KR20120045774A - 웨이퍼 검사 방법 - Google Patents

웨이퍼 검사 방법 Download PDF

Info

Publication number
KR20120045774A
KR20120045774A KR1020100107559A KR20100107559A KR20120045774A KR 20120045774 A KR20120045774 A KR 20120045774A KR 1020100107559 A KR1020100107559 A KR 1020100107559A KR 20100107559 A KR20100107559 A KR 20100107559A KR 20120045774 A KR20120045774 A KR 20120045774A
Authority
KR
South Korea
Prior art keywords
wafer
scan
scan direction
field
defect
Prior art date
Application number
KR1020100107559A
Other languages
English (en)
Inventor
박헌
이우람
김청수
김종만
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020100107559A priority Critical patent/KR20120045774A/ko
Priority to US13/186,970 priority patent/US20120106827A1/en
Publication of KR20120045774A publication Critical patent/KR20120045774A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

웨이퍼 검사 방법이 제공된다. 본 발명의 일 실시예에 따른 웨이퍼 검사 방법은 노광기로부터 스캔방향을 포함하는 스캔정보를 획득하는 단계와, 웨이퍼 표면의 이미지 정보를 획득하는 단계와, 상기 이미지 정보 상의 불량 위치를 검출하는 단계와, 상기 웨이퍼 상의 불량 위치가 반복적인 패턴을 이루는지를 판단하는 단계와, 상기 스캔정보를 기초로 상기 반복적인 패턴이 스캔방향과 관련성이 있는지를 판단하는 단계를 포함한다.

Description

웨이퍼 검사 방법{METHOD FOR INSPECTING WAFER}
본 발명은 웨이퍼 검사 방법에 관한 것으로, 더욱 구체적으로는 반도체 공정의 웨이퍼 불량을 검출하기 위한 검사 방법에 관한 것이다.
일반적으로 반도체 소자는 웨이퍼(wafer) 상에 다수의 막을 형성하고 이를 패터닝(patterning)하는 과정을 반복하여 형성된다. 구체적으로, 실리콘 웨이퍼 상에 사진공정, 식각공정, 박막증착공정, 확산공정 등 여러가지 공정을 반복수행하여 소정의 회로 패턴(Pattern)을 갖는 박막을 형성하게 된다. 이와 같은 공정 중에서 미리 설계된 회로패턴을 실리콘 웨이퍼 상에 찍는 공정을 사진공정이라고 하며, 이와 같은 사진공정은 크게 감광막 도포공정, 노광공정, 현상공정 등으로 이루어진다. 여기서, 노광공정은 광 경로를 형성하는 광학계를 이용하여 레티클(Reticle)에 형성된 회로패턴을 감광막이 도포된 웨이퍼 상에 광학적으로 축소하여 전사시키는 공정으로, 스캐너(Scanner) 등과 같은 노광장치에 의해 수행되고 있으며, 일괄노광, 분할노광, 스캔노광 방식이 있다.
한편, 분할노광 내지 스캔노광 방식으로 노광공정을 수행하는 스몰 마스크(small mask) 노광장치는 기존의 높은 가격을 차지하는 마스크를 작은 크기의 형태로 나누어진 여러 마스크를 적용하여 노광하는 방식으로 마스크의 비용을 줄이고자 하는 노광장치의 한 형태이다. 이러한 스몰 마스크 노광장치는 스텝 앤 리핏(step & repeat) 방식으로 또는 스캔(scan) 방식 노광공정을 수행할 수 있기 때문에 비용 측면에서 유리하다.
이 때 각 막의 형성 공정에서 발생할 수 있는 파티클(particle), 보이드(void), 디스로케이션(dislocation) 등의 결함(defect)이 소정의 허용한도를 넘게되면 완성된 반도체 소자의 품질에 악영향을 끼칠 수 있다. 이와 같은 결함 발생을 사전에 예방할 수 있도록 웨이퍼의 결함을 검사하는 공정이 필수적으로 수행된다.
한편, 도 1에 도시된 바와 같이, 웨이퍼(10) 상에 일정한 패턴이 형성되어 독립적으로 구동가능한 단위인 칩(다이)(11)이 복수로 형성되는데, 노광공정에서는 패턴 형성을 위한 레티클 상에 복수의 다이(11)를 반복단위인 하나의 필드(12)로 구성하여 전체 웨이퍼(10)를 여러 구획으로 분할해서 스캔하게 된다. 하나의 필드(12)는 일반적으로 2 내지 8개의 다이(11)로 구성될 수 있으며, 이와 같은 필드(12)가 형성된 레티클을 이용한 1회의 샷(shot)으로 인해 웨이퍼(10) 표면에 2 내지 8개의 다이(11)가 형성된다. 즉, 본 명세서에서 필드(12)는 레티클 상의 다이의 집합체를 의미하는 동시에 상기 레티클로 인해 다이(11)가 형성된 웨이퍼 상의 다이(11)의 집합체(12)를 의미할 수 있다.
이와 같이 형성된 웨이퍼(10)는 그 표면에 파티클, 보이드 등의 결함(defect)이 발생할 수 있으며, 특히 반도체 공정을 진행하면서 검사 설비에서 반복적으로 불량 패턴이 검출되는 경우가 발생한다. 이는 레티클에 결함이 발생하고 상기 레티클을 반복적으로 포토리소그래피 공정에 사용하는 경우에 해당할 수 있으며, 또는 스캔 방식으로 노광공정을 수행함에 있어서 문제가 발생한 경우일 수 있다.
이와 같은 경우, 반복적으로 이루어지는 불량 패턴을 조기에 발견하여 이를 수정하지 않으면, 연속적으로 생산되는 웨이퍼의 양품률 또는 칩의 수득률이 급격하게 감소할 수 있으며, 이로 인해 생산비용이 크게 증가되는 문제가 발생할 수 있다.
본 발명이 해결하려는 과제는 웨이퍼 상에 반복적으로 이루어지는 불량 패턴을 조기에 발견할 수 있는 웨이퍼 검사 방법을 제공하는 것이다.
본 발명이 해결하려는 다른 과제는 반복적으로 이루어지는 불량 패턴 중 반복성을 판단하기 어려운 필드의 스캔방향 의존적인 불량 패턴을 조기에 발견할 수 있는 웨이퍼 검사 방법을 제공하고자 하는 것이다.
본 발명이 해결하려는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 웨이퍼 검사 방법은 노광기로부터 스캔방향을 포함하는 스캔정보를 획득하는 단계와, 웨이퍼 표면의 이미지 정보를 획득하는 단계와, 상기 이미지 정보 상의 불량 위치를 검출하는 단계와, 상기 웨이퍼 상의 불량 위치가 반복적인 패턴을 이루는지를 판단하는 단계와, 상기 스캔정보를 기초로 상기 반복적인 패턴이 스캔방향과 관련성이 있는지를 판단하는 단계를 포함한다.
도 1은 웨이퍼의 구조를 도시한 평면도이다.
도 2는 표면 상에 불량이 발생한 웨이퍼를 도시한 평면도이다.
도 3은 도 2의 불량 중 반복적인 불량 패턴을 추출한 평면도이다.
도 4는 웨이퍼의 스캔방식에 따른 노광공정을 나타내는 개략도이다.
도 5는 도 4의 방식에 따라 웨이퍼 상에서 순차적으로 진행되는 노광공정의 스캔방향 및 스캔순서를 나타내는 도면이다.
도 6은 표면 상에 스캔방향 의존적인 불량이 발생한 웨이퍼를 도시한 평면도이다.
도 7은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법을 나타내는 순서도이다.
도 8은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 웨이퍼의 필드에 스캔방향에 대한 표식을 오버랩하여 스캔방향 의존적인 불량인지를 판단하는 단계를 도식화한 도면이다.
도 9는 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 도출된 스캔방향 의존적인 불량 발생량을 수치화하여 그래프로 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 도출된 스캔방향 의존적인 불량의 발생 추이를 나타내는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "이루어지다(made of)"는 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
소자(elements) 또는 층이 다른 소자 또는 층의 "위(on)" 또는 "상(on)"으로 지칭되는 것은 다른 소자 또는 층의 바로 위뿐만 아니라 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 "직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다. "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이하에서는 도면을 참조하여 본 발명의 일 실시예에 따른 웨이퍼 검사 방법을 설명한다. 도 2는 표면 상에 불량이 발생한 웨이퍼를 도시한 평면도이고, 도 3은 도 2의 불량 중 반복적인 불량 패턴을 추출한 평면도이다.
앞서 살펴본 바와 같이, 반도체 공정을 진행하면서 검사 설비에서 반복적으로 불량 패턴이 검출되는 경우가 발생한다. 도 2에 도시된 바와 같이, 웨이퍼(10) 전면에 불량(D)이 발생할 수 있는데, 이와 같이 형성된 복수의 불량(D)이 일정한 규칙으로 반복 형성되어 있는지를 판단할 필요가 있다. 따라서, 반복적으로 형성된 불량(D)인지를 검출하기 위해 각 필드(12) 별로 불량(D)의 위치를 비교한다. 비교 결과, 도 3에 도시된 바와 같이 하나의 필드(12) 내에서 동일한 위치에 불량(D)이 반복적으로 형성된 경우 이는 모든 필드(12)가 동일한 위치에 동일한 불량(D)을 가지는 것으로 판단하고, 이와 같은 반복적인 불량 패턴은 레티클에 의한 불량임을 파악할 수 있다. 따라서, 레티클에 의한 불량을 발견한 즉시 이를 신속하게 처리하여 추가 불량이 발생하지 않도록 할 수 있다.
이러한 레티클에 의한 불량은 웨이퍼(10)의 이미지 정보를 획득하는 단계와, 상기 이미지 정보를 각 필드(field to field)(12) 별로 반복적으로 비교하는 단계와, 각 필드(12)에 공통되는 위치에 불량(D)이 형성되어 있는 경우 반복적 불량임을 판단하는 단계를 포함한다.
이어서, 도 4 내지 도 10을 참조하여 본 발명의 일 실시예에 따른 노광공정시 스캔방향에 따라 발생되는 반복성 불량 및 이의 검사방법에 대해 설명한다. 도 4는 웨이퍼의 스캔방식에 따른 노광공정을 나타내는 개략도이고, 도 5는 도 4의 방식에 따라 웨이퍼 상에서 순차적으로 진행되는 노광공정의 스캔방향 및 스캔순서를 나타내는 도면이고, 도 6은 표면 상에 스캔방향 의존적인 불량이 발생한 웨이퍼를 도시한 평면도이고, 도 7은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법을 나타내는 순서도이고, 도 8은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 웨이퍼의 필드에 스캔방향에 대한 표식을 오버랩하여 스캔방향 의존적인 불량인지를 판단하는 단계를 도식화한 도면이고, 도 9는 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 도출된 스캔방향 의존적인 불량 발생량을 수치화하여 그래프로 나타낸 도면이고, 도 10은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법 중 도출된 스캔방향 의존적인 불량의 발생 추이를 나타내는 도면이다.
앞서 살펴본 바와 같이, 레티클에 의한 불량인 경우 각 필드(12)를 반복적으로 비교하면 용이하게 파악할 수 있으나, 노광공정시 스캔방향에 따라 발생되는 반복성 불량은 파악하기 곤란한 측면이 있다. 노광공정에서는 패턴을 형성하기 위해 복수의 다이로 구성된 필드가 형성된 레티클을 마스크로 이용하여 전체 웨이퍼를 순차적으로 자외선을 조사(스캔)하게 된다. 이때 도 4에 도시된 바와 같이, 필드(12) 단위로 하여 직선왕복 형태로 반복하여 스캔한다. 즉, 하나의 필드(12)는 도 4 상으로 왼쪽에서 오른쪽 방향(도 5 상으로 위에서 아래 방향)으로 스캔하고, 그 다음 필드(12)는 도 4 상에서 오른쪽 방향에서 왼쪽 방향(도 5 상으로 아래에서 위 방향)으로 스캔하며, 이는 스캔 노광 방식에 해당한다. 노광기(20)에서 하나의 레티클을 이용하여 일괄노광하기 위해서는 대면적의 레티클이 필요하며 생산비용이 급격하게 증가하고 정밀도가 떨어질 우려가 있다. 따라서, 한번에 전체 웨이퍼(10)를 스캔하는 것이 아니라 하나의 필드(12) 단위로 스캔하게 된다.
웨이퍼(10)를 스캔함에 있어서, 구체적인 필드(12) 단위의 스캔방향 및 스캔순서는 도 5에 도시되어 있다. 즉, 웨이퍼(10) 상에 구획된 필드(12) 중 스캔 시작 필드(31)로부터 스캔 종료 필드(32)까지 연속적으로 스캔이 진행된다. 스캔방향 및 스캔순서는 자취의 형태인 스캔정보(30)로 표시되어 있다. 도시된 예에서는 최상부 필드 중 우측 필드(31)로부터 스캔이 시작되어 최상부(도 5의 웨이퍼 상에 구획되는 필드 중 최상부) 행의 필드 스캔이 종료되면, 차상부 행의 필드 스캔이 좌측 필드부터 시작된다. 차상부 행의 필드 스캔이 좌측 필드부터 우측 필드까지 종료되면 그 하위 행의 우측 필드부터 스캔이 시작된다. 이와 같이, 최상부 행부터 웨이퍼(10) 전면을 지그재그 형태로 스캔하게 된다. 이때 각 필드를 개별적으로 스캔할 때 도 5를 기준으로 상부에서 하부로 스캔하거나, 하부에서 상부로 스캔하는 방식이 사용된다. 이는 도 4에서 살펴본 직선왕복 형태로 각 필드를 스캔하는 것과 동일하다. 따라서, 개개의 필드(12)는 상부에서 하부로 스캔한 형태, 즉 스캔다운(scan down) 타입이거나, 하부에서 상부로 스캔한 형태, 즉 스캔업(scan up) 타입 중 하나의 타입에 해당하게 된다.
이어서 도 6를 참고하면, 노광공정시 스캔방향에 따라 발생되는 반복성 불량 즉, 스캔다운 타입의 필드(12)에서만 동일한 위치에 불량이 발생하거나 스캔업 타입의 필드(12)에서만 동일한 위치에 반복적으로 불량이 발생하는 경우가 생길 수 있다. 웨이퍼 상에 도 6과 같은 불량이 발생할 경우에 스캔방향에 대한 정보가 없다면, 웨이퍼(10) 전체 필드(12)에 반복적으로 형성된 불량(D)이 아니기 때문에 반복성 불량이 아닌 것으로 판단할 가능성이 높다. 즉, 스캔시 인접한 필드(12)별로 스캔다운과 스캔업이 규칙적이고 반복적으로 행해지지만, 웨이퍼(10) 가로로 배열된 필드(12)의 갯수가 일정하지 않기 때문에, 노광 공정 후 웨이퍼(10) 전체의 불량을 기초로 패턴을 찾아내기는 용이하지 않다. 그러나, 후술하는 바와 같이 도 6에 도시된 불량 패턴은 일정한 패턴이 없는 무작위한 불량(D)이 아니라, 스캔다운 타입의 필드(12)에서만 불량이 발생한 경우로서, 이 역시 반복성 불량에 해당하게 된다. 따라서 반복성 불량으로 인지하지 못할 경우, 이를 처리하기 위한 조치를 취하지 않기 때문에 연속적으로 동일한 불량이 발생하게 되며, 사고로 이루어질 가능성이 높다.
이와 같은 문제를 해결하기 위해, 도 7에 도시된 바와 같은 본 발명의 일 실시예에 따른 웨이퍼 검사 방법은 노광기로부터 스캔방향을 포함하는 스캔정보를 획득하는 단계와, 웨이퍼 표면의 이미지 정보를 획득하는 단계와, 상기 이미지 정보 상의 불량 위치를 검출하는 단계와, 상기 웨이퍼 상의 불량 위치가 반복적인 패턴을 이루는지를 판단하는 단계와, 상기 스캔정보를 기초로 상기 반복적인 패턴이 스캔방향과 관련성이 있는지를 판단하는 단계를 포함한다.
먼저, 노광기로부터 웨이퍼(10) 상에 위치하는 각 필드(12)의 스캔방향 및 스캔순서에 관한 스캔정보를 획득한다(S110). 각 필드(12)를 스캔할 때, 스캔업 타입 또는 스캔다운 타입으로 노광공정이 수행되었는지를 매핑시키기 위한 것으로, 노광장치로부터 정보를 전송받을 수 있다. 상기 노광장치는 스캔방향 및 스캔순서에 관한 스캔정보(30)를 저장하고 있다가, 노광공정이 종료되면 본 실시예에 따른 웨이퍼 검사 방법이 수행되는 검사 장치로 전송할 수 있다.
이어서, 웨이퍼(10)의 상부면 이미지 정보를 획득한다(S120). 웨이퍼(10) 전면에 패턴이 형성되었는지를 판단하기 위해 촬상장치를 통해 웨이퍼(10) 전면의 영상 정보를 획득한다. 웨이퍼(10)의 영상 정보를 획득하는 원리 및 과정은 일반적으로 알려진 다양한 기술을 조합하여 사용할 수 있다. 웨이퍼(10) 상의 이미지 정보를 스캐닝한 후 디지털 이미지 프로세싱 작업을 하여, 중앙처리장치를 포함하는 디지털 장치를 이용하여 영상 정보를 신속하고 정확하게 처리할 수도 있다.
이어서, 상기 획득된 이미지 정보를 기초로 웨이퍼(10) 상에 형성된 불량(D) 위치를 파악하고, 파악된 불량(D) 위치를 분석하여 반복적인 패턴을 형성하는지를 파악한다(S130). 획득된 이미지 정보를 기초로 필드(12) 상의 패턴 형태와 레티클 상의 패턴 형태를 비교하여 불량(D) 위치를 파악하거나, 필드와 필드를 상호 비교하여 이미지 상으로 상이한 부분을 불량(D)으로 인식하는 필드 투 필드(field to field) 방식으로 불량(D) 위치를 파악할 수도 있다. 이와 같이 전체 필드(12)의 불량(D) 위치를 파악하고 이를 웨이퍼(10) 이미지 정보와 매치되도록 상기 획득한 이미지 정보 상에 오버랩 되도록 불량(D) 위치를 표시한다(도 2 참조). 개개의 필드(12)를 기준으로 불량(D)이 형성된 위치를 코드화 또는 좌표화 하는 방법을 사용하여 복수의 필드(12) 상에서 동일한 위치에 형성된 불량(D)을 판단하여, 반복성 불량(D)을 파악한다(S140).
예를 들어, 앞서 살펴본 바와 같이 도 2에 도시된 불량(D)의 분포를 분석하여 각 필드(12)에 공통된 불량을 추출해 내면 도 3과 같이 도시된다. 이와 같은 반복성 불량은 모든 필드(12)에서 공통된 위치에 반복적으로 형성되기 때문에 레티클에 기인한 불량인 것으로 파악할 수 있다.
반면, 도 6에 도시된 불량(D)은 복수의 필드(12) 상에서 하부 다이(11)의 하단부에만 집중적으로 형성되어 있다. 특별한 규칙성이 파악되지 않는 경우에도 각 필드(12)의 소정의 위치에 공통적으로 불량(D)이 발생하게 되면, 이를 일단 반복성 불량으로 처리한다.
이와 같이 반복성 불량이 존재하는 것으로 판단하면 획득한 스캔정보를 기초로 반복성 불량을 분석하여 규칙성을 파악하고(S150), 상기 스캔정보를 기초로 반복성 불량이 스캔방향과 관련성이 있는지를 판단 및 결정한다(S160).
획득한 스캔정보를 기초로 반복성 불량이 스캔방향과 관련성이 있는지를 판단하는 방법은 상기 이미지 정보에 표시된 웨이퍼 상의 반복단위인 필드 위에 상기 스캔방향에 대한 표식을 오버랩하는 단계와, 상기 필드 상에 오버랩된 상기 표식을 기초로 상기 스캔방향과의 관련성을 파악하는 단계를 포함 하여 이루어질 수 있다.
이를 위해 도 8에 도시된 바와 같이, 획득된 이미지 정보에 각 필드의 스캔방향에 관한 스캔정보(30)를 오버랩하여 표시한다. 이와 같이 오버랩된 스캔정보(30)로 인해 도 6의 불량 패턴 분포가 불규칙적인 불량이 아니라 스캔방향에 기인한 반복성 불량임을 파악할 수 있다. 즉, 도 8에 도시된 바와 같이 웨이퍼(10)를 구성하는 각 필드(12) 중 스캔업 필드를 표시하는 스캔정보(30)와 웨이퍼(10) 상에 발생한 불량(D)이 서로 매치됨을 확인할 수 있다.
따라서, 반복성 불량이 스캔방향과 관련성이 있다고 결정하고, 이러한 반복성 불량 패턴의 관련성을 데이터화 하여 관련성 데이터를 추출한다(S170). 즉, 도 9에 도시된 바와 같이, 일반적인 반복 불량, 스캔업 반복 불량 및 스캔다운 반복 불량을 수치화하여 관련성 데이터를 생성한다. 관련성 데이터는 사용자가 인식하기 용이한 형태인 그래프로 표시될 수 있으며, 그 외 관련성 데이터는 불량발생시기 및 불량률을 포함할 수 있다.
도 10에 도시된 바와 같이 관련성 데이터 중 불량발생시기와 불량발생횟수 사이의 연관성을 그래프로 도시하여 불량발생의 시간적 패턴을 분석할 수도 있다. 따라서, 이와 같이 도출된 스캔방향 의존적인 반복성 불량이 어떠한 주기로 발생하는지 또는 어떠한 조건 하에서 발생하는지를 파악하여 대책을 강구할 수 있다. 예를 들어 도시된 예에서는 a 시점에서와 b 시점에서 급격하게 반복성 불량 횟수가 높아지기 때문에, a 시점과 b 시점에서 수행되는 공정의 조건 등을 분석하여 반복성 불량의 원인을 파악할 수 있다.
스캔정보를 기초로 상기 반복적인 패턴이 스캔방향과 관련성이 있는지를 판단하는 방법(S160)은 상기 방법 이외에도, 상기 이미지 정보에 표시된 웨이퍼(10) 상의 반복단위인 필드(12) 정보와 상기 스캔방향에 대한 정보(30)를 코드화 하는 단계와, 상기 코드화된 값을 서로 비교하여 관련성을 파악하는 단계로 이루어질 수도 있다. 즉, 앞서 설명한 바와 같이 중앙 연산부를 포함하는 디지털 분석장치 등으로 신속하게 분석할 수 있도록 필드(12) 상의 불량(D)의 개수 및 위치분포에 대한 정보를 코드화 또는 수치화하고, 각 필드(12)의 스캔방향 즉 스캔업 필드에 해당하는지 스캔다운 필드에 해당하는지 여부를 코드화 또는 수치화하여 이를 비교함으로써 관련성을 신속하게 파악할 수도 있다.
이와 같은 일련의 스캔방향 의존적인 불량을 판단하는 과정은 종래의 웨이퍼 검사 장치에 모듈화 형태로 이식되어 확장된 기능으로 작동될 수 있다. 즉, 종래의 웨이퍼 검사 장치를 구성하는 클라이언트용 프로그램 상에서 메뉴를 확장하여 표시장치에 스캔방향을 추가로 표시함으로써 프로그램 사용자가 손쉽게 스캔방향 의존적인 반복성 불량 여부를 판단하게 구성될 수도 있다.
이어서, 상기 관련성 데이터를 분석하여 인터록을 설정하는 단계가 더 수행될 수 있다(S180). 스캔방향 의존적인 반복성 불량이 발생한 경우 이를 즉시 중단하고 조치를 취할 수도 있으며, 특정한 조건 하에서 스캔방향 의존적인 반복성 불량이 발생한 경우에 한하여 일련의 웨이퍼(10) 공정을 중단할 수 있다.
또한, 상기 관련성 데이터를 분석하여 외부로 알림을 표시하는 단계가 더 수행될 수도 있다. 사용자가 미처 파악하지 못한 반복성 불량이 발생한 경우에는 상기 사용자가 이를 인지할 수 있도록 소리나 빛 등의 발생장치와 연동하여 알림을 표시할 수도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
10: 웨이퍼
11: 다이
12: 필드
20: 노광기
30: 스캔정보
D: 불량

Claims (10)

  1. 노광기로부터 스캔방향을 포함하는 스캔정보를 획득하는 단계와,
    웨이퍼 표면의 이미지 정보를 획득하는 단계와,
    상기 이미지 정보 상의 불량 위치를 검출하는 단계와,
    상기 웨이퍼 상의 불량 위치가 반복적인 패턴을 이루는지를 판단하는 단계와,
    상기 스캔정보를 기초로 상기 반복적인 패턴이 스캔방향과 관련성이 있는지를 판단하는 단계를 포함하는 웨이퍼 검사 방법.
  2. 제1항에 있어서,
    상기 관련성을 데이터화 하여 관련성 데이터를 추출하는 단계를 더 포함하는 웨이퍼 검사 방법.
  3. 제2항에 있어서,
    상기 관련성 데이터는 불량발생시기 및 불량률을 포함하는 웨이퍼 검사 방법.
  4. 제2항에 있어서,
    상기 관련성 데이터를 분석하여 인터록을 설정하는 단계를 더 포함하는 웨이퍼 검사 방법.
  5. 제2항에 있어서,
    상기 관련성 데이터를 분석하여 외부로 알림을 표시하는 단계를 더 포함하는 웨이퍼 검사 방법.
  6. 제1항에 있어서,
    상기 스캔방향은 상기 웨이퍼 상의 반복단위인 필드 상에서 직선왕복하는 방향인 웨이퍼 검사 방법.
  7. 제6항에 있어서,
    상기 필드 중 서로 인접한 필드의 스캔방향은 서로 반대방향인 웨이퍼 검사 방법.
  8. 제1항에 있어서,
    상기 스캔방향과 관련성이 있는지를 판단하는 단계는,
    상기 이미지 정보에 표시된 웨이퍼 상의 반복단위인 필드 위에 상기 스캔방향에 대한 표식을 오버랩하는 단계와,
    상기 필드 상에 오버랩된 상기 표식을 기초로 상기 스캔방향과의 관련성을 파악하는 단계를 포함하는 웨이퍼 검사 방법.
  9. 제1항에 있어서,
    상기 스캔방향과 관련성이 있는지를 판단하는 단계는,
    상기 이미지 정보에 표시된 웨이퍼 상의 반복단위인 필드 정보와 상기 스캔방향에 대한 정보를 코드화 하는 단계를 포함하는 웨이퍼 검사 방법.
  10. 제9항에 있어서,
    상기 코드화된 값을 서로 비교하여 관련성을 파악하는 단계를 더 포함하는 웨이퍼 검사 방법.
KR1020100107559A 2010-11-01 2010-11-01 웨이퍼 검사 방법 KR20120045774A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100107559A KR20120045774A (ko) 2010-11-01 2010-11-01 웨이퍼 검사 방법
US13/186,970 US20120106827A1 (en) 2010-11-01 2011-07-20 Wafer inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100107559A KR20120045774A (ko) 2010-11-01 2010-11-01 웨이퍼 검사 방법

Publications (1)

Publication Number Publication Date
KR20120045774A true KR20120045774A (ko) 2012-05-09

Family

ID=45996833

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100107559A KR20120045774A (ko) 2010-11-01 2010-11-01 웨이퍼 검사 방법

Country Status (2)

Country Link
US (1) US20120106827A1 (ko)
KR (1) KR20120045774A (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546862B2 (en) * 2012-10-19 2017-01-17 Kla-Tencor Corporation Systems, methods and metrics for wafer high order shape characterization and wafer classification using wafer dimensional geometry tool
US20150309125A1 (en) * 2013-04-29 2015-10-29 Labsys Llc Monolithic Three-Axis Magnetometer
CN104022050A (zh) * 2014-04-22 2014-09-03 上海华力微电子有限公司 一种晶圆批次中重复位置缺陷的检测方法
KR102507304B1 (ko) * 2017-10-30 2023-03-07 삼성전자주식회사 결함 검사 방법 및 이를 이용한 반도체 소자의 제조 방법
CN110515966B (zh) * 2019-08-29 2023-05-23 上海华力微电子有限公司 缺陷扫描机台间高匹配度扫描程式的快速建立方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441930B2 (ja) * 1997-07-22 2003-09-02 キヤノン株式会社 走査型露光装置およびデバイス製造方法
JP2000314710A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 回路パターンの検査方法及び検査装置
US7796801B2 (en) * 1999-08-26 2010-09-14 Nanogeometry Research Inc. Pattern inspection apparatus and method
JP4038356B2 (ja) * 2001-04-10 2008-01-23 株式会社日立製作所 欠陥データ解析方法及びその装置並びにレビューシステム
US6973208B2 (en) * 2001-05-18 2005-12-06 Tokyo Seimitsu Co., Ltd. Method and apparatus for inspection by pattern comparison
US20030081826A1 (en) * 2001-10-29 2003-05-01 Tokyo Seimitsu (Israel) Ltd. Tilted scan for Die-to-Die and Cell-to-Cell detection
US6741941B2 (en) * 2002-09-04 2004-05-25 Hitachi, Ltd. Method and apparatus for analyzing defect information
TW200519373A (en) * 2003-10-27 2005-06-16 Nikon Corp Surface inspection device and method
JP4351522B2 (ja) * 2003-11-28 2009-10-28 株式会社日立ハイテクノロジーズ パターン欠陥検査装置およびパターン欠陥検査方法
JP4538845B2 (ja) * 2004-04-21 2010-09-08 富士ゼロックス株式会社 故障診断方法および故障診断装置、画像形成装置、並びにプログラムおよび記憶媒体
KR100597641B1 (ko) * 2004-07-13 2006-07-05 삼성전자주식회사 웨이퍼 불량 로딩 검출부를 갖는 베이크 장비
KR100591736B1 (ko) * 2004-07-13 2006-06-22 삼성전자주식회사 기판의 반복 결함 분류 방법 및 장치
WO2006025085A1 (ja) * 2004-08-30 2006-03-09 Spansion Llc 露光システム、半導体装置及び半導体装置の製造方法
US20060171593A1 (en) * 2005-02-01 2006-08-03 Hitachi High-Technologies Corporation Inspection apparatus for inspecting patterns of a substrate
JP5006520B2 (ja) * 2005-03-22 2012-08-22 株式会社日立ハイテクノロジーズ 欠陥観察装置及び欠陥観察装置を用いた欠陥観察方法
JP4723362B2 (ja) * 2005-11-29 2011-07-13 株式会社日立ハイテクノロジーズ 光学式検査装置及びその方法
JP4644613B2 (ja) * 2006-02-27 2011-03-02 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置
US7486391B2 (en) * 2006-09-13 2009-02-03 Samsung Austin Semiconductor, L.P. System and method for haze control in semiconductor processes
KR100792687B1 (ko) * 2006-11-06 2008-01-09 삼성전자주식회사 반도체 기판 패턴 결함 검출 방법 및 장치
KR100819098B1 (ko) * 2007-04-16 2008-04-03 삼성전자주식회사 로트단위 운송처리기능을 갖는 종형로 반도체 제조설비 및그 운송처리방법
US8213704B2 (en) * 2007-05-09 2012-07-03 Kla-Tencor Corp. Methods and systems for detecting defects in a reticle design pattern
JP4922962B2 (ja) * 2008-02-14 2012-04-25 株式会社日立ハイテクノロジーズ 回路パターンの検査方法及び検査装置
JP5164598B2 (ja) * 2008-02-18 2013-03-21 株式会社日立ハイテクノロジーズ レビュー方法、およびレビュー装置
JP5286004B2 (ja) * 2008-09-12 2013-09-11 株式会社日立ハイテクノロジーズ 基板の検査装置、および、基板の検査方法
WO2011062279A1 (ja) * 2009-11-20 2011-05-26 独立行政法人産業技術総合研究所 欠陥を検査する方法、欠陥の検査を行ったウエハまたはそのウエハを用いて製造された半導体素子、ウエハまたは半導体素子の品質管理方法及び欠陥検査装置

Also Published As

Publication number Publication date
US20120106827A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
TWI784018B (zh) 用於使用半導體製造程序中之深度學習預測缺陷及臨界尺寸之系統及方法
JP5284792B2 (ja) 検査サンプル上で検出された欠陥分類のための方法とシステム
KR102124111B1 (ko) 산업 공정과 관련된 진단 정보를 얻는 방법 및 장치
US8422761B2 (en) Defect and critical dimension analysis systems and methods for a semiconductor lithographic process
CN102623368A (zh) 一种晶圆缺陷检测方法
EP1928583A2 (en) A method and a system for establishing an inspection recipe
JP2003007786A (ja) 半導体基板の検査方法およびその装置
JP2006148091A (ja) ウェーハを検査するための方法
JP2011119471A (ja) 欠陥検査方法及び欠陥検査装置
US9589086B2 (en) Method for measuring and analyzing surface structure of chip or wafer
KR20120045774A (ko) 웨이퍼 검사 방법
JP5192795B2 (ja) 電子ビーム測定装置
JP4126189B2 (ja) 検査条件設定プログラム、検査装置および検査システム
KR102165735B1 (ko) 화상 처리 장치, 자기 조직화 리소그래피 기술에 의한 패턴 생성 방법 및 컴퓨터 프로그램
KR102330732B1 (ko) 마스크들을 위한 고밀도 레지스트레이션 맵들을 생성하기 위한 방법, 시스템 및 컴퓨터 프로그램 제품
TWI807442B (zh) 程序控制之晶粒內度量衡方法及系統
US20130108146A1 (en) Method and System for Optical Inspection Using Known Acceptable Dies
KR102557190B1 (ko) 설계를 사용한 사전 층 결함 사이트 검토
KR102464279B1 (ko) 결함 검출장치 및 그의 동작방법
US6973208B2 (en) Method and apparatus for inspection by pattern comparison
JP4243268B2 (ja) パターン検査装置、及びパターン検査方法
TWI764562B (zh) 多步驟製程檢測方法
TW507308B (en) Correction of overlay offset between inspection layers in integrated circuits
US20180315670A1 (en) Guided Metrology Based on Wafer Topography
JP2008046012A (ja) 欠陥検出装置および欠陥検出方法

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid