KR20160073178A - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
KR20160073178A
KR20160073178A KR1020140181644A KR20140181644A KR20160073178A KR 20160073178 A KR20160073178 A KR 20160073178A KR 1020140181644 A KR1020140181644 A KR 1020140181644A KR 20140181644 A KR20140181644 A KR 20140181644A KR 20160073178 A KR20160073178 A KR 20160073178A
Authority
KR
South Korea
Prior art keywords
lithium
concentration
secondary battery
lithium secondary
surface portion
Prior art date
Application number
KR1020140181644A
Other languages
English (en)
Other versions
KR102312369B1 (ko
Inventor
유경빈
한국현
황덕철
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020140181644A priority Critical patent/KR102312369B1/ko
Priority to US14/967,845 priority patent/US10374231B2/en
Priority to CN201510938121.5A priority patent/CN105702947B/zh
Publication of KR20160073178A publication Critical patent/KR20160073178A/ko
Priority to KR1020210131586A priority patent/KR102397827B1/ko
Application granted granted Critical
Publication of KR102312369B1 publication Critical patent/KR102312369B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차 전지에 관한 것으로서, 보다 상세하게는 양극, 음극 및 비수 전해액을 포함하며, 상기 양극은 금속 중 적어도 1종이 중심부에서 표면부 사이에 농도 경사 영역을 가지며, 전이 금속이 도핑된 리튬-금속 산화물을 포함하는 양극 활물질을 포함함으로써, 저온에서의 충/방전 용량과 출력이 현저하게 상승하여, 저온 환경 하에서도 우수한 성능을 나타낼 수 있는, 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지{LITHIUM SECONDARY BATTERY}
본 발명은 리튬 이차 전지에 관한 것이며, 보다 상세하게는 저온 특성이 우수한 리튬 이차 전지에 관한 것이다.
전자, 통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북PC 등과 같은 휴대용 전자통신 기기들이 눈부신 발전을 하고 있다. 이에 따라, 이들을 구동할 수 있는 동력원으로서 리튬 이차 전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차 전지는 리튬 이온을 흡장 및 방출할 수 있는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.
그런데, 리튬 이차 전지의 응용 범위가 확대되면서 전기자동차 등의 동력원으로도 사용되고 있는데, 그러한 경우에는 휴대폰, 노트북 등에서보다 보다 고온이나 저온 환경 등 가혹한 환경에서 작동할 수 잇는 성능이 요구된다. 차량은 겨울철과 같은 낮은 기온에서도 작동될 수 있어야 하는바, 대표적으로 저온에서의 우수한 충/방전 성능 및 출력 특성을 들 수 있다.
그러나, 저온 하에서는 전기화학 반응 속도 저하에 따른 출력과 충/방전 성능 감소의 문제가 심각하여, 우수한 저온 특성을 갖는 리튬 이차 전지 기술에 대한 필요성이 높은 실정이다.
한국공개특허 제2004-118517호에는 리튬 이차 전지용 비수 전해액 첨가제가 개시되어 있다.
한국공개특허 제2004-118517호
본 발명은 저온 특성이 현저히 개선된 리튬 이차 전지를 제공하는 것을 목적으로 한다.
1. 양극, 음극 및 비수 전해액을 포함하며,
상기 양극은 금속 중 적어도 1종이 중심부에서 표면부 사이에 농도 경사 영역을 가지며, 전이 금속이 도핑된 리튬-금속 산화물을 포함하는 양극 활물질을 포함하는, 리튬 이차 전지.
2. 위 1에 있어서, 상기 전이 금속은 Ti, Zr, Mg, Al, V, B, Na, Ca, Cr, Cu, Zn, Ge, Sr, Ba, Nb 및 Ga로 이루어진 군에서 선택된 1종 이상인, 리튬 이차 전지.
3. 위 1에 있어서, 상기 전이 금속은 500 내지 7,000ppm의 농도로 도핑되는 것인, 리튬 이차 전지.
4. 위 1에 있어서, 상기 전이 금속은 500 내지 3,000ppm의 농도로 도핑되는 것인, 리튬 이차 전지.
5. 위 1에 있어서, 상기 리튬-금속 산화물은 그 표면에 Al, Ti, Ba, Zr, Si, B, Mg, P, 이들의 합금 또는 이들의 산화물 코팅층을 더 포함하는, 리튬 이차 전지.
6. 위 1에 있어서, 상기 리튬-금속 산화물을 형성하는 금속 중 다른 1종은 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
7. 위 1에 있어서, 상기 리튬-금속 산화물은 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 갖는 제1 금속과 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 갖는 제2 금속을 포함하는, 리튬 이차 전지.
8. 위 1에 있어서, 상기 리튬-금속 산화물은 하기 화학식 1로 표시되며, 하기 화학식 1에서 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도 경사 영역을 갖는, 리튬 이차 전지:
[화학식 1]
LixM1aM2bM3cOy
(식 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되며,
0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1 임).
9. 위 8에 있어서, 상기 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 나머지는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 갖는, 리튬 이차 전지.
10. 위 8에 있어서, 상기 M1, M2 및 M3 중 어느 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 다른 하나는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 가지며, 나머지 하나는 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
11. 위 8에 있어서, 상기 M1, M2 및 M3은 각각 Ni, Co 및 Mn인, 리튬 이차 전지.
12. 위 8 내지 11 중 어느 한 항에 있어서, 상기 M1이 Ni이고, 0.6≤a≤0.95 및 0.05≤b+c≤0.4인, 리튬 이차 전지.
13. 위 8 내지 11 중 어느 한 항에 있어서, 상기 M1이 Ni이고, 0.7≤a≤0.9 및 0.1≤b+c≤0.3인, 리튬 이차 전지.
14. 위 1에 있어서, 상기 리튬-금속 산화물을 포함하는 1차 입자의 형상이 막대형(rod-type)인, 리튬 이차 전지.
본 발명의 리튬 이차 전지는 연속적인 농도 경사를 가지며, 전이 금속이 도핑된 리튬-금속 산화물을 포함하는 양극 활물질을 포함함으로써, 저온 특성이 현저하게 개선된 효과를 나타낼 수 있다. 보다 구체적으로, 저온에서의 충/방전 용량과 출력이 현저하게 상승하여, 저온 환경 하에서도 우수한 성능을 나타낼 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬-금속 산화물을 구성하는 금속 원소의 농도 측정 위치를 개략적으로 도시한 도면이다.
도 2는 실시예 1의 양극활물질 단면의 SEM 사진이다.
도 3은 실시예 31의 양극활물질 단면의 SEM 사진이다.
도 4는 비교예 1의 양극활물질 단면의 SEM 사진이다.
본 발명은 양극, 음극 및 비수 전해액을 포함하며, 상기 양극은 금속 중 적어도 1종이 중심부에서 표면부 사이에 농도 경사 영역을 가지며, 전이 금속이 도핑된 리튬-금속 산화물을 포함하는 양극 활물질을 포함함으로써, 저온에서의 충/방전 용량과 출력이 현저하게 상승하여, 저온 환경 하에서도 우수한 성능을 나타낼 수 있는, 리튬 이차 전지에 관한 것이다.
이하, 본 발명을 보다 상세하게 설명하도록 한다.
양극 활물질
본 발명에 따른 양극 활물질은 금속 중 적어도 1종이 중심부에서 표면부 사이에 농도 경사를 가지는 리튬-금속 산화물을 포함한다. 이러한 양극 활물질은 농도 변화가 없는 양극 활물질에 비하여 수명 특성이 탁월하다.
본 발명에서 리튬-금속 산화물 중 금속이 중심부에서 표면부 사이에 농도 경사 영역을 갖는다는 것은, 리튬을 제외한 금속이 리튬-금속 산화물 입자의 중심부에서 표면부 사이에 일정한 경향으로 변화하는 농도 분포 영역을 갖는 것을 의미한다. 상기 농도 분포 영역(즉, 농도 경사 영역)은 중심부에서 표면부 사이라면 특별한 제한 없이 위치할 수 있다. 일정한 경향이란 농도 변화 추이가 감소 또는 증가되는 것을 의미하며, 일부 지점에서 그러한 추이와 반대되는 값을 갖는 것을 배제하는 것은 아니다.
본 발명에 있어서 입자의 중심부는 활물질 입자의 정중앙으로부터 반경 0.1㎛ 이내를 의미하며, 입자의 표면부는 입자의 최외각으로부터 0.1㎛ 이내를 의미한다.
본 발명에 따른 양극 활물질은 농도 경사를 갖는 금속을 적어도 1종 포함한다. 따라서, 일 실시예로서, 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 갖는 제1 금속과 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 갖는 제2 금속을 포함할 수 있다. 상기 제1 금속 또는 제2 금속은 서로 독립적으로 1종 이상일 수 있다.
본 발명의 다른 실시예로서, 본 발명에 따른 양극 활물질은 중심부에서 표면부 사이에 일정한 농도를 갖는 금속을 포함할 수도 있다.
본 발명에 따른 양극 활물질의 구체적인 예로는 하기 화학식 1로 표시되는 리튬-금속 산화물을 들 수 있으며, 하기 화학식 1에서 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도 경사를 갖는다:
[화학식 1]
LixM1aM2bM3cOy
(식 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되며,
0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1 임).
본 발명의 일 실시예에 있어서, M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 나머지는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 가질 수 있다.
본 발명의 다른 일 실시예에 있어서, M1, M2 및 M3 중 어느 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 다른 하나는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 가지며, 나머지 하나는 중심부에서 표면부까지 일정한 농도를 가질 수 있다.
본 발명의 구체적인 예시로서, M1, M2 및 M3은 각각 Ni, Co 및 Mn일 수 있다.
본 발명에 따른 리튬-금속 산화물은 상대적으로 니켈(Ni)의 함량이 많을 수 있다. 니켈을 사용할 경우 전지 용량 개선에 도움이 되는데, 종래의 양극 활물질 구조에서는 니켈의 함량이 많을 경우 수명이 저하되는 문제가 있으나, 본 발명에 따른 양극 활물질의 경우 니켈의 함량이 많아도 수명 특성이 저하되지 않는다. 따라서, 본 발명의 양극 활물질은 높은 용량을 유지하면서도 우수한 수명 특성을 나타낼 수 있다.
예를 들어, 본 발명에 따른 리튬-금속 산화물에 있어서, 니켈의 몰 비가 0.6 내지 0.95, 바람직하게는 0.7 내지 0.9 일 수 있다. 즉, 상기 화학식 1에서 M1이 Ni인 경우, 0.6≤a≤0.95 및 0.05≤b+c≤0.4일 수 있으며, 바람직하게는, 0.7≤a≤0.9 및 0.1≤b+c≤0.3일 수 있다.
본 발명에 따른 리튬-금속 산화물은 그 입자 형상을 특별히 한정하지는 않으나 바람직하게는 1차 입자가 막대형(rod-type) 형상을 가질 수 있다.
본 발명에 따른 리튬-금속 산화물은 그 입자 크기를 특별히 한정하지는 않으며, 예를 들면 3 내지 25㎛일 수 있다.
또한, 상기 리튬-금속 산화물은 전이 금속이 도핑되어 있다.
본 발명의 리튬 이차 전지는 양극 활물질로서 리튬-금속 산화물을 포함하는데, 전술한 바와 같이 상기 리튬-금속 산화물 중 금속이 중심부에서 표면부 사이에 농도 경사 영역을 가지며, 이와 동시에 전이 금속이 도핑됨으로써, 현저히 개선된 저온 특성을 나타낸다.
전이 금속은 예를 들면 Ti, Zr, Mg, Al, V, B, Na, Ca, Cr, Cu, Zn, Ge, Sr, Ba, Nb 및 Ga로 이루어진 군에서 선택된 1종 이상의 금속일 수 있다.
전이 금속의 도핑량은 특별히 한정되지 않으며, 예를 들면 500 내지 7,000ppm의 농도로 도핑될 수 있다. 농도가 500ppm 미만이면 저온 특성 개선 효과가 다소 미미할 수 있고, 7,000ppm 초과이면 마찬가지로 저온 특성 개선 효과가 저하될 수 있다. 상기 저온 특성 개선 효과의 극대화의 측면에서 바람직하게는 전이 금속은 500 내지 3,000ppm의 농도로 도핑될 수 있다.
필요에 따라, 본 발명에 따른 양극 활물질은 전술한 리튬-금속 산화물에 코팅층을 더 포함할 수도 있다. 코팅층은 금속 또는 금속 산화물을 포함하여 이루어질 수 있는데, 예를 들면, Al, Ti, Ba, Zr, Si, B, Mg, P 및 이들의 합금을 포함하거나, 상기 금속의 산화물을 포함할 수 있다.
본 발명에 따른 리튬-금속 산화물은 공침법을 사용하여 제조될 수 있다.
이하에서는, 본 발명에 따른 양극 활물질의 제조 방법의 일 실시예를 설명하도록 한다.
먼저 중심부 형성용 금속염 수용액과 표면부 형성용 금속염 수용액을 만든다. 다음으로 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액을 요구되는 농도 구배에 따라 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여 중심부에서 표면부 사이에 하나 이상의 금속원소의 농도 경사 영역을 가지는 침전물을 만든다.
상기 혼합시에 도핑시킬 전이 금속 용액도 함께 혼합한다. 전이 금속 용액은 예를 들면 전이 금속의 황산염 용액일 수 있으나, 이에 제한되는 것은 아니다.
제조된 침전물은 열처리한 후 리튬염과 혼합하고 다시 열처리하면, 본 발명에 따른 양극 활물질을 얻을 수 있다.
음극 활물질
본 발명에 따른 음극 활물질은 리튬 이온을 흡장 및 탈리할 수 있는, 당분야에서 공지된 것이 특별한 제한 없이 사용될 수 있다. 예를 들면 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬과 다른 원소의 합금, 규소 또는 주석 등이 사용될 수 있다. 비결정질 탄소로는 하드카본, 코크스, 1500℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-based carbon fiber: MPCF) 등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다. 리튬과 합금을 이루는 다른 원소로는 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐이 사용될 수 있다.
이차 전지
본 발명은 전술한 본 발명에 따른 양극 활물질 및 음극 활물질을 이용하여 제조되는 리튬 이차 전지를 제공한다.
본 발명에 따른 리튬 이차 전지는 양극, 음극, 및 비수 전해액을 포함하여 제조될 수 있다.
양극 및 음극은 각각 전술한 본 발명에 따른 양극 활물질 및 음극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산재 등을 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 건조 및 프레스하여 제조할 수 있다.
바인더로는 당분야에서 사용되는 것이 특별한 제한 없이 사용될 수 있으며, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 유기계 바인더, 또는 스티렌-부타디엔 러버(SBR) 등의 수계 바인더를 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용할 수 있다.
도전재로는 통상적인 도전성 탄소재가 특별한 제한 없이 사용될 수 있다.
금속 재료의 집전체는 전도성이 높고 상기 양극 또는 음극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
양극과 음극 사이에는 세퍼레이터가 개재되는데, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 세퍼레이터를 전지에 적용하는 방법으로는 일반적인 방법인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 등이 가능하다.
비수 전해액은 전해질인 리튬염과 유기 용매를 포함하며, 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 유기 용매로는 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 에틸 프로피오네이트, 에틸 아세테이트, 프로필 아세테이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 설포란, 감마-부티로락톤 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 사용될 수 있다.
비수 전해액은 필요에 따라 당분야에 공지된 첨가제를 특별한 제한 없이 더 포함할 수도 있으며, 예를 들면, 비닐렌 카보네이트, 프로필렌 설파이트, 프로펜 설톤, 프로판 설톤 등을 적어도 1종 이상 포함할 수 있으나, 이에 한정되는 것은 아니다
비수 전해액은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 주입하여 리튬 이차전지로 제조된다. 본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
실시예 1
<양극>
양극활물질로 전체 조성은 LiNi0 .80Co0 .10Mn0 .10O2이며, 중심부의 조성 은LiNi0.83Co0.10Mn0.07O2이고 표면부의 조성은 LiNi0 .78Co0 .10Mn0 .12O2이며 중심부와 표면부의 사이의 중간 부분에서 니켈과 망간의 농도 경사 영역을 가지며, Ti가 도핑된 리튬-금속 산화물(이하 CAM1)을 사용하고, 도전재로 Denka Black, 바인더로 PVDF를 사용하고 92: 5: 3의 각각의 질량비 조성으로 양극 슬러리를 제조한 후, 이를 알루미늄 기재 위에 코팅, 건조, 프레스를 실시하여 양극을 제조하였다
참고로, 사용된 리튬-금속 산화물의 농도 경사는 하기 표 1과 같으며, 농도 측정 위치는 도 1에 도시된 바와 같다. 측정 위치는 입자의 중심에서 표면까지의 거리 4.8㎛인 리튬-금속 산화물 입자에 대해서 중심부터 0.4㎛ 간격으로 측정하였다.
실시예 1의 양극활물질의 단면 SEM 이미지는 도 2와 같다.
위치 Ni Co Mn
1 0.830 0.100 0.070
2 0.831 0.101 0.068
3 0.829 0.100 0.071
4 0.830 0.100 0.070
5 0.800 0.099 0.101
6 0.780 0.100 0.120
7 0.780 0.100 0.120
8 0.780 0.101 0.119
9 0.781 0.100 0.119
10 0.779 0.101 0.120
11 0.780 0.100 0.120
12 0.781 0.099 0.120
13 0.780 0.100 0.120
<음극>
음극 활물질로 천연 흑연(d002 3.358Å) 93중량%, 도전재로 flake type 도전재인 KS6 5중량%, 바인더로 SBR 1중량% 및 증점제 CMC 1중량%를 포함하는 음극 슬러리를 구리 기재 위에 코팅, 건조 및 프레스를 실시하여 음극을 제조하였다.
<전지>
양극 극판과 음극 극판을 각각 적당한 사이즈로 Notching하여 적층하고 양극 극판과 음극 극판사이에 세퍼레이터(폴리에틸렌, 두께 25㎛)를 개재하여 셀을 구성하고, 양극의 탭부분과 음극의 탭부분을 각각 용접을 하였다. 용접된 양극/세퍼레이터/음극의 조합체를 파우치안에 넣고 전해액 주액부면을 제외한 3면을 실링을 하였다. 이때 탭이 있는 부분은 실링 부위에 포함시킨다. 나머지 한 부분으로 전해액을 주액하고 남은 한 면을 실링하고 12시간 이상 함침을 시켰다. 전해액은 EC/EMC/DEC (25/45/30; 부피비)의 혼합 용매로 1M LiPF6 용액을 제조한 후, 비닐렌 카보네이트(VC) 1wt%, 1,3-프로펜설톤(PRS) 0.5wt% 및 리튬 비스(옥살레이토)보레이트(LiBOB) 0.5wt%를 첨가한 것을 사용하였다.
이후 Pre-charging을 0.25C에 해당하는 전류(2.5A)로 36분 동안 실시하였다. 1시간 후에 Degasing을 하고 24시간 이상 에이징을 실시한 후 화성충방전을 실시하였다(충전조건 CC-CV 0.2C 4.2V 0.05C CUT-OFF, 방전조건 CC 0.2C 2.5V CUT-OFF). 그 후 표준충방전을 실시하였다(충전조건 CC-CV 0.5 C 4.2V 0.05C CUT-OFF, 방전조건 CC 0.5C 2.5V CUT-OFF).
실시예 2-30
양극 활물질에 도핑되는 전이 금속의 종류, 농도를 달리한 것을 제외하고는, 실시예 1과 동일하게 전지를 제조하였다.
전이 금속의 종류 및 농도는 하기 표 3에 기재하였다.
실시예 31-40
양극활물질로 전체 조성은 LiNi0 .80Co0 .11Mn0 .09O2이며, 중심부의 조성 은 LiNi0.8Co0.11Mn0.088O2이고 표면부의 조성은 LiNi0 .77Co0 .11Mn0 .12O2이며 중심부와 표면부의 사이의 영역에서 니켈과 망간의 농도 경사를 가지며, 전이 금속이 도핑된 리튬-금속 산화물(이하 CAM2)을 사용한 것을 제외하고는 실시예 1과 동일하게 전지를 제조하였다.
참고로, 사용된 리튬-금속 산화물의 농도 경사는 하기 표 2와 같으며, 농도 측정 위치는 도 1에 도시된 바와 같다. 측정 위치는 입자의 중심에서 표면까지의 거리 4.8㎛인 리튬-금속 산화물 입자에 대해서 중심부터 0.4㎛ 간격으로 측정하였다.
실시예 31의 양극활물질의 단면 SEM 이미지는 도 3과 같다.
위치 Ni Co Mn
1 0.802 0.110 0.088
2 0.801 0.111 0.088
3 0.802 0.110 0.088
4 0.802 0.110 0.088
5 0.803 0.111 0.086
6 0.802 0.110 0.088
7 0.802 0.110 0.088
8 0.802 0.109 0.089
9 0.801 0.110 0.089
10 0.802 0.110 0.088
11 0.802 0.108 0.090
12 0.800 0.110 0.090
13 0.770 0.110 0.120
비교예 1
양극 활물질의 리튬-금속 산화물로 전이 금속이 도핑되지 않은 LiNi0.8Co0.1Mn0.1O2(이하 NCM811)을 사용한 것을 제외하고는 실시예 1과 동일하게 전지를 제조하였다.
비교예 1의 양극활물질의 단면 SEM 이미지는 도 4와 같다.
비교예 2-6
전이 금속을 도핑한 것을 제외하고는 비교예 1과 동일하게 전지를 제조하였다. 전이 금속의 종류 및 농도는 하기 표 3에 기재하였다.
비교예 7
전이 금속을 도핑하지 않은 것을 제외하고는 실시예 1과 동일하게 전지를 제조하였다.
비교예 8
전이 금속을 도핑하지 않은 것을 제외하고는 실시예 31과 동일하게 전지를 제조하였다.
실험예
1. 저온 특성 측정(상온 용량 대비 -20℃ 용량)
실시예 및 비교예에 의해 제조된 전지를 이용하여 상온(25℃) 대비 -20℃ 에서 0.5C 충전, 0.5C 방전 용량 비교를 통해 저온특성을 측정하고, 그 결과를 하기 표 3에 기재하였다.
2. 저온 출력 특성(상온 출력 대비 -20℃ 출력)
실시예 및 비교예에 의해 제조된 전지를 이용하여 HPPC (Hybrid Pulse Power Characterization by FreedomCar Battery Test Manual) 방식으로 -20℃ 에서 출력특성을 측정하고, 그 결과를 하기 표 3에 기재하였다.
구분 양극 활물질 도핑 물질 도핑농도
(ppm)
-20℃ 충전용량
(%)
-20℃
방전용량
(%)
-20℃
방전출력
(%)
비교예1 NCM811 - - 62 73 17
비교예2 NCM811 Ti 500 62 74 17
비교예3 NCM811 Ti 1000 63 74 18
비교예4 NCM811 Ti 3000 63 75 19
비교예5 NCM811 Ti 5000 62 74 18
비교예6 NCM811 Ti 7000 62 73 18
비교예7 CAM1 - - 62 72 17
실시예1 CAM1 Ti 500 64 75 19
실시예2 CAM1 Ti 1000 65 79 21
실시예3 CAM1 Ti 3000 66 80 23
실시예4 CAM1 Ti 5000 65 78 20
실시예5 CAM1 Ti 7000 62 75 18
실시예6 CAM1 Zr 500 64 74 19
실시예7 CAM1 Zr 1000 65.5 79 20.5
실시예8 CAM1 Zr 3000 67 80 24
실시예9 CAM1 Zr 5000 66 78.5 21.5
실시예10 CAM1 Zr 7000 63 76 19
실시예11 CAM1 Mg 500 62 74 18
실시예12 CAM1 Mg 1000 64 77 19
실시예13 CAM1 Mg 3000 65 79 22
실시예14 CAM1 Mg 5000 64.5 78 21
실시예15 CAM1 Mg 7000 62 75 18
실시예16 CAM1 Al 500 64 75 19
실시예17 CAM1 Al 1000 66 79 20
실시예18 CAM1 Al 3000 68 80 22
실시예19 CAM1 Al 5000 66.5 79 21
실시예20 CAM1 Al 7000 64 77 19
실시예21 CAM1 Ti+Zr 500 63 75 19
실시예22 CAM1 Ti+Zr 1000 65.5 79 23
실시예23 CAM1 Ti+Zr 3000 68 82 26
실시예24 CAM1 Ti+Zr 5000 65 79 23
실시예25 CAM1 Ti+Zr 7000 63 75 19
실시예26 CAM1 Ti+Al 500 63 74 19
실시예27 CAM1 Ti+Al 1000 68 79 21
실시예28 CAM1 Ti+Al 3000 69 82 25
실시예29 CAM1 Ti+Al 5000 67 79 22
실시예30 CAM1 Ti+Al 7000 63 76 20
비교예8 CAM2 - - 61.5 72 17
실시예31 CAM2 Ti 500 63.5 74 19
실시예32 CAM2 Ti 1000 65 79 20.5
실시예33 CAM2 Ti 3000 67 81 24
실시예34 CAM2 Ti 5000 65 78 22
실시예35 CAM2 Ti 7000 62 75 18
실시예36 CAM2 Ti+Zr 500 63 77 20
실시예37 CAM2 Ti+Zr 1000 66 80 24
실시예38 CAM2 Ti+Zr 3000 69 83 27
실시예39 CAM2 Ti+Zr 5000 66 81 25
실시예40 CAM2 Ti+Zr 7000 63 76 20
상기 표 3을 참조하면, 실시예들의 전지가 비교예들에 비해 현저히 우수한 저온 특성을 나타내는 것을 확인할 수 있다.
구체적으로, 비교예 1-6을 보면 전이 금속의 도핑에 의해 충전 용량은 최대 1%, 방전 용량은 최대 2%, 방전 출력은 최대 2% 정도 향상된 것을 확인할 수 있다.
그러나, 비교예 7과 실시예 1-5를 비교하면, 동일 전이 금속의 도핑에 의해 상온대비 충전 용량은 최대 4%, 방전 용량은 8%, 방전 출력은 최대 6%까지 향상되어, CAM1과 전이 금속 도핑의 조합에 의한 개선 정도가 현저히 큰 것을 확인할 수 있다.
그리고, 비교예 1-6과 비교예8, 실시예 31-35를 비교하면, 농도 구배의 경향이 다른 CAM2의 경우도 CAM1과 마찬가지로 저온특성이 크게 개선됨을 알수 있다.
전이 금속의 도핑량에 따른 저온 특성 개선 정도는 500ppm에서 3,000ppm까지 증가하여 3,000ppm에서 가장 우수하고, 3,000ppm 이상 7,000ppm 이하의 구간에서 개선 정도가 감소하는 것을 확인할 수 있다. 또한 Ti 뿐 아니라 Zr, Mg, Al 등의 전이금속이 도핑된 CAM1을 사용한 셀 역시 우수한 저온 특성을 보여주었다.
실시예 21-30, 실시예 36-40을 보면, 이러한 전이금속의 단일 도핑 외에도 2종 이상을 도핑했을 시에도 동일하게 도핑이 되지 않은 셀 대비 우수한 저온 특성을 보이고 있다.

Claims (14)

  1. 양극, 음극 및 비수 전해액을 포함하며,
    상기 양극은 금속 중 적어도 1종이 중심부에서 표면부 사이에 농도 경사 영역을 가지며, 전이 금속이 도핑된 리튬-금속 산화물을 포함하는 양극 활물질을 포함하는, 리튬 이차 전지.
  2. 청구항 1에 있어서, 상기 전이 금속은 Ti, Zr, Mg, Al, V, B, Na, Ca, Cr, Cu, Zn, Ge, Sr, Ba, Nb 및 Ga로 이루어진 군에서 선택된 1종 이상인, 리튬 이차 전지.
  3. 청구항 1에 있어서, 상기 전이 금속은 500 내지 7,000ppm의 농도로 도핑되는 것인, 리튬 이차 전지.
  4. 청구항 1에 있어서, 상기 전이 금속은 500 내지 3,000ppm의 농도로 도핑되는 것인, 리튬 이차 전지.
  5. 청구항 1에 있어서, 상기 리튬-금속 산화물은 그 표면에 Al, Ti, Ba, Zr, Si, B, Mg, P, 이들의 합금 또는 이들의 산화물 코팅층을 더 포함하는, 리튬 이차 전지.
  6. 청구항 1에 있어서, 상기 리튬-금속 산화물을 형성하는 금속 중 다른 1종은 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
  7. 청구항 1에 있어서, 상기 리튬-금속 산화물은 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 갖는 제1 금속과 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 갖는 제2 금속을 포함하는, 리튬 이차 전지.
  8. 청구항 1에 있어서, 상기 리튬-금속 산화물은 하기 화학식 1로 표시되며, 하기 화학식 1에서 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도 경사 영역을 갖는, 리튬 이차 전지:
    [화학식 1]
    LixM1aM2bM3cOy
    (식 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되며,
    0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1 임).
  9. 청구항 8에 있어서, 상기 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 나머지는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 갖는, 리튬 이차 전지.
  10. 청구항 8에 있어서, 상기 M1, M2 및 M3 중 어느 하나는 중심부에서 표면부 사이에 농도가 증가하는 농도 경사 영역을 가지며, 다른 하나는 중심부에서 표면부 사이에 농도가 감소하는 농도 경사 영역을 가지며, 나머지 하나는 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
  11. 청구항 8에 있어서, 상기 M1, M2 및 M3은 각각 Ni, Co 및 Mn인, 리튬 이차 전지.
  12. 청구항 8 내지 11 중 어느 한 항에 있어서, 상기 M1이 Ni이고, 0.6≤a≤0.95 및 0.05≤b+c≤0.4인, 리튬 이차 전지.
  13. 청구항 8 내지 11 중 어느 한 항에 있어서, 상기 M1이 Ni이고, 0.7≤a≤0.9 및 0.1≤b+c≤0.3인, 리튬 이차 전지.
  14. 청구항 1에 있어서, 상기 리튬-금속 산화물을 포함하는 1차 입자의 형상이 막대형(rod-type)인, 리튬 이차 전지.
KR1020140181644A 2014-12-16 2014-12-16 리튬 이차 전지 KR102312369B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020140181644A KR102312369B1 (ko) 2014-12-16 2014-12-16 리튬 이차 전지
US14/967,845 US10374231B2 (en) 2014-12-16 2015-12-14 Lithium secondary battery
CN201510938121.5A CN105702947B (zh) 2014-12-16 2015-12-15 锂二次电池
KR1020210131586A KR102397827B1 (ko) 2014-12-16 2021-10-05 리튬 이차 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140181644A KR102312369B1 (ko) 2014-12-16 2014-12-16 리튬 이차 전지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210131586A Division KR102397827B1 (ko) 2014-12-16 2021-10-05 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20160073178A true KR20160073178A (ko) 2016-06-24
KR102312369B1 KR102312369B1 (ko) 2021-10-12

Family

ID=56112033

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020140181644A KR102312369B1 (ko) 2014-12-16 2014-12-16 리튬 이차 전지
KR1020210131586A KR102397827B1 (ko) 2014-12-16 2021-10-05 리튬 이차 전지

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210131586A KR102397827B1 (ko) 2014-12-16 2021-10-05 리튬 이차 전지

Country Status (3)

Country Link
US (1) US10374231B2 (ko)
KR (2) KR102312369B1 (ko)
CN (1) CN105702947B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071714A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190032126A (ko) * 2017-09-19 2019-03-27 주식회사 엘지화학 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020153833A1 (ko) * 2019-01-24 2020-07-30 한양대학교 산학협력단 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
WO2023059073A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 저효율 양극을 포함하는 이차전지

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324465A1 (en) * 2016-11-18 2018-05-23 SK Innovation Co., Ltd. Lithium secondary battery and method of fabricating the same
KR102165118B1 (ko) * 2017-10-26 2020-10-14 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN110957474B (zh) * 2018-09-26 2020-12-11 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法及电化学储能装置
EP3905393A4 (en) * 2019-01-24 2022-09-28 Battery Solution COMPOSITE METAL OXIDE FOR SECONDARY LITHIUM BATTERY COMPRISING DOPING ELEMENT, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM BATTERY PREPARED THEREOF AND SECONDARY LITHIUM BATTERY COMPRISING
KR102537059B1 (ko) * 2022-06-23 2023-05-30 에스케이온 주식회사 리튬 이차전지용 음극 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118517A (ja) 2002-09-26 2004-04-15 Canon Inc データ転送方法及び装置及び印刷方法及び印刷装置及びデータ転送装置の制御プログラム及び記憶媒体
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US20130260231A1 (en) * 2012-04-02 2013-10-03 Bin Hua Lithium-ion batteries and cathode materials thereof
KR20140117311A (ko) * 2013-03-26 2014-10-07 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20140142171A (ko) * 2013-05-31 2014-12-11 한양대학교 산학협력단 리튬 전지용 양극 활물질 및 이의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725399B1 (ko) 2005-06-23 2007-06-07 한양대학교 산학협력단 코아·쉘 구조를 가지는 리튬이차전지용 양극활물질, 그를사용한 리튬이차전지 및 그 제조 방법
KR20220156102A (ko) 2005-10-20 2022-11-24 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
JP5137312B2 (ja) 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
WO2009136589A1 (ja) 2008-05-07 2009-11-12 日立マクセル株式会社 非水二次電池および電子機器
JP5013217B2 (ja) * 2009-01-23 2012-08-29 株式会社豊田自動織機 非水系二次電池用活物質および非水系二次電池
JP5204913B1 (ja) * 2012-04-27 2013-06-05 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN103700843B (zh) * 2012-09-27 2016-03-09 清华大学 锂离子电池正极复合材料
KR20140118517A (ko) 2013-03-29 2014-10-08 리켐주식회사 리튬이차전지용 비수 전해액 첨가제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118517A (ja) 2002-09-26 2004-04-15 Canon Inc データ転送方法及び装置及び印刷方法及び印刷装置及びデータ転送装置の制御プログラム及び記憶媒体
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US20130260231A1 (en) * 2012-04-02 2013-10-03 Bin Hua Lithium-ion batteries and cathode materials thereof
KR20140117311A (ko) * 2013-03-26 2014-10-07 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20140142171A (ko) * 2013-05-31 2014-12-11 한양대학교 산학협력단 리튬 전지용 양극 활물질 및 이의 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071714A (ko) * 2016-12-20 2018-06-28 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190032126A (ko) * 2017-09-19 2019-03-27 주식회사 엘지화학 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
US11637275B2 (en) 2017-09-19 2023-04-25 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode material
WO2020153833A1 (ko) * 2019-01-24 2020-07-30 한양대학교 산학협력단 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
WO2023059073A1 (ko) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 저효율 양극을 포함하는 이차전지

Also Published As

Publication number Publication date
KR20210123275A (ko) 2021-10-13
CN105702947B (zh) 2020-03-06
KR102397827B1 (ko) 2022-05-12
US20160172671A1 (en) 2016-06-16
CN105702947A (zh) 2016-06-22
US10374231B2 (en) 2019-08-06
KR102312369B1 (ko) 2021-10-12

Similar Documents

Publication Publication Date Title
KR102397826B1 (ko) 리튬 이차 전지
KR102397827B1 (ko) 리튬 이차 전지
KR102446271B1 (ko) 리튬 이차 전지
KR102296819B1 (ko) 리튬 이차 전지
KR102446272B1 (ko) 리튬 이차 전지
KR102296877B1 (ko) 리튬 이차 전지
KR20150138812A (ko) 리튬 이차 전지
KR20170018618A (ko) 리튬 이차 전지
KR20170030796A (ko) 리튬 이차 전지
KR102467458B1 (ko) 리튬 이차 전지
KR20190086957A (ko) 리튬 이차 전지
KR20160146056A (ko) 리튬 이차 전지
KR20210059233A (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
KR20230127189A (ko) 리튬 이차 전지
KR20180106582A (ko) 리튬 이차 전지
KR102446270B1 (ko) 리튬 이차 전지
KR102446269B1 (ko) 리튬 이차 전지
KR20210059232A (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
KR102446273B1 (ko) 리튬 이차 전지
KR102503009B1 (ko) 리튬 이차 전지
KR102449152B1 (ko) 리튬 이차 전지 및 이의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant