KR20110093640A - 아르곤 가스의 정제 방법 및 정제 장치 - Google Patents

아르곤 가스의 정제 방법 및 정제 장치 Download PDF

Info

Publication number
KR20110093640A
KR20110093640A KR1020110009527A KR20110009527A KR20110093640A KR 20110093640 A KR20110093640 A KR 20110093640A KR 1020110009527 A KR1020110009527 A KR 1020110009527A KR 20110009527 A KR20110009527 A KR 20110009527A KR 20110093640 A KR20110093640 A KR 20110093640A
Authority
KR
South Korea
Prior art keywords
argon gas
oxygen
hydrogen
molar
concentration
Prior art date
Application number
KR1020110009527A
Other languages
English (en)
Other versions
KR101697793B1 (ko
Inventor
마사노리 미야케
노부유키 기타기시
미츠토시 나카타니
Original Assignee
스미또모 세이까 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미또모 세이까 가부시키가이샤 filed Critical 스미또모 세이까 가부시키가이샤
Publication of KR20110093640A publication Critical patent/KR20110093640A/ko
Application granted granted Critical
Publication of KR101697793B1 publication Critical patent/KR101697793B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

본 발명은 회수된 불순물 함유 아르곤 가스의 순도를 합리적인 정제 처리에 의해 높임으로써, 정제용 촉매의 기능 저하를 방지하고, 정제 부하를 저감하며, 회수 설비의 관리 비용, 건설 비용의 저감에 공헌하는 방법과 장치를 제공하는 것을 목적으로 한다.
적어도 산소, 수소, 일산화탄소, 및 질소를 불순물로서 함유하는 아르곤 가스를 정제할 때에, 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정한다. 다음에, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매를 이용하여, 상기 아르곤 가스에서의 산소를 일산화탄소 및 수소와 반응시킴으로써, 수소를 잔류시킨 상태로 이산화탄소와 물을 생성한다. 그 후에, 상기 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시킨다.

Description

아르곤 가스의 정제 방법 및 정제 장치{PURIFYING METHOD AND PURIFYING APPARATUS FOR ARGON GAS}
본 발명은, 불순물로서 적어도 산소, 수소, 일산화탄소, 및 질소를 함유하는 아르곤 가스를 정제하는 방법과 장치에 관한 것이다.
예컨대, 실리콘 단결정 인상로, 세라믹 소결로, 제강용 진공 탈가스 설비, 태양전지용 실리콘 플라즈마 용해 장치, 다결정 실리콘 주조로와 같은 설비에 있어서, 아르곤 가스가 노 내 분위기 가스 등으로서 사용되고 있다. 이와 같은 설비로부터 재이용을 위해 회수된 아르곤 가스는 수소, 일산화탄소, 공기 등의 혼입에 의해 순도가 저하되어 있다. 그래서, 회수된 아르곤 가스의 순도를 높이기 위해, 혼입한 불순물을 흡착제에 흡착시키는 것이 행해지고 있다. 또한 이와 같은 불순물의 흡착을 효율적으로 행하기 위해, 흡착 처리의 전처리로서 불순물 내의 산소와 가연 성분을 반응시키는 것이 제안되어 있다(특허문헌 1, 2 참조).
특허문헌 1에 개시된 방법에서는, 아르곤 가스에서의 산소의 양을, 수소, 일산화탄소 등의 가연 성분을 완전 연소시키는 데 필요한 화학양론량보다 약간 적어지도록 조절하고, 다음에, 일산화탄소와 산소의 반응보다 수소와 산소의 반응을 우선으로 하는 팔라듐 또는 금을 촉매로서, 아르곤 가스에서의 산소를 일산화탄소, 수소 등과 반응시킴으로서, 일산화탄소를 잔류시킨 상태로 이산화탄소와 물을 생성하며, 아르곤 가스에 함유되는 이산화탄소와 물을 상온에서 흡착제로 흡착시킨 후, 아르곤 가스에 함유되는 일산화탄소와 질소를 -10℃∼-50℃의 온도에서 흡착제로 흡착시키고 있다.
특허문헌 2에 개시된 방법에서는, 아르곤 가스에서의 산소의 양을, 수소, 일산화탄소 등의 가연 성분을 완전 연소시키는 데 충분한 양으로 하고, 팔라듐계의 촉매를 이용하여 아르곤 가스에서의 산소를 일산화탄소, 수소 등과 반응시킴으로써, 산소를 잔류시킨 상태로 이산화탄소와 물을 생성하며, 아르곤 가스에 함유되는 이산화탄소와 물을 상온에서 흡착제로 흡착시킨 후에, 아르곤 가스에 함유되는 산소와 질소를 -170℃ 정도의 온도에서 흡착제로 흡착시키고 있다.
일본 특허 제3496079호 공보 일본 특허 제3737900호 공보
특허문헌 1에 기재된 방법에서는, 아르곤 가스에서의 산소의 양을, 수소, 일산화탄소 등을 완전 연소시키는 데 필요한 화학양론량보다 적게 하고, 일산화탄소와 산소의 반응보다 수소와 산소의 반응을 우선으로 하는 촉매를 이용하고 있다. 이 때문에, 그 반응에 의해 수소의 완전 연소가 도모되고, 미반응의 일산화탄소가 적극적으로 잔류된다. 그러나, 미량의 수소는 흡착 처리에 의해서는 제거가 곤란하지만, 아르곤 가스의 용도에서는 수소의 잔류가 허용되는 경우가 적지 않다. 한편, 일산화탄소는 촉매독(觸媒毒)이 되고 제올라이트 등의 일반적인 흡착제에 의해서는 이산화탄소보다 흡착이 곤란하다. 즉, 흡착 처리의 전(前)단계에서, 잔류시켜도 문제가 적은 수소의 완전 연소를 도모하는 한편, 촉매의 기능을 저하시킬 우려가 있어 흡착이 곤란한 일산화탄소를 적극적으로 잔류시키는 불합리한 처리를 행하고 있다.
특허문헌 2에 기재된 방법에서는, 아르곤 가스에서의 산소의 양을, 수소, 일산화탄소 등을 완전 연소시키는 데 충분한 양으로 하고, 팔라듐계의 촉매를 이용하여 아르곤 가스에서의 산소를 일산화탄소, 수소 등과 반응시키고 있다. 이 때문에 그 반응에 의해 수소, 일산화탄소 등의 완전 연소가 도모되고, 아르곤 가스의 용도에서는 잔류가 문제가 되는 경우가 많은 산소가 적극적으로 잔류된다. 그러나, 전술한 바와 같이 아르곤 가스의 용도에서는 수소의 잔류가 허용되는 경우가 적지 않다. 한편, 산소를 흡착하기 위해서는 흡착시의 온도를 -170℃정도까지 저하시켜야 한다. 즉, 흡착 처리의 전(前)단계에서, 잔류시켜도 문제가 적은 수소의 완전 연소를 도모하고, 한편으로, 흡착 처리시의 냉각 에너지의 증대에 의해 정제 부하가 커지는 산소를 적극적으로 잔류시키는 불합리한 처리를 행하고 있다.
전술한 바와 같은 불합리한 종래 기술에 의하면, 아르곤 가스의 회수 설비의 관리 비용이나 건설 비용이 증대하는 문제가 있다. 본 발명은, 이와 같은 종래 기술의 문제를 해결할 수 있는 아르곤 가스의 정제 방법 및 정제 장치를 제공하는 것을 목적으로 한다.
본 발명의 방법은, 적어도 산소, 수소, 일산화탄소, 및 질소를 불순물로서 함유하는 아르곤 가스를 정제하는 방법으로서, 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하고, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매를 이용하며, 상기 아르곤 가스에서의 산소를 일산화탄소 및 수소와 반응시킴으로써, 수소를 잔류시킨 상태로 이산화탄소와 물을 생성하고, 상기 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시키는 것을 목적으로 한다.
본 발명에 의하면, 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하고, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매를 이용하여 아르곤 가스에서의 산소를 일산화탄소, 수소와 반응시키고 있다. 이것에 의해, 잔류시켜도 문제가 적은 수소를 적극적으로 잔류시키고, 흡착 제거하는 경우는 냉각 에너지를 증대시키는 산소의 완전 연소를 도모할 수 있으며, 또한 촉매 기능을 저하시킬 우려가 있어 이산화탄소보다 흡착 곤란한 일산화탄소를 적극적으로 잔류시킬 필요도 없다. 이것에 의해, 정제 설비의 관리를 용이하게 하며 콤팩트화를 도모할 수 있고, 에너지 소비를 저감할 수 있다.
본 발명의 방법에서 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하기 위해, 상기 촉매는 백금을 주성분으로서 포함하는 것이 바람직하다. 본 발명의 방법에 있어서 이산화탄소, 물, 및 질소의 흡착을 효율적으로 행하기 위해, 상기 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감할 때에, 그 불순물 내의 적어도 이산화탄소와 물을 상온에서의 압력 스윙 흡착법에 의해 흡착한 후에, 그 불순물 내의 적어도 질소를 -10℃∼-50℃에서의 서멀 스윙 흡착법에 의해 흡착하는 것이 바람직하다.
본 발명의 방법에 있어서, 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도의 1/2을 초과하는 값으로 설정하는 것이 바람직하다.
이것에 의해, 촉매의 기능을 저하시킬 우려가 있는 일산화탄소의 완전 연소를 도모할 수 있다. 이 경우, 상기 아르곤 가스에서의 산소 몰농도를 설정할 때에, 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는 수소를 첨가하고, 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는 산소를 첨가하는 것이 바람직하다. 이것에 의해, 산소 몰농도를 설정할 때에 일산화탄소는 첨가되지 않기 때문에, 일산화탄소와 물과의 반응 부생성물이 아르곤 가스의 순도를 저하시키는 것을 방지할 수 있다.
본 발명의 장치는, 적어도 산소, 수소, 일산화탄소, 및 질소를 불순물로서 함유하는 아르곤 가스를 정제하는 장치로서, 상기 아르곤 가스가 도입되는 반응기와, 상기 반응기에 도입되는 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하는 농도 조절 장치와, 상기 반응기에 접속되는 흡착 장치를 포함하고, 상기 반응기 안에서 상기 아르곤 가스에서의 산소가 일산화탄소 및 수소와 반응함으로써, 수소가 잔류한 상태로 이산화탄소와 물이 생성되도록, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매가 상기 반응기에 충전되며, 상기 흡착 장치는, 상기 반응기로부터 유출되는 상기 아르곤 가스에서의 불순물의 함유율을 저감시키기 위한 흡착제를 포함하는 것을 특징으로 한다.
본 발명 장치에 의하면 본 발명의 방법을 실시할 수 있다.
본 발명에 의하면, 회수된 불순물 함유 아르곤 가스의 순도를 합리적인 정제 처리에 의해 높임으로써, 정제용 촉매의 기능 저하를 방지하고, 정제 부하를 저감시키며, 회수 설비의 관리 비용, 건설 비용의 저감에 공헌하는 방법과 장치를 제공할 수 있다.
도 1은 본 발명의 실시형태에 따른 아르곤 가스의 정제 장치의 구성 설명도.
도 2는 본 발명의 실시형태에 따른 아르곤 가스의 정제 장치에서의 압력 스윙 흡착 장치의 구성 설명도.
도 3은 본 발명의 실시형태에 따른 아르곤 가스의 정제 장치에서의 온도 스윙 흡착 장치의 구성 설명도.
도 1에 도시하는 아르곤 가스의 정제 장치(α)는, 예컨대 다결정 실리콘 주조로와 같은 아르곤 가스 공급원(1)으로부터 공급되는 사용을 마친 아르곤 가스를 회수하여 재이용할 수 있도록 정제하는 것으로, 가열기(2), 반응기(3), 농도 조절 장치(4), 냉각기(5), 및 흡착 장치(6)를 구비한다.
공급원(α)으로부터 공급되는 아르곤 가스는, 도시되지 않는 필터 등에 의해 제진(除塵)되고, 가스 이송 수단으로서 블로어(7)를 통해 가열기(2)에 도입된다. 정제 대상의 아르곤 가스에 함유되는 불순물은 적어도 산소, 수소, 일산화탄소, 및 질소가 되지만, 이산화탄소나 탄화수소 등의 다른 불순물을 함유하고 있어도 좋다. 정제되는 아르곤 가스에서의 불순물의 농도는 특별히 한정되지 않고, 예컨대 5몰 ppm∼40000 몰 ppm 정도가 된다. 가열기(2)에 의한 아르곤 가스의 가열 온도는, 반응기(3)에서 일산화탄소가 촉매의 활성점에 흡착되어 수소와 산소의 반응을 저해하는 것을 방지하는 관점에서 200℃ 이상으로 하는 것이 바람직하고, 촉매의 수명 단축을 방지하는 관점에서 300℃ 이하로 하는 것이 바람직하다.
가열기(2)에 의해 가열된 아르곤 가스는 반응기(3)에 도입된다. 농도 조절 장치(4)는, 가열기(2)를 통해 반응기(3)에 도입되는 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정한다. 본 실시형태의 농도 조절 장치(4)는 농도 측정기(4a), 수소 공급원(4b), 수소량 조정기(4c), 산소 공급원(4d), 산소량 조절기(4e), 및 컨트롤러(4f)를 갖는다. 농도 측정기(4a)는 가열기(2)에 도입되는 아르곤 가스에서의 산소 몰농도, 일산화탄소 몰농도, 수소 몰농도를 측정하고, 그 측정 신호를 컨트롤러(4f)에 보낸다. 컨트롤러(4f)는, 측정된 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는, 1/2 미만으로 하는 데 필요한 수소량에 대응하는 제어 신호를 수소량 조정기(4c)에 보내고, 측정된 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는, 1/2을 초과하도록 하는 데 필요한 산소량에 대응하는 제어 신호를 산소량 조절기(4e)에 보낸다. 수소량 조정기(4c)는, 수소 공급원(4b)으로부터 반응기(3)에 이르는 유로를, 제어 신호에 따른 양의 수소가 공급되도록 개도(開度) 조정한다. 산소량 조절기(4e)는, 산소 공급원(4d)으로부터 반응기(3)에 이르는 유로를, 제어 신호에 따른 양의 산소가 공급되도록 개도 조정한다. 이것에 의해, 정제 대상의 아르곤 가스에서의 산소 몰농도의 설정시에, 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는 수소가 첨가되고, 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는 산소가 첨가된다.
반응기(3)에, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매가 충전된다. 이것에 의해, 반응기(3) 안에서 아르곤 가스에서의 산소가 일산화탄소 및 수소와 200℃∼300℃의 온도하에서 반응하는 것에 의해, 수소가 잔류한 상태로 이산화탄소와 물이 생성된다. 촉매는 백금을 주성분으로서 포함하고, 본 실시형태에서는 알루미나에 의해 담지된 백금 촉매가 이용된다. 촉매는 백금에 한정되지 않고, 예컨대 백금 합금을 이용하여도 좋으며, 소량의 팔라듐 등의 타성분을 포함하여도 좋다.
냉각기(5)는 반응기(3)에 접속되고, 반응기(3)로부터 유출되는 아르곤 가스를 40℃ 정도까지 냉각시킨다. 냉각기(5)에 의해 냉각된 아르곤 가스가 흡착 장치(6)에 도입된다.
흡착 장치(6)는, 반응기(3)로부터 유출되는 아르곤 가스에서의 불순물의 함유율을 저감시키기 위한 흡착제를 갖는다. 본 실시형태의 흡착 장치(6)는, 아르곤 가스에서의 불순물의 흡착을 상온에서의 압력 스윙 흡착법에 의해 행하는 PSA 유닛(10)과, -10℃∼-50℃에서의 서멀 스윙 흡착법에 의해 행하는 TSA 유닛(20)을 가지며, 압력 스윙 흡착법에서의 흡착 후에 서멀 스윙 흡착법에 의한 흡착을 행한다.
PSA 유닛(10)은 공지의 것을 이용할 수 있다. 예컨대 도 2에 도시하는 PSA 유닛(10)은 4탑식이고, 반응기(3)로부터 유출되는 아르곤 가스를 압축하는 압축기(12)와, 4개의 제1∼제4 흡착탑(13)을 가지며, 각 흡착탑(13)에 흡착제가 충전되어 있다. 그 흡착제로서는 이산화탄소 및 수분의 흡착에 적합한 것이 이용되고, 예컨대 활성알루미나, 활성탄 및 CaA형 제올라이트가 이용된다.
압축기(12)는, 각 흡착탑(13)의 입구(13a)에 전환 밸브(13b)를 통해 접속된다. 흡착탑(13)의 입구(13a) 각각은, 전환 밸브(13e) 및 소음기(13f)를 통해 대기중에 접속된다.
흡착탑(13)의 출구(13k) 각각은, 전환 밸브(13l)를 통해 유출 배관(13m)에 접속되고, 전환 밸브(13n)를 통해 승압 배관(13o)에 접속되며, 전환 밸브(13p)를 통해 균압·세정 가스 도출측 배관(13q)에 접속되고, 유량 제어 밸브(13r)를 통해 균압·세정 가스 도입측 배관(13s)에 접속된다.
유출 배관(13m)은 압력 조절 밸브(13t)를 통해 TSA 유닛(20)에 접속되고, TSA 유닛(20)에 도입되는 아르곤 가스의 압력이 일정하게 된다.
승압 배관(13o)은 유량 제어 밸브(13u), 유량 지시 조절계(13v)를 통해 유출 배관(13m)에 접속되고, 승압 배관(13o)에서의 유량이 일정하게 조절되는 것에 의해, TSA 유닛(20)에 도입되는 아르곤 가스의 유량 변동이 방지된다.
균압·세정 가스 도출측 배관(13q)과 균압·세정 가스 도입측 배관(13s)은, 한 쌍의 연결 배관(13W)을 통해 서로 접속되고, 각 연결 배관(13w)에 전환 밸브(13x)가 설치되어 있다.
PSA 유닛(10)의 제1∼제4 흡착탑(13) 각각에서, 흡착 공정, 제1 감압 공정(세정 가스 도출 공정), 제2 감압 공정(균압 가스 도출 공정), 탈착 공정, 세정 공정(세정 가스 도입 공정), 제1 승압 공정(균압 가스 도입 공정), 제2 승압 공정이 순차 행해진다.
즉, 제1 흡착탑(13)에서 전환 밸브(13b)와 전환 밸브(13l)만이 개방되고, 반응기(3)로부터 공급되는 아르곤 가스는 압축기(12)로부터 전환 밸브(13b)를 통해 제1 흡착탑(13)에 도입된다. 이것에 의해, 제1 흡착탑(13)에서 도입된 아르곤 가스 내의 적어도 이산화탄소 및 수분이 흡착제에 흡착됨으로써 흡착 공정이 행해지고, 불순물의 함유율이 저감된 아르곤 가스가 제1 흡착탑(13)으로부터 유출 배관(13m)을 통해 TSA 유닛(20)에 보내진다. 이 때, 유출 배관(13m)에 보내진 아르곤 가스의 일부는, 승압 배관(13o), 유량 제어 밸브(13u)를 통해 별도의 흡착탑[본 실시형태에서는 제2 흡착탑(13)]에 보내지고, 제2 흡착탑(13)에서 제2 승압 공정이 행해진다.
다음에, 제1 흡착탑(13)의 전환 밸브(13b, 13l)를 폐쇄하고, 전환 밸브(13p)를 개방하며, 별도의 흡착탑[본 실시형태에서는 제4 흡착탑(13)]의 유량 제어 밸브(13r)를 개방하고, 전환 밸브(13x) 중 하나를 개방한다. 이것에 의해, 제1 흡착탑(13) 상부의 비교적 불순물 함유율이 적은 아르곤 가스가, 균압·세정 도입측 배관(13s)을 통해 제4 흡착탑(13)에 보내지고, 제1 흡착탑(13)에서 제1 감압 공정이 행해진다. 이 때, 제4 흡착탑(13)에서는 전환 밸브(13e)가 개방되고, 세정 공정이 행해진다.
다음에, 제1 흡착탑(13)의 전환 밸브(13p)와 제4 흡착탑(13)의 유량 제어 밸브(13r)를 개방한 채, 제4 흡착탑(13)의 전환 밸브(13e)를 폐쇄함으로써, 제1 흡착탑(13)과 제4 흡착탑(13) 사이에서 내부 압력이 서로 균일, 또는 거의 균일해질 때 까지 제4 흡착탑(13)에 가스의 회수를 실시하는 제2 감압 공정이 행해진다. 이 때, 전환 밸브(13x)는 경우에 따라 2개 모두 개방하여도 좋다.
다음에, 제1 흡착탑(13)의 전환 밸브(13e)를 개방하고, 전환 밸브(13p)를 폐쇄하는 것에 의해, 흡착제로부터 불순물을 탈착하는 탈착 공정이 행해지며, 불순물은 가스와 함께 소음기(13f)를 통해 대기중에 방출된다.
다음에, 제1 흡착탑(13)의 유량 제어 밸브(13r)를 개방하고, 흡착 공정을 마친 상태의 제2 흡착탑(13)의 전환 밸브(13b, 13l)를 폐쇄하며, 전환 밸브(13p)를 개방한다. 이것에 의해, 제2 흡착탑(13)의 상부의 비교적 불순물 함유율이 적은 아르곤 가스가, 균압·세정 도입측 배관(13s)을 통해 제1 흡착탑(13)에 보내지고, 제1 흡착탑(13)에서 세정 공정이 행해진다. 제1 흡착탑(13)에서 세정 공정에서 이용된 가스는, 전환 밸브(13e), 소음기(13f)를 통해 대기중에 방출된다. 이 때, 제2 흡착탑(13)에서는 제1 감압 공정이 행해진다. 다음에 제2 흡착탑(13)의 전환 밸브(13p)와 제1 흡착탑(13)의 유량 제어 밸브(13r)를 개방한 채 제1 흡착탑의 전환 밸브(13e)를 폐쇄함으로써 제1 승압 공정이 행해진다. 이 때, 전환 밸브(13x)는 경우에 따라 2개 모두 개방하여도 좋다.
그 후에, 제1 흡착탑(13)의 유량 제어 밸브(13r)를 폐쇄하고 일단, 공정이 없는 대기 상태가 된다. 이것은, 제4 흡착탑(13)의 제2 승압 공정이 완료될 때까지 지속된다. 제4 흡착탑(13)의 승압이 완료하여, 흡착 공정이 제3 흡착탑(13)으로부터 제4 흡착탑(13)으로 전환되면, 제1 흡착탑의 전환 밸브(13h)를 개방하고, 흡착 공정에 있는 별도의 흡착탑[본 실시형태에서는 제4 흡착탑(13)]으로부터 유출 배관(13m)에 보내진 아르곤 가스의 일부가, 승압 배관(13o), 유량 제어 밸브(13u)를 통해 제1 흡착탑(13)에 보내지고, 제1 흡착탑(13)에서 제2 승압 공정이 행해진다.
전술한 각 공정이 제1∼제4 흡착탑(13) 각각에서 순차적으로 반복됨으로써, 불순물 함유율이 저감된 아르곤 가스가 TSA 유닛(20)에 연속하여 보내진다.
또한, PSA 유닛(10)은 도 2에 도시하는 것에 한정되지 않고, 예컨대 탑 수는 4개 이외라도 좋다.
TSA 유닛(20)은 공지의 것을 이용할 수 있다. 예컨대 도 3에 도시하는 본 실시형태의 TSA 유닛(20)은 2탑식이고, PSA 유닛(10)으로부터 보내져오는 아르곤 가스를 예비 냉각하는 열교환형 예냉기(21)와, 이 예냉기(21)에 의해 냉각된 아르곤 가스를 더 냉각하는 열교환형 냉각기(22)와, 제1, 제2 흡착탑(23), 각 흡착탑(23)을 덮는 열교환기(24)를 갖는다. 열교환기(24)는, 흡착 공정시에는 냉매로 흡착제를 냉각하고, 탈착 공정시에는 열매(熱媒)로 흡착제를 가열한다. 각 흡착탑(23)은, 흡착제가 충전된 다수의 내관을 갖는다. 그 흡착제로서는 질소의 흡착에 적합한 것이 이용되고, 예컨대 CaX형 제올라이트가 이용된다.
냉각기(22)는, 각 흡착탑(23)의 입구(23a)에 개폐 밸브(23b)를 통해 접속된다.
흡착탑(23)의 입구(23a) 각각은, 개폐 밸브(23c)를 통해 대기중에 통한다.
흡착탑(23)의 출구(23e) 각각은, 개폐 밸브(23f)를 통해 유출 배관(23g)에 접속되고, 개폐 밸브(23h)를 통해 냉각·승압용 배관(23i)에 접속되며, 개폐 밸브(23j)를 통해 세정용 배관(23k)에 접속된다.
유출 배관(23g)은 예냉기(21)의 일부를 구성하고, 유출 배관(23g)으로부터 유출되는 정제된 아르곤 가스에 의해 PSA 유닛(10)으로부터 보내져오는 아르곤 가스가 냉각된다. 유출 배관(23g)으로부터 정제된 아르곤 가스가 1차측 압력 제어 밸브(23l)를 통해 유출된다.
냉각·승압용 배관(23i), 세정용 배관(23k)은, 유량계(23m), 유량 제어 밸브(23o), 걔폐 밸브(23n)를 통해 유출 배관(23g)에 접속된다.
열교환기(24)는 다관식이 되고, 흡착탑(23)을 구성하는 다수의 내관을 둘러싸는 외관(24a), 냉매 공급원(24b), 냉매용 라디에이터(24c), 열매 공급원(24d), 열매용 라디에이터(24e)를 갖는다. 또한, 냉매 공급원(24b)으로부터 공급되는 냉매를 외관(24a), 냉매용 라디에이터(24c)를 통해 순환시키는 상태와, 열매 공급원(24d)으로부터 공급되는 열매를 외관(24a), 열매용 라디에이터(24e)를 통해 순환시키는 상태로 전환하기 위한 복수의 개폐 밸브(24f)가 설치되어 있다. 또한 냉매용 라디에이터(24c)로부터 분기되는 배관에 의해 냉각기(22)의 일부가 구성되고, 냉매 공급원(24b)으로부터 공급되는 냉매에 의해 아르곤 가스가 냉각기(22)에 있어서 냉각되며, 그 냉매는 탱크(24g)로 환류된다.
TSA 유닛(20)의 제1, 제2 흡착탑(23) 각각에 있어서, 흡착 공정, 탈착 공정, 세정 공정, 냉각 공정, 승압 공정이 순차적으로 행해진다.
즉, TSA 유닛(20)에 있어서, PSA 유닛(10)으로부터 공급되는 아르곤 가스는 예냉기(21), 냉각기(22)에서 냉각된 후에, 개폐 밸브(23b)를 통해 제1 흡착탑(23)에 도입된다. 이 때, 제1 흡착탑(23)은 열교환기(24)에서 냉매가 순환함으로써 -10℃∼-50℃에 냉각되는 상태가 되고, 개폐 밸브(23c, 23h, 23j)는 폐쇄되며, 개폐 밸브(23f)는 개방되고, 아르곤 가스에 함유되는 적어도 질소는 흡착제에 흡착된다. 이것에 의해, 제1 흡착탑(23)에서 흡착 공정이 행해져, 불순물의 함유율이 저감된 정제 아르곤 가스가 흡착탑(23)으로부터 1차측 압력 제어 밸브(23l)를 통해 유출된다.
제1 흡착탑(23)에서 흡착 공정이 행해지고 있는 동안에, 제2 흡착탑(23)에서 탈착 공정, 세정 공정, 냉각 공정, 승압 공정이 진행된다.
즉 제2 흡착탑(23)에서는, 흡착 공정이 종료된 후, 탈착 공정을 실시하기 위해, 개폐 밸브(23b, 23f)가 폐쇄되고, 개폐 밸브(23c)가 개방된다. 이것에 의해 제2 흡착탑(23)에서는, 불순물을 포함한 헬륨 가스가 대기중에 방출되고, 압력이 대략 대기압까지 저하된다. 이 탈착 공정에서는, 제2 흡착탑(23)에서 흡착 공정시에 냉매를 순환시키고 있던 열교환기(24)의 개폐 밸브(24f)를 폐쇄 상태로 전환하여 냉매의 순환을 정지시키고, 냉매를 열교환기(24)로부터 추출하여 냉매 공급원(24b)으로 복귀시키는 개폐 밸브(24f)를 개방 상태로 전환한다.
다음에, 제2 흡착탑(23)에서 세정 공정을 실시하기 위해, 제2 흡착탑(23)의 개폐 밸브(23c, 23j)와 세정용 배관(23k)의 개폐 밸브(23n)가 개방 상태가 되고, 열교환형 예냉기(21)에서의 열교환에 의해 가열된 정제 아르곤 가스의 일부가, 세정용 배관(23k)을 통해 제2 흡착탑(23)에 도입된다. 이것에 의해 제2 흡착탑(23)에서는, 흡착제로부터의 불순물의 탈착과 정제 아르곤 가스에 의한 세정이 실시되고, 그 세정에 이용된 아르곤 가스는 개폐 밸브(23c)로부터 불순물과 함께 대기중에 방출된다. 이 세정 공정에서는, 제2 흡착탑(23)으로 열매를 순환시키기 위한 열교환기(24)의 개폐 밸브(24f)를 개방 상태로 전환한다.
다음에, 제2 흡착탑(23)에서 냉각 공정을 실시하기 위해, 제2 흡착탑(23)의 개폐 밸브(23c, 23j)와 세정용 배관(23k)의 개폐 밸브(23n)가 폐쇄 상태가 되고, 제2 흡착탑(23)의 개폐 밸브(23h)와 냉각·승압용 배관(23i)의 개폐 밸브(23n)가 개방 상태가 되며, 제1 흡착탑(23)으로부터 유출되는 정제 아르곤 가스의 일부가 냉각·승압용 배관(23i)를 통해 제2 흡착탑(23)에 도입된다. 이것에 의해, 제2 흡착탑(23) 안을 냉각한 정제 아르곤 가스는 개폐 밸브(23c)를 통해 대기중에 방출된다. 이 냉각 공정에서는, 열매를 순환시키기 위한 개폐 밸브(24f)를 폐쇄 상태로 전환하여 열매 순환을 정지시키고, 열매를 열교환기(24)로부터 추출하여 열매 공급원(24d)에 복귀시키는 개폐 밸브(24f)를 개방 상태로 전환한다. 열매의 추출 종료 후에, 제2 흡착탑(23)과 냉매를 순환시키기 위한 열교환기(24)의 개폐 밸브(24f)를 개방 상태로 전환하여, 냉매 순환 상태로 한다. 이 냉매 순환 상태는, 다음의 승압 공정, 그것에 계속되는 흡착 공정의 종료까지 계속한다.
다음에, 제2 흡착탑(23)에 있어서 승압 공정을 실시하기 위해, 제2 흡착탑(23)의 개폐 밸브(23c)가 폐쇄되고, 제1 흡착탑(23)으로부터 유출되는 정제 아르곤 가스의 일부가 도입됨으로써, 제2 흡착탑(23)의 내부가 승압된다. 이 승압 공정은, 제2 흡착탑(23)의 내압이 제1 흡착탑(23)의 내압과 거의 같아질 때까지 계속된다. 승압 공정이 종료되면, 제2 흡착탑(23)의 개폐 밸브(23h)와 냉각·승압용 배관(23i)의 개폐 밸브(23n)가 폐쇄되고, 이것에 의해 제2 흡착탑(23)의 모든 개폐 밸브(23b, 23c, 23f, 23h, 23j)가 폐쇄된 상태가 되며, 제2 흡착탑(23)은 다음 흡착 공정까지 대기 상태가 된다.
제2 흡착탑(23)의 흡착 공정은 제1 흡착탑(23)의 흡착 공정과 마찬가지로 실시된다. 제2 흡착탑(23)에서 흡착 공정이 행해지고 있는 동안에, 제1 흡착탑(23)에서 탈착 공정, 세정 공정, 냉각 공정, 승압 공정이 제2 흡착탑(23)에서와 마찬가지로 진행된다.
또한, TSA 유닛(20)은 도 3에 도시하는 것에 한정되지 않고, 예컨대 탑수는 2 개 이상, 예컨대 3이어도 좋고 4여도 좋다.
상기 정제 장치(α)에 의하면, 적어도 산소, 수소, 일산화탄소, 및 질소를 함유하는 아르곤 가스를 정제할 때에, 그 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하고, 다음에, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매를 이용하여, 그 아르곤 가스에서의 산소를 일산화탄소 및 수소와 반응시킴으로써 수소를 잔류시킨 상태로 이산화탄소와 물을 생성하고, 그 후에, 그 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시킬 수 있다. 이것에 의해, 잔류시켜도 문제가 적은 수소를 적극적으로 잔류시키고, 흡착 제거하는 경우는 냉각 에너지를 증대시키는 산소의 완전 연소를 도모할 수 있다. 또한 촉매 기능을 저하시킬 우려가 있어 이산화탄소보다 흡착 곤란한 일산화탄소를 적극적으로 잔류시킬 필요도 없다. 이것에 의해, 정제 설비의 관리를 용이하게 하며 콤팩트화를 도모할 수 있고, 에너지 소비를 저감시킬 수 있다. 또한, 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시킬 때에, 그 불순물 내의 적어도 이산화탄소와 물을 상온에서의 압력 스윙 흡착법에 의해 흡착한 후에, 그 불순물 내의 적어도 질소를 -10℃∼-50℃에서의 서멀 스윙 흡착법에 의해 흡착하기 때문에, 이산화탄소, 물, 및 질소의 흡착을 효율적으로 행할 수 있다. 또한, 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도의 1/2을 초과하는 값으로 설정함으로써, 촉매의 기능을 저하시킬 우려가 있는 일산화탄소의 완전 연소를 도모할 수 있다. 또한 아르곤 가스에서의 산소 몰농도를 설정할 때에, 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는 수소를 첨가하고, 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는 산소를 첨가함으로써, 일산화탄소는 첨가되지 않기 때문에, 일산화탄소와 물과의 반응 부생성물이 아르곤 가스의 순도를 저하시키는 것을 방지할 수 있다.
[실시예]
상기 정제 장치(α)를 이용하여, 다결정 실리콘 주조로로부터 회수된 아르곤 가스를 정제하였다. 아르곤 가스는 불순물로서 질소를 3000몰 ppm, 산소를 550몰 ppm, 수소를 200몰 ppm, 일산화탄소를 1000몰 ppm, 이산화탄소를 10몰 ppm 각각 함유한다. 아르곤 가스를 블로어(7)에 의해 0.05 MPaG까지 승압시키고, 200 Nm3/h의 유량으로 가열기(2)에 도입하여 250℃로 온도 제어하여, 반응기(3)에 도입하였다. 반응기(3)는 직경 400 ㎜, 길이 1200 ㎜의 원통형이며, 알루미나에 의해 담지된 백금 촉매(NE 켐캬트사 제조 DASH-220)를 충전하였다. 반응기(3)에서의 반응에 의해, 아르곤 가스의 불순물 농도는, 질소가 3000몰 ppm, 산소가 1몰 ppm 이하, 수소가 100몰 ppm, 일산화탄소가 1몰 ppm 이하, 이산화탄소가 1010몰 ppm, 수분이 100몰 ppm이 되었다.
그 아르곤 가스를 수냉식 쿨러에 의해 구성되는 냉각기(5)로 40℃까지 냉각한 후에, 압축기(12)를 통해 PSA 유닛(10)의 흡착탑(13) 중 하나에 도입하였다. 각 흡착탑(13)은 직경 600 ㎜, 길이 1800 ㎜의 원통형이며, 흡착제로서 CaA형 제올라이트(유니온쇼와사 제조 5 AHP)를 충전하였다. 각 흡착탑(13)에서는, 승압 공정, 흡착 공정, 세정 공정, 탈착 공정의 1사이클을 800초로 행하였다. 아르곤 가스는 압축기(12)로 0.8 MPaG까지 승압하였다. PSA 유닛(10)으로부터 유출되는 아르곤 가스의 유량은 120 Nm3/h가 되고, 아르곤중 불순물 농도는 질소가 150몰 ppm, 산소가 0.1몰 ppm 이하, 수소가 100몰 ppm, 일산화탄소가 0.5몰 ppm 이하, 수분과 이산화탄소가 0.5몰 ppm 이하가 되며, 이슬점은 -70℃ 이하가 되었다.
PSA 유닛(10)에 의해 정제된 아르곤 가스를, 예냉기(21), 냉각기(22)에서 냉각한 후에, TSA 유닛(20)의 한쪽 흡착탑(23)에 도입하였다. 각 흡착탑(23)은 직경 900 ㎜, 길이 1500 ㎜의 원통형이며, 그 내부에 흡착제로서 CaX형 제올라이트(도소사 제조 SA600A)가 충전된 50개의 내관을 갖는다. 열교환기(24)에 의해 한쪽 내관을 통과하는 아르곤 가스를 -35℃까지 냉각하고, 다른쪽 내관을 통과하는 아르곤 가스를 40℃까지 가열하였다. TSA 유닛(20)으로부터 유출되는 아르곤 가스의 유량은 110 Nm3/h가 되고, 아르곤 내의 불순물 농도는 질소가 O.1몰 ppm 이하, 산소가 O.1몰 ppm 이하, 수소가 110몰 ppm, 일산화탄소가 0.5몰 ppm 이하, 이산화탄소가 0.5몰 ppm 이하가 되며, 이슬점은 -70℃ 이하가 되고, 실질적인 불순물은 수소만으로 이루어졌다.
본 발명은 상기 실시형태나 실시예에 한정되지 않는다. 예컨대 본 발명에 의해 정제된 아르곤 가스에서의 수소 농도를 저감시켜야 하는 경우, 도 1에서 점선으로 도시하는 바와 같은 수소 제거 장치(30)를 설치하여도 좋다. 수소 제거 장치(30)는, 예컨대 폴리이미드막과 같은 수소 투과성이 있는 가스 분리막에 의해 아르곤 가스와 수소를 분리하는 것이나, 구리, 니켈 등의 금속 산화물을 포함한 촉매가 충전된 반응기 안에서, 그 금속 산화물과 반응시켜 수소를 제거하는 것 등에 의해 구성할 수 있다. 또한, 금속 산화물과 수소의 반응에 의해 생성된 수분은, 예컨대 촉매의 하류측에 알루미나겔이나 제올라이트 등의 흡습제를 충전하여 제거된다. 수소 제거 장치(30)는, 도 1과 같이 TSA 유닛(20)의 하류에 배치하여도 좋고, PSA 유닛(10)과 TSA 유닛(20) 사이에 배치하여도 좋다. TSA 유닛(20)의 하류에, 직경 300 ㎜의 원통형 반응기를 갖는 수소 제거 장치(30)를 설치하고, 그 반응기에 산화구리를 주성분으로 한 촉매를 충전하며, 상기 실시예에 의해 정제된 아르곤 가스를 통과시킨 바, 아르곤 가스의 유량은 110 Nm3/h가 되고, 아르곤 내의 불순물 농도는, 질소가 O.1몰 ppm 이하, 산소가 O.1몰 ppm 이하, 수소가 O.5몰 ppm 이하, 일산화탄소가 0.5몰 ppm 이하, 이산화탄소가 0.5몰 ppm 이하가 되며, 이슬점은 -70℃ 이하가 되고, 수소의 제거를 확인할 수 있었다. 이와 같은 수소 제거 장치(30)를 설치함으로써, 아르곤 가스에 함유되는 수소의 저감이 요구되는 용도에도 대응할 수 있다.
α: 정제 장치 3: 반응기
4: 농도 조절 장치 6: 흡착 장치
10: PSA 유닛 20: TSA 유닛

Claims (8)

  1. 적어도 산소, 수소, 일산화탄소, 및 질소를 불순물로서 함유하는 아르곤 가스를 정제하는 방법으로서,
    상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하고,
    수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매를 이용하며, 상기 아르곤 가스에서의 산소를 일산화탄소 및 수소와 반응시킴으로써 수소를 잔류시킨 상태로 이산화탄소와 물을 생성하고,
    상기 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시키는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  2. 제1항에 있어서, 상기 촉매는 백금을 주성분으로서 포함하는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  3. 제1항 또는 제2항에 있어서, 상기 아르곤 가스에서의 불순물의 함유율을 흡착제를 이용하여 저감시킬 때에, 그 불순물 중 적어도 이산화탄소와 물을 상온에서의 압력 스윙 흡착법에 의해 흡착한 후에, 적어도 그 불순물 내의 질소를 -10℃∼-50℃에서의 서멀 스윙 흡착법에 의해 흡착하는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  4. 제1항 또는 제2항에 있어서, 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도의 1/2을 초과하는 값으로 설정하는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  5. 제3항에 있어서, 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도의 1/2을 초과하는 값으로 설정하는 것을 특징을 하는 아르곤 가스의 정제 방법.
  6. 제4항에 있어서, 상기 아르곤 가스에서의 산소 몰농도를 설정할 때에, 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는 수소를 첨가하고, 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는 산소를 첨가하는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  7. 제5항에 있어서, 상기 아르곤 가스에서의 산소 몰농도를 설정할 때에, 산소 몰농도가 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 이상인 경우는 수소를 첨가하고, 산소 몰농도가 일산화탄소 몰농도의 1/2 이하인 경우는 산소를 첨가하는 것을 특징으로 하는 아르곤 가스의 정제 방법.
  8. 적어도 산소, 수소, 일산화탄소, 및 질소를 불순물로서 함유하는 아르곤 가스를 정제하는 장치로서,
    상기 아르곤 가스가 도입되는 반응기와,
    상기 반응기에 도입되는 상기 아르곤 가스에서의 산소 몰농도를 일산화탄소 몰농도와 수소 몰농도의 합의 1/2 미만으로 설정하는 농도 조절 장치와,
    상기 반응기에 접속되는 흡착 장치를 포함하고,
    상기 반응기 내에서 상기 아르곤 가스에서의 산소가 일산화탄소 및 수소와 반응함으로써, 수소가 잔류한 상태로 이산화탄소와 물이 생성되도록, 수소와 산소의 반응보다 일산화탄소와 산소의 반응을 우선으로 하는 촉매가 상기 반응기에 충전되며,
    상기 흡착 장치는, 상기 반응기로부터 유출되는 상기 아르곤 가스에서의 불순물의 함유율을 저감시키기 위한 흡착제를 포함하는 것을 특징으로 하는 아르곤 가스의 정제 장치.
KR1020110009527A 2010-02-10 2011-01-31 아르곤 가스의 정제 방법 및 정제 장치 KR101697793B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010027458 2010-02-10
JPJP-P-2010-027458 2010-02-10

Publications (2)

Publication Number Publication Date
KR20110093640A true KR20110093640A (ko) 2011-08-18
KR101697793B1 KR101697793B1 (ko) 2017-01-18

Family

ID=44434796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110009527A KR101697793B1 (ko) 2010-02-10 2011-01-31 아르곤 가스의 정제 방법 및 정제 장치

Country Status (4)

Country Link
JP (1) JP5679433B2 (ko)
KR (1) KR101697793B1 (ko)
CN (1) CN102153057A (ko)
TW (1) TWI476038B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230159338A1 (en) * 2021-11-24 2023-05-25 Uop Llc Processes and apparatuses for reducing carbon monoxide levels in a gaseous stream

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748272B2 (ja) * 2010-07-07 2015-07-15 住友精化株式会社 ヘリウムガスの精製方法および精製装置
JP2013049605A (ja) * 2011-08-31 2013-03-14 Taiyo Nippon Sanso Corp 不活性ガス精製方法
JP5745434B2 (ja) * 2012-01-31 2015-07-08 住友精化株式会社 アルゴンガスの精製方法および精製装置
JP5896467B2 (ja) * 2012-08-09 2016-03-30 住友精化株式会社 アルゴンガスの精製方法および精製装置
JP6304089B2 (ja) * 2015-03-24 2018-04-04 信越半導体株式会社 アルゴンガスの精製方法及びアルゴンガスの回収精製装置
CN111847407A (zh) * 2020-08-31 2020-10-30 成都赛普瑞兴科技有限公司 多级提氦装置及多级提氦工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282682A (ja) * 1989-04-21 1990-11-20 Nippon Sanso Kk アルゴンの回収方法
JPH07138007A (ja) * 1993-11-17 1995-05-30 Nippon Sanso Kk アルゴンガスの精製方法及び装置
JP2002241115A (ja) * 2001-02-14 2002-08-28 Kobe Steel Ltd 希ガス回収方法及びその装置
JP3737900B2 (ja) 1999-02-10 2006-01-25 エア・ウォーター株式会社 単結晶製造炉からの排ガスアルゴンの精製方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU516410A1 (ru) * 1973-12-06 1976-06-05 Ленинградский технологический институт холодильной промышленности Способ очистки аргона
JPS60122709A (ja) * 1983-12-07 1985-07-01 Hitachi Ltd アルゴンの回収方法
JPH0624962B2 (ja) * 1985-11-15 1994-04-06 日本酸素株式会社 単結晶製造炉の排ガスより高純度アルゴンを回収する方法
JP2761917B2 (ja) * 1989-04-15 1998-06-04 日本酸素株式会社 アルゴンの回収方法
JPH03164410A (ja) * 1990-07-30 1991-07-16 Sumitomo Seika Chem Co Ltd 高濃度アルゴンの製造方法
US5106399A (en) * 1991-02-25 1992-04-21 Union Carbide Industrial Gases Technology Corporation Argon purification system
EP0613857A1 (en) * 1993-03-02 1994-09-07 Praxair Technology, Inc. Purification of crude argon
MY116855A (en) * 1996-02-28 2004-04-30 Air Prod & Chem Argon recovery from silicon crystal furnace
JPH1183309A (ja) * 1997-09-04 1999-03-26 Nippon Air Rikiide Kk アルゴン精製方法及び装置
JP2000088455A (ja) * 1998-09-14 2000-03-31 Nippon Sanso Kk アルゴンの回収精製方法及び装置
US6527831B2 (en) * 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
CN1149175C (zh) * 2001-09-14 2004-05-12 温州瑞气空分设备有限公司 气体纯化工艺
US7645431B2 (en) * 2007-10-23 2010-01-12 Air Products And Chemicals, Inc. Purification of noble gases using online regeneration of getter beds
JP2009234868A (ja) * 2008-03-27 2009-10-15 Nippon Steel Corp アルゴンガスの精製装置およびその精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282682A (ja) * 1989-04-21 1990-11-20 Nippon Sanso Kk アルゴンの回収方法
JP2782356B2 (ja) * 1989-04-21 1998-07-30 日本酸素株式会社 アルゴンの回収方法
JPH07138007A (ja) * 1993-11-17 1995-05-30 Nippon Sanso Kk アルゴンガスの精製方法及び装置
JP3496079B2 (ja) 1993-11-17 2004-02-09 日本酸素株式会社 アルゴンガスの精製方法及び装置
JP3737900B2 (ja) 1999-02-10 2006-01-25 エア・ウォーター株式会社 単結晶製造炉からの排ガスアルゴンの精製方法
JP2002241115A (ja) * 2001-02-14 2002-08-28 Kobe Steel Ltd 希ガス回収方法及びその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230159338A1 (en) * 2021-11-24 2023-05-25 Uop Llc Processes and apparatuses for reducing carbon monoxide levels in a gaseous stream
US11685659B2 (en) * 2021-11-24 2023-06-27 Uop Llc Processes and apparatuses for reducing carbon monoxide levels in a gaseous stream

Also Published As

Publication number Publication date
CN102153057A (zh) 2011-08-17
JP2011184287A (ja) 2011-09-22
TW201136655A (en) 2011-11-01
JP5679433B2 (ja) 2015-03-04
TWI476038B (zh) 2015-03-11
KR101697793B1 (ko) 2017-01-18

Similar Documents

Publication Publication Date Title
KR20110093640A (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP6566639B2 (ja) 水素製造装置の運転方法および水素製造装置
JP5896467B2 (ja) アルゴンガスの精製方法および精製装置
TWI549740B (zh) 氬氣之純化方法及純化裝置
JP2012148912A (ja) ヘリウムガスの精製方法および精製装置
JP5683390B2 (ja) ヘリウムガスの精製方法および精製装置
JP5748272B2 (ja) ヘリウムガスの精製方法および精製装置
KR101720799B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP5403685B2 (ja) アルゴンガスの精製方法および精製装置
KR101909291B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
TWI507352B (zh) 氬氣之純化方法及純化裝置
KR20120046008A (ko) 아르곤 가스의 정제 방법 및 정제 장치
KR101800031B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
KR101823154B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP2007269526A (ja) 水素精製装置とその運転方法
JP2012096932A (ja) アルゴンガスの精製方法および精製装置
JP2005289704A (ja) 燃料ガス製造システム及びその停止方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant