 해칭을 실시하고 있다.
절연 기재(100)는 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 액정 폴리머(LCP) 등으로 대표되는 열가소성 수지 필름으로 구성되어 있다. 그리고 두께 방향으로 관통하는 복수의 제 1, 제 2 비아홀(101, 102)이 엇갈리게 되도록 격자 패턴으로 형성되어 있다. 제 1, 제 2 비아홀(101, 102)은 절연 기재(100)의 일면(100a)으로부터 타면(100b)까지 관통하는 관통 구멍이다.
또한, 본 실시 형태의 제 1, 제 2 비아홀(101, 102)은 표면(100a)으로부터 이면(100b)을 향하여 직경이 일정하게 된 원통 형상으로 되어 있지만, 표면(100a)으로부터 이면(100b)을 향하여 직경이 작아지는 테이퍼 형상으로 되어 있어도 좋다. 또한, 이면(100b)으로부터 표면(100a)을 향하여 직경이 작아지는 테이퍼 형상으로 되어 있어도 좋고, 각통 형상으로 되어 있어도 좋다.
그리고 제 1 비아홀(101)에는 제 1 층간 접속 부재(130)가 배치되고, 제 2 비아홀(102)에는 제 2 층간 접속 부재(140)가 배치되어 있다. 즉, 절연 기재(100)에는 제 1, 제 2 층간 접속 부재(130, 140)가 엇갈리게 되도록 배치되어 있다.
이와 같이, 제 1, 제 2 비아홀(101, 102) 내에 제 1, 제 2 층간 접속 부재(130, 140)를 배치하고 있기 때문에 제 1, 제 2 비아홀(101, 102)의 수나 직경, 간격 등을 적절히 변경함으로써 제 1, 제 2 층간 접속 부재(130, 140)의 고밀도화가 가능하게 된다. 이에 따라, 번갈아 직렬 접속된 제 1, 제 2 층간 접속 부재(130, 140)에서 발생하는 기전력, 즉, 전압을 크게 할 수 있어서, 열류 센서부(10)의 고감도화가 가능하다.
제 1, 제 2 층간 접속 부재(130, 140)는 제벡(seebeck) 효과를 발휘하도록 서로 다른 도전체로 구성된 제 1, 제 2 도전체이다. 도전체는 금속이나 반도체이다. 예를 들면, 제 1 층간 접속 부재(130)는 P형을 구성하는 Bi-Sb-Te합금의 분말이 소결 전에 있어서의 복수의 금속 원자의 결정 구조를 유지하도록 고상 소결된 금속 화합물로 구성된다. 또한, 제 2 층간 접속 부재(140)는 N형을 구성하는 Bi-Te합금의 분말이 소결 전에 있어서의 복수의 금속 원자의 결정 구조를 유지하도록 고상 소결된 금속 화합물로 구성된다. 이와 같이, 제 1, 제 2 층간 접속 부재(130, 140)를 형성하는 금속은 복수의 금속 원자가 해당 금속 원자의 결정 구조를 유지한 상태로 소결된 소결 합금이다. 이에 따라, 번갈아 직렬 접속된 제 1, 제 2 층간 접속 부재(130, 140)에서 발생하는 기전력을 크게 할 수 있어서, 열류 센서부(10)의 고감도화가 가능하다.
절연 기재(100)의 표면(100a)에는 절연층(110)이 배치되어 있다. 절연층(110)은 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 액정 폴리머(LCP) 등으로 대표되는 열가소성 수지 필름으로 구성되어 있다. 이 절연층(110)은 절연 기재(100)와 대향하는 일면(110a)측에 동박 등이 패터닝된 복수의 표면 패턴(111)이 서로 이격되도록 형성되어 있다. 그리고 각 표면 패턴(111)은 각각 제 1, 제 2 층간 접속 부재(130, 140)와 적절히 전기적으로 접속되어 있다.
구체적으로는 도 5에 도시된 바와 같이, 이웃하는 1개의 제 1 층간 접속 부재(130)와 1개의 제 2 층간 접속 부재(140)를 1개의 세트(150)로 했을 때, 각 세트(150)의 제 1, 제 2 층간 접속 부재(130, 140)는 같은 표면 패턴(111)과 접속되어 있다. 즉, 각 세트(150)의 제 1, 제 2 층간 접속 부재(130, 140)는 표면 패턴(111)을 통하여 전기적으로 접속되어 있다. 또한, 본 실시 형태에서는 일방향(도 5 중, 지면 좌우 방향)을 따라서 이웃하는 1개의 제 1 층간 접속 부재(130)와 1개의 제 2 층간 접속 부재(140)가 1개의 세트(150)로 되어 있다.
절연 기재(100)의 이면(100b)에는 이면 보호 부재(120)가 배치되어 있다. 이면 보호 부재(120)는 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 액정 폴리머(LCP) 등으로 대표되는 열가소성 수지 필름으로 구성되어 있다. 이면 보호 부재(120)에는 절연 기재(100)와 대향하는 일면(120a)측에 동박 등이 패터닝된 복수의 이면 패턴(121)이 서로 이격되도록 형성되어 있다. 그리고 각 이면 패턴(121)은 각각 제 1, 제 2 층간 접속 부재(130, 140)와 적절히 전기적으로 접속되어 있다.
구체적으로는 도 5에 도시된 바와 같이, 일방향에서 이웃하는 2개의 세트(150)에 있어서, 한쪽의 세트(150)의 제 1 층간 접속 부재(130)와 다른쪽의 세트(150)의 제 2 층간 접속 부재(140)가 같은 이면 패턴(121)과 접속되어 있다. 즉, 세트(150)에 걸쳐서 제 1, 제 2 층간 접속 부재(130, 140)가 같은 이면 패턴(121)을 통하여 전기적으로 접속되어 있다.
또한, 도 6에 도시된 바와 같이, 1개의 열류 센서부(10)의 가장자리부에서는 일방향과 직교하는 타방향(도 4 중, 지면 좌우 방향, 도 6 중 지면 좌우 방향)을 따라서 이웃하는 제 1, 제 2 층간 접속 부재(130, 140)가 같은 이면 패턴(121)과 접속되어 있다.
이와 같이 하여, 각 세트(150)는 직렬로 접속되고, 또한 일방향(도 4 중, 지면 상하 방향)에 접속된 것이 반복해서 되꺾이도록 다층 기판 내에 배치되어 있다. 또한, 한 세트의 서로 접속된 제 1, 제 2 층간 접속 부재(130, 140)가 1개의 열전 변환 소자를 구성하고 있다. 따라서, 1개의 열류 센서부(10)는 직렬로 접속된 복수의 열전 변환 소자를 구비하고 있다. 또한, 복수의 열류 센서부(10)는 각각 전기적으로 독립되어 있고, 열류 센서부(10)마다 전자 제어 장치(3)와 전기적으로 접속된다. 본 명세서에서는 1개의 열류 센서부(10)를 구성하고 있는 전기적으로 직렬로 접속된 복수의 열전 변환 소자를 전기적으로 독립된 열전 변환한 소자라 부른다.
또한, 절연층(110)의 타면(110b)에는 표면 보호 부재(115)가 배치되어 있다. 표면 보호 부재(115)는 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 액정 폴리머(LCP) 등으로 대표되는 열가소성 수지 필름으로 구성되어 있다. 도 6에 도시한 바와 같이, 표면 보호 부재(115)는 절연층(110)측과 대향하는 일면(115a)측에 동박 등이 패터닝된 복수의 배선 패턴(116)이 형성되어 있다. 이 배선 패턴(116)은 1개의 열류 센서부(10) 내에서 상기와 같이 직렬로 접속된 제 1, 제 2 층간 접속 부재(130, 140)의 단부와, 절연층(110)에 형성된 층간 접속 부재(117)를 통하여 전기적으로 접속되어 있다.
복수의 배선 패턴(116)은 도 7, 도 8에 도시한 바와 같이, 각 열류 센서부(10)의 위치로부터 센서 모듈(2)의 가장자리부까지 연장되어 있다. 이에 따라, 1개의 열류 센서부(10)로부터 2개의 배선이 센서 모듈(2)의 가장자리부까지 형성되어 있다. 또한, 도 7은 표면 보호 부재(115)를 생략한 센서 모듈(2)의 평면도이지만, 이해하기 쉽게 하기 위해, 배선 패턴(116) 중, 접속부로서 기능하는 부분에 해칭을 실시하고 있다. 센서 모듈(2)의 가장자리부에서는 도 6에 도시한 바와 같이, 배선 패턴(116)의 일부가 노출되어 있다. 이 배선 패턴(116)의 노출된 부분이 각 열류 센서부(10)와 전자 제어 장치(3)를 접속하기 위한 접속 단자를 구성한다.
이와 같이, 본 실시 형태에서는 각 열류 센서부(10)에 접속되는 배선 패턴(116)을 제 1, 제 2 층간 접속 부재(130, 140), 표면 패턴(111) 및 이면 패턴(121)이 형성된 층과는 다른 층에 형성하고 있다(도 7 참조). 별개체의 열류 센서를 복수 이용하는 경우에는 계측 대상물에 복수의 열류 센서를 부착할 때에 이웃하는 열류 센서끼리의 사이에 배선을 배치하는 스페이스가 필요하게 된다. 이에 대하여, 본 실시 형태에 따르면, 이웃하는 열류 센서의 사이에 배선을 배치하는 스페이스가 불필요하게 되기 때문에 복수의 열류 센서부(10)를 조밀하게 배치할 수 있다.
이상이 본 실시 형태에 있어서의 열류 센서부(10)의 기본적인 구성이다. 상기와 같이, 1개의 열류 센서부(10)를 구성하는 열전 변환 소자는 복수의 제 1, 제 2 비아홀(101, 102)에 매립된 제 1, 제 2 층간 접속 부재(130, 140)가 번갈아 직렬 접속된 것이다. 그리고 복수의 열류 센서부(10)의 각각을 구성하는 제 1, 제 2 층간 접속 부재(130, 140)가 동일한 절연 기재(100)에 형성되어 있다.
복수의 열류 센서부(10)는 각각 다층 기판의 양면의 온도차에 따른 센서 신호(기전력)를 전자 제어 장치(3)로 출력한다. 양면의 온도차가 변화하면, 번갈아 직렬 접속된 제 1, 제 2 층간 접속 부재(130, 140)에서 발생하는 기전력이 변화한다. 이 때문에, 열류 센서부(10)에서 발생하는 기전력으로부터 열류 센서부(10)를 통과하는 열류 또는 열유속을 산출할 수 있다.
상기 센서 모듈(2)의 제조 방법에 대하여 도 9(a)~(h)를 참조하면서 설명한다. 도 9(a)~(h)에서는 1개의 열류 센서부(10)를 도시하고 있고, 도 5에 대응해 있다.
우선, 도 9(a)에 도시된 바와 같이, 절연 기재(100)를 준비하고, 복수의 제 1 비아홀(101)을 드릴이나 레이저 등에 의하여 형성한다.
다음으로, 도 9(b)에 도시된 바와 같이, 각 제 1 비아홀(101)에 제 1 도전성 페이스트(131)를 충전한다. 또한, 제 1 비아홀(101)에 제 1 도전성 페이스트(131)를 충전하는 방법(장치)으로서는, 본 출원인에 의한 일본국 특원2010-50356호(특개2011-187619호 공보)에 기재된 방법(장치)을 채용하면 좋다.
간단히 설명하면, 흡착지(160)를 통하여 도시하지 않는 지지대 상에 이면(100b)이 흡착지(160)와 대향하도록 절연 기재(100)를 배치한다. 그리고 제 1 도전성 페이스트(131)를 용융시키면서 제 1 비아홀(101) 내에 제 1 도전성 페이스트(131)를 충전한다. 이에 따라, 제 1 도전성 페이스트(131)의 유기 용제의 대부분이 흡착지(160)에 흡착되고, 제 1 비아홀(101)에 합금의 분말이 밀접하게 배치된다.
또한, 흡착지(160)는 제 1 도전성 페이스트(131)의 유기 용제를 흡수할 수 있는 재질의 것이면 좋고, 일반적인 상질지 등이 이용된다. 또한, 제 1 도전성 페이스트(131)는 금속 원자가 사전에 결정된 결정 구조를 유지하고 있는 Bi-Sb-Te합금의 분말을 융점이 43℃인 파라핀 등의 유기 용제를 추가하여 페이스트화한 것이 이용된다. 이 때문에, 제 1 도전성 페이스트(131)를 충전할 때에는 절연 기재(100)의 표면(100a)이 약 43℃로 가열된 상태에서 실시된다.
계속해서, 도 9(c)에 도시된 바와 같이, 절연 기재(100)에 복수의 제 2 비아홀(102)을 드릴이나 레이저 등에 의하여 형성한다. 이 제 2 비아홀(102)은 상기와 같이, 제 1 비아홀(101)과 엇갈리게 되고, 제 1 비아홀(101)과 함께 격자 패턴을 구성하도록 형성된다.
다음으로, 도 9(d)에 도시된 바와 같이, 각 제 2 비아홀(102)에 제 2 도전성 페이스트(141)를 충전한다. 또한, 이 공정은 상기 도 9(b)와 동일한 공정으로 실시할 수 있다.
즉, 다시 흡착지(160)를 통하여 도시하지 않는 지지대 상에 이면(100b)이 흡착지(160)와 대향하도록 절연 기재(100)를 배치한 후, 제 2 비아홀(102) 내에 제 2 도전성 페이스트(141)를 충전한다. 이에 따라, 제 2 도전성 페이스트(141)의 유기 용제의 대부분이 흡착지(160)에 흡착되고, 제 2 비아홀(102)에 합금의 분말이 밀접하게 배치된다.
제 2 도전성 페이스트(141)는 제 1 도전성 페이스트(131)를 구성하는 금속 원자와 다른 금속 원자가 사전에 결정된 결정 구조를 유지하고 있는 Bi-Te합금의 분말을 융점이 상온인 테레빈 등의 유기 용제를 추가하여 페이스트화한 것이 이용된다. 즉, 제 2 도전성 페이스트(141)를 구성하는 유기 용제는 제 1 도전성 페이스트(131)를 구성하는 유기 용제보다 융점이 낮은 것이 이용된다. 그리고 제 2 도전성 페이스트(141)를 충전할 때에는 절연 기재(100)의 표면(100a)이 상온으로 유지된 상태에서 실시된다. 바꾸어 말하면, 제 1 도전성 페이스트(131)에 포함되는 유기 용제가 고화된 상태에서 제 2 도전성 페이스트(141)의 충전이 실시된다. 이에 따라, 제 1 비아홀(101)에 제 2 도전성 페이스트(141)가 혼입되는 것이 억제된다.
또한, 제 1 도전성 페이스트(131)에 포함되는 유기 용제가 고화된 상태란, 상기 도 9(b)의 공정에 있어서, 흡착지(160)에 흡착되지 않고 제 1 비아홀(101)에 잔존해 있는 유기 용제가 고화된 상태를 말한다.
그리고 상기 각 공정과는 별도 공정에 있어서, 도 9(e) 및 도 9(f)에 도시된 바와 같이, 절연층(110) 및 이면 보호 부재(120) 중, 절연 기재(100)와 대향하는 일면(110a, 120a)에 동박 등을 형성한다. 그리고 이 동박을 적절히 패터닝함으로써 서로 이격되어 있는 복수의 표면 패턴(111)이 형성된 절연층(110), 서로 이격되어 있는 복수의 이면 패턴(121)이 형성된 이면 보호 부재(120)를 준비한다. 또한, 도 7에 도시된 바와 같이, 복수의 배선 패턴(116)이 형성된 표면 보호 부재(115)를 준비한다.
그 후, 도 9(g)에 도시된 바와 같이, 이면 보호 부재(120), 절연 기재(100), 절연층(110), 표면 보호 부재(115)를 차례로 적층하여 적층체(170)를 구성한다.
계속해서, 도 9(h)에 도시된 바와 같이, 이 적층체(170)를 도시하지 않는 한쌍의 프레스판의 사이에 배치하고, 적층 방향의 상하 양면으로부터 진공 상태로 가열하면서 가압함으로써 적층체(170)를 일체화한다. 구체적으로는, 제 1, 제 2 도전성 페이스트(131, 141)가 고상 소결되어 제 1, 제 2 층간 접속 부재(130, 140)를 형성하고, 또한 제 1, 제 2 층간 접속 부재(130, 140)와 표면 패턴(111) 및 이면 패턴(121)이 접속되도록 가열하면서 가압하여 적층체(170)를 일체화한다.
또한, 특별히 한정되는 것은 아니지만, 적층체(170)를 일체화할 때에는 적층체(170)와 프레스판의 사이에 록 울 페이퍼 등의 완충재를 배치해도 좋다. 이상과 같이 하여 상기 센서 모듈(2)이 제조된다.
다음으로, 본 실시 형태의 열류 분포 측정 장치(1)를 이용한 열류 분포의 측정 방법에 대하여 설명한다.
도 2, 도 3에 도시한 바와 같이, 스테이지(23)에 측정 대상물(31)을 얹고, 측정 대상물(31)을 센서 모듈(2)의 일면(2a)과 대향시킨다. 센서 헤드(21)의 높이를 조정하여 센서 모듈(2)을 측정 대상물(31)과 접촉 또는 비접촉의 상태로 한다.
그리고 측정 대상물(31)로부터의 열류 또는 측정 대상물(31)을 향하는 열류가 센서 모듈(2)의 일면(2a) 및 타면(2b)에 수직인 방향에서 센서 모듈(2)을 통과함으로써 각 열류 센서부(10)로부터 기전력이 전자 제어 장치(3)로 출력된다.
전자 제어 장치(3)가 각 열류 센서부(10)의 기전력에 기초하여 열류 분포를 연산함으로써 측정 대상물(31)의 열류 분포가 얻어진다. 또한, 전자 제어 장치(3)가 화상 처리하여 열류 분포의 2차원 화상을 표시 장치(4)에 표시시킴으로써 측정 대상물(31)의 열류 분포를 2차원 화상으로 확인할 수 있다. 예를 들면, 도 10에 도시된 바와 같이, 측정 대상물(31)에 대응하는 영역으로부터의 열류의 크기를 나타내는 열류 분포 화상(4a)이 표시 장치(4)에 표시된다. 또한, 본 실시 형태에서는 1개의 열류 센서부(10)가 열류 분포 화상(4a)의 최소 단위인 1화소(도 10 중의 1개의 사각)에 대응해 있다.
이상의 설명과 같이, 본 실시 형태의 열류 분포 측정 장치(1)는 1개의 다층 기판의 내부에 복수의 열류 센서부(10)가 형성된 센서 모듈(2)을 이용하고 있다. 각 열류 센서부(10)를 구성하는 열전 변환 소자, 즉, 제 1, 제 2 층간 접속 부재(130, 140)는 1개의 다층 기판의 내부에 형성되는 것이기 때문에 다층 기판을 제조하는 동일한 제조 공정으로 제조된다. 이 때문에, 복수의 열류 센서가 별개체로서 제조되는 경우와 비교하여 각 열전 변환 소자의 성능 개체차를 작게 억제할 수 있다.
따라서, 본 실시 형태의 열류 분포 측정 장치(1)에 따르면, 별개체로서 제조된 복수의 열류 센서를 이용해서 열류 분포를 측정하는 경우와 비교하여 열류 분포를 고정밀도로 측정할 수 있다.
또한, 본 실시 형태의 열류 분포 측정 장치(1)는 센서 모듈(2)을 측정 대상물(31)에 대하여 접촉시킨 상태나 비접촉의 상태에서 열류 분포를 측정할 수 있다.
여기에서, 별개체로서 제조된 복수의 열류 센서를 측정 대상물(31)에 접촉시킨 상태에서 측정하는 경우, 복수의 열류 센서의 접촉 상태를 균일하게 할 필요가 있다. 그러나 수작업으로 복수의 열류 센서를 각각 측정 대상물에 부착하면, 접촉 상태에 불균일이 발생하기 때문에 복수의 열류 센서의 접촉 상태를 균일하게 하는 것은 곤란하다.
이에 대하여, 본 실시 형태에서는 센서 모듈(2)을 측정 대상물(31)에 대하여 접촉시킨 상태에서 측정하는 경우, 1개의 센서 모듈(2)을 측정 대상물(31)에 접촉시키기 때문에 각 열류 센서부(10)의 접촉 상태의 균일화가 가능하게 된다.
또한, 본 실시 형태에서는 1개의 열류 센서부(10)를 통과하는 열류를 구하고, 열류 분포로서, 1개의 열류 센서부(10)의 면적당의 열류의 분포를 측정했지만, 열류 분포로서, 열류 센서부(10)마다의 열유속의 분포를 측정해도 좋다. 덧붙여서, 열류는 단위 시간당에 흐르는 열에너지의 양이고, 단위로는, W가 이용된다. 열유속은 단위 시간에 단위 면적을 가로지르는 열량이고, 단위로는, W/㎡가 이용된다.
(제 2 실시 형태)
도 11에 도시한 바와 같이, 본 실시 형태의 열류 분포 측정 장치(1)에서는 복수의 열류 센서부(10)가 일방향(D1)으로 일렬로 배치되고, 일방향(D1)으로 길게 연장된 형상의 센서 모듈(200)을 이용하고 있다. 이 센서 모듈(200)은 제 1 실시 형태의 센서 모듈(2)에 대하여, 복수의 열류 센서부(10)의 수를 변경한 것이다. 센서 모듈(200)의 내부 구조 및 제조 방법은 제 1 실시 형태와 같다. 또한, 센서 모듈(200)의 각 열류 센서부(10)는 제 1 실시 형태와 마찬가지로, 전자 제어 장치(3)와 배선을 통하여 접속된다.
도 12, 도 13에 도시한 바와 같이, 본 실시 형태의 열류 분포 측정 장치(1)는 센서 헤드(21)와, 1축 방향 이동 유닛(24)과, 스테이지(23)를 구비하고 있다.
본 실시 형태의 센서 헤드(21)는 일방향(D1)으로 길게 연장된 형상이다. 센서 헤드(21)의 세로 방향과 센서 모듈(2)의 세로 방향(D1)을 일치시켜서 센서 모듈(200)이 센서 헤드(21)의 하면에 설치되어 있다. 이 때문에, 센서 모듈(200)의 타면(200b)이 센서 헤드(21)에 고정되고, 센서 모듈(200)의 일면(200a)이 측정 대상물(31)과 대향한다.
1축 방향 이동 유닛(24)은 센서 헤드(21)를 1축 방향으로 이동시키는 이동 장치이다. 센서 헤드(21)의 이동 방향(D2)은 센서 모듈(2)의 세로 방향(D1)으로 수직인 방향이다. 1축 방향 이동 유닛(24)으로서는, 주지의 기구의 것을 채용할 수 있다. 1축 방향 이동 유닛(24)은 전자 제어 장치(3)에 의하여 그 이동이 제어된다. 또한, 전자 제어 장치(3)는 센서 헤드(21)의 위치 정보를 취득할 수 있게 되어 있다. 예를 들면, 1축 방향 이동 유닛(24)에 센서 헤드(21)의 위치 정보를 취득하기 위한 도시하지 않는 센서가 부착되어 있고, 이 센서로부터의 센서 신호에 기초하여 전자 제어 장치(3)는 센서 헤드(21)의 위치 정보를 취득한다.
다음으로, 본 실시 형태의 열류 분포 측정 장치(1)를 이용한 열류 분포의 측정 방법에 대하여 설명한다.
도 12, 도 13에 도시한 바와 같이, 스테이지(23)에 측정 대상물(31)을 얹고, 측정 대상물(31)을 센서 모듈(200)의 일면(200a)과 대향시킨다. 센서 헤드(21)의 높이를 조정하여 센서 모듈(200)을 측정 대상물(31)과 비접촉의 상태로 한다.
그리고 열류 분포의 측정 시에는 센서 헤드(21)를 이동시킨다. 이에 따라, 센서 모듈(200)은 측정 대상물(31)의 표면 상을 이동한다. 이때, 측정 대상물(31)로부터의 열류 또는 측정 대상물(31)을 향하는 열류가 센서 모듈(200)의 일면(200a) 및 타면(200b)에 수직인 방향에서 센서 모듈(200)을 통과함으로써 복수의 열류 센서부(10)에서 발생한 기전력이 전자 제어 장치(3)로 출력된다.
그래서 전자 제어 장치(3)는 각 열류 센서부(10)의 기전력과, 그 기전력이 출력되었을 때의 센서 헤드(21)의 위치 정보에 기초하여 열류 분포를 연산한다. 이에 따라, 제 1 실시 형태와 마찬가지로, 측정 대상물(31)의 열류 분포가 얻어진다.
(제 3 실시 형태)
제 2 실시 형태에서는 복수의 열류 센서부(10)가 일렬로 배치된 센서 모듈(200)을 이용했지만, 본 실시 형태에서는 도 14에 도시한 바와 같이, 복수의 열류 센서부(10)가 2열로 배치된 센서 모듈(201)을 이용하고 있다.
또한, 이 센서 모듈(201)에서는 이웃하는 열에 있어서 대향하는 열류 센서부(10)끼리의 위치를 1개의 열에 있어서의 복수의 열류 센서부(10)의 나열 방향인 일방향(D1)에서 사전에 결정된 거리 어긋나게 하고 있다. 본 실시 형태에서는 이 사전에 결정된 거리를 1개의 열류 센서부(10)의 폭의 1/2의 길이(L1)로 하고 있다.
본 실시 형태에 있어서도, 제 2 실시 형태와 마찬가지로, 일방향(D1)에 대하여 수직인 방향으로 이동시키면서 열류 분포를 측정한다.
이와 같이, 이웃하는 열이 사전에 결정된 거리 어긋나게 하여 배치된 센서 모듈(201)을 이용함으로써 1개의 열류 센서부(10)의 폭을 사전에 결정된 거리(L1)로 했을 때와 마찬가지로, 열류 분포를 측정할 수 있다. 이 때문에, 본 실시 형태에 따르면, 1개의 열류 센서부(10)의 면적을 작게 하지 않고도 열류 분포 측정의 분해능을 올릴 수 있다. 즉, 표시 장치(4)에 표시되는 열류 분포 화상(4a)의 1화소를 작게 할 수 있다.
(제 4 실시 형태)
본 실시 형태는 도 15에 도시한 바와 같이, 복수의 열류 센서부(10)가 3열로 배치된 센서 모듈(202)을 이용하고 있다. 이 센서 모듈(202)도 제 2 실시 형태와 마찬가지로, 이웃하는 열이 사전에 결정된 거리 어긋나게 하여 배치되어 있다. 본 실시 형태에서는 이 사전에 결정된 거리를 1개의 열류 센서부(10)의 폭의 1/3의 길이(L2)로 하고 있다. 이와 같이, 열의 수를 늘리고, 또한 사전에 결정된 거리를 작게 함으로써 분해능을 보다 올릴 수 있다.
(제 5 실시 형태)
본 실시 형태는 도 16에 도시한 바와 같이, 제 1 실시 형태에서 설명한 도 3의 열류 분포 측정 장치(1)에 대하여 열매체 유로(25)를 추가한 것이다.
본 실시 형태에서는 센서 헤드(21)의 내부에 열매체 유로(25)가 설치되어 있다. 열매체 유로(25)는 센서 모듈(2)을 냉각하는 냉각용 열매체(26)가 흐르는 것이다. 냉각용 열매체로서는, 일반적인 부동액 등의 냉각액을 이용할 수 있다. 본 실시 형태에서는 열매체 유로(25)는 도시하지 않는 방열기, 펌프 등과 접속되어 있다. 이에 따라서, 사전에 결정된 온도의 냉각액이 순환하는 냉각액 순환 회로가 구성되어 있다.
여기에서, 본 실시 형태와 달리, 센서 헤드(21)에 열매체 유로(25)가 설치되어 있지 않은 경우, 발열체인 측정 대상물(31)로부터 방출되는 열류의 열류 분포의 측정 시에, 측정 대상물(31)에 의하여 센서 모듈(2)이 가열되고, 센서 모듈(2)의 온도가 상승한다. 이 때문에, 시간 경과와 함께, 각 열류 센서부(10)를 통과하는 열류가 변화하고, 각 열류 센서부(10)의 열류 측정값이 변화해 버린다. 즉, 각 열류 센서부(10)의 열류 측정값이 드리프트되어 버린다.
이에 대하여, 본 실시 형태에서는 센서 헤드(21), 즉, 센서 모듈(2)의 타면(2b)측에 센서 모듈(2)을 냉각하는 냉각용 열매체(26)가 흐르는 열매체 유로(25)가 설치되어 있다. 이 때문에, 발열체인 측정 대상물(31)로부터 방출되는 열류의 열류 분포의 측정 시에 열매체 유로(25)에 냉각액을 흘림으로써 센서 모듈(2)의 타면(2b)을 냉각액으로 냉각할 수 있다.
이에 따라, 측정 대상물(31)에 의해 센서 모듈(2)이 가열되어도 센서 모듈(2)의 온도를 일정하게 접근시킬 수 있어서, 각 열류 센서부(10)를 통과하는 열류를 안정화시킬 수 있다. 이 결과, 각 열류 센서부(10)의 열류 측정값의 드리프트를 억제할 수 있다.
또한, 본 실시 형태에 있어서는, 도시하지 않는 온도 센서에 의하여 센서 모듈(2)의 온도를 측정하고, 측정한 센서 모듈(2)의 온도에 기초하여 전자 제어 장치(3)가 열매체 유로(25)를 흐르는 냉각용 열매체(26)의 유량을 제어하여, 센서 모듈(2)의 온도를 일정하게 유지하도록 조정하는 것이 바람직하다.
또한, 본 실시 형태에서는 센서 헤드(21)의 내부에 냉각용 열매체(26)가 흐르는 열매체 유로(25)를 설치했지만, 열매체 유로(25) 대신에, 방열판, 히트 파이프 등의 다른 냉각체를 설치해도 좋다.
또한, 본 실시 형태에서는 측정 대상물(31)이 발열체인 경우를 설명했지만, 측정 대상물(31)이 흡열체인 경우에는 냉각용 열매체(26) 대신에, 측정 대상물(31)을 가열하는 가열용 열매체를 이용한다. 이에 따라, 본 실시 형태와 마찬가지로, 측정 대상물(31)에 의해 센서 모듈(2)이 냉각되어도 센서 모듈(2)의 온도를 일정하게 접근시킬 수 있어서, 각 열류 센서(10)를 통과하는 열류를 안정화시킬 수 있다. 이 결과, 각 열류 센서부(10)의 열류 측정값의 드리프트를 억제할 수 있다. 또한, 이 경우에 있어서도, 가열용 열매체가 흐르는 열매체 유로(25) 대신에, 전기 히터 등의 가열체를 설치해도 좋다.
(제 6 실시 형태)
본 실시 형태는 도 17에 도시한 바와 같이, 제 5 실시 형태에서 설명한 도 16의 열류 분포 측정 장치(1)에 있어서, 스테이지(23)를 가열체(27)로 변경한 것이다.
본 실시 형태에서는 측정 대상물(31)의 센서 모듈(2)측의 면과는 반대측의 면에 가열체(27)를 배치하고 있다. 가열체(27)는 측정 대상물(31)을 가열하는 것이고, 전기 히터 등으로 구성된다.
그리고 열류 분포 측정 장치(1)를 이용한 열류 분포의 측정에서는 측정 대상물(31)을 가열체(27)로 가열한 상태에서 제 5 실시 형태와 동일하게 측정한다.
본 실시 형태에 따르면, 가열체(27)로부터 방출되어 측정 대상물(31)을 통과하는 열류의 열류 분포를 측정할 수 있다. 이 때문에, 측정 대상물(31)의 단열성의 분포를 정확히 측정할 수 있어서, 측정 대상물(31)의 단열 성능을 평가할 수 있다.
(다른 실시 형태)
본 개시는 상기한 실시 형태에 한정되는 것은 아니고, 하기와 같이 적절히 변경이 가능하다.
(1) 상기한 각 실시 형태에서는 열류 센서부에서 발생한 기전력(전압값)에 기초하여 열류를 산출했지만, 전압값 대신에, 전류값에 기초하여 산출해도 좋다. 요컨대, 열류 센서부에서 발생한 전압이나 전류라는 전기적인 출력에 기초하여 열류를 산출할 수 있다.
(2) 상기 각 실시 형태에서는 제 1, 제 2 층간 접속 부재(130, 140)를 형성하는 금속이 각각 Bi-Sb-Te합금, Bi-Te합금이었지만, 다른 합금이어도 좋다. 상기 각 실시 형태에서는 제 1, 제 2 층간 접속 부재(130, 140)를 형성하는 금속의 양쪽이 고상 소결된 소결 합금이었지만, 적어도 한쪽이 고상 소결된 소결 합금이면 좋다. 이에 따라, 제 1, 제 2 층간 접속 부재(130, 140)를 형성하는 금속의 양쪽이 고상 소결된 소결 합금이 아닌 경우와 비교하여 기전력을 크게 할 수 있다.
(3) 상기 각 실시 형태에서는 센서 모듈을 구성하는 다층 기판이, 열가소성 수지로 구성된 절연층이 복수 적층된 것이었지만, 열가소성 수지 이외의 절연층이 복수 적층된 것이어도 좋다. 열가소성 수지 이외의 절연층으로서는, 열경화성 수지 등을 들 수 있다.
(4) 상기 각 실시 형태에서는 다층 기판이, 절연 기재(100), 절연층(110), 표면 보호 부재(115), 이면 보호 부재(120)가 적층된 구성이었지만, 복수의 절연층이 적층되어 있으면, 다층 기판을 다른 구성으로 해도 좋다. 즉, 다층 기판은 복수의 절연층의 하나로서, 복수의 관통 구멍(101, 102)이 형성된 절연 기재(100)를 갖고 있으면 좋다. 절연 기재(100)의 양측에 배치되는 절연층의 수는 임의로 변경할 수 있다.
(5) 제 1 실시 형태에서는 센서 모듈(2)의 일면(2a) 및 타면(2b)에 수직인 방향에서 열류가 센서 모듈(2)을 통과함으로써 각 열류 센서부(10)로부터 기전력이 출력되는 것을 설명했지만, 각 열류 센서부(10)로부터 기전력이 출력되는 것은 센서 모듈(2)의 일면(2a) 및 타면(2b)에 수직인 방향에서 열류가 센서 모듈(2)을 통과하는 경우에 한정되지 않는다. 센서 모듈(2)의 일면(2a)과 타면(2b)의 한쪽으로부터 다른쪽을 향하는 방향에서 열류가 센서 모듈(2)을 통과하는 경우에 있어서, 각 열류 센서부(10)로부터 기전력이 출력된다. 이것은 제 1 실시 형태 이외의 상기 각 실시 형태에 있어서도 마찬가지이다. 예를 들면, 제 2 실시 형태에 있어서도, 센서 모듈(200)의 일면(200a)과 타면(200b)의 한쪽으로부터 다른쪽을 향하는 방향에서 열류가 센서 모듈(200)을 통과하는 경우에 각 열류 센서부(10)로부터 기전력이 출력된다.
(6) 제 1 실시 형태의 센서 모듈(2)은 일면(2a)에 평행한 방향에서 복수의 열류 센서부(10)가 매트릭스 형상으로 배열되어 있었지만, 복수의 열류 센서부(10)의 배열 방향은 일면(2a)에 완전히 평행한 방향이 아니고, 일면(2a)에 대하여 비스듬한 방향이어도 좋다. 요컨대, 일면(2a)을 따르는 방향에서 복수의 열류 센서부(10)가 배열되어 있으면 좋다. 또한, 일면(2a)을 따르는 방향이란, 일면(2a)에 완전히 평행한 방향이나 일면(2a)에 대하여 평행에 가까운 방향을 포함하는 의미이다. 이것은 제 2~제 4 실시 형태의 센서 모듈(200, 201, 202) 등에 있어서도 마찬가지이다.
(7) 제 2~제 4 실시 형태에서는 1축 방향 이동 유닛(24)의 이동 방향이 복수의 열류 센서부(10)가 배열된 일방향(D1)에 대하여 수직인 방향이었지만, 일방향(D1)에 대하여 수직인 방향이 아니어도 좋다. 1축 방향 이동 유닛(24)의 이동 방향은 일방향(D1)에 대하여 교차하는 방향이면 좋다.
(8) 상기 각 실시 형태는 서로 관계 없는 것은 아니고, 조합이 명백히 불가한 경우를 제외하고, 적절히 조합이 가능하다. 또한, 상기 각 실시 형태에 있어서, 실시 형태를 구성하는 요소는 특별히 필수라고 명시한 경우 및 원리적으로 명백히 필수라고 생각되는 경우 등을 제외하고, 반드시 필수의 것은 아닌 것은 말할 것도 없다.
본 개시는 실시 형태에 준거하여 기술되었지만, 본 개시는 해당 실시 형태나 구조에 한정되는 것은 아니라고 이해된다. 본 개시는 여러 가지 변형예나 균등 범위 내의 변형도 포함한다. 덧붙여서, 여러 가지 조합이나 형태, 나아가서는 그들에 1요소만, 그 이상, 또는 그 이하를 포함하는 다른 조합이나 형태도 본 개시의 범주나 사상 범위에 들어가는 것이다.

Claims (11)

  1. 열가소성 수지로 구성된 절연층(100, 110, 120)이 복수 적층되고, 일면(2a, 200a)과 그 반대측의 타면(2b, 200b)을 갖는 1개의 다층 기판과, 상기 다층 기판의 내부에 형성된 복수의 열류 센서부(10)를 갖는 센서 모듈(2, 200, 201, 202)을 구비하고,
    상기 복수의 열류 센서부는 각각 전기적으로 독립된 열전 변환 소자로 구성되어 있고, 열류 분포의 계측 대상물(31)에 상기 일면을 대향시켜서 상기 센서 모듈이 배치되었을 때에 각각의 상기 열전 변환 소자에 의하여 상기 일면에 수직인 방향에서 상기 다층 기판의 내부를 통과하는 열류에 따른 전기적인 출력을 발생하는
    열류 분포 측정 장치.
  2. 제1항에 있어서,
    상기 복수의 열류 센서부의 각각에서 발생한 상기 출력에 기초하여 열류 분포를 연산하는 연산부(3)를 더 구비하는
    열류 분포 측정 장치.
  3. 제2항에 있어서,
    상기 일면에 평행한 방향에 있어서, 상기 복수의 열류 센서부는 일방향에 일렬 또는 복수열로 나열하여 배치되어 있고,
    상기 일방향에 대하여 수직인 방향으로 상기 센서 모듈을 이동시키는 이동 장치(24)를 구비하고,
    상기 연산부는 상기 센서 모듈을 이동시켰을 때에, 상기 복수의 열류 센서부의 각각에서 발생한 상기 출력과, 상기 출력이 발생했을 때의 상기 센서 모듈의 위치에 기초하여 열류 분포를 연산하는
    열류 분포 측정 장치.
  4. 제3항에 있어서,
    상기 복수의 열류 센서부는 일방향에 복수열로 나열하여 배치되어 있고, 또한 이웃하는 열에 있어서 대향하는 상기 열류 센서부끼리가 상기 일방향에 사전에 결정된 거리(L1, L2) 어긋나게 하여 배치되어 있는
    열류 분포 측정 장치.
  5. 제1항 또는 제2항에 있어서,
    상기 일면에 평행한 방향에 있어서, 상기 복수의 열류 센서부는 매트릭스 형상으로 배열되어 있는
    열류 분포 측정 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 센서 모듈의 상기 타면측에 설치되어, 상기 센서 모듈을 냉각하는 냉각체(26) 또는 상기 센서 모듈을 가열하는 가열체를 구비하는
    열류 분포 측정 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 다층 기판은 복수의 상기 절연층의 하나로서의 복수의 관통 구멍(101, 102)이 형성된 절연 기재(100)와, 상기 복수의 관통 구멍에 매립되어, 다른 도전체로 구성된 제 1, 제 2 도전체(130, 140)를 갖고,
    상기 열전 변환 소자는 상기 제 1, 제 2 도전체(130, 140)가 번갈아 직렬 접속된 것이고,
    상기 복수의 열류 센서부의 각각을 구성하는 상기 제 1, 제 2 도전체가 동일한 상기 절연 기재에 형성되어 있는
    열류 분포 측정 장치.
  8. 절연층(100, 110, 120)이 복수 적층되고, 일면(2a, 200a)과 그 반대측의 타면(2b, 200b)을 갖는 1개의 다층 기판과, 상기 다층 기판의 내부에 형성된 복수의 열류 센서부(10)를 갖는 센서 모듈(2, 200, 201, 202)을 구비하고,
    상기 복수의 열류 센서부는 각각 전기적으로 독립된 열전 변환 소자로 구성되어 있고, 열류 분포의 계측 대상물(31)에 상기 일면을 대향시켜서 상기 센서 모듈이 배치되었을 때에 각각의 상기 열전 변환 소자에 의하여 상기 일면과 타면의 한쪽으로부터 다른쪽을 향하는 방향에서 상기 다층 기판의 내부를 통과하는 열류에 따른 전기적인 출력을 발생하는
    열류 분포 측정 장치.
  9. 제8항에 있어서,
    상기 복수의 열류 센서부의 각각에서 발생한 상기 출력에 기초하여 열류 분포를 연산하는 연산부(3)를 더 구비하는
    열류 분포 측정 장치.
  10. 제9항에 있어서,
    상기 일면을 따르는 방향에 있어서, 상기 복수의 열류 센서부가 일방향에 일렬 또는 복수열로 나열하여 배치되어 있고,
    상기 일방향에 대하여 교차하는 방향으로 상기 센서 모듈을 이동시키는 이동 장치(24)를 구비하고,
    상기 연산부는 상기 센서 모듈을 이동시켰을 때에, 상기 복수의 열류 센서부의 각각에서 발생한 상기 출력과, 상기 출력이 발생했을 때의 상기 센서 모듈의 위치에 기초하여 열류 분포를 연산하는
    열류 분포 측정 장치.
  11. 제8항 또는 제9항에 있어서,
    상기 일면을 따르는 방향에 있어서, 상기 복수의 열류 센서부가 매트릭스 형상으로 배열되어 있는
    열류 분포 측정 장치.
KR1020167032389A 2014-06-03 2015-06-01 열류 분포 측정 장치 KR101833278B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2014-114827 2014-06-03
JP2014114827 2014-06-03
JPJP-P-2015-099314 2015-05-14
JP2015099314A JP6485206B2 (ja) 2014-06-03 2015-05-14 熱流分布測定装置
PCT/JP2015/002742 WO2015186330A1 (ja) 2014-06-03 2015-06-01 熱流分布測定装置

Publications (2)

Publication Number Publication Date
KR20160143851A true KR20160143851A (ko) 2016-12-14
KR101833278B1 KR101833278B1 (ko) 2018-03-02

Family

ID=54766415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167032389A KR101833278B1 (ko) 2014-06-03 2015-06-01 열류 분포 측정 장치

Country Status (7)

Country Link
US (1) US10261034B2 (ko)
EP (1) EP3153832B1 (ko)
JP (1) JP6485206B2 (ko)
KR (1) KR101833278B1 (ko)
CN (1) CN106461471B (ko)
TW (1) TWI583944B (ko)
WO (1) WO2015186330A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820564B2 (ja) * 2016-03-23 2021-01-27 国立研究開発法人産業技術総合研究所 熱電モジュール発電評価装置
JP6500841B2 (ja) * 2016-05-25 2019-04-17 株式会社デンソー 熱流測定装置
JP2017211270A (ja) * 2016-05-25 2017-11-30 株式会社デンソー 熱流測定装置の製造方法
JP6256536B2 (ja) * 2016-07-04 2018-01-10 株式会社デンソー 熱流束センサモジュールおよびその製造方法
JP6792987B2 (ja) * 2016-09-29 2020-12-02 日本ドライケミカル株式会社 熱センサおよびその熱センサを用いた熱検知システム
CN106970105B (zh) * 2017-04-01 2019-12-20 西安交通大学 一种热源布局可变的结构导热性能测试平台及其测试方法
JP2019049435A (ja) * 2017-09-08 2019-03-28 株式会社デンソー 回路基板の製造方法および回路基板の検査方法
JP6819549B2 (ja) * 2017-11-16 2021-01-27 株式会社デンソー 熱流束センサおよび熱量計測装置
JP6799522B2 (ja) * 2017-11-30 2020-12-16 三菱重工業株式会社 熱流束計測システム
DE102018102471B3 (de) * 2018-02-05 2019-02-21 Leoni Kabel Gmbh Vorrichtung und Verfahren zur Messung einer Temperaturverteilung auf einer Oberfläche
JP7024614B2 (ja) * 2018-06-06 2022-02-24 株式会社デンソー 電子装置
CN109307563B (zh) * 2018-06-29 2021-01-15 华北电力大学(保定) 一种非规则固体壁面实时传热量的测量装置
CN109556762B (zh) * 2018-12-07 2023-08-29 中国航天空气动力技术研究院 一种用于测量凹腔热流分布的探头
JP7181103B2 (ja) * 2019-01-22 2022-11-30 Koa株式会社 熱コンダクタンス分布データ生成装置、熱コンダクタンス分布データ生成方法及び熱コンダクタンス分布データ生成用プログラム
US10561029B1 (en) * 2019-04-10 2020-02-11 Innolux Corporation Electronic device
CN111579126B (zh) * 2020-06-04 2022-08-12 西南科技大学 一种高温热流传感器
CN113503981B (zh) * 2021-06-22 2023-04-25 中国科学院上海硅酸盐研究所 一种连环垂向锯齿型热电堆热流传感器及其制造方法
DE102022205124A1 (de) * 2022-05-23 2023-11-23 Contitech Ag Thermoelement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255717A (ja) 2011-06-09 2012-12-27 Etou Denki Kk 熱流センサ及び熱流センサの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2413646A1 (fr) * 1978-01-02 1979-07-27 Saint Gobain Fluxmetre thermique
JP2636119B2 (ja) 1992-09-08 1997-07-30 工業技術院長 熱電素子シートとその製造方法
US6278051B1 (en) * 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
AU3691700A (en) * 1998-12-11 2000-07-03 Symyx Technologies, Inc. Sensor array-based system and method for rapid materials characterization
US6190040B1 (en) * 1999-05-10 2001-02-20 Sensarray Corporation Apparatus for sensing temperature on a substrate in an integrated circuit fabrication tool
JP2002131257A (ja) * 2000-10-26 2002-05-09 Nisshinbo Ind Inc 熱伝導率測定方法、測定装置及び断熱材の製造方法
JP4237520B2 (ja) * 2003-03-14 2009-03-11 学校法人立命館 熱電変換デバイス
JP2005337739A (ja) 2004-05-24 2005-12-08 Toshiba Corp 熱分布測定装置
US7211784B2 (en) 2004-03-16 2007-05-01 Kabushiki Kaisha Toshiba Photo-detection device and temperature distribution detection device using the same
KR100690926B1 (ko) 2006-02-03 2007-03-09 삼성전자주식회사 마이크로 열유속 센서 어레이
JP4595073B2 (ja) * 2006-08-28 2010-12-08 独立行政法人産業技術総合研究所 熱電材料測定装置
JP5368715B2 (ja) * 2008-02-15 2013-12-18 江藤電気株式会社 熱流センサ
CN101571428B (zh) * 2009-05-21 2010-12-08 中国科学院力学研究所 测量热流和温度的传感器及高温下测量热流与温度的方法
KR101012666B1 (ko) * 2010-01-20 2011-02-10 엔알티 주식회사 진공단열재의 열전도율 검사장치
JP5423487B2 (ja) 2010-03-08 2014-02-19 株式会社デンソー 貫通ビアへの導電材料充填装置およびその使用方法
CN102564601A (zh) * 2010-12-22 2012-07-11 精工爱普生株式会社 热式光检测装置、电子设备、热式光检测器及其制造方法
CN102175349B (zh) * 2011-02-10 2013-03-27 中国科学院电工研究所 太阳能塔式吸热器开口平面上热流分布的测量方法
US8568021B2 (en) 2011-09-29 2013-10-29 Schwank Ltd. Apparatus and method for measuring heat flux from radiant heater
US8882344B2 (en) * 2012-02-01 2014-11-11 Samsung Electronics Co., Ltd. Thermal insulation performance measurement apparatus and measurement method using the same
GB201208909D0 (en) * 2012-05-21 2012-07-04 Rowan Technologies Ltd Non-intrusive scanner
JP5376086B1 (ja) * 2012-05-30 2013-12-25 株式会社デンソー 熱電変換装置の製造方法、熱電変換装置を備える電子部品の製造方法
JP2014007376A (ja) * 2012-05-30 2014-01-16 Denso Corp 熱電変換装置
JP6286845B2 (ja) * 2013-03-22 2018-03-07 富士通株式会社 熱電素子搭載モジュール及びその製造方法
JP5987811B2 (ja) * 2013-06-04 2016-09-07 株式会社デンソー 車両用の異常判定装置
JP6394491B2 (ja) 2014-06-03 2018-09-26 株式会社デンソー 熱電変換素子シートの製造方法、熱電変換装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255717A (ja) 2011-06-09 2012-12-27 Etou Denki Kk 熱流センサ及び熱流センサの製造方法

Also Published As

Publication number Publication date
KR101833278B1 (ko) 2018-03-02
US10261034B2 (en) 2019-04-16
CN106461471B (zh) 2019-09-27
JP2016011950A (ja) 2016-01-21
EP3153832A4 (en) 2017-06-14
TW201602570A (zh) 2016-01-16
US20170082564A1 (en) 2017-03-23
CN106461471A (zh) 2017-02-22
EP3153832B1 (en) 2019-02-20
TWI583944B (zh) 2017-05-21
JP6485206B2 (ja) 2019-03-20
EP3153832A1 (en) 2017-04-12
WO2015186330A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
KR101833278B1 (ko) 열류 분포 측정 장치
JP6380168B2 (ja) 熱式流量センサ
JP6451484B2 (ja) 熱流束センサの製造方法およびそれに用いる熱流発生装置
KR101844393B1 (ko) 열전 변환 소자 시트 및 그 제조 방법, 열전 변환 장치의 제조 방법
WO2016063465A1 (ja) 状態検出センサ
US9433074B2 (en) Printed wiring boards having thermal management features and thermal management apparatuses comprising the same
TW201813140A (zh) 熱通量感測器模組及其製造方法
KR101895302B1 (ko) 풍향계, 풍향 풍량계 및 이동 방향 측정계
KR101901415B1 (ko) 질량 유량계 및 속도계
JP6269612B2 (ja) 放射熱センサ
KR102032190B1 (ko) 히터 플레이트, 이 히터 플레이트를 이용하는 열유속 센서의 제조 장치, 이 히터 플레이트의 제조 방법 및 이 히터 플레이트의 제조 장치
JP6500841B2 (ja) 熱流測定装置
JP2019049435A (ja) 回路基板の製造方法および回路基板の検査方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant