KR20130135969A - 단결정 실리콘 인상용 실리카 용기 및 그 제조방법 - Google Patents

단결정 실리콘 인상용 실리카 용기 및 그 제조방법 Download PDF

Info

Publication number
KR20130135969A
KR20130135969A KR1020137027746A KR20137027746A KR20130135969A KR 20130135969 A KR20130135969 A KR 20130135969A KR 1020137027746 A KR1020137027746 A KR 1020137027746A KR 20137027746 A KR20137027746 A KR 20137027746A KR 20130135969 A KR20130135969 A KR 20130135969A
Authority
KR
South Korea
Prior art keywords
silica
raw material
material powder
silica glass
container
Prior art date
Application number
KR1020137027746A
Other languages
English (en)
Other versions
KR101516602B1 (ko
Inventor
시게루 야마가타
Original Assignee
신에쯔 세끼에이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쯔 세끼에이 가부시키가이샤 filed Critical 신에쯔 세끼에이 가부시키가이샤
Publication of KR20130135969A publication Critical patent/KR20130135969A/ko
Application granted granted Critical
Publication of KR101516602B1 publication Critical patent/KR101516602B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은, 직동부, 만곡부, 및 저부를 갖는 단결정 실리콘 인상용 실리카 용기에 있어서, 상기 실리카 용기의 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 상기 실리카 용기의 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고, 상기 저부의 내표면에, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 두께 20μm 이상 1000μm 이하의 실리카 유리층이 형성되어 있는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기이다. 이에 따라, 인상한 단결정 실리콘 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있는 저비용의 단결정 실리콘 인상용 실리카 용기가 제공된다.

Description

단결정 실리콘 인상용 실리카 용기 및 그 제조방법{A SILICA CONTAINER FOR PULLING UP MONOCRYSTALLINE SILICON AND METHOD FOR MANUFACTURING SAME}
본 발명은, 단결정 실리콘을 인상하기 위한 실리카 용기 및 그 제조방법에 관한 것이다.
종래부터, LSI(대규모 집적회로)용 단결정 실리콘 제조용 실리카 도가니의 제조방법으로는, 특허문헌 1 및 특허문헌 2에 기재되어 있는 바와 같은 제조방법이 사용되고 있다. 이들 방법은, 회전하는 형틀 내에 초고순도화 처리된 석영분말 또는 합성 크리스토발라이트 분말을 투입, 성형한 후, 상부로부터 전극을 밀어 넣고, 전극에 가전(加電)함으로써 아크방전을 일으키고, 분위기 온도를 석영분말 등의 용융온도영역(1800~2100℃ 정도로 추정)까지 상승시켜, 석영분말 등을 용융, 소결시키는 방법이다. 그러나, 이들 제조방법은, 초고순도의 석영 원료분말을 사용하기 때문에 고비용화되는 문제가 있었다. 또한, 제조된 실리카 도가니의 사용시에, 용융 실리콘과 실리카 도가니가 반응하여 일산화규소(SiO) 가스가 발생하고, 그것이 단결정 실리콘에 기포(가스기포)로서 취입(取入)되는 등의 단결정 실리콘의 품질상의 문제가 생겼다. 이하, 실리카 도가니와 석영 도가니는 동의어이다. 또한 실리카 유리와 석영 유리도 동의어이다.
또한, 특허문헌 3에는, 실리카 분체원료의 아크방전 용융법(용융시의 분위기는 대기로 추정됨)에 의해, 천연 석영 유리로 이루어진 외층과, 알루미늄 농도가 높은 합성 석영 유리로 이루어진 중간층과, 고순도 합성 석영 유리로 이루어진 내층의 3층 구조의 실리카 도가니가 개시되어 있다. 그리고, 중간층에 의한 불순물 이동방지 효과(실드 효과)가 개시되어 있다. 그러나, 3층 구조는 고비용일 뿐만 아니라, 제조된 단결정 실리콘 중에 SiO 등으로 이루어진 기포가 함유된다는 문제는 해결되지 않았었다.
또한, 특허문헌 4에는, 실리카 분체원료 성형체의 아크방전 용융시에, 성형 형틀의 외주로부터 감압 흡인함으로써, 용융된 실리카 도가니벽 안의 기포를 감소시키는 기술이 개시되어 있다. 그러나, 실리카 분체원료 성형체에 존재하는 공기를 감압 흡인하는 것 만으로는, 실리카 도가니벽 안의 용존가스를 완전히 제거할 수는 없었다. 또한, 실리카 도가니의 사용시에, 용융 실리콘과 실리카 도가니가 반응하여 SiO가스가 발생하여, 단결정 실리콘 중에 기포로서 취입된다는 문제가 있었다.
또한, 특허문헌 5에는, 천연 석영분말로 만들어진 불투명 외층과, 투명 내층의 2층 구조석영 유리 도가니에 있어서, 추가로 상기 도가니의 저부(底部;바닥부)로부터 만곡부(彎曲部)에 걸친 내표층에 OH기 100~300ppm 함유하는 실리카 유리로 이루어진 투명층을 형성한 단결정 실리콘 인상용 석영 유리 도가니가 개시되어 있다. 그러나 이 발명의 목적은, 도가니 사용시의 실리콘 융액 표면의 진동을 억제함으로써 안정적으로 단결정 실리콘을 인상하는 것이라고 개시하고 있는 바와 같이, 인상하는 단결정 실리콘 중의 기포 등의 공동(空洞;cavity) 결함 생성을 방지하는 것은 아니었다.
또한, 특허문헌 6에는, 대직경의 단결정 실리콘 중에 SiO가스의 기포가 취입됨에 따른 실리콘 웨이퍼 중의 공극(보이드)이나 비관통의 소구경의 구멍(핀홀) 등이라 불리는 공동결함의 발생을 방지할 수 있는 석영 유리 도가니가 개시되어 있다. 그 수단으로서, 도가니의 직동부(直胴部;몸통부) 및 만곡부의 내표면의 적어도 일부에 깊이 50μm~450μm의 다수의 스크래치(傷;흠, 상처)가 형성된 요철로 하는 것이 개시되어 있다. 그러나, 이러한 요철면에서는, 생성된 SiO가스의 실리카 용기 외부로의 탈가스가 불충분하고, 특히 단결정 실리콘이 직경 12인치(300mm) 이상의 대직경일 때에는, 그것을 슬라이스 연마하여 만들어지는 실리콘 웨이퍼 중의 공극(보이드)이나 비관통의 소구경의 구멍(핀홀)을 충분히 저감시키는 것은 곤란했었다.
또한, 특허문헌 7에도 단결정 실리콘 중에 SiO가스의 기포가 취입됨에 따른 공동결함의 발생을 방지할 수 있게 되는 석영 유리 도가니가 개시되어 있다. 그 수단으로서, 도가니의 저부에 높은 광 투과율 영역이 형성되고, 이에 따라 저부의 온도 상승을 억제하여, SiO가스의 발생을 방지할 수 있다고 개시되어 있다. 그러나 단순히 광 투과율을 조정하는 것만으로는 석영 도가니와 실리콘 융액의 반응을 억제하기 불충분했었다.
또한, 특허문헌 8에도 단결정 실리콘 중에 SiO가스의 기포가 취입됨에 따른 공동결함의 발생을 방지할 수 있는 발명이 개시되어 있다. 그 수단으로서, 도가니의 저부 내표층 부분에 Al 농도가 높은 영역을 설정함으로써, 고온도 하에서의 저부의 점도를 올려, 기포의 발생점이라 판단되는 스크래치나 패임을 확실하게 방지할 수 있다고 나타나 있다. 그러나 Al 농도가 30~150ppm이라 하는 높은 농도 범위이므로, 제조된 단결정 실리콘 중에 Al원소가 취입된다는 문제가 발생하였다.
나아가, 인용문헌 9에도, 단결정 실리콘 중에 SiO의 기포가 취입됨에 따른 공동결함의 발생을 방지할 수 있을 것으로 여겨지는 발명이 나타나 있다. 그 수단으로서, 도가니 저부의 내측을 OH기 농도 100ppm 이하의 석영 유리층으로 함으로써, 도가니 사용시의 도가니 저부의 내표면의 패임 생성을 방지하고, 도가니 저부에서의 SiO가스의 발생을 저감할 수 있을 것으로 여겨지고 있다. 그러나 OH기 농도를 100ppm 이하로 한 석영 유리층은 고온에서의 점도가 높아 내표면에 패임이 생기기 어려워지기는 하지만, 한번 패임이 생긴 경우에는 그것이 제거되기 어렵다는 문제가 있었다.
또한, 특허문헌 10에서는, 석영 유리 도가니의 외층을 천연 석영 유리층, 내층을 합성 석영 유리층으로 하고, 그리고 도가니 저부의 내표면만 제2의 천연 석영 유리층의 3층 구조로 한 것이 개시되어 있다. 이러한 구조의 이유로서, 천연 석영 유리인 것이 합성 석영 유리보다 실리콘 융액에 대한 용해속도가 빠르므로, 도가니 저부에 생긴 미소한 패임이 빠른 시기에 용해 제거된다고 나타나 있다. 그러나, 천연 석영 유리는 불순물 금속원소를 다종 고농도로 함유하기 때문에, 초고순도 실리콘 융액을 오염시킨다는 문제가 있었다.
일본특허공고 H04-22861호 공보 일본특허공고 H07-29871호 공보 일본특허공개 H09-255476호 공보 일본특허공개 H10-25184호 공보 국제공개 제 WO2004/097080호 팜플렛 일본특허공개 2010-126423호 공보 일본특허공개 2010-155765호 공보 일본특허공개 2010-155760호 공보 일본특허공개 2010-138005호 공보 일본특허공개 2010-132534호 공보
본 발명은 상기 서술한 바와 같은 문제를 감안하여 이루어진 것으로, 인상한 단결정 실리콘 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있는 저비용의 단결정 실리콘 인상용 실리카 용기, 및, 그러한 실리카 용기의 제조방법을 제공하는 것을 목적으로 한다.
본 발명은, 상기 과제를 해결하기 위해 이루어진 것으로, 직동부, 만곡부, 및 저부를 갖는 단결정 실리콘 인상용 실리카 용기에 있어서, 상기 실리카 용기의 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 상기 실리카 용기의 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고, 상기 저부의 내표면에, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 두께 20μm 이상 1000μm 이하의 실리카 유리층이 형성되어 있는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기를 제공한다.
저부의 내표면에 이러한 OH기 농도를 갖는 실리카 유리층(고 OH기 농도 실리카 유리층)이 형성된 실리카 용기이면, 대중량의 폴리실리콘 원료 덩어리(塊)의 충전에 의해 저부에 다수의 패임이 생긴 경우에도, 그 후의 실리콘 융액과 고 OH기 농도 실리카 유리층의 반응에 의해, 상기 패임을 조기(早期)에 용해 제거할 수 있게 된다. 이에 따라, 저부 내표면을 평활면으로 유지할 수 있으므로, 단결정 실리콘 인상시의 아르곤(Ar) 등의 분위기 가스나 SiO 등의 반응생성 가스에 의한 저부 내표면에서의 기포의 발생, 성장을 방지할 수 있다. 그 결과, 인상한 단결정 실리콘 잉곳으로 제조한 단결정 실리콘 웨이퍼 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있다.
이 경우, 상기 저부의 내표면에 형성된 실리카 유리층은, OH기를 500massppm 이상 1500massppm 이하의 농도로 함유하고, 두께가 50μm 이상 500μm 이하인 것이 바람직하다.
저부 내표면의 실리카 유리층을 이러한 OH기 농도 및 두께로 함으로써, 보다 효과적으로 고 OH기 농도 실리카 유리층과 실리콘 융액의 반응 촉진 및 패임의 용해 제거를 행할 수 있다.
또한, 상기 저부의 내표면에 형성된 실리카 유리층이 합성 실리카 유리로 이루어진 것이 바람직하다.
또한, 상기 저부의 내표면에 형성된 실리카 유리층에 함유되어 있는 불순물 농도가, Li, Na, K 각각에 대하여 100massppb 이하이고, Ca, Mg 각각에 대하여 50massppb 이하이고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하인 것이 바람직하다.
이처럼, 저부 내표면의 실리카 유리층을 합성 실리카 유리로 이루어진 것으로 하거나, 저부 내표면의 실리카 유리층의 불순물 농도를 상기와 같은 범위로 하거나 함으로써, 저부 내표면의 실리카 유리층 자체에 의한 실리콘 융액의 불순물 오염을 방지할 수 있다.
또한, 상기 저부의 내표면에 형성된 실리카 유리층의 형성 영역은, 상기 실리카 용기의 외경의 1/3 이상의 직경을 갖는 것이 바람직하다.
이러한 범위에서 저부 내표면의 실리카 유리층을 형성함으로써, 그 범위에서의 단결정 실리콘 인상시의 기포 발생을 억제할 수 있다. 그러므로, 인상중인 단결정 실리콘에 대한 기포의 취입을 보다 효과적으로 방지할 수 있다.
또한, 본 발명은, 직동부, 만곡부, 및 저부를 갖는 단결정 실리콘 인상용 실리카 용기의 제조방법에 있어서, 제1의 원료분말로서, 입경이 10~1000μm인 실리카 분말을 제작하는 공정과, 제2의 원료분말로서, 입경이 10~1000μm이고, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 실리카 분말을 제작하는 공정과, 상기 제1의 원료분말을, 회전 대칭성을 갖는 형틀의 내측으로 투입하고, 상기 형틀을 회전시키면서 상기 형틀의 내벽에 따른 소정의 형상으로 가성형하여, 제1의 원료분말의 가성형체로 하는 공정과, 상기 형틀을 회전시키면서, 상기 제1의 원료분말의 가성형체의 내측으로부터 방전가열 용융법에 의해 가열함으로써, 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고, 직동부, 만곡부, 및 저부를 갖는 실리카 용기를 제작하는 공정과, 상기 제작한 실리카 용기의 내측의 공간에 상기 제2의 원료분말을 살포하면서 방전가열 용융법에 의해 용융하고, 상기 용융한 제2의 원료분말을 상기 저부의 내표면 부분에 부착시킴으로써, 상기 저부의 내표면 부분에 실리카 유리층을 형성하는 공정을 포함하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법을 제공한다.
이러한 방법에 의해, 용기 저부에 고 OH기 농도의 실리카 유리층을 형성할 수 있다. 이렇게 하여 제조한 실리카 용기이면, 용기 저부에 패임이 생긴 경우에도, 그 후의 실리콘 융액과 고 OH기 농도 실리카 유리층의 반응에 의해, 상기 패임을 조기에 용해 제거할 수 있다. 또한, 이에 따라, 저부 내표면을 평활면으로 유지할 수 있으므로, 단결정 실리콘 인상시의 아르곤(Ar) 등의 분위기 가스나 SiO 등의 반응생성 가스에 의한 저부 내표면에서의 기포의 발생, 성장을 방지할 수 있다. 그 결과, 인상한 단결정 실리콘 잉곳으로 제조한 단결정 실리콘 웨이퍼 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있다.
이 경우, 상기 제1의 원료분말의 가성형체의 가열을, 상기 제1의 원료분말의 가성형체의 외측으로부터 감압하면서 행할 수 있다.
이처럼, 제1의 원료분말의 가성형체의 가열을 감압하면서 행함으로써, 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어진 실리카 용기를 우수한 효율로 제작할 수 있다.
또한, 상기 제2의 원료분말을 합성 실리카 유리분말로 하는 것이 바람직하다.
또한, 상기 제2의 원료분말의 불순물 농도를, Li, Na, K 각각에 대하여 100massppb 이하로 하고, Ca, Mg 각각에 대하여 50massppb 이하로 하고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하로 하는 것이 바람직하다.
이처럼, 제2의 원료분말을 합성 실리카 유리분말로 하거나, 제2의 원료분말의 불순물 농도를 상기와 같은 범위로 하거나 함으로써, 용기 저부의 내표면에 형성하는 실리카 유리층을 저불순물 농도로 할 수 있다.
또한, 상기 저부의 내표면 부분에 형성하는 실리카 유리층의 형성 영역을, 상기 실리카 용기의 외경의 1/3 이상의 직경을 갖는 것으로 하는 것이 바람직하다.
이러한 범위로 저부 내표면의 실리카 유리층을 형성함으로써, 제조한 실리카 용기에서는, 그 범위에서의 단결정 실리콘 인상시의 기포 발생을 억제할 수 있어, 인상중인 단결정 실리콘에 대한 기포의 취입을 보다 효과적으로 방지할 수 있다.
본 발명에 관한 단결정 실리콘 인상용 실리카 용기는, 저부의 내표면에 고 OH기 농도 실리카 유리층이 형성된 실리카 용기이다. 이러한 실리카 용기이면, 대중량의 폴리실리콘 원료 덩어리의 충전에 의해 저부에 다수의 패임이 생긴 경우에도, 그 후의 실리콘 융액과 고 OH기 농도 실리카 유리층의 반응에 의해, 상기 패임을 조기에 용해 제거할 수 있게 된다. 이에 따라, 저부 내표면을 평활면으로 유지할 수 있으므로, 단결정 실리콘 인상시의 아르곤(Ar) 등의 분위기 가스나 SiO 등의 반응생성 가스에 의한 저부 내표면에서의 기포의 발생, 성장을 방지할 수 있다. 그 결과, 인상한 단결정 실리콘 잉곳으로 제조한 단결정 실리콘 웨이퍼 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있다. 또한, 본 발명에 따른 단결정 실리콘 인상용 실리카 용기의 제조방법이라면, 이러한 실리카 용기를 저비용으로 제조할 수 있다.
도 1은, 본 발명에 관한 실리카 용기의 구조의 일 예를 모식적으로 나타내는 개략 단면도이다.
도 2는, 본 발명에 관한 실리카 용기의 제조방법의 일 예의 개략을 나타내는 플로차트이다.
도 3은, 본 발명에 관한 실리카 용기의 제조방법에 있어서 이용할 수 있는 형틀의 일 예를 나타내는 개략 단면도이다.
도 4는, 본 발명에 관한 실리카 용기의 제조방법에 있어서 이용할 수 있는 형틀의 다른 일 예를 나타내는 개략 단면도이다.
도 5는, 본 발명에 관한 실리카 용기의 제조방법에 있어서의, 제1의 원료분말의 가성형체를 형성하는 공정의 일 예를 모식적으로 나타내는 개략 단면도이다.
도 6은, 본 발명에 관한 실리카 용기의 제조방법에 있어서의, 제1의 원료분말의 가성형체를 가열하는 공정의 일 예의 일부(방전가열 용융전)를 모식적으로 나타내는 개략 단면도이다.
도 7은, 본 발명에 관한 실리카 용기의 제조방법에 있어서의, 제1의 원료분말의 가성형체를 가열하는 공정의 일 예의 일부(방전가열 용융중)를 모식적으로 나타내는 개략 단면도이다.
도 8은, 본 발명에 관한 실리카 용기의 제조방법에 있어서, 저부의 내표면 부분에 실리카 유리층을 형성하는 공정의 일 예를 모식적으로 나타내는 개략 단면도이다.
LSI용 또는 태양전지용(솔라용)의 단결정 실리콘 인상용 실리카 용기에서는, 가열고온 분위기에서의 용기 내부의 균열성이 필요하게 된다. 그러기 위해서는 적어도 실리카 용기의 직동부를 2층 구조로 하고, 외측은 다공질의 불투명 실리카 유리로 하고, 내측은 실질적으로 기포를 포함하지 않는 투명 실리카 유리로 하는 것이 제1의 과제이다.
또한, 직경 12인치(300mm)나 직경 18인치(450mm)에 달한 단결정 실리콘의 대직경화에 의해, 단결정 실리콘 인상용 실리카 용기가 대형화되고, 또한 용기 내에 충전되는 폴리실리콘 원료의 중량이 커지고 있다. 이 때문에, 실리콘 융액 중에 포함되는 기포가 융액 중에 잔존하여, 제조중인 단결정 실리콘에 이들 기포가 취입되고, 이 단결정 실리콘으로 제조된 실리콘 웨이퍼 내에 공극(보이드)이나 비관통의 소구경의 구멍(핀홀)이라 불리는 결함의 생성이 많아진다는 문제가 발생하고 있다. 이들 결함의 원인은 단결정 실리콘 제조시에 분위기 가스로서 충전되는 아르곤(Ar) 등이 실리카 용기 내측 표면에 흡착되므로, 및, 실리카 용기와 용기 중에서 용융되는 실리콘(Si)이 반응하여 생성되는 일산화규소(SiO) 가스 때문이라고 추정되고 있다. 특히, 폴리실리콘 원료 덩어리를 실리카 용기에 투입하고 가열하면, 실리콘 원료 덩어리의 가중에 의해 실리카 용기 저부 내표면에 다수의 작은 패임이 생긴다. 이들 패임이 상기 Ar가스나 SiO가스의 기포의 발생점, 성장 장소가 되고 있다. 본 발명은, 기포의 발생점이 되는 실리카 용기 저부의 패임을 조기에 용융 제거함으로써, 제조한 단결정 실리콘 중의 보이드나 핀홀이라 불리는 공동결함을 저감시키는 것이 제2의 과제이다.
본 발명에서는 상기 2가지 기술적 과제를 종래의 제조방법에 의한 고순도 단결정 실리콘 인상용 도가니보다 동일 정도 이하의 저비용으로 해결할 필요가 있다.
또한, 단결정 실리콘의 제조시에 실리카 용기에 포함되어 있는 불순물 금속원소, 예를 들면 알칼리 금속원소 Li, Na, K뿐만 아니라, 알칼리토류 금속원소 Ca, Mg, 천이 금속원소 Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 등이 단결정 실리콘에 취입된 경우, 예를 들어 솔라용 실리콘 디바이스에 있어서 광전 변환 효율의 저하를 초래한다. 따라서, 실리카 용기에 포함되는 불순물이 실리콘 융액에 확산되지 않도록 실리카 용기의 내표면은 고순도로 하는 것이 바람직하다.
이하, 본 발명에 관한 단결정 실리콘 인상용 실리카 용기 및 그 제조방법에 대해 도면을 참조하면서 상세하게 설명하나, 본 발명은 이들로 한정되는 것은 아니다.
본 발명에 관한 단결정 실리콘 인상용 실리카 용기를, 도 1을 참조하여 설명한다. 도 1에 나타낸 바와 같이, 본 발명에 관한 실리카 용기(72)는, 회전축 대칭성을 갖는 도가니 형상으로, 직동부(61), 만곡부(62), 및 저부(63)를 갖는다. 이때, 편의상 실리카 용기(72)의 외경(D1)의 1/3을 저부(63)의 직경(D2)이라 한다. 직동부(61)는, 실리카 용기(72)의 상연(上緣)으로부터 높이(H1)의 1/3의 높이부분까지의 사이(높이 H1-H2)이다. 또한 실리카 용기(72)의 높이(H1)의 1/3의 높이부분으로부터 저부(63)까지의 사이(높이 H2) 중, 저부(63) 이외를 만곡부(62)라 한다.
또한, 실리카 용기(72)의 외측은 기포를 함유하는 불투명 실리카 유리(불투명 실리카 유리층(51))으로 이루어지고, 실리카 용기(72)의 내측은 실질적으로 기포를 함유하지 않는 투명 실리카 유리(투명 실리카 유리층(52))으로 이루어진다. 한편, 불투명 실리카 유리층(51)은, 통상, 백색 불투명하고, 투명 실리카 유리층(52)은, 통상, 무색 투명하다. 불투명 실리카 유리층(51)의 부피밀도는, 1.90~2.15(g/cm3) 정도이고, 직동부(61) 중 내측에 위치하는 투명 실리카 유리층(52)의 부피밀도는 대략 2.20(g/cm3)이다. 실리카 용기(72)를 이러한 2층 구조로 함으로써, 고온도 하의 실리카 용기 사용시에, 실리카 용기(72)의 내부의 균열성을 확보할 수 있다.
본 발명의 실리카 용기(72)에서는, 저부(63)의 내표면에, 고 OH기 농도의 실리카 유리층(59)이 형성되어 있다. 이 고 OH기 농도 실리카 유리층(59)은, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 것이며, 두께가 20μm 이상 1000μm 이하이다.
저부(63)의 내표면에 형성한 실리카 유리층(59)의 OH기 농도를 300massppm을 초과하도록 설정함으로써, 실리카 유리층(59)과 실리콘 융액의 반응에 따라 실리카 유리층(59)이 신속하게 용해 제거된다. 즉, 실리카 용기(72)에 대한 폴리실리콘 원료 덩어리의 충전에 의해 생성된 저부(63)의 내표면의 다수의 패임이, 그 후 폴리실리콘 원료 덩어리가 용융된 실리콘 융액과의 반응에 의해 조기에 용해 제거되기 쉬워, 저부(63)의 내표면을 평활면으로 하기 쉬워진다. 이에 따라, 실리카 용기 내표면의 패임에 의해 촉진되는 아르곤(Ar) 등의 분위기 가스나 SiO 등의 반응생성 가스에 의한 기포의 발생, 성장을 단결정 실리콘 인상시에 방지할 수 있다. 그 결과, 인상한 단결정 실리콘 잉곳으로 제조한 단결정 실리콘 웨이퍼 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있다. 이 고 OH기 농도 실리카 유리층(59)의 OH기 농도는, 500massppm 이상으로 하는 것이 바람직하다.
한편, 저부(63)의 내표면에 형성한 실리카 유리층(59)의 OH기 농도를 3000massppm 이하로 함으로써 과잉한 저부 내표면의 용해를 방지할 수 있게 된다. 과잉한 저부 내표면의 실리카 유리(SiO2)의 용해는, 실리콘 융액중의 산소(O) 농도를 상승시키거나, 수증기(H2O)나 산소가스(O2)를 생성시키거나 하여, 인상한 단결정 실리콘의 품질을 저하시킨다. 이 고 OH기 농도 실리카 유리층(59)의 OH기 농도는, 1500massppm 이하로 하는 것이 바람직하다.
또한, 상기 패임의 제거효과를 얻기 위해서는, 고 OH기 농도 실리카 유리층(59)의 두께를 20μm 이상으로 할 필요가 있다. 이 두께는 50μm 이상으로 하는 것이 바람직하다. 이 두께가 20μm보다 얇은 것이면, 패임이 고 OH기 농도 실리카 유리층(59)을 관통하는 경우가 많아지고, 상기 고 OH기 농도 실리카 유리층(59)이 용해 제거되어도 패임이 남음에 따라, 효과를 얻을 수 없다. 또한, 고 OH기 농도 실리카 유리층(59)의 두께를 1000μm 이하로 함으로써, 실리콘 융액과의 반응에 의한 고 OH기 농도 실리카 유리층(59)의 용해 제거를 신속히 행할 수 있다. 이 두께는 500μm 이하로 하는 것이 바람직하다.
한편, 이러한 두께의 고 OH기 농도 실리카 유리층(59)의 OH기 농도를 실측하는 것은 기술적으로 곤란하다(특히 하한인 20μm에 가까울수록 곤란해진다). OH기 농도의 실측이 곤란한 경우에는, 예를 들어, 원료분말에 포함되는 OH기 농도로부터 추정할 수 있다.
또한, 저부(63)의 내표면에 형성된 고 OH기 농도의 실리카 유리층(59)에 함유되어 있는 불순물 농도는, Li, Na, K 각각에 대하여 100massppb 이하이고, Ca, Mg 각각에 대하여 50massppb 이하이고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하인 것이 바람직하다. 이러한 불순물 농도는, 고 OH기 농도의 실리카 유리층(59)을 합성 실리카 유리로 이루어진 것으로 함으로써, 용이하게 얻을 수 있다.
고 OH기 농도 실리카 유리층(59)의 형성 영역은, 실리카 용기(72)의 외경의 1/3 이상의 직경을 갖는 것이 바람직하다. 이러한 범위에서 고 OH기 농도 실리카 유리층(59)을 형성함으로써, 저부(63)의 전체범위에서의 단결정 실리콘 인상시의 기포 발생을 억제할 수 있다. 그 때문에, 인상중인 단결정 실리콘에 대한 기포의 취입을 보다 효과적으로 방지할 수 있다. 실리카 용기(72)의 저부(63)의 내표면에 형성하는 고 OH기 농도 실리카 유리층(59)은, 저부(63)의 원형상 범위만으로 해도 기포 발생의 방지효과가 있으나, 저부(63)로부터 만곡부(62)에 걸친 범위, 혹은, 실리카 용기의 내면 전체로 설정한 편이 바람직한 경우도 있다. 단결정 실리콘의 인상 조건에 의해 고 OH기 농도 실리카 유리층(59)의 범위를 설정할 수 있다.
이상과 같이, 본 발명의 단결정 실리콘 인상용 실리카 용기에서는, 외측이 단열성이 높은, 기포를 함유하는 불투명 실리카 유리층이며, 또한 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리층인 2층 구조로 함으로써, 상기 제1의 과제를 달성할 수 있다. 또한, 실리카 용기 저부의 내표면에, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 두께 20μm 이상 1000μm 이하의 실리카 유리층을 형성함으로써, 대중량의 폴리실리콘 원료 덩어리의 충전에 의해 저부에 다수의 패임이 생긴 경우에도, 그 후의 실리콘 융액과 고 OH기 농도 실리카 유리층의 반응에 의해, 상기 패임을 조기에 용해 제거할 수 있게 된다. 이에 따라, 저부 내표면을 평활면으로 유지할 수 있으므로, 단결정 실리콘 인상시의 아르곤(Ar) 등의 분위기 가스나 SiO 등의 반응생성 가스에 의한 저부 내표면에서의 기포의 발생, 성장을 방지할 수 있다. 그 결과, 인상한 단결정 실리콘 잉곳으로 제조한 단결정 실리콘 웨이퍼 중의 보이드나 핀홀이라 불리는 공동결함을 저감시킬 수 있으므로, 상기 제2의 과제를 달성할 수 있다.
실리카 용기(72) 중, 고 OH기 농도 실리카 유리층(59) 이외의 부분(즉, 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52))의 순도에 대해서는, 용도에 따라 다르지만, 실리카(SiO2) 순도로서 솔라용 단결정 실리콘의 인상용인 경우 99.99mass% 이상, LSI용 단결정 실리콘의 인상용인 경우 99.999mass% 이상이 바람직하다.
또한, 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)을 제조하는 원료분말로서, 예를 들면 알칼리 금속원소 Li, Na, K의 각각이 10massppm 정도 함유되는 불순물 농도가 높은 실리카 분말을 이용한 경우에도, 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)에서 OH기 농도를 30~100massppm으로 설정하거나, 동시에 Al 농도를 5~30massppm으로 설정하거나 함으로써, 이들 확산계수의 값이 큰 원소를 실리카 용기의 두께(肉厚) 중에 흡착, 가둬 두게 할 수 있게 된다. 실리카 유리 중의 OH기의 효과로서, 금속 불순물 원소를 흡착, 고정하는 긍정적인 효과가 있으나, 고온도 하에서의 실리콘 융액에 의한 에칭량을 증대시킨다는 부정적인 효과도 있다. 그러므로, 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)의 직동부에서는 OH기 농도를 상기와 같이 30~100massppm으로 하는 것이 바람직하다. 또한, 단결정 실리콘 인상중에, 온도가 보다 높아지는 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)의 저부에서는, OH기 농도를 30~50massppm으로 하는 것이 바람직하다. Al에 대해서는, 금속 불순물 원소를 흡착, 고정하는 효과와 실리카 유리의 고온도 하에서의 점성도를 향상시키는 긍정적인 효과가 있으나, 피처리물의 실리콘을 Al으로 오염시킨다는 부정적인 효과도 있다. 따라서 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)에 Al을 함유시키는 경우에는 상기와 같이 5~30massppm으로 하는 것이 바람직하고, 10~20massppm으로 설정하는 것이 더욱 바람직하다.
이들 Al, OH기가 불순물 금속원소의 실리카 유리 중의 이동, 확산을 방지하는 메커니즘의 상세한 것은 명확하지 않으나, Al은 Si와 치환됨으로써 불순물 금속원소의 양이온(카티온)을 실리카 유리 네트워크의 전하 밸런스를 유지한다는 점에서 흡착, 확산 방지하는 것이라 추정된다. 또한 OH기는 수소이온과 금속이온이 치환함으로써, 이들 불순물 금속원소를 흡착 내지 확산 방지하는 효과가 발생되는 것으로 추정된다.
이하에서는, 상기와 같은 실리카 용기(72)를 제조할 수 있는, 본 발명의 단결정 실리콘 인상용 실리카 용기의 제조방법을 구체적으로 설명한다.
도 1에 나타낸 실리카 용기(72)의 제조방법을, 도 2를 참조하여 설명한다.
우선, 도 2의 (1)에 나타내는 바와 같이, 원료분말을 준비한다. 여기에서는, 제1의 원료분말(11)로서, 입경이 10~1000μm인 실리카 분말을 제작한다. 또한, 제2의 원료분말(12)로서, 입경이 10~1000μm이고, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 실리카 분말을 제작한다. 한편, 제2의 원료분말(12)은, 후술하는 고 OH기 농도의 실리카 유리층을 형성하는 공정 이전에 제작하면 된다.
(제1의 원료분말의 제작)
제1의 원료분말(11)은 예를 들면 이하와 같이 하여 규석 덩어리를 분쇄, 정립(整粒)함으로써 제작할 수 있지만, 이것으로 한정되지 않는다.
우선, 직경 5~50mm 정도의 천연 규석 덩어리(천연으로 산출되는 수정, 석영, 규석, 규질암석, 오팔석 등)을 대기 분위기하, 600~1000℃의 온도영역에서 1~10시간 정도 가열한다. 이어서 상기 천연 규석 덩어리를 물 안에 투입하고, 급냉각 후 꺼내어, 건조시킨다. 이 처리에 의해, 다음 처리인 크러셔 등에 의한 분쇄, 정립을 쉽게 행할 수 있게 되지만, 이 가열급냉 처리는 행하지 않고 분쇄 처리로 행해도 된다.
이어서, 상기 천연 규석 덩어리를 크러셔 등에 의해 분쇄, 정립하고, 입경을 10~1000μm, 바람직하게는 50~500μm로 조정하여 천연 규석분말을 얻는다.
이어서, 이 천연 규석분말을, 경사각도를 갖는 실리카 유리제 튜브로 이루어진 로터리 킬른 안에 투입하고, 킬른 내부를 염화수소(HCl) 또는, 염소(Cl2) 가스함유 분위기로 하고, 800~1100℃에서 1~100시간 정도 가열함으로써 고순도화 처리를 행한다. 단, 고순도를 필요로 하지 않는 제품 용도인 경우에는, 이 고순도화 처리를 행하지 않고 다음 처리로 진행해도 된다.
이상과 같은 공정 후에 얻어지는 제1의 원료분말(11)은 결정질의 실리카이지만, 실리카 용기의 사용 목적에 따라서는, 제1의 원료분말(11)로서 비정질의 실리카 유리분말을 단독 또는 혼합하여 사용할 수도 있다.
제1의 원료분말(11)의 입경은, 상기와 같이, 10~1000μm로 하고, 50~500μm으로 하는 것이 바람직하다. 제1의 원료분말(11)의 실리카 순도(SiO2)는, 99.99mass% 이상으로 하는 것이 바람직하고, 99.999mass% 이상으로 하는 것이 더욱 바람직하다.
제1의 원료분말(11)의 순도가 낮은(나쁜) 경우, 제조한 실리카 용기로부터 내표면으로, 나아가 수용하는 실리콘으로의 불순물 금속원소의 이동, 확산을 방지하기 위해, 제1의 원료분말(11)에 Al, OH기를 소정량 포함시키는 것이 바람직하다. Al은, 예를 들면 질산염, 아세트산염, 탄산염, 염화물 등을 물 또는 알코올 용액으로 하여, 이들 용액 중에 실리카 분말을 투입, 침지시키고, 이어서 건조함으로써 얻어진다. OH기는 천연 규석에 당초부터 포함하고 있는 것, 또는 중간 공정에서 혼합하는 수분을 그 후의 건조 공정에 있어서의 가스 분위기, 처리온도, 시간에 따라 조정할 수 있다.
(제2의 원료분말의 제작)
제2의 원료분말(12)은, 도 1의 실리카 용기(72)의 저부(63)의 내표면 부분에 형성하는 고 OH기 농도의 실리카 유리층(59)의 재료가 되는 것이다. 제2의 원료분말(12)의 재질로는, 이하의 것을 들 수 있다.
고순도화 처리된 천연 석영분말, 천연 수정분말, 또는 크리스토발라이트 분말을 들 수 있으며, 이것은, 산수소 화염 용융하여 OH기를 고농도로 함유하는 실리카 유리 덩어리를 제작한 후, 분쇄, 정립한 것이다.
사염화규소(SiCl4) 등의 규소 화합물로부터 산수소 화염 가수분해법에 의해 고 OH기 농도의 합성 실리카 유리 덩어리를 제작하고, 이것을 분쇄, 정립한 실리카 유리분말을 들 수 있다.
제2의 원료분말(12)의 OH기 농도는, 상기와 같이 300massppm 초과 3000massppm 이하로 설정한다. 이 OH기 농도는 500massppm 이상 1500massppm 이하로 하는 것이 바람직하다. 제2의 원료분말의 OH기 농도의 조절은 다양한 공지의 방법을 이용할 수 있다. 예를 들어, 사염화규소의 산수소 화염 가수분해법에 의한 제작인 경우에는, 원료인 사염화규소의 유량에 비해, 산소 및 수소의 유량을 증가시킴으로써 제2의 원료분말(12) 중의 OH기 농도를 상승시킬 수 있다. 또한, 고순도화 처리된 천연 석영분말, 천연 수정분말, 또는 크리스토발라이트 분말의 산수소 화염 용융인 경우에는, 산수소 화염의 산소, 수소의 유량을 조절함으로써, 제2의 원료분말(12) 중의 OH기 농도를 조절할 수 있다.
제2의 원료분말(12)의 입경은 상기와 같이 10~1000μm이고, 바람직하게는 100~500μm이다. 제2의 원료분말(12)의 순도는 실리카 성분(SiO2) 99.9999mass% 이상으로 하는 것이 바람직하고, 보다 구체적으로는 제2의 원료분말(12)의 불순물 농도는, Li, Na, K 각각에 대하여 100massppb 이하로 하고, Ca, Mg 각각에 대하여 50massppb 이하로 하고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하로 하는 것이 바람직하다. 이러한 불순물 농도는, 제2의 원료분말(12)을 합성 실리카 유리분말로 함으로써 용이하게 달성할 수 있다. 제2의 원료분말(12)의 불순물 농도는, Li, Na, K 각각에 대하여 50massppb 이하로 하고, Ca, Mg 각각에 대하여 25massppb 이하로 하고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 10massppb 이하로 하는 것이 더욱 바람직하다.
적어도 제1의 원료분말(11)을 제작한 후, 도 2의 (2)에 나타내는 바와 같이, 제1의 원료분말(11)을, 회전 대칭성을 갖는 형틀의 내측으로 투입하고, 상기 형틀을 회전시키면서 상기 형틀의 내벽에 따른 소정의 형상으로 가성형하여, 제1의 원료분말의 가성형체(41)로 한다. 도 3 및 도 4에, 제1의 원료분말(11)을 가성형하는 형틀의 개략을 나타내는 단면도를 도시하였다. 본 발명에서 이용하는 형틀(101, 101')은, 예를 들어, 그라파이트, 알루미나 등의 내열성 세라믹의 부재로 이루어지고, 회전 대칭성을 갖고 있으며, 형틀 회전용 모터(미도시)에 의해 회전시킬 수 있다. 또한, 도 3에 나타낸 바와 같이, 형틀(101)의 내벽(102)에는, 감압용 구멍(103)이 분배되어 형성되어 있을 수도 있다. 감압용 구멍(103)은, 감압용 통로(104)로 이어져 있다. 또한, 형틀(101)을 회전시키기 위한 회전축(106)에도 감압용 통로(105)가 나 있으며, 이곳에서부터 진공흡인을 행할 수 있도록 되어 있다. 본 발명에서는, 도 4에 나타낸 바와 같은, 감압용 장비가 없는 형틀(101')을 이용할 수도 있다. 이 형틀(101')의 내벽(102')에는 감압용 구멍이 형성되어 있지 않으며, 회전축(106')에도 감압용 통로는 없다. 이하에서는, 도 3에 나타낸 형틀(101)을 이용한 경우를 예로서 설명하나, 감압을 행하지 않는 것을 제외하고는 도 4에 나타낸 형틀(101')도 동일하게 이용할 수 있다.
도 2의 (2)에 나타낸 공정에서는, 도 3에 나타낸 형틀(101)의 내벽(102)에, 제1의 원료분말(11)을 도입하고, 제1의 원료분말(11)을 형틀(101)의 내벽(102)에 따른 소정의 형상으로 가성형하여 제1의 원료분말의 가성형체(41)로 한다(도 5참조). 구체적으로는, 형틀(101)을 회전시키면서, 서서히 제1의 원료분말(11)을 형틀(101)의 내벽(102)에 투입하고, 원심력을 이용하여 용기형상으로 성형한다. 또한 내측으로부터 판상의 내형틀(미도시)을, 회전하는 분체에 접촉시킴으로써, 제1의 원료분말의 가성형체(41)의 두께를 소정량으로 조정할 수도 있다. 또한, 이 제1의 원료분말(11)의 형틀(101)에 대한 공급방법은 특별히 한정되지 않으나, 예를 들어, 교반용 스크류와 계량 피더를 갖춘 호퍼를 이용할 수 있다. 이 경우, 호퍼에 충전된 제1의 원료분말(11)을, 교반용 스크류로 교반하고, 계량 피더로 공급량을 조절하면서 공급한다.
다음에, 도 2의 (3)에 나타내는 바와 같이, 형틀(101)을 회전시키면서, 제1의 원료분말의 가성형체(41)의 내측으로부터 방전가열 용융법에 의해 가열한다. 이에 따라, 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고, 직동부, 만곡부, 및 저부를 갖는 실리카 용기를 제작한다. 이 제1의 원료분말의 가성형체의 가열을, 제1의 원료분말의 가성형체(41)의 외측으로부터 감압하면서 행하는 것이 바람직하다.
이 공정의 모습을, 도 6 및 도 7에 구체적으로 나타내었다. 이 실리카 용기(71)를 제작하는 장치는, 상기 회전축 대칭성을 갖는 회전 가능한 형틀(101) 이외에, 회전모터(미도시), 및 방전가열 용융(아크용융, 아크방전 용융이라고도 불림)의 열원이 되는 탄소전극(카본전극)(212), 전선(212a), 고압 전원유닛(211), 덮개(213) 등으로 이루어진다. 또한, 제1의 원료분말의 가성형체(41)의 내측으로부터 공급하는 분위기 가스를 조정하기 위한 구성요소, 예를 들면, 수소가스 공급용 봄베(411), 불활성가스 공급용 봄베(412), 혼합가스 공급관(420) 등을 구비한다.
한편, 이 장치는, 후술하는 바와 같은 실리카 용기(71)의 저부의 내표면 부분에 실리카 유리층(59)을 형성하는 경우에도, 계속해서 사용할 수 있다.
제1의 원료분말의 가성형체(41)의 용융, 소결 순서로는, 탄소전극(212)간에 가전을 시작하기 전에, 우선, 수소함유 가스를, 제1의 원료분말의 가성형체(41)의 내측으로부터 공급하기 시작하는 것이 바람직하다. 구체적으로는, 도 6에 나타낸 바와 같이, 수소가스 공급용 봄베(411)로부터 수소가스를, 불활성가스 공급용 봄베(412)로부터 불활성가스(예를 들면, 질소(N2)나 아르곤(Ar), 헬륨(He))을 공급하여 혼합하고, 혼합가스 공급관(420)을 통해, 제1의 원료분말의 가성형체(41)의 내측으로부터 공급한다. 한편, 부호 510으로 도시한 흰색 화살표는 혼합가스의 흐름을 나타낸다.
다음에, 상기와 같이 혼합가스의 공급을 계속한 상태로, 제1의 원료분말의 가성형체(41)가 들어 있는 형틀(101)을 일정속도로 회전시키면서, 탈가스용 진공펌프(미도시)를 기동시키고, 감압용 구멍(103), 감압용 통로(104, 105)를 통해 제1의 원료분말의 가성형체(41)의 외측으로부터 감압함과 함께 탄소전극(212)간에 가전을 시작한다.
탄소전극(212)간에 아크방전(도 7의 부호 220으로 도시)이 시작되면, 제1의 원료분말의 가성형체(41)의 내표면부는 실리카 분말의 용융온도영역(1800~2000℃ 정도로 추정)이 되어, 최표층부로부터 용융이 시작된다. 최표층부가 용융되면 탈가스 진공펌프에 의한 진공흡인의 감압도가 증가하여(급격히 압력이 저하되어), 제1의 원료분말(11)에 포함되어 있는 물이나 산소 등의 용존가스를 탈가스하면서 용융 실리카 유리층에 대한 변화가 내측으로부터 외측으로 진행하게 된다.
제1의 원료분말의 가성형체(41)의 전체두께의 내측 절반 정도가 용융되어 투명~반투명 실리카 유리가 되고, 나머지 외측 절반 정도가 소결한 불투명 실리카가 될 때까지 가전에 의한 가열을 계속한다.
이 방전가열 용융시의 용기 두께층 내부의 분위기 가스는 전극의 소모를 줄일 목적으로부터는, 질소(N2), 아르곤(Ar), 헬륨(He) 등의 불활성가스를 주성분으로 해도 되지만, 용융 후의 실리카 유리 중의 용재가스를 감소시키기 위해, 상기와 같이, 이 공정에서는 분위기 가스를 수소함유 가스로 하는 것이 바람직하다. 이 수소함유 가스는, 예를 들면, 수소가스와, 질소가스(N2), 아르곤(Ar), 헬륨(He) 등의 불활성가스로 이루어진 혼합가스로 할 수 있다. 수소가스(H2)의 함유비율은 1vol.% 이상으로 하는 것이 바람직하고, 1~10vol.%로 하는 것이 보다 바람직하다. 그 이유는, 예를 들어 탈가스되기 어려운 산소가스(O2)가 수소와 반응하여 물(H2O)을 생성하고, 물분자는 산소분자에 비해 확산계수가 크기 때문에, 외층의 외부로 방출되기 쉬워진다고 생각된다. 또한 수소가스(H2)는 분자 반경이 작고 확산계수가 크므로, 분위기 가스에 포함되어 있어도 외층 외부로 방출되기 쉽다.
여기까지의 공정으로 불투명 실리카 유리층(51) 및 투명 실리카 유리층(52)을 갖는 실리카 용기(71)가 제조된다(도 7 참조). 다음에, 도 2(4) 및 도 8에 나타낸 바와 같이, 제작한 실리카 용기(71)의 내측의 공간에 제2의 원료분말(12)을 살포하면서 방전가열 용융법에 의해 용융하고, 이 용융한 제2의 원료분말(12)을 실리카 용기(71)의 저부의 내표면 부분에 부착시킴으로써, 실리카 용기(71)의 저부의 내표면 부분에 실리카 유리층(59)을 형성한다. 이에 따라, 도 1에 나타낸 본 발명의 실리카 용기(72)를 제조할 수 있다. 고 OH기 농도인 제2의 원료분말(12)을 사용하므로, 여기서 형성하는 실리카 유리층(59)도 고 OH기 농도가 된다. 이 공정에 의한 고 OH기 농도 실리카 유리층(59)의 기본적인 형성방법은, 예를 들어 특허문헌 1 및 특허문헌 2에 개시된 내용과 유사하지만, 실리카 용기(71)의 저부에 주로 형성하는 점이 본 발명의 특징이다. 저부의 내표면 부분에 형성하는 고 OH기 농도 실리카 유리층(59)의 형성 영역은, 실리카 용기(71, 72)의 외경의 1/3 이상의 직경을 갖는 것으로 하는 것이 바람직하다.
도 8에 나타낸, 실리카 용기(71)의 저부의 내표면 부분에 고 OH기 농도 실리카 유리층(59)을 형성하는 장치는, 전(前)공정과 거의 동일하며, 회전축 대칭성을 갖는 실리카 용기(72)가 설치되어 있는 회전 가능한 형틀(101), 회전모터(미도시), 및 제2의 원료분말(12)이 들어 있는 원료분말 호퍼(303), 교반용 스크류(304), 계량 피더(305), 및 방전가열 용융의 열원이 되는 탄소전극(212), 전선(212a), 고압 전원유닛(211), 덮개(213) 등으로 이루어진다. 또한, 분위기 가스를 조정하는 경우에는, 전공정과 마찬가지로, 추가로, 수소가스 공급용 봄베(411), 불활성가스 공급용 봄베(412), 혼합가스 공급관(420) 등을 구비하고 있어도 된다.
고 OH기 농도 실리카 유리층(59)을 형성하는 방법으로는, 우선, 형틀(101)을 소정의 회전속도로 설정하고, 고압 전원유닛(211)으로부터 서서히 고전압을 부하함과 동시에 원료 호퍼(303)로부터 서서히 제2의 원료분말(12)을 실리카 용기(71)의 상부로부터 살포한다. 이때 탄소전극(212)간에 방전은 시작된 상태이고, 실리카 용기(71) 내부는 실리카 분말의 용융온도영역(1800~2000℃ 정도로 추정)에 있으므로, 살포된 제2의 원료분말(12)은 실리카의 용융입자가 되어 실리카 용기(71)의 내표면에 부착되어 간다. 실리카 용기(71)의 상부 개구부에 설치되어 있는 탄소전극(212), 원료분말 투입구, 덮개(213)는 실리카 용기(71)에 대해 어느 정도 위치가 변화될 수 있는 기구로 되어 있으며, 이들 위치를 변화시킴으로써, 실리카 용기(71)의 저부의 소정의 장소에 소정의 두께로 고 OH기 농도 실리카 유리층(59)을 형성할 수 있다.
아크방전 용융 중인 실리카 용기(71) 내부의 분위기 가스는 탄소전극의 소모를 줄이기 위해, 질소가스(N2), 아르곤(Ar), 헬륨(He) 등의 불활성가스를 주성분으로 하나, 수소가스(H2), 1~10vol.%의 혼합 분위기로 함으로써, 함유하는 기포가 적은 고 OH기 농도 실리카 유리층(59)이 얻어진다. 또한, 이때의 분위기 가스 중의 물의 함유율(즉, 습도)을 조정함으로써, 실리카 유리층(59)의 OH기 농도를 조정할 수도 있다.
아크방전 용융시에 발생하는 카본 미립자, 및 카본과 산소의 화합물인 일산화탄소(CO), 이산화탄소(CO2)는 고 OH기 농도 실리카 유리층(59) 중에 잔류한 경우, 단결정 실리콘 인상시에 불순물로서 재발생하여, 상기 실리콘의 품질을 저하시키는 원인 중 하나가 될 수 있다. 이를 억제하기 위해서는, 실리카 용기 외부로부터 클린한 분위기 가스를 일정 유량으로 공급하면서, 용기 내부의 가스를 일정 유량으로 배출시켜 용융 중인 실리카 용기 내부를 적절하게 환기를 행하는 것이 바람직하다.
실시예
이하, 본 발명의 실시예 및 비교예를 들어 본 발명을 보다 구체적으로 설명하나, 본 발명은 이들로 한정되는 것은 아니다.
(실시예 1)
도 2에 나타낸 공정(1)~(4)에 따라, 단결정 실리콘 인상용 실리카 용기를 제조하였다. 제1의 원료분말(11)로서, 입경 50~500μm, 순도 99.999mass%의 천연 석영분말을 준비하였다. 도 3 및 도 5에 나타낸 그라파이트 형틀(101)을 회전시키면서 제1의 원료분말(11)을 투입하여, 제1의 원료분말의 가성형체(41)로 하였다. 이어서 도 6 및 도 7에 나타낸 장치를 이용하여, 제1의 원료분말의 가성형체(41)의 내부 분위기를 건조시킨 N2 95vol%, H2 5vol%의 혼합가스로 하고, 외주부로부터 흡기 감압하면서, 제1의 원료분말의 가성형체(41) 내부에서 방전가열 용융을 행하였다. 이에 의해, 외측은 백색 불투명 실리카 소결체로 하고, 내측은 무색 투명 실리카 유리체로 한 실리카 용기(71)를 제작하였다. 다음에, 제2의 원료분말(12)로서 입경 100~300μm, OH기를 1500massppm 함유하는 고순도 합성 실리카 유리분말(제2의 원료분말 a)을 조정하였다. 다음에, 도 8에 나타낸 장치를 이용하여, 분위기를 건조시킨 N2 95vol%, H2 5vol%의 혼합가스로 하여, 제2의 원료분말을 실리카 용기(71) 상부로부터 살포시키면서 방전가열함으로써, 실리카 용기 저부 내표면 전체에서부터 만곡부의 일부에 걸쳐 고 OH기 농도 실리카 유리층(59)을 형성하여, 실리카 용기(72)를 제조하였다. 고 OH기 농도 실리카 유리층(59)의 두께는, 특히 저부 중앙부분에서는 450μm의 두께로 하였다.
(실시예 2)
실시예 1과 동일한 제2의 원료분말(12)(제2의 원료분말 a, 합성 실리카 유리분말)을 이용하여, 실시예 1과 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제1의 원료분말(11)은, 실시예 1과 동일한 것에, 질산알루미늄 용액을 혼합, 건조시켜 Al을 10massppm 함유시켰다. 방전가열시의 분위기는 건조시킨 N2 99vol%, H2 1vol%의 혼합가스로 하였다. 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 80μm로 하였다.
(실시예 3)
실시예 1과 동일한 제1의 원료분말(11)을 이용하여, 실시예 1과 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제2의 원료분말(12)은 OH기를 550massppm 함유하는 고순도 합성 실리카 유리분말(제2의 원료분말b)로 하였다. 용기 저부 내표면 전체에서부터 만곡부에 걸쳐 고 OH기 농도 실리카 유리층(59)을 제작하였으며, 특히 용기 저부 중앙부분에서는 460μm 두께로 형성하였다.
(실시예 4)
실시예 2와 동일한 제1의 원료분말(11)을 이용하여, 실시예 2와 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제2의 원료분말(12)은 실시예 3과 마찬가지로, OH기를 550massppm 함유하는 고순도 합성 실리카 유리분말(제2의 원료분말b)로 하였다. 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 90μm로 하였다.
(실시예 5)
실시예 1과 동일한 제1의 원료분말(11)을 이용하여, 실시예 1과 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제2의 원료분말(12)은 OH기를 350massppm 함유하는 고순도 합성 실리카 유리분말(제2의 원료분말 c)로 하였다. 용기 저부 내표면 전체에서부터 만곡부에 걸쳐 고 OH기 농도 실리카 유리층(59)을 제작하였으며, 특히 용기 저부 중앙부분에서는 450μm 두께로 형성하였다.
(실시예 6)
실시예 2와 동일한 제1의 원료분말(11)을 이용하여, 실시예 2와 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제2의 원료분말(12)은 실시예 5와 마찬가지로, OH기를 350massppm 함유하는 고순도 합성 실리카 유리분말(제2의 원료분말 c)로 하였다. 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 90μm로 하였다.
(실시예 7)
실시예 3과 기본적으로 동일하게 실리카 용기를 제조하였는데, 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 25μm로 하였다.
(실시예 8)
실시예 3과 기본적으로 동일하게 실리카 용기를 제조하였는데, 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 50μm로 하였다.
(실시예 9)
실시예 3과 기본적으로 동일하게 실리카 용기를 제조하였는데, 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 1000μm로 하였다.
(실시예 10)
실시예 1과 동일한 제1의 원료분말(11) 및 제2의 원료분말(12)을 이용하여, 실시예 1과 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 방전가열시의 분위기는 건조시킨 He 90vol%, H2 10vol%의 혼합가스로 하였다. 용기 저부 중앙부분의 고 OH기 농도 실리카 유리층(59)의 두께는 230μm로 하였다.
(비교예 1)
제1의 원료분말로서, 천연 석영분말(입경 100~300μm)을 준비하였으나, Al의 첨가는 행하지 않았다. 이 제1의 원료분말을 이용하여, 실시예 2와 동일한 조건으로, 외측은 백색 불투명 실리카 소결체로 하고, 내측은 무색 투명 실리카 유리체로 한 실리카 용기(71)를 제작하였다. 단, 제2의 원료분말(12)에 상당하는 것은 준비하지 않아, 용기 저부 내표면에 고 OH기 농도의 실리카 유리층을 형성하지 못했다.
(비교예 2)
실시예 2와 기본적으로 동일하게 실리카 용기를 제조하였는데, 이하의 점을 변경하였다. 제1의 원료분말은 비교예 1과 동일한 것을 이용하였다. 제2의 원료분말로서, OH기를 100massppm 밖에 함유하지 않는 OH기가 적은 고순도 합성 실리카 유리분말(제2의 원료분말 d)을 준비하였다. 제2의 원료분말로 형성한 용기 저부 중앙부분의 실리카 유리층의 두께는 90μm로 하였다.
(비교예 3)
비교예 2와 기본적으로 동일하게 실리카 용기를 제조하였는데, 제2의 원료분말의 OH기 농도를 250massppm으로 하였다(제2의 원료분말 e). 제2의 원료분말로 형성한 용기 저부 중앙부분의 실리카 유리층의 두께는 90μm로 하였다.
(비교예 4)
비교예 2와 기본적으로 동일하게 실리카 용기를 제조하였는데, 제2의 원료분말의 OH기 농도를 300massppm으로 하였다(제2의 원료분말 f). 제2의 원료분말로 형성한 용기 저부 중앙부분의 실리카 유리층의 두께는 90μm로 하였다.
(비교예 5)
실시예 1과 기본적으로 동일하게 실리카 용기를 제조하였는데, 제1의 원료분말은 비교예 1과 동일한 것을 이용하였다. 실시예 1과 동일한 제2의 원료분말로 형성한 용기 저부 중앙부분의 실리카 유리층의 두께는 1520μm로 하였다.
[실시예 및 비교예에 있어서의 평가방법]
각 실시예 및 비교예에서 이용한 원료분말, 그리고 제조한 실리카 용기의 물성, 특성 평가를 이하와 같이 하여 행하였다.
각 원료분말의 입경 측정방법:
광학현미경 또는 전자현미경으로 각 원료분말의 2차원적 형상 관찰 및 면적 측정을 행하였다. 이어서, 입자의 형상을 진원(眞圓)이라 가정하고, 그 면적값으로부터 직경을 계산하여 구하였다. 이 수법을 통계적으로 반복 행해, 입경의 범위(이 범위 내에 99mass% 이상의 원료분말이 포함된다) 값으로 하여, 표 1~5에 나타내었다.
실리카 용기의 층두께(層厚) 측정:
실리카 용기를 커터로 절단하고, 단면(斷面)을 스케일로 측정하여 구하였다.
OH기 농도 측정:
OH기 농도 측정은, 적외선 흡수 분광 광도법으로 측정을 행하였다. OH기 농도로의 환산은, 이하 문헌에 따른다.
Dodd,D.M. and Fraser,D.B. (1966) Optical determination of OH in fused silica. Journal of Applied Physics, vol.37, P.3911.
한편, 실시예 1~6 및 비교예 2~4에서 실리카 용기 저부에 형성한 실리카 유리층의 OH기 농도는, 각 실시예 및 비교예에서 사용한 원료분말의 OH기 농도의 측정값과 동등하다고 추정하였다.
불순물 금속원소 농도 분석:
불순물 금속원소 농도가 비교적 낮은(유리가 고순도인) 경우에는, 플라즈마 발광 분석법(ICP-AES) 또는 플라즈마 질량 분석법(ICP-MS)으로 행하고, 불순물 금속원소 농도가 비교적 높은(유리가 저순도인) 경우에는, 원자 흡광 광도법(AAS)으로 행하였다. 그 결과, 알칼리 금속원소 Li, Na, K, 알칼리토류 금속원소 Ca, Mg, 천이 금속원소 Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb의 15 원소에 대해, 표 6에 나타내었다.
단결정 실리콘 연속인상(멀티인상) 평가:
제조한 실리카 용기 내에 순도 99.99999mass%의 금속 폴리실리콘을 투입하고, 승온을 행해 실리콘 융액으로 하고, 이어서 단결정 실리콘의 인상을 3회 반복하여 행하고(멀티인상), 단결정 실리콘 육성의 성공률로서 평가하였다. 인상 조건은, 인상장치(CZ장치) 내를 아르곤(Ar) 가스 100% 분위기, 인상속도 1.2mm/분, 단결정 실리콘 치수는 직경 300mm, 길이 600mm, 1배치(batch)의 조업시간은 약 48시간으로 하였다. 단결정 실리콘 육성3회 반복한 성공비율의 분류는 이하와 같이 하였다.
3회 ○(양호)
2회 △(약간 불량)
1회 ×(불량)
단결정 실리콘 중의 보이드와 핀홀의 평가:
상기 단결정 실리콘 연속인상에 있어서, 각 단결정 실리콘 멀티인상 후의 1개째 단결정 실리콘의 임의의 부위로부터, 직경 300mm, 두께 200μm의 양면 연마 마무리한 실리콘 웨이퍼 각 200매을 제작하였다. 이어서 각각의 실리콘 웨이퍼의 양면에 존재하는 보이드와 핀홀의 개수를 파티클 검출기로 측정하고, 통계적으로 수치 처리를 행해 실리콘 웨이퍼 200매당 결함이 없는 매수를 구하였다. 그 결과, 보이드도 핀홀도 검출되지 않는 실리콘 웨이퍼 매수에 따라 이하와 같은 평가로 하였다. 단, 검출 가능한 보이드와 핀홀의 직경은 50μm 이상이었다.
무결함 실리콘 웨이퍼 매수 200매 ○(양호)
무결함 실리콘 웨이퍼 매수 199~198매 △(약간 불량)
무결함 실리콘 웨이퍼 매수 197매 이하 ×(불량)
실시예 1~10, 비교예 1~5에서 제조한 각각의 실리카 용기의 제조 조건은, 측정한 물성값, 평가 결과를 정리하여, 하기 표 1~9에 나타내었다.
Figure pct00001
Figure pct00002
Figure pct00003
Figure pct00004
Figure pct00005
Figure pct00006
Figure pct00007
Figure pct00008
Figure pct00009
표 1~9로부터 알 수 있는 바와 같이, 실시예 1~10에서는, 보이드나 핀홀이 적은 단결정 실리콘을 제조할 수 있었다. 또한, 특히, 실시예 5, 6 및 비교예 4의 비교로부터 알 수 있는 바와 같이, 인상한 단결정 실리콘 중의 보이드나 핀홀을 감소시킨다는 본 발명의 효과를 얻기 위해서는, 실리카 용기 저부에 형성하는 실리카 유리층의 OH기 농도가, 300massppm을 초과할 필요가 있다.
한편, 본 발명은 상기 실시형태에 한정되는 것은 아니다. 상기 실시형태는 단순히 예시일 뿐으로, 본 발명의 특허청구의 범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 가지며 동일한 작용 효과를 나타내는 것은 어떠한 것이어도 본 발명의 기술적 범위에 포함된다.

Claims (10)

  1. 직동부, 만곡부, 및 저부를 갖는 단결정 실리콘 인상용 실리카 용기에 있어서,
    상기 실리카 용기의 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고,
    상기 실리카 용기의 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고,
    상기 저부의 내표면에, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 두께 20μm 이상 1000μm 이하의 실리카 유리층이 형성되어 있는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기.
  2. 제1항에 있어서,
    상기 저부의 내표면에 형성된 실리카 유리층이 합성 실리카 유리로 이루어진 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기.
  3. 제1항 또는 제2항에 있어서,
    상기 저부의 내표면에 형성된 실리카 유리층은, OH기를 500massppm 이상 1500massppm 이하의 농도로 함유하고, 두께가 50μm 이상 500μm 이하인 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 저부의 내표면에 형성된 실리카 유리층에 함유되어 있는 불순물 농도가, Li, Na, K 각각에 대하여 100massppb 이하이고, Ca, Mg 각각에 대하여 50massppb 이하이고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하인 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 저부의 내표면에 형성된 실리카 유리층의 형성 영역은, 상기 실리카 용기의 외경의 1/3 이상의 직경을 갖는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기.
  6. 직동부, 만곡부, 및 저부를 갖는 단결정 실리콘 인상용 실리카 용기의 제조방법에 있어서,
    제1의 원료분말로서, 입경이 10~1000μm인 실리카 분말을 제작하는 공정과,
    제2의 원료분말로서, 입경이 10~1000μm이고, OH기를 300massppm 초과 3000massppm 이하의 농도로 함유하는 실리카 분말을 제작하는 공정과,
    상기 제1의 원료분말을, 회전 대칭성을 갖는 형틀의 내측으로 투입하고, 상기 형틀을 회전시키면서 상기 형틀의 내벽에 따른 소정의 형상으로 가성형하여, 제1의 원료분말의 가성형체로 하는 공정과,
    상기 형틀을 회전시키면서, 상기 제1의 원료분말의 가성형체의 내측으로부터 방전가열 용융법에 의해 가열함으로써, 외측이 기포를 함유하는 불투명 실리카 유리로 이루어지고, 내측이 실질적으로 기포를 함유하지 않는 투명 실리카 유리로 이루어지고, 직동부, 만곡부, 및 저부를 갖는 실리카 용기를 제작하는 공정과,
    상기 제작한 실리카 용기의 내측의 공간에 상기 제2의 원료분말을 살포하면서 방전가열 용융법에 의해 용융하고, 상기 용융한 제2의 원료분말을 상기 저부의 내표면 부분에 부착시킴으로써, 상기 저부의 내표면 부분에 실리카 유리층을 형성하는 공정
    을 포함하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법.
  7. 제6항에 있어서,
    상기 제1의 원료분말의 가성형체의 가열을, 상기 제1의 원료분말의 가성형체의 외측으로부터 감압하면서 행하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법.
  8. 제6항 또는 제7항에 있어서,
    상기 제2의 원료분말을 합성 실리카 유리분말로 하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서,
    상기 제2의 원료분말의 불순물 농도를, Li, Na, K 각각에 대하여 100massppb 이하로 하고, Ca, Mg 각각에 대하여 50massppb 이하로 하고, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Pb 각각에 대하여 20massppb 이하로 하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법.
  10. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 저부의 내표면 부분에 형성하는 실리카 유리층의 형성 영역을, 상기 실리카 용기의 외경의 1/3 이상의 직경을 갖는 것으로 하는 것을 특징으로 하는 단결정 실리콘 인상용 실리카 용기의 제조방법.
KR1020137027746A 2012-03-23 2013-01-22 단결정 실리콘 인상용 실리카 용기 및 그 제조방법 KR101516602B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012067815 2012-03-23
JPJP-P-2012-067815 2012-03-23
PCT/JP2013/000273 WO2013140706A1 (ja) 2012-03-23 2013-01-22 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Publications (2)

Publication Number Publication Date
KR20130135969A true KR20130135969A (ko) 2013-12-11
KR101516602B1 KR101516602B1 (ko) 2015-05-04

Family

ID=49222192

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137027746A KR101516602B1 (ko) 2012-03-23 2013-01-22 단결정 실리콘 인상용 실리카 용기 및 그 제조방법

Country Status (7)

Country Link
US (1) US20140041575A1 (ko)
EP (1) EP2703526A4 (ko)
JP (1) JP5462423B1 (ko)
KR (1) KR101516602B1 (ko)
CN (1) CN103649383B (ko)
TW (1) TWI460317B (ko)
WO (1) WO2013140706A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951040B2 (ja) * 2009-08-05 2012-06-13 信越石英株式会社 シリカ容器及びその製造方法
JP5500686B2 (ja) * 2010-11-30 2014-05-21 株式会社Sumco シリカガラスルツボ
WO2017103125A1 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Sprühgranulieren von siliziumdioxid bei der herstellung von quarzglas
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
TWI813534B (zh) * 2015-12-18 2023-09-01 德商何瑞斯廓格拉斯公司 利用露點監測在熔融烘箱中製備石英玻璃體
TWI794150B (zh) 2015-12-18 2023-03-01 德商何瑞斯廓格拉斯公司 自二氧化矽顆粒製備石英玻璃體
CN108698888A (zh) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 在石英玻璃制备中作为中间物的经碳掺杂的二氧化硅颗粒的制备
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass
KR20180095622A (ko) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 내화성 금속으로 제조된 용융 도가니에서 실리카 유리 제품의 제조
CN116490461A (zh) * 2020-11-27 2023-07-25 株式会社德山 多晶硅棒、多晶硅棒的制造方法以及多晶硅的热处理方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144793A (ja) * 1984-08-09 1986-03-04 Toshiba Ceramics Co Ltd シリコン単結晶引上げ用石英ガラスルツボ
JPH0729871B2 (ja) 1987-12-03 1995-04-05 信越半導体 株式会社 単結晶引き上げ用石英るつぼ
JPH01148718A (ja) 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd 石英るつぼの製造方法
JP2933404B2 (ja) * 1990-06-25 1999-08-16 信越石英 株式会社 シリコン単結晶引き上げ用石英ガラスルツボとその製造方法
JP3294356B2 (ja) * 1992-12-25 2002-06-24 東芝セラミックス株式会社 半導体ウェーハ処理用石英ガラス製炉芯管
JP3931351B2 (ja) * 1994-12-27 2007-06-13 東ソー株式会社 高純度、高耐熱性シリカガラスの製造方法
JP2811290B2 (ja) * 1995-04-04 1998-10-15 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスルツボ
JP3764776B2 (ja) 1996-03-18 2006-04-12 信越石英株式会社 単結晶引き上げ用石英ガラスるつぼ及びその製造方法
JP3798849B2 (ja) 1996-07-09 2006-07-19 信越石英株式会社 石英ルツボの製造装置及び方法
JP3601939B2 (ja) * 1997-06-16 2004-12-15 東芝セラミックス株式会社 石英ガラス製ルツボの製造方法および製造装置
JP4398527B2 (ja) * 1998-05-25 2010-01-13 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスるつぼ
JP3733144B2 (ja) * 1998-07-31 2006-01-11 信越石英株式会社 シリコン単結晶引上げ用石英ガラスるつぼおよびその製造方法
JP4352422B2 (ja) * 2000-05-01 2009-10-28 信越石英株式会社 石英ガラス中に含まれる微量oh基濃度の測定方法
JP4447738B2 (ja) * 2000-05-31 2010-04-07 信越石英株式会社 多層構造の石英ガラスルツボの製造方法
JP4279015B2 (ja) * 2002-03-19 2009-06-17 コバレントマテリアル株式会社 石英ガラスルツボ及び石英ガラスルツボの製造方法
EP1632592B1 (en) * 2003-05-01 2012-06-20 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal and method for manufacture thereof
JP2005145732A (ja) * 2003-11-12 2005-06-09 Kuramoto Seisakusho Co Ltd 結晶化石英ルツボ
JP4789437B2 (ja) * 2004-07-16 2011-10-12 信越石英株式会社 シリコン単結晶引上げ用石英ガラスるつぼおよびその製造方法
JP4651119B2 (ja) * 2007-02-22 2011-03-16 信越石英株式会社 シリコン単結晶引き上げ用大口径石英ガラスるつぼ
JP2011088755A (ja) * 2008-03-14 2011-05-06 Japan Siper Quarts Corp 石英ガラスルツボおよびその製造方法
JP5106340B2 (ja) * 2008-09-30 2012-12-26 信越石英株式会社 シリカ容器及びその製造方法
JP5072933B2 (ja) 2008-10-31 2012-11-14 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
JP5042971B2 (ja) 2008-11-28 2012-10-03 株式会社Sumco シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5058138B2 (ja) 2008-12-09 2012-10-24 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ
JP4975012B2 (ja) 2008-12-29 2012-07-11 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5036735B2 (ja) 2009-01-05 2012-09-26 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5043048B2 (ja) * 2009-01-21 2012-10-10 株式会社Sumco シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
EP2431338B1 (en) * 2009-04-28 2021-08-25 Shin-Etsu Quartz Products Co., Ltd. Silica vessel
KR101315684B1 (ko) * 2009-05-26 2013-10-10 신에쯔 세끼에이 가부시키가이샤 실리카 용기 및 그 제조방법
JP4922355B2 (ja) * 2009-07-15 2012-04-25 信越石英株式会社 シリカ容器及びその製造方法
JP2012017240A (ja) * 2010-12-24 2012-01-26 Covalent Materials Corp シリコン単結晶引上げ用シリカガラスルツボの製造方法

Also Published As

Publication number Publication date
KR101516602B1 (ko) 2015-05-04
EP2703526A1 (en) 2014-03-05
TWI460317B (zh) 2014-11-11
CN103649383B (zh) 2016-08-17
TW201402882A (zh) 2014-01-16
EP2703526A4 (en) 2014-12-31
CN103649383A (zh) 2014-03-19
US20140041575A1 (en) 2014-02-13
WO2013140706A1 (ja) 2013-09-26
JP5462423B1 (ja) 2014-04-02
JPWO2013140706A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
KR101516602B1 (ko) 단결정 실리콘 인상용 실리카 용기 및 그 제조방법
JP4907735B2 (ja) シリカ容器及びその製造方法
JP4951040B2 (ja) シリカ容器及びその製造方法
KR101374545B1 (ko) 실리카 분말 및 실리카 용기 그리고 그 제조방법
US8733127B2 (en) Silica container and method for producing the same
JP5608257B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5250097B2 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5497247B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5308594B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5595615B2 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5608258B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee