KR20150016962A - 원격 나노구조 형광체를 갖는 발광 장치 - Google Patents

원격 나노구조 형광체를 갖는 발광 장치 Download PDF

Info

Publication number
KR20150016962A
KR20150016962A KR1020147035049A KR20147035049A KR20150016962A KR 20150016962 A KR20150016962 A KR 20150016962A KR 1020147035049 A KR1020147035049 A KR 1020147035049A KR 20147035049 A KR20147035049 A KR 20147035049A KR 20150016962 A KR20150016962 A KR 20150016962A
Authority
KR
South Korea
Prior art keywords
wavelength conversion
nanostructured
light emitting
wavelength
emitting device
Prior art date
Application number
KR1020147035049A
Other languages
English (en)
Other versions
KR102072769B1 (ko
Inventor
데바시스 베라
마크 멜빈 버터워스
올레그 보리소비치 시체킨
Original Assignee
코닌클리케 필립스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리케 필립스 엔.브이. filed Critical 코닌클리케 필립스 엔.브이.
Publication of KR20150016962A publication Critical patent/KR20150016962A/ko
Application granted granted Critical
Publication of KR102072769B1 publication Critical patent/KR102072769B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명의 실시예들은 발광 장치(LED; 10), (층(12)을 형성하기 위해 매트릭스(14) 내에 있는) 제1 파장 변환 재료(13) 및 (층(16)을 형성하는) 제2 파장 변환 재료를 포함한다. 제1 파장 변환 재료는 나노구조 파장 변환 재료를 포함한다. 나노구조 파장 변환 재료는 적어도 하나의 차원이 100 nm 이하의 길이를 갖는 입자들을 포함한다. 제1 파장 변환 재료(13)는 발광 장치(10)와 이격되어 있다.

Description

원격 나노구조 형광체를 갖는 발광 장치{LIGHT EMITTING DEVICE WITH REMOTE NANOSTRUCTURED PHOSPHOR}
본 발명은 나노구조 형광체와 결합된 발광 다이오드와 같은 반도체 발광 장치에 관한 것이다.
발광 다이오드(LED), 공진 공동 발광 다이오드(RCLED), 수직 공동 레이저 다이오드(VCSEL) 및 에지 발광 레이저를 포함하는 반도체 발광 장치들은 현재 이용 가능한 가장 효율적인 광원들에 속한다. 가시 스펙트럼 전역에서 동작할 수 있는 고휘도 발광 장치들의 제조에 있어서 현재 관심을 받는 재료 시스템들은 그룹 III-V 반도체, 특히 III-질화물 재료로도 지칭되는 갈륨, 알루미늄, 인듐 및 질소의 이원, 삼원 및 사원 합금들을 포함한다. 통상적으로, III-질화물 발광 장치들은 금속-유기 화학 기상 침적(MOCVD), 분자 빔 에피텍시(MBE) 또는 다른 에피텍시 기술들에 의해 사파이어, 실리콘 탄화물, III-질화물 또는 다른 적절한 기판상에 상이한 조성 및 도펀트 농도의 반도체 층들의 스택을 에피텍시 방식으로 성장시킴으로써 제조된다. 스택은 종종 기판 위에 형성된, 예를 들어 Si로 도핑된 하나 이상의 n형 층, n형 층 또는 층들 위에 형성된 활성 영역 내의 하나 이상의 발광 층, 및 활성 영역 위에 형성된, 예를 들어 Mg로 도핑된 하나 이상의 p형 층을 포함한다. n형 및 p형 영역들 상에 전기 콘택트들이 형성된다.
III-질화물 장치들은 백색광 또는 다른 컬러의 광을 형성하기 위해 이 분야에 알려진 바와 같은 형광체들과 같은 파장 변환 재료들과 결합될 수 있다. 파장 변환 재료들은 III-질화물 장치의 발광 영역에 의해 방출되는 광을 흡수하고, 상이한 더 긴 파장의 광을 방출한다. 파장 변환 III-질화물 장치들은 일반 조명, 디스플레이용 백라이트, 자동차 조명 및 카메라 또는 다른 플래시들과 같은 다양한 응용에 사용될 수 있다.
본 발명의 목적은 효율적인 파장 변환 발광 장치를 제공하는 것이다.
본 발명의 실시예들은 발광 장치, 제1 파장 변환 재료 및 제2 파장 변환 재료를 포함한다. 제1 파장 변환 재료는 나노구조 파장 변환 재료를 포함한다. 나노구조 파장 변환 재료는 적어도 하나의 차원이 100 nm 이하의 길이를 갖는 입자들을 포함한다. 제1 파장 변환 재료는 발광 장치와 이격되어 있다.
도 1은 적색 방출 형광체 및 적색 방출 나노구조 형광체에 대한 파장의 함수로서의 강도를 나타낸다.
도 2는 LED, 파장 변환층, 및 LED와 이격되어 있는 나노구조 파장 변환 재료를 포함하는 구조를 나타낸다.
도 3a 및 3b는 나노구조 파장 변환 재료에서 열을 제거하는 데 사용될 수 있는 와이어의 패턴들을 나타낸다.
도 4는 LED, LED의 측부들 위로 연장하는 파장 변환층, 및 LED와 이격되어 있는 나노구조 파장 변환 재료를 포함하는 구조를 나타낸다.
도 5는 둘 다 LED와 이격되어 있는 파장 변환층 및 나노구조 파장 변환층을 포함하는 구조를 나타낸다.
도 6은 LED 및 단일 파장 변환 영역을 포함하는 구조를 나타낸다.
도 7은 밀봉된 나노구조 파장 변환층을 포함하는 구조를 나타낸다.
도 8은 나노구조 파장 변환층 및 반사기의 일부를 나타낸다.
본 명세서에서 사용될 때, "펌프 광(pump light)"은 LED와 같은 반도체 발광 장치에 의해 방출되는 광을 지칭한다. "변환된 광(converted light)"은 파장 변환 재료에 의해 흡수되고 상이한 파장으로 재방출되는 펌프 광을 지칭한다.
하나 이상의 파장 변환 재료와 결합된 LED와 같은 광원의 효율은 적어도 두 가지 이유로 인해 최적이 아닐 수 있다.
첫째, 백색광을 방출하는 장치들은 종종 적색 광을 방출하는 형광체와 같은 파장 변환 재료를 포함한다. 일부 적색 방출 형광체들은 적어도 일부 광을 사람 눈 응답 곡선 외측의 파장들로 방출한다. 이 광은 대부분의 응용에서 사실상 손실된다. 게다가, 사람 눈 응답 곡선에 대한 전체 영역(gamut)은 약 380 nm 내지 약 780 nm의 범위에 걸치며, 555 nm에서 피크 최대치를 갖는다. 사람 눈은 상이한 파장들에서 상이한 감도를 갖는다. 예를 들어, 사람 눈은 555 nm의 파장에서는 단지 10 광자/s의 플럭스를 검출할 수 있지만, 450 nm에서는 214 광자/s 그리고 650 nm에서는 126 광자/s를 필요로 한다. 사람 눈은 적색(650 nm) 광에 그다지 민감하지 않으므로, 적색 방출 파장 변환 재료는 매우 좁은 파장 대역에서 광을 방출하는 것이 바람직하다. 이러한 바람직한 적색 방출 파장 변환 재료 거동은 적색 방출 형광체에 대한 파장의 함수로서의 발광 강도의 그래프인 도 1의 피크 1에 의해 도시된다. 피크 1은 그 전체가 도 1의 점선(3)에 의해 지시된 사람 눈 응답 곡선 내에 있는 가파르고 좁은 피크이다. 많은 일반적인 적색 방출 파장 변환 재료들은 도 1의 피크 2에 의해 도시되는 덜 효율적인 거동을 나타낸다. 이러한 재료들은 더 넓은 파장 범위에 걸치는 광을 방출한다.
둘째, 너무 많은 산란을 유발하는 파장 변환 재료들은 장치의 효율을 줄일 수 있다.
본 발명의 실시예들에서, LED와 같은 파장 변환 반도체 장치는 펌프 광을 흡수하고 변환된 광을 방출하는 나노구조 발광 재료를 포함한다. 나노구조 재료들은 적어도 하나의 차원이 나노미터 길이 스케일인, 예를 들어 막대(rods), 원뿔(cones), 구(spheres), 튜브(tubes) 또는 임의의 다른 적절한 형상과 같은 다양한 형상의 나노미터 크기의 반도체 입자들이다. 양자 우물들은 하나의 차원이 나노미터 길이 스케일인 입자들이고, 양자 와이어들은 2개의 차원이 나노미터 길이 스케일인 입자들이며, 양자 도트들은 3개의 차원 모두가 나노미터 길이 스케일인 입자들이다. 나노구조 재료들은 일부 실시예들에서 적어도 6 x 105 cm-1 그리고 일부 실시예들에서 1.5 x 107 cm-1 이하인 표면적 대 부피 비율을 가질 수 있다. 일부 실시예들에서, 나노구조 재료의 적어도 하나의 차원은 나노구조 재료의 전자 파동 함수 또는 보어 원자 반경보다 작다. 이것은 반도체 대역 갭과 같은 벌크 특성을 메조스코픽(mesoscopic) 또는 양자 특성으로 변경하며, 이러한 특성은 이제 나노구조 재료의 관련 차원의 길이에 따라 변한다. 나노구조 재료는 일부 실시예들에서 적색 방출 나노구조 형광체 또는 상이한 컬러의 광을 방출하는 나노구조 형광체일 수 있다. 나노구조 형광체들은 본 명세서에서 "양자 도트들" 또는 "Qdots"로서 지칭될 수 있다. 적절한 재료들의 예는 일부 실시예들에서 CdSe, CdS, InP, InAs, CdTe, HgTe, ZnS, ZnSe, CuInS2, CuInSe2, Si, Ge, 및 가시광의 대역 갭에 가까운 대역 갭을 갖는, 즉 2.0 eV 이하의 대역 갭을 갖는 임의의 반도체 재료를 포함한다. 나노구조 재료는 일부 실시예들에서 전이 금속 이온들 및/또는 희토류 금속 이온들로 도핑된 발광 나노구조 재료일 수 있으며, 이들은 또한 좁은 파장 범위에서 적절한 적색 광을 방출할 수 있다. 이러한 재료들은 본 명세서에서 "도핑된 도트들" 또는 "Ddots"로서 지칭될 수 있다. 적절한 재료들의 예는 도펀트, Cu 도핑된 ZnSe, Mn 도핑된 ZnSe, Cu 도핑된 CdS 및 Mn 도핑된 CdS를 포함하는 임의의 전술한 양자 도트 재료들을 포함한다.
나노구조 재료 입자들은 일부 실시예들에서 적어도 2 nm, 일부 실시예들에서 20 nm 이하, 일부 실시예에서 50 nm 이하, 그리고 일부 실시예들에서 100 nm 이하의 평균 직경을 가질 수 있다. 일부 실시예들에서, 나노구조 재료의 입자들은 일부 실시예들에서 적어도 5% 그리고 일부 실시예들에서 30% 이상의 크기 분포를 갖는다. 예를 들어, 입자들의 직경들은 일부 실시예들에서 평균 직경의 +/- 5% 사이에서 그리고 일부 실시예들에서 평균 직경의 +/- 30% 사이에서 변할 수 있다. 이와 달리, 전통적인 파우더 형광체들은 종종 1 ㎛ 이상의 입자 크기를 갖는다. 대부분의 형광체 입자들, 예를 들어 99%보다 많은 형광체 입자들은 20 nm보다 큰 직경을 갖는다. 게다가, 나노구조 재료에서, 흡수 및 방출 파장과 같은 광학적 특성들은 입자 크기에 따라 변할 수 있다. 파우더 형광체에서, 상이한 크기를 갖는 동일 재료의 2개의 입자는 통상적으로 동일한 흡수 및 방출 파장을 갖는다.
양자 도트들과 같은 나노구조 재료 입자들은 통상적으로 처리를 용이하게 하는 리간드에 부착된다(예를 들어, 리간드가 없는 경우, 입자들은 서로 융합되어 큰 덩어리를 형성할 수 있다). 리간드는 임의의 적절한 재료일 수 있다. 적절한 리간드들의 예는 카르복실산 및 포스핀 기능화 알칸 계열 분자들, 예를 들어 올레산 또는 트리-옥틸 포스핀을 포함한다.
일부 실시예들에서, 나노구조 재료는 좁은 파장 대역에서 광을 방출한다. 예를 들어, 나노구조 재료는 일부 실시예들에서 적어도 20 nm 그리고 일부 실시예들에서 60 nm 이하의 반치전폭(full-width-half-maximum)을 가질 수 있다. 적색 방출 나노구조 형광체에 의해 방출되는 피크 파장은 입자들의 조성 및/또는 크기를 선택함으로써 튜닝될 수 있다. 나노구조 재료들의 튜닝성은 입자들 내의 여기자들의 양자 제한에 기인할 수 있다. 나노구조 재료들은 가시광을 거의 또는 전혀 산란시키지 않는다.
나노구조 재료들의 사용은 설계 문제를 유발한다. 첫째, 나노구조 재료들의 높은 표면적 대 부피 비율로 인해, 이러한 재료들의 구조 및 화학적 특성들은 산소 및 수분의 존재 시에 변할 수 있다. 그러한 변화들은 나노구조 재료들의 광학 특성들을 바람직하지 않게 변경할 수 있다.
둘째, 흡수 및 방출 특성들과 같은 광학 특성들은 온도의 증가에 의해 저하될 수 있다. 예컨대, 나노구조 파장 변환 재료들에 의해 방출되는 피크 파장은 나노구조 파장 변환 재료의 고유 특성들로 인해 온도 증가에 따라 바람직하지 않게 시프트될 수 있다. 게다가, 나노구조 파장 변환 재료들에 의해 방출되는 피크 강도는 온도에 따라 감소할 수 있다. 최신의 고휘도 LED들은 전기 에너지의 광자 에너지로의 변환 동안 열을 생성한다. 예를 들어, 현재의 고휘도 LED들의 접합 온도는 350 mA의 전류로 구동될 때 약 85℃일 수 있다. 그러한 온도는 나노구조 재료들이 LED에 직접 부착되는 경우에 나노구조 재료들의 광학적 성능에 영향을 줄 수 있다.
본 발명의 실시예들에서, LED 및 나노구조 파장 변환 재료를 포함하는 장치는 나노구조 파장 변환 재료로부터 열을 효과적으로 제거하고 나노구조 재료를 산소 및 수분으로부터 보호하도록 패키징된다. 아래의 도면들은 본 발명의 실시예들을 예시한다.
먼저, LED들과 같은 하나 이상의 반도체 장치가 제공된다. 임의의 적절한 III-질화물 LED가 사용될 수 있으며, 그러한 LED는 공지되어 있다. 아래의 예들에서 반도체 발광 장치들은 청색 또는 UV 광을 방출하는 III-질화물 LED들이지만, LED들 외의 반도체 발광 장치들, 예를 들어 다른 III-V 재료들, III-인화물, III-비소화물, II-VI 재료들, ZnO 또는 Si 계열 재료들과 같은 다른 재료 시스템들로부터 제조되는 레이저 다이오드들 및 반도체 발광 장치들이 사용될 수 있다.
아래의 도면들 내의 LED(10)는 예를 들어 LED의 상면으로부터 대부분의 광을 방출하도록 구성되는 플립칩 장치일 수 있다. 그러한 LED를 형성하기 위해, 이 분야에 공지된 바와 같이, 먼저 III-질화물 반도체 구조가 성장 기판상에 성장된다. 성장 기판은 예를 들어 사파이어, SiC, Si, GaN 또는 합성 기판들과 같은 임의의 적절한 기판일 수 있다. 반도체 구조는 n형 영역과 p형 영역 사이에 개재된 발광 또는 활성 영역을 포함한다. n형 영역이 먼저 성장될 수 있으며, 예를 들어 버퍼층 또는 핵 형성 층과 같은 준비 층들, 및/또는 n형이거나 의도적으로 도핑되지 않을 수 있는, 성장 기판의 제거를 용이하게 하도록 설계된 층들, 및 광을 효율적으로 방출하기 위해 발광 영역에 대해 바람직한 특정 광학, 재료 또는 전기 특성들을 위해 설계된 n형 또는 심지어 p형 장치 층들을 포함하는 상이한 조성 및 도펀트 농도의 다수의 층을 포함할 수 있다. n형 영역 위에 발광 또는 활성 영역이 성장된다. 적절한 발광 영역들의 예는 단일의 두꺼운 또는 얇은 발광층, 또는 장벽층들에 의해 분리된 다수의 얇은 또는 두꺼운 발광 층을 포함하는 다중 양자 우물 발광 영역을 포함한다. 이어서, 발광 영역 위에 p형 영역이 성장될 수 있다. n형 영역과 같이, p형 영역은 의도적으로 도핑되지 않은 층들 또는 n형 층들을 포함하는 상이한 조성, 두께 및 도펀트 농도의 다수의 층을 포함할 수 있다. 장치 내의 모든 반도체 재료의 총 두께는 일부 실시예들에서 10 ㎛ 미만이고, 일부 실시예들에서는 6 ㎛ 미만이다.
p형 영역 상에 금속 p-콘택트가 형성된다. 플립칩 장치에서와 같이, 광의 대부분이 p 콘택트에 대향하는 표면을 통해 반도체 구조 밖으로 지향되는 경우, p 콘택트는 반사성일 수 있다. 표준 포토리소그래피 작업들에 의해 반도체 구조를 패터닝하고, 반도체 구조를 에칭하여 p형 영역의 전체 두께의 일부 및 발광 영역의 전체 두께의 일부를 제거하여, 금속 n 콘택트가 형성되는 n형 영역의 표면을 노출시키는 메사(mesa)를 형성함으로써 플립칩 장치가 형성될 수 있다. 메사, p 콘택터 및 n 콘택트는 임의의 적절한 방식으로 형성될 수 있다. 메사, p 콘택트 및 n 콘택트의 형성은 이 분야의 기술자에게 공지되어 있다.
반도체 구조는 p 콘택트 및 n 콘택트를 통해 지지대에 접속될 수 있다. 지지대는 반도체 구조를 기계적으로 지지하는 구조이다. 지지대는 LED(10)가 실장되는 구조에 부착하기에 적합한 자기 지지 구조이다. 예를 들어, 지지대는 리플로우-솔더링 가능할 수 있다. 임의의 적절한 지지대가 사용될 수 있다. 적절한 지지대의 예는 반도체 구조에 대한 전기적 접속을 형성하기 위한 도전성 비아들을 갖는 절연성 또는 반절연성 웨이퍼, 예를 들어 실리콘 웨이퍼, 예를 들어 도금에 의해 반도체 구조상에 형성된 두꺼운 금속 본딩 패드들, 또는 세라믹, 금속 또는 임의의 다른 적절한 마운트를 포함한다. 성장 기판은 제거될 수 있거나, 장치의 일부로서 남을 수 있다. 성장 기판을 제거함으로써 노출되는 반도체 구조는 광 추출을 증가시키기 위해 거칠게 만들어지거나, 패터닝되거나, 텍스처링(texturing)될 수 있다.
아래의 도면들 내의 나노구조 파장 변환층(12)은 전술한 Qdots 또는 Ddots와 같은 발광 재료, 및 나노구조 발광 재료가 안에 배치되는 매트릭스 재료를 포함한다. 나노구조 발광 재료는 매트릭스 내에 무작위로 또는 질서있게(orderly) 배열된 Qdots 또는 Ddots일 수 있다. 나노구조 파장 변환 재료 입자들은 매트릭스에 (공유 또는 이온 또는 배위) 결합될 수 있거나, 매트릭스 내에 기계적으로 또는 물리적으로 포획될 수 있다. 일부 실시예들에서, 나노구조 파장 변환 재료의 입자들은 조밀한 또는 정렬된 막들 내에 형성되며, 이 경우에 이웃 입자들은 서로 물리적으로 접촉한다. 나노구조 입자들의 정렬된 막들은 예를 들어 입자들을 용매 내에 부유시킨 후에 용매를 건조시켜 입자들을 정렬된 막 내에 배치함으로써 자기 조립될 수 있다. 대안으로서, 나노구조 입자들의 정렬된 막들은 나노구조 입자들을 입자들과 섞이지 않는 액체 표면상에 부유시킴으로써 형성될 수 있다. 입자들이 부유할 때, 이들은 함께 물리적으로 푸시된 후에, 정렬한 어레이로서 기판상으로 전달될 수 있으며, 이는 후술하는 배열들 중 하나에서 사용될 수 있다.
일부 실시예들에서, 하나의 입자의 다른 입자에 대한 근접은 바람직하지 않은데, 그 이유는 이웃 입자들이 서로 형광 특성을 소멸시키거나 피크 방출 파장을 변경할 수 있기 때문이다. 예를 들어, 이웃 입자들 간의 간격이 가까울수록, 방출 파장이 적색으로 더 많이 시프트된다. 이웃 입자들 간의 간격은 일부 실시예들에서 적어도 5 nm, 일부 실시예들에서 적어도 10 nm, 일부 실시예들에서 적어도 20 nm, 일부 실시예들에서 100 nm 이하, 일부 실시예들에서 500 nm 이하 그리고 일부 실시예들에서 1 ㎛ 이하일 수 있다.
일부 실시예들에서, 나노구조 재료 입자들은 나노구조 재료의 다른 입자들을 물리치는 쉘(shell)로 코팅된다. 일부 실시예들에서, 매트릭스는 섞이지 않는 방식으로의 이웃 입자들의 적절한 분리(즉, 나노구조 입자들의 집성 또는 클러스터링이 없는 분리)를 제공하도록 선택된다. 일부 실시예들에서, 막 형성 또는 장치의 동작 동안 나노구조 입자들의 집성을 유발하는 매트릭스 재료들은 회피된다. 일부 실시예들에서, 장치의 동작 동안 자신의 형상을 유지하고, 온도, 청색 플럭스 및 나노구조 입자 이온화에 대해 광학적으로 그리고 화학적으로 안정된 매트릭스 재료들이 사용된다. (이온화는 나노구조 재료들이 나노구조 입자 표면들로부터 전자들을 방출하는 것을 지칭한다.)
적절한 매트릭스 재료들의 예는 예를 들어 공기 또는 유전성 재료들(폴리머 또는 세라믹), 유기 재료들(예를 들어, 폴리에틸렌(HDPE, LDPE), 폴리프로필렌, 폴리비닐 핼라이드, 폴리스티렌, 폴리비닐리덴 핼라이드, 폴리알킬 메타크릴레이트, 폴리 테트라플루오로 에틸렌, 폴리클로로 플루오로 에틸렌, 폴리아미드 6, 폴리아미드 66, 폴리이미드, 폴리아미드-이미드, 폴리우레탄, 폴리카보네이트, 폴리아세탈, 폴리에틸렌 테레프탈레이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 니트레이트, 아크릴로니트릴-부타디엔-스티렌 폴리비닐 포르말, 규소 수지, 폴리설폰, 서마녹스, 열가소성 엘라스토머, 폴리메틸 펜텐, 파릴렌 또는 가교 결합 폴리머 또는 무기 재료들(예를 들어, 졸-겔 계열 실리카, 티타니아, 지르코니아 또는 이들과 유리 세라믹들의 조합) 또는 합성물들을 포함한다. 합성물들은 특정 특성들에 대해 최적화된 재료들의 혼합물들을 포함한다. 예를 들어, 유리 구슬들을 폴리머와 혼합하여, 폴리머 단독에 비해 증가된 점도를 갖는 혼합물을 형성할 수 있다. 다른 예에서, 규소 수지를 유기 폴리머와 혼합하여, 원하는 용해도를 갖는 혼합물을 형성할 수 있다. 일부 실시예들에서, 무기 재료들을 유기 또는 규소 수지 재료들과 혼합하여, 유리 전이 온도, 굴절률 및 융점과 같은 원하는 특성들을 갖는 재료들을 형성한다.
합성물들은 적어도 1, 2 또는 3개 차원이 나노미터 스케일인 입자 재료들을 포함하는 유전성 재료들 및/또는 금속 재료들의 결합들일 수 있다. 예를 들어, 점토 나노입자/폴리머, 금속 나노입자/폴리머 및 탄소 나노튜브/폴리머 나노 합성물들이 적합할 수 있다. 적절한 나노 합성물들은 상업적으로 이용가능하다. 예를 들어, 나일론 나노 합성물들, 폴리올레핀 나노 합성물들, M9(Mitsubishi), Durethan KU2-2601(Bayer), Aegis NC(Honeywell), Aegis TM Ox(낮은 산소 투과율 - Honeywell) 또는 Forte 나노 합성물들(Noble) 및 전술한 재료들의 결합들이 사용될 수 있다. 나노머들(Nanocor), 클로지트(Southern Clay products), Bentone (Elementis), Polymer-pellet(PolyOne, Clariant, RTP), Nanofil(Sud-Chemie), Planomers(TNO), Planocolors(TNO), PlanoCoatings(TNO)와 같은 나노 점토 나노 합성물들이 단독으로 또는 다른 재료들과 결합하여 사용될 수 있다. 예를 들어, 우수한 투명도 및 장벽 특성들을 제공할 수 있는 PlanoCoatings는 Planomers와 결합될 수 있으며, 이는 열 안정성을 제공할 수 있다. 폴리머/들과 Suncolor Corporation으로부터의 나노 재료들(HTLT1070 또는 HTLT1070AA)의 결합들을 갖는 합성물들은 가시 파장(380 nm - 780 nm)에서의 우수한 투명도, 및 높은 유리 전이 온도를 제공한다.
일례에서, 나노구조 파장 변환 재료는 CdZnS의 쉘 내에 배치된 CdSe 양자 도트들을 포함한다. 매트릭스는 지방족 아크릴레이트 또는 규소 수지이다. 나노구조 파장 변환층(12)은 100 ㎛의 두께이다. 최근접 나노구조 입자들은 적어도 5 nm 그리고 200 nm 이하로 이격된다. 나노구조 파장 변환층(12)은 기판상에 블레이드 코팅되거나, 드롭-캐스팅되거나, 다른 방식으로 분배되는 고점도 막을 형성하기 위해 CdSe/CdZnS 코어-쉘 재료와 매트릭스 재료를 혼합함으로써 형성될 수 있다.
도 2, 4, 5, 6 및 7에 도시된 예들에서, 나노구조 파장 변환층은 LED(10)와 이격되어 있다. 종종 나노구조 파장 변환층이 아니고, 예를 들어 파우더 또는 세라믹 형광체 층일 수 있는 제2 파장 변환 층이 LED(10)와 나노구조 파장 변환층(12) 사이에 배치될 수 있다.
도 2는 나노구조 파장 변환층을 포함하는 장치의 일례를 도시한다. LED(10)의 상면 위에 LED(10)에 근접하게 파장 변환층(16)이 형성된다. 파장 변환층(16)은 하나 이상의 전통적인 형광체, 유기 형광체, 유기 반도체, II-VI 또는 III-V 반도체, 염료, 폴리머, 또는 다른 발광 재료일 수 있다. 가닛 계열 형광체들, Y3Al5O12:Ce, Lu3Al5O12:Ce, Y3Al5 -xGaxO12:Ce, (Ba1 - xSrx)SiO3:Eu(BOSE), 질화물 계열 형광체들, (Ca,Sr)AlSiN3:Eu, 및 (Ca,Sr,Ba)2Si5N8:Eu를 포함하지만 이에 한정되지 않는 임의의 적절한 형광체가 사용될 수 있다. 파장 변환층(16)은 단일 파장 변환 재료 또는 함께 혼합될 수 있거나 LED(10)의 상부에 개별 층들로서 배치될 수 있는 다수의 파장 변환 재료를 포함할 수 있다. 파장 변환층(16)은 예를 들어 전기 영동 침적에 의해 형성된 파우더 형광체 층, LED(10) 위에 성형, 스크린 인쇄, 스프레이 코팅 또는 주입된 규소 수지 또는 에폭시와 같은 투명한 바인더 재료와 혼합된 염료들 또는 파우더 형광체들, 또는 유리, 규소 수지 또는 다른 투명한 재료들 내에 삽입된 세라믹 형광체들 또는 형광체들 또는 염료들과 같은 사전 제조된 파장 변환층들일 수 있다. 파장 변환층(16)의 두께는 사용되는 재료들 및 침적 기술에 의존한다. 파장 변환층(16)은 일부 실시예들에서 적어도 20 ㎛의 두께 그리고 일부 실시예들에서 500 ㎛ 이하의 두께를 가질 수 있다.
LED(10) 및 파장 변환층(16)은 반사성 컨테이너(20)의 바닥에 배치된다. 반사성 컨테이너(20)는 직사각형, 원형, 원뿔형 또는 임의의 다른 적절한 형상일 수 있다. 반사성 컨테이너(20)는 예를 들어 폴리머, 금속, 세라믹, 유전성 재료, 재료들의 조합 또는 임의의 다른 적절한 재료로 형성될 수 있다. 일부 실시예들에서, 반사성 컨테이너(20)는 반사성 컨테이너(20) 내의 구조들로부터의 열을 밖으로 전도하기 위한 적어도 하나의 열 전도 재료로 형성되거나 그를 포함한다. 일부 실시예들에서, 반사성 컨테이너(20)는 히트 싱크로서 구성되거나 그에 열 접속된다. 도 2는 반사성 컨테이너(20) 내에 배치된 하나의 LED(10)를 도시하지만, 일부 실시예들에서는 단일 반사성 컨테이너 내에 다수의 LED(10)가 배치된다.
나노구조 파장 변환층(12)은 예를 들어 반사성 컨테이너(20) 내의 상부 개구를 가로질러 LED(10) 및 파장 변환층(16)과 이격되어 있다. 파장 변환층(16)의 상부(또는 LED(10)의 상부)와 나노구조 파장 변환층(12)의 하부 사이의 간격(h)은 일부 실시예들에서 적어도 1 mm, 일부 실시예들에서 적어도 2 mm, 일부 실시예들에서 5 mm 이하 그리고 일부 실시예들에서 10 mm 이하일 수 있다. 나노구조 파장 변환층(12)은 전술한 바와 같이 매트릭스(14) 내에 배치된 나노구조 파장 변환 재료(13)를 포함한다. 나노구조 층(12)의 총 두께는 일부 실시예들에서 적어도 10 ㎛, 일부 실시예들에서 적어도 20 ㎛, 일부 실시예들에서 200 ㎛ 이하 및 일부 실시예들에서 2 mm 이하일 수 있다.
나노구조 파장 변환층(12)은 예를 들어 다음과 같은 처리 기술들, 즉 딥-코팅, 스핀-코팅, 드롭-캐스팅, 잉크젯 인쇄, 스크린 인쇄, 스프레이 코팅, 브러싱, 적층, 전기 침적, 증착, 사출, 스피닝, 캘린더링, 열 형성, 주조 및 성형 중 하나 이상에 의해 형성될 수 있다. 예를 들어, 나노구조 파장 변환 재료가 액체 유기 폴리머 또는 규소 수지와 같은 매트릭스와 혼합될 수 있다. 혼합물은 전술한 방법들 중 하나를 이용하여 유전성 재료(18) 위에 배치될 수 있다. 대안으로서, 혼합물은 투명 판 또는 막과 같은 기판 상에 배치될 수 있으며, 이어서 유전성 재료(18) 위에 배치된다. 필요에 따라 주위 또는 불활성 환경 또는 특수 환경에서 열 및/또는 UV 및/또는 압력을 이용하여 막을 처리 및/또는 경화시켜, 액체 매트릭스 재료를 나노구조 입자들이 부유하는 고체 재료로 변환할 수 있다. 막이 형상화될 수 있거나, 과잉 재료가 절단, 트리밍, 폴리싱, 기계적 고정 결합, 밀봉 용접, 전기 도금 진공 금속화, 인쇄, 스탬핑 또는 조각과 같은 하나 이상의 프로세스에 의해 제거될 수 있다. 일부 실시예들에서, 나노구조 파장 변환층(12)은 얇고 투명한 기판 상에 형성되며, 이어서 기판 상에 나노구조 파장 변환층(12)을 형성하기 전 또는 후에 유전성 재료(18)에 부착된다.
일부 실시예들에서, 나노구조 파장 변환층으로부터의 열의 제거를 향상시키기 위해, 열을 전도하는 금속 또는 세라믹 와이어들이 나노구조 파장 변환층(12) 상에 또는 안에 형성된다. 와이어들은 예를 들어 일부 실시예들에서 적어도 1 ㎛의 폭, 일부 실시예들에서 100 ㎛ 이하의 폭, 일부 실시예들에서 1 mm 이하의 폭, 일부 실시예들에서 적어도 1 ㎛의 두께, 일부 실시예들에서 적어도 10 ㎛의 두께 및 일부 실시예들에서 100 ㎛ 이하의 두께를 가질 수 있다. 와이어들은 일부 실시예들에서 적어도 1 mm, 일부 실시예들에서 10 mm 이하 그리고 일부 실시예들에서 20 mm 이하로 이격될 수 있다. 와이어들은 일부 실시예들에서 90%보다 큰 반사율을 가질 수 있다. 와이어들은 매트릭스 층(14) 내에 형성될 수 있으며, 예를 들어 무작위로, 평행하게 또는 임의의 적절한 배열로 배치될 수 있다. 와이어들(22)에 대한 패턴들의 2개의 예가 도 3a 및 3b에 도시된다. 일부 실시예들에서, 와이어들(22)은 열을 반사성 컨테이너(20)로 전도하며, 이는 히트 싱크로서 작용할 수 있거나 히트 싱크에 열 접속될 수 있다. 와이어들은 예를 들어 스크린 인쇄, 적절한 재료의 스퍼터링 후의 리소그래피 패터닝, 또는 쉐도우 마스크를 통한 적절한 재료의 증착에 의해 형성될 수 있다. 예를 들어 알루미늄, 구리, 은 및 은 코팅된 구리를 포함하는 임의의 적절한 도전성 재료가 와이어들(22)을 위해 사용될 수 있다.
일부 실시예들에서, 나노구조 파장 변환층(12)과 파장 변환층(16) 사이의 공간은 유전성 재료(18)에 의해 완전히 또는 부분적으로 채워진다. 유전성 재료(18)는 예를 들어 주변 가스, 공기, 세라믹, 알루미나, 폴리머, 또는 나노구조 파장 변환층(12)의 매트릭스를 위한 전술한 재료들 중 하나 또는 조합일 수 있다. 유전성 재료(18)의 재료들은 열을 전도하도록 선택될 수 있거나, 열 전도 재료들이 유전성 재료(18) 내에 배치될 수 있다. 일부 실시예들에서, 도 3a 및 3b와 관련된 텍스트에서 전술한 하나 이상의 와이어(22)는 나노구조 파장 변환층(12) 상에 또는 안에 배치된 와이어들 대신에 또는 그들에 더하여 유전성 재료(18) 내에 삽입될 수 있다.
도 4에 도시된 장치에서, 파장 변환층(16)은 LED(10)의 측부들 위로 연장한다.
도 5는 나노구조 파장 변환층을 포함하는 장치의 다른 예를 도시한다. LED(10), 나노구조 파장 변환층(12), 파장 변환층(16), 유전성 재료(18) 및 반사성 컨테이너(20)의 상세들은 전술한 것과 동일할 수 있다. 나노구조 파장 변환층(12) 및 파장 변환층(16) 양자는 LED(10)와 이격되어 있다. 파장 변환층(16)은 LED(10)와 나노구조 파장 변환층(12) 사이에 배치된다. 파장 변환층(16)은 LED(10)로부터 거리 h2만큼 이격되며, 이 거리는 일부 실시예들에서 0 mm보다 크고, 일부 실시예들에서 적어도 1 mm, 일부 실시예들에서 10 mm 이하 그리고 일부 실시예들에서 20 mm 이하일 수 있다. 파장 변환층(16)과 LED(10) 사이의 공간은 유전체(18)로 채워질 수 있다. 나노구조 파장 변환층(12)은 파장 변환층(16)으로부터 거리 h1만큼 이격되며, 이 거리는 일부 실시예들에서 0 mm보다 크고, 일부 실시예들에서 적어도 1 mm, 일부 실시예들에서 5 mm 이하 그리고 일부 실시예들에서 10 mm 이하일 수 있다. 나노구조 파장 변환층(12)과 파장 변환층(16) 사이의 공간은 전술한 임의의 적절한 유전성 재료일 수 있는 유전체(24)로 채워질 수 있다. 유전성 재료들(18, 24)은 일부 실시예들에서 상이한 재료 그리고 일부 실시예들에서 동일한 재료일 수 있다. 나노구조 파장 변환층(12) 및 파장 변환층(16)의 위치들은 일부 실시예들에서 스위칭될 수 있으며, 따라서 나노구조 파장 변환층(12)이 LED(10)와 파장 변환층(16) 사이에 배치될 수 있다.
도 6은 나노구조 파장 변환 재료를 포함하는 장치의 다른 예를 도시한다. LED(10), 유전성 재료(18) 및 반사성 컨테이너(20)의 상세들은 전술한 것과 동일할 수 있다. 도 6에 도시된 장치는 단일 파장 변환 영역(26)을 갖는다. 이 영역은 나노구조 파장 변환 재료 및 전통적인 파장 변환 재료 양자를 포함한다. 일부 실시예들에서, 파장 변환 영역(26)은 서로 접촉하여 서로 위에 적층 형성된 전술한 나노구조 파장 변환층(12) 및 파장 변환층(16)을 포함하며, 어느 하나의 층이 파장 변환 영역(26)의 상부에 위치한다. 일부 실시예들에서, 파장 변환 영역(26)은 함께 혼합된 나노구조 파장 변환 재료와 추가적인 파장 변환 재료를 포함한다. 그러한 혼합된 파장 변환층은 전술한 임의의 매트릭스 재료를 이용하여 전술한 임의의 기술에 의해 형성될 수 있다. 파장 변환 영역(26)은 일부 실시예들에서 적어도 20 ㎛ 두께, 일부 실시예들에서 적어도 50 ㎛ 두께, 일부 실시예들에서 100 ㎛ 이하의 두께 그리고 일부 실시예들에서 20 mm 이하의 두께일 수 있다. 파장 변환 영역(26)은 LED(10)로부터 거리 h3만큼 이격되며, 이 거리는 일부 실시예들에서 0 mm보다 크고, 일부 실시예들에서 적어도 1 mm, 일부 실시예들에서 10 mm 이하 그리고 일부 실시예들에서 20 mm 이하일 수 있다.
전술한 바와 같이, 산소 및 수분은 나노구조 파장 변환 재료들의 성능에 악영향을 미칠 수 있다. 전술한 장치들 내의 나노구조 파장 변환 재료들은 예를 들어 적절한 매트릭스 재료들의 선택에 의해, 나노구조 파장 변환층 위에 보호층의 형성에 의해 또는 나노구조 파장 변환층의 밀봉에 의해 보호될 수 있다.
일부 실시예들에서, 나노구조 파장 변환 재료들(13)은 낮은 산소 및 수분 투과성을 갖는 매트릭스 재료들(14) 내에 삽입된다. 예를 들어, 적절한 산소 및 수분 저투과성 재료들은 예를 들어 유리, 세라믹, 졸-겔 계열 티타니아, 실리카, 알루미나, 지르코니아 및 아연 산화물과 같은 무기 재료들을 포함한다. 게다가, 여러 폴리머는 적절히 낮은 산소 및 수분 투과성을 나타낸다. 아래의 표 1은 적절한 재료들 및 이들의 산소 및 수분 투과율을 나타낸다. 적절한 폴리머들과 나노구조 파장 변환 재료들의 합성물들은 나노구조 파장 변환층을 통한 수분 및 산소 침투를 방지하거나 줄일 수 있다. 일부 실시예들에서, 수증기 투과율은 10-6g/m2/일(day) 이하이고, 산소 투과율은 10-3 cm3/m3/일(day)/기압(atm) 이하이다.
일부 재료들 및 이들의 산소 및 수분 투과율의 리스트
재료 수증기 투과율 (g/m 2 /일) 산소 투과율 ( cm 3 · mm /m 2 /일/기압)
폴리에틸렌 1.2 - 5.9 70 - 550
폴리프로필렌 (PP) 1.5 - 5.9 93 - 300
폴리스티렌 (PS) 7.9 - 4 200 - 540
폴리에틸렌 테레프탈레이트 (PET) 3.9 - 17 1.8 - 7.7
폴리(에테르설폰) (PES) 14 0.04
PEN 7.3 3.0
폴리이미드 0.4 - 21 0.04 - 17
15 nm Al/PET 0.18 0.2 - 2.99
SiOx/PET 0.007 - 0.03
ORMOCER (하이브리드 코팅)/PET 0.07
파릴렌 N 0.59 15.4
파릴렌 C 0.08 2.8
파릴렌 HT 0.22 23.5
에폭시 0.94 4
폴리우레탄 78.7
규소 수지 19685
소스: IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 1, Jan 2004, p. 45.
일부 실시예들에서는, 산소 및 수분 침투를 줄이기 위해 나노구조 파장 변환층 상에 무기 또는 유기 재료들이 침적된다. 예를 들어, 폴리에틸렌 테레프탈레이트(PET) 상의 Al/알루미나 또는 SiOx의 코팅 또는 유기-무기 하이브리드 코팅은 나노구조 파장 변환층을 통한 산소 및 수분 침투 양자를 줄일 수 있다. 파릴렌 계열의 화합물들과 같은 일부 적절한 폴리머들이 증착되고, 실온에서 가교 결합될 수 있다. 다른 예에서는, 나노구조 파장 변환층을 통한 산소 및 수분 투과율을 줄이기 위해 나노구조 파장 변환층 상에 알루미나, 실리카, 실리콘 질화물/산질화물이 침적된다. 그러한 코팅들은 예를 들어 플라즈마 강화 화학 기상 침적을 포함하는 임의의 적절한 방법에 의해 침적될 수 있다.
일부 실시예들에서는, 도 7에 도시된 바와 같이, 나노구조 파장 변환층(12) 주위에 밀봉(seal)이 형성된다. 유전층(32)이 나노구조 파장 변환층(12)의 하부 및 측부들 주위에 인클로저(enclosure)를 형성한다. 유전층(34)이 나노구조 파장 변환층(12)의 상부 위에 배치되고, 유전층(32)에 의해 형성된 인클로저를 밀봉한다. 유전층(32)은 예를 들어 알루미나, 세라믹 또는 임의의 다른 적절한 재료일 수 있다. 유전층(34)은 예를 들어 알루미나, 유리 또는 임의의 다른 적절한 재료일 수 있다. 유전층(34)의 두께(h6)는 일부 실시예들에서 10 mm 이하일 수 있다. 도 7에 도시된 구조는 LED(10) 위에 배치된 전술한 바와 같은 파장 변환층(16)을 포함한다. 유전체(30)가 LED(10) 및 파장 변환층(16) 주위에 배치될 수 있다. 유전체(30)는 예를 들어 공기, 세라믹, 폴리머 또는 임의의 다른 적절한 재료일 수 있다. 파장 변환층(16) 위의 유전체(30)의 두께(h7)는 일부 실시예들에서 10 mm 이하일 수 있다.
일부 실시예들에서는, 도 8에 도시된 바와 같이, 반사층(28)이 나노구조 파장 변환층(12) 위에 배치된다. 파장 변환층의 두께는 얼마나 많은 펌프 광이 파장 변환 재료에 의해 흡수되는지를 결정한다. 파우더 형광체들과 같은 일부 파장 변환 재료들에 의해 유발되는 산란은 파장 변환층의 광학적 두께를 효과적으로 증가시킨다. 나노구조 파장 변환 재료들은 거의 산란을 유발하지 않는다. 결과적으로, 나노구조 파장 변환 재료는 산란 재료를 포함하는 파장 변환층보다 두꺼워야 한다. 두꺼운 층들은 더 얇은 층들보다 열을 더 많이 제거해야 하므로 바람직하지 않다. 도 8의 반사기(28)는 펌프 광을 더 많이 반사하고, 변환된 광을 덜 반사하도록 구성된다. 따라서, 펌프 광은 나노구조 파장 변환층(12) 내로 다시 반사되어 변환될 수 있는 반면, 변환된 광은 반사기(28)를 통과한다. 반사기(28)는 나노구조 파장 변환층(12)의 광학적 두께를 효과적으로 배가시켜, 주어진 양의 파장 변환을 위해 더 얇은 층이 형성되는 것을 가능하게 한다. 일부 실시예들에서, 반사기(28)는 2색 스택이다.
본 발명이 상세히 설명되었지만, 이 분야의 기술자들은 본 개시 내용이 주어질 경우에 본 명세서에서 설명된 발명의 개념의 사상으로부터 벗어나지 않고서 본 발명에 대한 변경들이 이루어질 수 있다는 것을 알 것이다. 예를 들어, 전술한 예들에서는 발광 장치가 반도체 장치이지만, 일부 실시예들에서는 다른 발광 장치들, 예를 들어 유기 LED들, 고압 UV 아크 램프들 또는 임의의 다른 적절한 광원이 사용된다. 따라서, 본 발명의 범위는 도시되고 설명된 특정 실시예들로 한정되는 것을 의도하지 않는다.

Claims (16)

  1. 구조물로서,
    발광 장치;
    제1 파장 변환 재료 - 상기 제1 파장 변환 재료는 나노구조 파장 변환 재료를 포함하고, 상기 나노구조 파장 변환 재료는 적어도 하나의 차원이 100 nm 이하의 길이를 갖는 입자들을 포함함 -; 및
    제2 파장 변환 재료
    를 포함하고,
    상기 제1 파장 변환 재료는 상기 발광 장치와 이격되어 있는 구조물.
  2. 제1항에 있어서,
    상기 제2 파장 변환 재료는 상기 발광 장치와 상기 제1 파장 변환 재료 사이에 배치되는 구조물.
  3. 제2항에 있어서,
    상기 제2 파장 변환 재료는 상기 발광 장치와 제1 거리만큼 이격되어 있고,
    상기 제1 파장 변환 재료는 상기 제2 파장 변환 재료와 제2 거리만큼 이격되어 있으며,
    상기 제1 거리는 상기 제2 거리보다 큰 구조물.
  4. 제2항에 있어서,
    상기 제2 파장 변환 재료는 상기 발광 장치와 제1 거리만큼 이격되어 있고,
    상기 제1 파장 변환 재료는 상기 제2 파장 변환 재료와 제2 거리만큼 이격되어 있으며,
    상기 제1 거리는 상기 제2 거리보다 작은 구조물.
  5. 제1항에 있어서,
    상기 제1 파장 변환 재료를 포함하는 층의 하면은 상기 발광 장치의 상면과 적어도 1 mm 이격되어 있는 구조물.
  6. 제1항에 있어서,
    상기 제1 파장 변환 재료는 적어도 하나의 투명 재료를 포함하는 매트릭스 내에 배치되는 구조물.
  7. 제6항에 있어서,
    제1 파장 변환 재료의 가장 가까운 이웃 입자들은 직접 접촉하는 구조물.
  8. 제6항에 있어서,
    제1 파장 변환 재료의 가장 가까운 이웃 입자들은 적어도 5 nm 이격되어 있는 구조물.
  9. 제1항에 있어서,
    상기 제2 파장 변환 재료는 상기 발광 장치의 상면과 직접 접촉하도록 배치되는 구조물.
  10. 제1항에 있어서,
    상기 제2 파장 변환 재료는 상기 발광 장치 및 상기 제1 파장 변환 재료 양자와 이격되어 있는 구조물.
  11. 제1항에 있어서,
    상기 투명 매트릭스 내에 배치된 적어도 하나의 와이어를 더 포함하는 구조물.
  12. 제11항에 있어서,
    상기 적어도 하나의 와이어는 히트 싱크에 열 접속되는 구조물.
  13. 제1항에 있어서,
    상기 제1 및 제2 파장 변환 재료들은 단일 파장 변환층 내에 함께 혼합되는 구조물.
  14. 제1항에 있어서,
    상기 나노구조 파장 변환 재료는 밀봉된 인클로저(enclosure) 내에 배치되는 구조물.
  15. 제1항에 있어서,
    반사기를 더 포함하고, 상기 나노구조 파장 변환 재료는 상기 발광 장치와 상기 반사기 사이에 배치되고, 상기 반사기는 상기 나노구조 파장 변환 재료에 의해 방출되는 광보다 상기 발광 장치에 의해 방출되는 광을 더 많이 반사하는 구조물.
  16. 제1항에 있어서,
    상기 발광 장치는 반도체 장치인 구조물.
KR1020147035049A 2012-05-14 2013-05-02 원격 나노구조 형광체를 갖는 발광 장치 KR102072769B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261646495P 2012-05-14 2012-05-14
US61/646,495 2012-05-14
PCT/IB2013/053491 WO2013171610A1 (en) 2012-05-14 2013-05-02 Light emitting device with remote nanostructured phosphor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207002650A Division KR20200013093A (ko) 2012-05-14 2013-05-02 원격 나노구조 형광체를 갖는 발광 장치

Publications (2)

Publication Number Publication Date
KR20150016962A true KR20150016962A (ko) 2015-02-13
KR102072769B1 KR102072769B1 (ko) 2020-02-03

Family

ID=48628751

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020207002650A KR20200013093A (ko) 2012-05-14 2013-05-02 원격 나노구조 형광체를 갖는 발광 장치
KR1020147035049A KR102072769B1 (ko) 2012-05-14 2013-05-02 원격 나노구조 형광체를 갖는 발광 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020207002650A KR20200013093A (ko) 2012-05-14 2013-05-02 원격 나노구조 형광체를 갖는 발광 장치

Country Status (7)

Country Link
US (3) US9634201B2 (ko)
EP (1) EP2850666B1 (ko)
JP (3) JP2015516691A (ko)
KR (2) KR20200013093A (ko)
CN (2) CN111540822B (ko)
TW (2) TWI621286B (ko)
WO (1) WO2013171610A1 (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276382B2 (en) * 2014-03-20 2016-03-01 Sandia Corporation Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
KR20200013093A (ko) 2012-05-14 2020-02-05 루미리즈 홀딩 비.브이. 원격 나노구조 형광체를 갖는 발광 장치
JP2015106641A (ja) * 2013-11-29 2015-06-08 日亜化学工業株式会社 発光装置
KR102191211B1 (ko) * 2014-02-28 2020-12-15 서울반도체 주식회사 발광 다이오드 패키지
US10374137B2 (en) * 2014-03-11 2019-08-06 Osram Gmbh Light converter assemblies with enhanced heat dissipation
KR20150116986A (ko) * 2014-04-08 2015-10-19 삼성디스플레이 주식회사 퀀텀 도트 시트 및 이를 포함하는 라이트 유닛과 액정 표시 장치
KR102307348B1 (ko) * 2014-08-06 2021-09-30 엔에스 마테리얼스 아이엔씨. 수지 성형품 및 그 제조방법, 그리고 파장 변환 부재, 조명 부재
JP2016076634A (ja) 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Ledパッケージ、バックライトユニット及び液晶表示装置
DE102014116778A1 (de) * 2014-11-17 2016-05-19 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Konversionselements, Konversionselement sowie optoelektronisches Bauelement mit einem solchen Konversionselement
DE102015001723A1 (de) 2015-02-05 2016-08-11 Sergey Dyukin Die Methode der Verbesserung der Charakteristiken von Leuchtgeräten mit einer Stirnseitenbeleuchtung des Lichtleiters, die den Luminophor beinhalten, der mit Halbleiterstrukturen beleuchtet wird.
US9728687B2 (en) * 2015-05-13 2017-08-08 Seoul Semiconductor Co., Ltd. Quantum platelet converter
DE102015119817A1 (de) * 2015-11-17 2017-05-18 Osram Opto Semiconductors Gmbh Halbleiterbauelement
CN105485548A (zh) * 2016-01-13 2016-04-13 深圳大学 一种基于碳纳米粒子的激光白光光源
CN107706281B (zh) * 2016-08-09 2019-07-19 行家光电股份有限公司 具湿气阻隔结构的晶片级封装发光装置
TWI599078B (zh) * 2016-08-05 2017-09-11 行家光電股份有限公司 具濕氣阻隔結構之晶片級封裝發光裝置
EP3279952A1 (en) * 2016-08-05 2018-02-07 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
WO2018037775A1 (ja) * 2016-08-24 2018-03-01 シャープ株式会社 光源装置およびそれを備えたバックライト装置、表示装置
KR20180070149A (ko) * 2016-12-16 2018-06-26 삼성전자주식회사 반도체 발광장치
KR20180090002A (ko) * 2017-02-02 2018-08-10 서울반도체 주식회사 발광 다이오드 패키지
CN106876561A (zh) * 2017-03-14 2017-06-20 河北利福光电技术有限公司 一种远程荧光粉封装结构及其实现方法
JP7005916B2 (ja) * 2017-03-17 2022-01-24 大日本印刷株式会社 光波長変換組成物、光波長変換部材、発光装置、バックライト装置、および画像表示装置
US10879434B2 (en) 2017-09-08 2020-12-29 Maven Optronics Co., Ltd. Quantum dot-based color-converted light emitting device and method for manufacturing the same
TWI658610B (zh) * 2017-09-08 2019-05-01 Maven Optronics Co., Ltd. 應用量子點色彩轉換之發光裝置及其製造方法
CN109494289B (zh) * 2017-09-11 2020-08-11 行家光电股份有限公司 应用量子点色彩转换的发光装置及其制造方法
US10991856B2 (en) * 2017-12-21 2021-04-27 Lumileds Llc LED with structured layers and nanophosphors
US20190198720A1 (en) * 2017-12-22 2019-06-27 Lumileds Llc Particle systems and patterning for monolithic led arrays
JP2019186305A (ja) * 2018-04-04 2019-10-24 シャープ株式会社 発光装置および製造方法
JPWO2019216333A1 (ja) * 2018-05-08 2021-05-13 Jnc株式会社 発光デバイス及び発光デバイスの製造方法
KR102555238B1 (ko) * 2018-09-13 2023-07-14 주식회사 루멘스 퀀텀닷 엘이디 패키지 및 이를 포함하는 퀀텀닷 엘이디 모듈
WO2021075394A1 (ja) * 2019-10-15 2021-04-22 Nsマテリアルズ株式会社 発光装置
EP4180498B1 (en) 2022-06-15 2024-06-05 Avantama AG A color conversion film comprising inorganic separation layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150997A1 (en) * 2003-01-27 2004-08-05 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
JP2006517346A (ja) * 2003-01-27 2006-07-20 スリーエム イノベイティブ プロパティズ カンパニー 非平面ロングパスリフレクターを備えた蛍燐光体系光源
JP2007173754A (ja) * 2005-11-28 2007-07-05 Kyocera Corp 波長変換器および発光装置
US20090322205A1 (en) * 2008-06-30 2009-12-31 Chris Lowery Methods and apparatuses for enhancing heat dissipation from a light emitting device
JP2010258469A (ja) * 2008-09-03 2010-11-11 Samsung Electro-Mechanics Co Ltd 量子点波長変換体、量子点波長変換体の製造方法及び量子点波長変換体を含む発光装置
JP2012004567A (ja) * 2010-06-14 2012-01-05 Samsung Led Co Ltd 量子点を利用した発光素子パッケージ、照光装置及びディスプレイ装置
US20120104437A1 (en) * 2010-11-01 2012-05-03 Tyco Electronics Corporation Optic assembly utilizing quantum dots
WO2012135744A2 (en) * 2011-04-01 2012-10-04 Kai Su White light-emitting device

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159900A1 (en) * 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
KR20050103200A (ko) * 2003-01-27 2005-10-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 인광계 광원 요소와 제조 방법
JP2005125764A (ja) 2003-09-30 2005-05-19 Agfa Gevaert Nv 耐スクラッチ性湿分保護パリレン層
JP4231418B2 (ja) 2004-01-07 2009-02-25 株式会社小糸製作所 発光モジュール及び車両用灯具
JP4471356B2 (ja) 2004-04-23 2010-06-02 スタンレー電気株式会社 半導体発光装置
JP2006083219A (ja) * 2004-09-14 2006-03-30 Sharp Corp 蛍光体およびこれを用いた発光装置
US7265488B2 (en) 2004-09-30 2007-09-04 Avago Technologies General Ip Pte. Ltd Light source with wavelength converting material
US8324641B2 (en) * 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
JP2006186022A (ja) * 2004-12-27 2006-07-13 Toyoda Gosei Co Ltd 発光装置
KR100682874B1 (ko) 2005-05-02 2007-02-15 삼성전기주식회사 백색 led
US20070012928A1 (en) * 2005-07-13 2007-01-18 Zouyan Peng Light emitting diode comprising semiconductor nanocrystal complexes and powdered phosphors
JP5196711B2 (ja) * 2005-07-26 2013-05-15 京セラ株式会社 発光装置およびそれを用いた照明装置
CN101208811A (zh) * 2005-08-05 2008-06-25 松下电器产业株式会社 半导体发光装置
US7910940B2 (en) * 2005-08-05 2011-03-22 Panasonic Corporation Semiconductor light-emitting device
US7518160B2 (en) * 2005-10-31 2009-04-14 Kyocera Corporation Wavelength converter, lighting system, and lighting system assembly
JP2007273562A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 半導体発光装置
US7889421B2 (en) 2006-11-17 2011-02-15 Rensselaer Polytechnic Institute High-power white LEDs and manufacturing method thereof
US8704254B2 (en) * 2006-12-22 2014-04-22 Philips Lumileds Lighting Company, Llc Light emitting device including a filter
KR100826396B1 (ko) * 2007-01-18 2008-05-02 삼성전기주식회사 Led 칩 패키지
US20100110728A1 (en) 2007-03-19 2010-05-06 Nanosys, Inc. Light-emitting diode (led) devices comprising nanocrystals
EP2121872B1 (en) 2007-03-19 2015-12-09 Nanosys, Inc. Methods for encapsulating nanocrystals
KR100900866B1 (ko) 2007-05-09 2009-06-04 삼성전자주식회사 나노결정-금속산화물 복합체를 이용하는 발광 다이오드소자 및 그의 제조방법
KR101442146B1 (ko) * 2008-02-25 2014-09-23 삼성디스플레이 주식회사 광원 유닛, 이를 포함하는 액정 표시 장치 및 이의 제조방법
CN102017204A (zh) * 2008-05-07 2011-04-13 皇家飞利浦电子股份有限公司 具有包含发光材料的自支撑网格的led照明器件和制作自支撑网格的方法
US7845825B2 (en) 2009-12-02 2010-12-07 Abl Ip Holding Llc Light fixture using near UV solid state device and remote semiconductor nanophosphors to produce white light
US8140704B2 (en) 2008-07-02 2012-03-20 International Busniess Machines Corporation Pacing network traffic among a plurality of compute nodes connected using a data communications network
KR101577300B1 (ko) * 2008-10-28 2015-12-15 삼성디스플레이 주식회사 양자점을 이용한 백색광 발광다이오드 구조 및 이를 포함하는 백라이트 어셈블리
CN101832518A (zh) 2009-03-11 2010-09-15 旭明光电股份有限公司 具有复合萤光体层的发光二极管的发光装置
JP5659458B2 (ja) 2009-03-16 2015-01-28 コニカミノルタ株式会社 有機エレクトロニクス素子、有機光電変換素子、及び有機エレクトロルミネッセンス素子
WO2010106478A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Color adjusting arrangement
WO2011004795A1 (ja) 2009-07-07 2011-01-13 シーシーエス株式会社 発光装置
TW201114070A (en) 2009-10-15 2011-04-16 Aurotek Corp Light-emitting device
JP2011107508A (ja) 2009-11-19 2011-06-02 Showa Denko Kk 蛍光体フィルタ、蛍光体フィルタの製造方法およびランプ
US20110127555A1 (en) * 2009-12-02 2011-06-02 Renaissance Lighting, Inc. Solid state light emitter with phosphors dispersed in a liquid or gas for producing high cri white light
SG181935A1 (en) 2009-12-30 2012-08-30 Merck Patent Gmbh Casting composition as diffusion barrier for water molecules
KR20180025982A (ko) * 2010-01-28 2018-03-09 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 규정된 컬러 방출을 위한 조명 장치
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
TW201142214A (en) 2010-03-03 2011-12-01 Cree Inc Enhanced color rendering index emitter through phosphor separation
JP2011198800A (ja) 2010-03-17 2011-10-06 Mitsubishi Chemicals Corp 半導体発光素子
JP2011238811A (ja) * 2010-05-12 2011-11-24 Konica Minolta Opto Inc 波長変換素子および発光装置
US20110303940A1 (en) 2010-06-14 2011-12-15 Hyo Jin Lee Light emitting device package using quantum dot, illumination apparatus and display apparatus
US20110317397A1 (en) * 2010-06-23 2011-12-29 Soraa, Inc. Quantum dot wavelength conversion for hermetically sealed optical devices
JP2012036265A (ja) * 2010-08-05 2012-02-23 Sharp Corp 照明装置
TWM427646U (en) 2011-08-30 2012-04-21 Guan-Hua Wang Improved structure for media playing
KR20200013093A (ko) 2012-05-14 2020-02-05 루미리즈 홀딩 비.브이. 원격 나노구조 형광체를 갖는 발광 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150997A1 (en) * 2003-01-27 2004-08-05 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
JP2006517346A (ja) * 2003-01-27 2006-07-20 スリーエム イノベイティブ プロパティズ カンパニー 非平面ロングパスリフレクターを備えた蛍燐光体系光源
JP2007173754A (ja) * 2005-11-28 2007-07-05 Kyocera Corp 波長変換器および発光装置
US20090322205A1 (en) * 2008-06-30 2009-12-31 Chris Lowery Methods and apparatuses for enhancing heat dissipation from a light emitting device
JP2010258469A (ja) * 2008-09-03 2010-11-11 Samsung Electro-Mechanics Co Ltd 量子点波長変換体、量子点波長変換体の製造方法及び量子点波長変換体を含む発光装置
JP2012004567A (ja) * 2010-06-14 2012-01-05 Samsung Led Co Ltd 量子点を利用した発光素子パッケージ、照光装置及びディスプレイ装置
US20120104437A1 (en) * 2010-11-01 2012-05-03 Tyco Electronics Corporation Optic assembly utilizing quantum dots
WO2012135744A2 (en) * 2011-04-01 2012-10-04 Kai Su White light-emitting device

Also Published As

Publication number Publication date
JP2020127038A (ja) 2020-08-20
KR102072769B1 (ko) 2020-02-03
JP6697033B2 (ja) 2020-05-20
EP2850666A1 (en) 2015-03-25
EP2850666B1 (en) 2021-11-03
KR20200013093A (ko) 2020-02-05
CN111540822A (zh) 2020-08-14
JP2018186293A (ja) 2018-11-22
CN104272479A (zh) 2015-01-07
US20170162761A1 (en) 2017-06-08
TW201403881A (zh) 2014-01-16
US10347800B2 (en) 2019-07-09
US11031530B2 (en) 2021-06-08
TW201735404A (zh) 2017-10-01
US20150129916A1 (en) 2015-05-14
TWI621286B (zh) 2018-04-11
CN111540822B (zh) 2024-04-26
JP2015516691A (ja) 2015-06-11
US9634201B2 (en) 2017-04-25
TWI596804B (zh) 2017-08-21
US20190326483A1 (en) 2019-10-24
WO2013171610A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
US11031530B2 (en) Light emitting device with nanostructured phosphor
JP6827263B2 (ja) 発光素子
EP2701211B1 (en) Light emitting device
US9929320B2 (en) Wavelength conversion film and light emitting device package including the same
KR20170031289A (ko) 반도체 발광 소자
JP6117540B2 (ja) 発光素子パッケージ
US10910519B2 (en) Semiconductor device having layers including aluminum and semiconductor device package including same
KR101011757B1 (ko) 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
CN108604622B (zh) 发光器件和包括发光器件的发光器件封装
JP2004095941A (ja) 発光装置
KR101723540B1 (ko) 발광 소자 및 이를 갖는 발광 소자 패키지
KR102252472B1 (ko) 발광소자
US11411145B2 (en) Light-emitting element package
KR20120011198A (ko) 발광 소자, 발광 소자 패키지 및 발광 소자의 제조방법
KR101972050B1 (ko) 발광소자 패키지
KR20140090282A (ko) 발광소자
KR102189131B1 (ko) 발광소자
KR20230128361A (ko) 엣지 영역에 금 층을 갖는 광전자 반도체 컴포넌트
KR20160016236A (ko) 발광소자 및 조명시스템
KR101646665B1 (ko) 발광 소자
KR101134406B1 (ko) 발광소자
KR20180061983A (ko) 발광소자
KR20180061978A (ko) 발광소자, 발광소자 패키지 및 이를 포함하는 조명장치
KR20110135554A (ko) 발광 소자, 그 제조방법 및 발광 소자 패키지

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant