KR20100125418A - 색소 증감 태양전지용 색소 및 색소 증감 태양전지 - Google Patents

색소 증감 태양전지용 색소 및 색소 증감 태양전지 Download PDF

Info

Publication number
KR20100125418A
KR20100125418A KR1020107023122A KR20107023122A KR20100125418A KR 20100125418 A KR20100125418 A KR 20100125418A KR 1020107023122 A KR1020107023122 A KR 1020107023122A KR 20107023122 A KR20107023122 A KR 20107023122A KR 20100125418 A KR20100125418 A KR 20100125418A
Authority
KR
South Korea
Prior art keywords
group
dye
naphthyl
antranyl
anthranyl
Prior art date
Application number
KR1020107023122A
Other languages
English (en)
Inventor
히로시 세가와
타카야 쿠보
조타로 나카자키
나오키 오타니
Original Assignee
닛산 가가쿠 고교 가부시키 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 가가쿠 고교 가부시키 가이샤 filed Critical 닛산 가가쿠 고교 가부시키 가이샤
Publication of KR20100125418A publication Critical patent/KR20100125418A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

다공질상의 금속 산화물과의 높은 친화성 및 밀착성을 가짐과 아울러, 유기 용매에 대한 용해성이 우수한 식 (1)에서 나타내는 특정의 포스포릴티오펜 화합물을 포함하는 색소 증감 태양전지용 색소, 및 이것을 사용한 색소 증감 태양전지를 제공한다.

Description

색소 증감 태양전지용 색소 및 색소 증감 태양전지{DYE FOR DYE-SENSITIZED SOLAR CELL AND DYE-SENSITIZED SOLAR CELL}
본 발명은 색소 증감 태양전지용 색소 및 이 색소를 사용한 색소 증감 태양전지에 관한 것이다.
최근 직면하고 있는 에너지 문제나 지구 환경 문제를 해결하기 위해서, 종래의 화석 연료를 대체할 수 있는 에너지에 관하여 다양한 연구가 진행되고 있다.
그 중에서도, 태양광 에너지를 이용하는 태양전지는 자원이 무한할 뿐만 아니라 환경 조화형 디바이스이기 때문에 큰 주목을 받고 있다.
특히, 색소 증감 태양전지는 사용하는 재료가 저렴한 점, 제조 프로세스로 진공 장치를 사용하지 않아도 되는 점 등의 이점으로부터, 그라첼 등에 의해 제안된 이래, 실용화를 향한 연구가 활발하게 이루어지고 있다.
이 색소 증감 태양전지에서는 다공질상의 금속 산화물로 이루어지는 반도체 전극에 색소를 흡착시킨 광흡수 작용을 가지는 반도체 전극이 사용되고 있다.
태양전지의 광전 변환 효율은 태양광의 흡수에 의해 발생한 전자량에 비례하는 점에서, 변환 효율을 향상시키기 위해서는 반도체 전극상의 색소 흡착량을 크게 할 필요가 있다.
이 때문에, 색소 증감 태양전지용의 색소에는 금속 산화물에 대한 높은 친화성이나 밀착성을 가질 것이 요구된다.
또, 반도체 전극에 대한 색소의 흡착은 일반적으로 색소를 유기 용매에 용해하여 이루어지는 용액에 반도체 전극을 침지함으로써 행해지고 있기 때문에, 유기 용매에 대한 우수한 용해성도 색소에 요구되는 중요한 성질이다.
색소 증감 태양전지용 색소로서 올리고티오펜 화합물에 카르복실산을 도입하여, 다공질상의 금속 산화물에 대한 친화성이나 밀착성을 개선시킨 예가 보고되어 있다(비특허문헌 1 참조).
그러나, 올리고티오펜 화합물에 대해서, 카르복실산을 도입하는 것 이외의 방법으로 친화성, 밀착성의 개선을 행한 색소의 예는 없으며, 넓은 흡수 파장을 가지는 폴리티오펜 화합물에 대해서도, 현재 시점에서 마찬가지의 색소의 설계는 행해지고 있지 않다.
Tanaka K. et al., Chemistry Letters, 2006, 35(6), p.592-593
본 발명은 이와 같은 사정을 감안하여 이루어진 것으로, 다공질상의 금속 산화물과의 높은 친화성 및 밀착성을 가짐과 아울러, 유기 용매에 대한 용해성이 우수한 색소 증감 태양전지용 색소, 및 이것을 사용한 색소 증감 태양전지를 제공하는 것을 목적으로 한다.
본 발명자들은 상기 목적을 달성하기 위해서 예의 검토를 거듭한 결과, 인산(에스테르)기를 가지는 폴리 또는 올리고티오펜 화합물이 금속 산화물로 이루어지는 다공질 반도체상에 대한 친화성 및 밀착성이 우수함과 아울러, 유기 용매에 대한 용해성이 양호한 점에서, 색소 증감 태양전지용 색소로서 적합하게 사용할 수 있는 것을 알아내어, 본 발명을 완성시켰다.
즉, 본 발명은,
1. 식 (1)에서 나타내는 포스포릴티오펜 화합물을 포함하는 것을 특징으로 하는 색소 증감 태양전지용 색소.
Figure pct00001
(식 중, R1~R4 및 R13~R16은 각각 독립적으로 -OR5, -SR6, -NR7 2, 또는 -O-N+R8R9R10R11을 나타내고, R5~R11은 각각 독립적으로 수소 원자, 탄소수 1~20 알킬기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내고, R12 및 R17은 각각 독립적으로 수소 원자, 할로겐 원자, 수산기, 아미노기, 실라놀기, 티올기, 카르복실기, 에스테르기, 티오에스테르기, 아미드기, 시아노기, 니트로기, 1가 탄화수소기, 오르가노옥시기, 오르가노아미노기, 오르가노실릴기, 오르가노티오기, 아실기, 술폰기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내며, W는 할로겐 원자, 수산기, 아미노기, 실라놀기, 티올기, 카르복실기, 에스테르기, 티오에스테르기, 아미드기, 시아노기, 니트로기, 1가 탄화수소기, 오르가노옥시기, 오르가노아미노기, 오르가노실릴기, 오르가노티오기, 아실기, 또는 술폰기를 나타내고, m, n, o 및 p는 각각 독립적으로 0 또는 1 이상의 정수를 나타내고, 1≤m+n+o, 또한 2≤m+n+o+p≤1,000을 만족하고, Z는 하기 식 [2] 내지 [10]으로부터 선택되는 2가의 유기기이며,
Figure pct00002
R18~R40은 각각 독립적으로 수소 원자, 탄소수 1~20 알킬기, 탄소수 1~20 할로알킬기, 탄소수 1~20 알콕시기, 탄소수 1~20 알킬티오기, 탄소수 1~20 디알킬아미노기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내고, R41은 수소 원자, 탄소수 1~20 알킬기, 탄소수 1~20 할로알킬기, 탄소수 1~20 알콕시기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내며, W는 상기와 동일한 의미를 나타낸다. 단, 당해 포스포릴티오펜 화합물의 양 말단은 서로 독립적으로 수소 원자, 할로겐 원자, 탄소수 1~20 모노알킬아미노기, 탄소수 1~20 디알킬아미노기, W로 치환되어도 되는 페닐기, W로 치환되어도 되는 나프틸기, W로 치환되어도 되는 안트라닐기, 탄소수 1~10 트리알킬스타닐기, 또는 탄소수 1~10 트리알킬실릴기이며, W는 상기와 동일한 의미를 나타낸다.)
2. 1의 포스포릴티오펜 화합물을 포함하는 조성물,
3. 1의 포스포릴티오펜 화합물을 포함하는 바니시,
4. 1의 포스포릴티오펜 화합물을 포함하는 유기 박막,
5. 4의 바니시로 제작되는 유기 박막,
6. 광투과성을 가지는 기판과, 이 기판에 적층된 투명 도전막과, 이 투명 도전막에 적층된 금속 산화물로 이루어지는 다공질 반도체를 가지고, 상기 다공질 반도체의 표면에 1의 색소 증감 태양전지용 색소가 흡착되어 있는 것을 특징으로 하는 반도체 전극,
7. 3의 바니시에 다공질 반도체를 가지는 기판을 침지하고, 상기 색소 증감 태양전지용 색소를 상기 다공질 반도체에 흡착시켜 이루어지는 반도체 전극,
8. 6의 반도체 전극과, 대극과, 이들 반도체 전극 및 대극간에 개재하는 전해질을 구비하여 구성되는 색소 증감 태양전지
를 제공한다.
본 발명에 의하면, 다공질상의 금속 산화물과의 높은 친화성 및 밀착성을 가짐과 아울러, 유기 용매에 대한 용해성이 우수한 색소 증감 태양전지용 색소, 및 이것을 사용한 색소 증감 태양전지를 제공할 수 있다.
도 1은 실시예 1에서 제작한 색소 증감 태양전지의 개략 단면도이다.
도 2는 합성예 1에서 얻어진 폴리티오펜 유도체 A의 흡수 스펙트럼을 도시한 도면이다.
도 3은 합성예 2에서 얻어진 폴리티오펜 유도체 B의 흡수 스펙트럼을 도시한 도면이다.
도 4는 합성예 3에서 얻어진 폴리티오펜 유도체 C의 흡수 스펙트럼을 도시한 도면이다.
도 5는 합성예 4에서 얻어진 폴리티오펜 유도체 D의 흡수 스펙트럼을 도시한 도면이다.
도 6은 실시예 1에서 제작한 색소 증감 태양전지 셀의 IPCE 스펙트럼을 도시한 도면이다.
도 7은 실시예 2에서 제작한 색소 증감 태양전지 셀의 IPCE 스펙트럼을 도시한 도면이다.
도 8은 실시예 3에서 제작한 색소 증감 태양전지 셀의 IPCE 스펙트럼을 도시한 도면이다.
도 9는 실시예 4에서 제작한 색소 증감 태양전지 셀의 IPCE 스펙트럼을 도시한 도면이다.
이하, 본 발명에 대해서 더욱 상세하게 설명한다.
또한, 본 명세서중, 「n」은 노말을, 「i」는 이소를, 「s」는 세컨더리를, 「t」는 터셔리를, 「c」는 시클로를, 「o」는 오르토를, 「m」은 메타를, 「p」는 파라를 의미하고, 「Me」는 메틸기를, 「Et」는 에틸기를, 「Pr」은 프로필기를, 「Bu」는 부틸기를, 「Pen」은 펜틸기를, 「Hex」는 헥실기를, 「Hep」은 헵틸기를, 「Oct」는 옥틸기를, 「Dec」는 데실기를, 「Ph」는 페닐기를 의미한다.
본 발명에 있어서의 색소 증감 태양전지용 색소는 상기 식 (1)에서 나타내는 포스포릴티오펜 화합물을 포함하는 것이다.
식 (1)에 있어서, 탄소수 1~20 알킬기로서는 예를 들어 메틸기, 에틸기, n-프로필기, i-프로필기, c-프로필기, n-부틸기, i-부틸기, s-부틸기, t-부틸기, c-부틸기, n-펜틸기, 1-메틸-n-부틸기, 2-메틸-n-부틸기, 3-메틸-n-부틸기, 1,1- 디메틸-n-프로필기, c-펜틸기, 2-메틸-c-부틸기, n-헥실기, 1-메틸-n-펜틸기, 2-메틸-n-펜틸기, 1,1-디메틸-n-부틸기, 1-에틸-n-부틸기, 1,1,2-트리메틸-n-프로필기, c-헥실기, 1-메틸-c-펜틸기, 1-에틸-c-부틸기, 1,2-디메틸-c-부틸기, n-헵틸기, n-옥틸기, n-노닐기, n-데실기, n-운데실기, n-도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-에이코실기 등을 들 수 있다.
할로겐 원자로서는 불소 원자, 염소 원자, 브롬 원자, 요오드 원자를 들 수 있다.
1가 탄화수소기로서는 메틸기, 에틸기, 프로필기, 부틸기, t-부틸기, 헥실기, 옥틸기, 데실기 등의 알킬기; 시클로펜틸기, 시클로헥실기 등의 시클로알킬기; 비시클로헥실기 등의 비시클로알킬기; 비닐기, 1-프로페닐기, 2-프로페닐기, 이소프로페닐기, 1-메틸-2-프로페닐기, 1 또는 2 또는 3-부테닐기, 헥세닐기 등의 알케닐기; 페닐기, 크실릴기, 톨릴기, 비페닐기, 나프틸기 등의 아릴기; 벤질기, 페닐에틸기, 페닐시클로헥실기 등의 아랄킬기 등을 들 수 있다.
또한, 이들 1가 탄화수소기의 수소 원자의 일부 또는 전부는 수산기, 할로겐 원자, 아미노기, 실라놀기, 티올기, 카르복실기, 술폰기, 인산기, 인산에스테르기, 에스테르기, 티오에스테르기, 아미드기, 니트로기, 오르가노옥시기, 오르가노아미노기, 오르가노실릴기, 오르가노티오기, 아실기, 알킬기, 시클로알킬기, 비시클로알킬기, 알케닐기, 아릴기, 아랄킬기 등으로 치환되어 있어도 된다.
오르가노옥시기로서는 알콕시기, 알케닐옥시기, 아릴옥시기 등을 들 수 있고, 이들의 알킬기, 알케닐기, 아릴기로서는 상기 1가 탄화수소기와 마찬가지의 것을 들 수 있다.
오르가노아미노기로서는 페닐아미노기, 메틸아미노기, 에틸아미노기, 프로필아미노기, 부틸아미노기, 펜틸아미노기, 헥실아미노기, 헵틸아미노기, 옥틸아미노기, 노닐아미노기, 데실아미노기, 라우릴아미노기 등의 알킬아미노기; 디메틸아미노기, 디에틸아미노기, 디프로필아미노기, 디부틸아미노기, 디펜틸아미노기, 디헥실아미노기, 디헵틸아미노기, 디옥틸아미노기, 디노닐아미노기, 디데실아미노기 등의 디알킬아미노기; 시클로헥실아미노기, 몰포리노기 등을 들 수 있다.
오르가노실릴기로서는 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리펜틸실릴기, 트리헥실실릴기, 펜틸디메틸실릴기, 헥실디메틸실릴기, 옥틸디메틸실릴기, 데실디메틸실릴기 등을 들 수 있다.
오르가노티오기로서는 메틸티오기, 에틸티오기, 프로필티오기, 부틸티오기, 펜틸티오기, 헥실티오기, 헵틸티오기, 옥틸티오기, 노닐티오기, 데실티오기, 라우릴티오기 등의 알킬티오기를 들 수 있다.
아실기로서는 포르밀기, 아세틸기, 프로피오닐기, 부티릴기, 이소부티릴기, 발레릴기, 이소발레릴기, 벤조일기 등을 들 수 있다.
에스테르기로서는 -C(O)OQ1, -OC(O)Q1을 들 수 있다.
티오에스테르기로서는 -C(S)OQ1, -OC(S)Q1을 들 수 있다.
아미드기로서는 -C(O)NHQ1, -NHC(O)Q1, -C(O)NQ1Q2, -NQ1C(O)Q2를 들 수 있다.
여기서, 상기 Q1 및 Q2는 알킬기, 알케닐기 또는 아릴기를 나타내고, 이들은 상기 1가 탄화수소기와 마찬가지의 것을 예시할 수 있다.
탄소수 1~20 할로알킬기의 구체예로서는 CH2F, CHF2, CF3, CH2CH2F, CH2CHF2, CH2CF3, CH2CH2CH2F, CH2CH2CHF2, CH2CH2CF3, CH2Cl, CHCl2, CCl3, CH2CH2Cl, CH2Br, CHBr2, CBr3, CH2CH2Br, (CF2)2CF3, (CF2)3CF3, (CF2)4CF3, (CF2)5CF3, (CF2)6CF3, (CF2)7CF3, (CF2)8CF3, (CF2)9CF3, (CH2)2CF2CF3, (CH2)2(CF2)2CF3, (CH2)2(CF2)3CF3, (CH2)4(CF2)2CF3, (CH2)5(CF2)2CF3, (CH2)2(CF2)6CF3, (CH2)2(CF2)7CF3, (CH2)2(CF2)8CF3, (CH2)2(CF2)9CF3, (CH2)2CH2F, (CH2)3CH2F, (CH2)4CH2F, (CH2)5CH2F, (CH2)6CH2F, (CH2)7CH2F, (CH2)8CH2F, (CH2)9CH2F, (CH2)2CH2Cl, (CH2)3CH2Cl, (CH2)4CH2Cl, (CH2)5CH2Cl, (CH2)6CH2Cl, (CH2)7CH2Cl, (CH2)8CH2Cl, (CH2)9CH2Cl, (CH2)2CH2Br, (CH2)3CH2Br, (CH2)4CH2Br, (CH2)5CH2Br, (CH2)6CH2Br, (CH2)7CH2Br, (CH2)8CH2Br, (CH2)9CH2Br 등을 들 수 있다.
탄소수 1~20 알콕시기의 구체예로서는 OMe, OEt, OPr-n, OPr-i, OBu-n, OBu-i, OBu-s, OBu-t, OPen-n, OCHEt2, OHex-n, OCHMe(Pr-n), OCHMe(Bu-n), OCHEt(Pr-n), OCH2CH2CHMe2, OHep-n, OOct-n, ODec-n 등을 들 수 있다.
탄소수 1~20 알킬티오기의 구체예로서는 SMe, SEt, SPr-n, SPr-i, SBu-n, SBu-i, SBu-s, SBu-t, SPen-n, SCHEt2, SHex-n, SCHMe(Pr-n), SCHMe(Bu-n), SCHEt(Pr-n), SCH2CH2CHMe2, SHep-n, SOct-n, SDec-n 등을 들 수 있다.
탄소수 1~20 디알킬아미노기의 구체예로서는 NMe2, NEt2, N(Pr-n)2, N(Pr-i)2, N(Bu-n)2, N(Bu-i)2, N(Bu-s)2, N(Bu-t)2, N(Pen-n)2, N(CHEt2)2, N(Hex-n)2, N(Hep-n)2, N(Oct-n)2, N(Dec-n)2, N(Me)(Bu-n), N(Me)(Pen-n), N(Me)(Hex-n), N(Me)(Hep-n), N(Me)(Oct-n), N(Me)(Dec-n) 등을 들 수 있다.
W로 치환되어 있어도 되는 페닐기의 구체예로서는 페닐, o-메틸페닐, m-메틸페닐, p-메틸페닐, o-트리플루오로메틸페닐, m-트리플루오로메틸페닐, p-트리플루오로메틸페닐, p-에틸페닐, p-i-프로필페닐, p-t-부틸페닐, o-클로르페닐, m-클로르페닐, p-클로르페닐, o-브로모페닐, m-브로모페닐, p-브로모페닐, o-플루오로페닐, p-플루오로페닐, o-메톡시페닐, m-메톡시페닐, p-메톡시페닐, o-트리플루오로메톡시페닐, p-트리플루오로메톡시페닐, o-니트로페닐, m-니트로페닐, p-니트로페닐, o-디메틸아미노페닐, m-디메틸아미노페닐, p-디메틸아미노페닐, p-시아노페닐, 3,5-디메틸페닐, 3,5-비스트리플루오로메틸페닐, 3,5-디메톡시페닐, 3,5-비스트리플루오로메톡시페닐, 3,5-디에틸페닐, 3,5-디-i-프로필페닐, 3,5-디클로르페닐, 3,5-디브로모페닐, 3,5-디플루오로페닐, 3,5-디니트로페닐, 3,5-디시아노페닐, 2,4,6-트리메틸페닐, 2,4,6-트리스트리플루오로메틸페닐, 2,4,6-트리메톡시페닐, 2,4,6-트리스트리플루오로메톡시페닐, 2,4,6-트리클로르페닐, 2,4,6-트리브로모페닐, 2,4,6-트리플루오로페닐, o-비페닐릴, m-비페닐릴, p-비페닐릴 등을 들 수 있다.
본 발명의 색소 증감 태양전지용 색소에 있어서, R5~R11로서는 반도체 전극을 구성하는 금속 산화물에 대한 흡착성이나, 바니시 조제시의 유기 용매에 대한 용해성을 보다 높이는 것을 고려하면, 수소 원자, 탄소수 1~10 알킬기가 바람직하다. R1~R4 및 R13~R16으로서는 상기와 마찬가지의 이유로부터 -OH 또는 -O-N+R8R9R10R11이 적적합하다. -O-N+R8R9R10R11로서는 -O-N+H4, -O-N+Me4, -O-N+Et4, -O-N+n-Pr4, -O-N+n-Bu4 등이 바람직하다.
또, R12 및 R17로서는 수소 원자, 탄소수 1~10 알킬기가 바람직하고, 수소 원자가 보다 바람직하다.
식 (1)에 있어서의 Z는 상기 식 (2) 내지 (10)으로부터 선택되는 적어도 1종의 2가의 유기기인데, 특히, 식 (3)에서 나타내는 2가의 유기기가 적합하며, 특히, R22 및 R23이 모두 수소 원자인 비치환 티오페닐이 적합하다.
상기 m, n, o 및 p는 각각 독립적으로 0 또는 1 이상의 정수를 나타내고, 1≤m+n+o, 또한 2≤m+n+o+p≤1,000을 만족하는 정수인데, 2≤m+n+o+p≤200이 바람직하고, 5≤m+n+o+p≤200이 보다 바람직하다. 특히, n, m, o 및 p의 어느 2개가 0인 화합물, 또한, n, m 및 o의 어느 2개가 0인 화합물이 적합하다.
또한, 이 화합물은 2≤m+n+o+p≤20을 만족할 정도의 올리고여도 되고, 20≤m+n+o+p≤1,000을 만족하는 폴리머여도 된다.
포스포릴티오펜 화합물의 분자량은 특별히 한정되는 것은 아니지만, 폴리머의 경우, 중량 평균 분자량 1,000~100,000이 바람직하고, 1,000~50,000이 보다 바람직하다. 또한, 중량 평균 분자량은 겔 여과 크로마토그래피에 의한 폴리스티렌 환산값이다.
상기 포스포릴티오펜 화합물의 양 말단은 서로 독립적으로 수소 원자, 할로겐 원자, 탄소수 1~20 모노알킬아미노기, 탄소수 1~20 디알킬아미노기, W로 치환되어 있어도 되는 페닐기, W로 치환되어 있어도 되는 나프틸기, W로 치환되어 있어도 되는 안트라닐기, 탄소수 1~10 트리알킬스타닐기, 탄소수 1~20 트리알킬실릴기인데, 특히, 수소 원자가 적합하다.
여기서, 탄소수 1~20 모노알킬아미노기의 구체예로서는 NHMe, NHEt, NHPr-n, NHPr-i, NHBu-n, NHBu-i, NHBu-s, NHBu-t, NHPen-n, NHCHEt2, NHHex-n, NHHep-n, NHOct-n, NHDec-n 등을 들 수 있다.
탄소수 1~10 트리알킬스타닐기의 구체예로서는 SnMe3, SnEt3, Sn(Pr-n)3, Sn(Pr-i)3, Sn(Bu-n)3, Sn(Bu-i)3, Sn(Bu-s)3, Sn(Bu-t)3 등을 들 수 있다.
탄소수 1~10 트리알킬실릴기의 구체예로서는 SiMe3, SiEt3, Si(Pr-n)3, Si(Pr-i)3, Si(Bu-n)3, Si(Bu-i)3, Si(Bu-s)3, Si(Bu-t)3 등을 들 수 있다.
W로 치환되어 있어도 되는 나프틸기의 구체예로서는 1-나프틸, 2-나프틸, 2-부틸-1-나프틸, 3-부틸-1-나프틸, 4-부틸-1-나프틸, 5-부틸-1-나프틸, 6-부틸-1-나프틸, 7-부틸-1-나프틸, 8-부틸-1-나프틸, 1-부틸-2-나프틸, 3-부틸-2-나프틸, 4-부틸-2-나프틸, 5-부틸-2-나프틸, 6-부틸-2-나프틸, 7-부틸-2-나프틸, 8-부틸-2-나프틸, 2-헥실-1-나프틸, 3-헥실-1-나프틸, 4-헥실-1-나프틸, 5-헥실-1-나프틸, 6-헥실-1-나프틸, 7-헥실-1-나프틸, 8-헥실-1-나프틸, 1-헥실-2-나프틸, 3-헥실-2-나프틸, 4-헥실-2-나프틸, 5-헥실-2-나프틸, 6-헥실-2-나프틸, 7-헥실-2-나프틸, 8-헥실-2-나프틸, 2-옥틸-1-나프틸, 3-옥틸-1-나프틸, 4-옥틸-1-나프틸, 5-옥틸-1-나프틸, 6-옥틸-1-나프틸, 7-옥틸-1-나프틸, 8-옥틸-1-나프틸, 1-옥틸-2-나프틸, 3-옥틸-2-나프틸, 4-옥틸-2-나프틸, 5-옥틸-2-나프틸, 6-옥틸-2-나프틸, 7-옥틸-2-나프틸, 8-옥틸-2-나프틸, 2-페닐-1-나프틸, 3-페닐-1-나프틸, 4-페닐-1-나프틸, 5-페닐-1-나프틸, 6-페닐-1-나프틸, 7-페닐-1-나프틸, 8-페닐-1-나프틸, 1-페닐-2-나프틸, 3-페닐-2-나프틸, 4-페닐-2-나프틸, 5-페닐-2-나프틸, 6-페닐-2-나프틸, 7-페닐-2-나프틸, 8-페닐-2-나프틸, 2-메톡시-1-나프틸, 3-메톡시-1-나프틸, 4-메톡시-1-나프틸, 5-메톡시-1-나프틸, 6-메톡시-1-나프틸, 7-메톡시-1-나프틸, 8-메톡시-1-나프틸, 1-메톡시-2-나프틸, 3-메톡시-2-나프틸, 4-메톡시-2-나프틸, 5-메톡시-2-나프틸, 6-메톡시-2-나프틸, 7-메톡시-2-나프틸, 8-메톡시-2-나프틸, 2-에톡시-1-나프틸, 3-에톡시-1-나프틸, 4-에톡시-1-나프틸, 5-에톡시-1-나프틸, 6-에톡시-1-나프틸, 7-에톡시-1-나프틸, 8-에톡시-1-나프틸, 1-에톡시-2-나프틸, 3-에톡시-2-나프틸, 4-에톡시-2-나프틸, 5-에톡시-2-나프틸, 6-에톡시-2-나프틸, 7-에톡시-2-나프틸, 8-에톡시-2-나프틸, 2-부톡시-1-나프틸, 3-부톡시-1-나프틸, 4-부톡시-1-나프틸, 5-부톡시-1-나프틸, 6-부톡시-1-나프틸, 7-부톡시-1-나프틸, 8-부톡시-1-나프틸, 1-부톡시-2-나프틸, 3-부톡시-2-나프틸, 4-부톡시-2-나프틸, 5-부톡시-2-나프틸, 6-부톡시-2-나프틸, 7-부톡시-2-나프틸, 8-부톡시-2-나프틸, 2-아미노-1-나프틸, 3-아미노-1-나프틸, 4-아미노-1-나프틸, 5-아미노-1-나프틸, 6-아미노-1-나프틸, 7-아미노-1-나프틸, 8-아미노-1-나프틸, 1-아미노-2-나프틸, 3-아미노-2-나프틸, 4-아미노-2-나프틸, 5-아미노-2-나프틸, 6-아미노-2-나프틸, 7-아미노-2-나프틸, 8-아미노-2-나프틸, 2-(N,N-디메틸아미노)-1-나프틸, 3-(N,N-디메틸아미노)-1-나프틸, 4-(N,N-디메틸아미노)-1-나프틸, 5-(N,N-디메틸아미노)-1-나프틸, 6-(N,N-디메틸아미노)-1-나프틸, 7-(N,N-디메틸아미노)-1-나프틸, 8-(N,N-디메틸아미노)-1-나프틸, 1-(N,N-디메틸아미노)-2-나프틸, 3-(N,N-디메틸아미노)-2-나프틸, 4-(N,N-디메틸아미노)-2-나프틸, 5-(N,N-디메틸아미노)-2-나프틸, 6-(N,N-디메틸아미노)-2-나프틸, 7-(N,N-디메틸아미노)-2-나프틸, 8-(N,N-디메틸아미노)-2-나프틸, 2-(N,N-디페닐아미노)-1-나프틸, 3-(N,N-디페닐아미노)-1-나프틸, 4-(N,N-디페닐아미노)-1-나프틸, 5-(N,N-디페닐아미노)-1-나프틸, 6-(N,N-디페닐아미노)-1-나프틸, 7-(N,N-디페닐아미노)-1-나프틸, 8-(N,N-디페닐아미노)-1-나프틸, 1-(N,N-디페닐아미노)-2-나프틸, 3-(N,N-디페닐아미노)-2-나프틸, 4-(N,N-디페닐아미노)-2-나프틸, 5-(N,N-디페닐아미노)-2-나프틸, 6-(N,N-디페닐아미노)-2-나프틸, 7-(N,N-디페닐아미노)-2-나프틸, 8-(N,N-디페닐아미노)-2-나프틸 등을 들 수 있다.
또, W로 치환되어 있어도 되는 안트라닐기의 구체예로서는 1-안트라닐, 2-안트라닐, 9-안트라닐, 2-부틸-1-안트라닐, 3-부틸-1-안트라닐, 4-부틸-1-안트라닐, 5-부틸-1-안트라닐, 6-부틸-1-안트라닐, 7-부틸-1-안트라닐, 8-부틸-1-안트라닐, 9-부틸-1-안트라닐, 10-부틸-1-안트라닐, 1-부틸-2-안트라닐, 3-부틸-2-안트라닐, 4-부틸-2-안트라닐, 5-부틸-2-안트라닐, 6-부틸-2-안트라닐, 7-부틸-2-안트라닐, 8-부틸-2-안트라닐, 9-부틸-2-안트라닐, 10-부틸-2-안트라닐, 1-부틸-9-안트라닐, 2-부틸-9-안트라닐, 3-부틸-9-안트라닐, 4-부틸-9-안트라닐, 10-부틸-9-안트라닐, 2-헥실-1-안트라닐, 3-헥실-1-안트라닐, 4-헥실-1-안트라닐, 5-헥실-1-안트라닐, 6-헥실-1-안트라닐, 7-헥실-1-안트라닐, 8-헥실-1-안트라닐, 9-헥실-1-안트라닐, 10-헥실-1-안트라닐, 1-헥실-2-안트라닐, 3-헥실-2-안트라닐, 4-헥실-2-안트라닐, 5-헥실-2-안트라닐, 6-헥실-2-안트라닐, 7-헥실-2-안트라닐, 8-헥실-2-안트라닐, 9-헥실-2-안트라닐, 10-헥실-2-안트라닐, 1-헥실-9-안트라닐, 2-헥실-9-안트라닐, 3-헥실-9-안트라닐, 4-헥실-9-안트라닐, 10-헥실-9-안트라닐, 2-옥틸-1-안트라닐, 3-옥틸-1-안트라닐, 4-옥틸-1-안트라닐, 5-옥틸-1-안트라닐, 6-옥틸-1-안트라닐, 7-옥틸-1-안트라닐, 8-옥틸-1-안트라닐, 9-옥틸-1-안트라닐, 10-옥틸-1-안트라닐, 1-옥틸-2-안트라닐, 3-옥틸-2-안트라닐, 4-옥틸-2-안트라닐, 5-옥틸-2-안트라닐, 6-옥틸-2-안트라닐, 7-옥틸-2-안트라닐, 8-옥틸-2-안트라닐, 9-옥틸-2-안트라닐, 10-옥틸-2-안트라닐, 1-옥틸-9-안트라닐, 2-옥틸-9-안트라닐, 3-옥틸-9-안트라닐, 4-옥틸-9-안트라닐, 10-옥틸-9-안트라닐, 2-페닐-1-안트라닐, 3-페닐-1-안트라닐, 4-페닐-1-안트라닐, 5-페닐-1-안트라닐, 6-페닐-1-안트라닐, 7-페닐-1-안트라닐, 8-페닐-1-안트라닐, 9-페닐-1-안트라닐, 10-페닐-1-안트라닐, 1-페닐-2-안트라닐, 3-페닐-2-안트라닐, 4-페닐-2-안트라닐, 5-페닐-2-안트라닐, 6-페닐-2-안트라닐, 7-페닐-2-안트라닐, 8-페닐-2-안트라닐, 9-페닐-2-안트라닐, 10-페닐-2-안트라닐, 1-페닐-9-안트라닐, 2-페닐-9-안트라닐, 3-페닐-9-안트라닐, 4-페닐-9-안트라닐, 10-페닐-9-안트라닐, 2-메톡시-1-안트라닐, 3-메톡시-1-안트라닐, 4-메톡시-1-안트라닐, 5-메톡시-1-안트라닐, 6-메톡시-1-안트라닐, 7-메톡시-1-안트라닐, 8-메톡시-1-안트라닐, 9-메톡시-1-안트라닐, 10-메톡시-1-안트라닐, 1-메톡시-2-안트라닐, 3-메톡시-2-안트라닐, 4-메톡시-2-안트라닐, 5-메톡시-2-안트라닐, 6-메톡시-2-안트라닐, 7-메톡시-2-안트라닐, 8-메톡시-2-안트라닐, 9-메톡시-2-안트라닐, 10-메톡시-2-안트라닐, 1-메톡시-9-안트라닐, 2-메톡시-9-안트라닐, 3-메톡시-9-안트라닐, 4-메톡시-9-안트라닐, 10-메톡시-9-안트라닐, 2-에톡시-1-안트라닐, 3-에톡시-1-안트라닐, 4-에톡시-1-안트라닐, 5-에톡시-1-안트라닐, 6-에톡시-1-안트라닐, 7-에톡시-1-안트라닐, 8-에톡시-1-안트라닐, 9-에톡시-1-안트라닐, 10-에톡시-1-안트라닐, 1-에톡시-2-안트라닐, 3-에톡시-2-안트라닐, 4-에톡시-2-안트라닐, 5-에톡시-2-안트라닐, 6-에톡시-2-안트라닐, 7-에톡시-2-안트라닐, 8-에톡시-2-안트라닐, 9-에톡시-2-안트라닐, 10-에톡시-2-안트라닐, 1-에톡시-9-안트라닐, 2-에톡시-9-안트라닐, 3-에톡시-9-안트라닐, 4-에톡시-9-안트라닐, 10-에톡시-9-안트라닐, 2-부톡시-1-안트라닐, 3-부톡시-1-안트라닐, 4-부톡시-1-안트라닐, 5-부톡시-1-안트라닐, 6-부톡시-1-안트라닐, 7-부톡시-1-안트라닐, 8-부톡시-1-안트라닐, 9-부톡시-1-안트라닐, 10-부톡시-1-안트라닐, 1-부톡시-2-안트라닐, 3-부톡시-2-안트라닐, 4-부톡시-2-안트라닐, 5-부톡시-2-안트라닐, 6-부톡시-2-안트라닐, 7-부톡시-2-안트라닐, 8-부톡시-2-안트라닐, 9-부톡시-2-안트라닐, 10-부톡시-2-안트라닐, 1-부톡시-9-안트라닐, 2-부톡시-9-안트라닐, 3-부톡시-9-안트라닐, 4-부톡시-9-안트라닐, 10-부톡시-9-안트라닐, 2-아미노-1-안트라닐, 3-아미노-1-안트라닐, 4-아미노-1-안트라닐, 5-아미노-1-안트라닐, 6-아미노-1-안트라닐, 7-아미노-1-안트라닐, 8-아미노-1-안트라닐, 9-아미노-1-안트라닐, 10-아미노-1-안트라닐, 1-아미노-2-안트라닐, 3-아미노-2-안트라닐, 4-아미노-2-안트라닐, 5-아미노-2-안트라닐, 6-아미노-2-안트라닐, 7-아미노-2-안트라닐, 8-아미노-2-안트라닐, 9-아미노-2-안트라닐, 10-아미노-2-안트라닐, 1-아미노-9-안트라닐, 2-아미노-9-안트라닐, 3-아미노-9-안트라닐, 4-아미노-9-안트라닐, 10-아미노-9-안트라닐, 2-(N,N-디메틸아미노)-1-안트라닐, 3-(N,N-디메틸아미노)-1-안트라닐, 4-(N,N-디메틸아미노)-1-안트라닐, 5-(N,N-디메틸아미노)-1-안트라닐, 6-(N,N-디메틸아미노)-1-안트라닐, 7-(N,N-디메틸아미노)-1-안트라닐, 8-(N,N-디메틸아미노)-1-안트라닐, 9-(N,N-디메틸아미노)-1-안트라닐, 10-(N,N-디메틸아미노)-1-안트라닐, 1-(N,N-디메틸아미노)-2-안트라닐, 3-(N,N-디메틸아미노)-2-안트라닐, 4-(N,N-디메틸아미노)-2-안트라닐, 5-(N,N-디메틸아미노)-2-안트라닐, 6-(N,N-디메틸아미노)-2-안트라닐, 7-(N,N-디메틸아미노)-2-안트라닐, 8-(N,N-디메틸아미노)-2-안트라닐, 9-(N,N-디메틸아미노)-2-안트라닐, 10-(N,N-디메틸아미노)-2-안트라닐, 1-(N,N-디메틸아미노)-9-안트라닐, 2-(N,N-디메틸아미노)-9-안트라닐, 3-(N,N-디메틸아미노)-9-안트라닐, 4-(N,N-디메틸아미노)-9-안트라닐, 10-(N,N-디메틸아미노)-9-안트라닐, 2-(N,N-디페닐아미노)-1-안트라닐, 3-(N,N-디페닐아미노)-1-안트라닐, 4-(N,N-디페닐아미노)-1-안트라닐, 5-(N,N-디페닐아미노)-1-안트라닐, 6-(N,N-디페닐아미노)-1-안트라닐, 7-(N,N-디페닐아미노)-1-안트라닐, 8-(N,N-디페닐아미노)-1-안트라닐, 9-(N,N-디페닐아미노)-1-안트라닐, 10-(N,N-디페닐아미노)-1-안트라닐, 1-(N,N-디페닐아미노)-2-안트라닐, 3-(N,N-디페닐아미노)-2-안트라닐, 4-(N,N-디페닐아미노)-2-안트라닐, 5-(N,N-디페닐아미노)-2-안트라닐, 6-(N,N-디페닐아미노)-2-안트라닐, 7-(N,N-디페닐아미노)-2-안트라닐, 8-(N,N-디페닐아미노)-2-안트라닐, 9-(N,N-디페닐아미노)-2-안트라닐, 10-(N,N-디페닐아미노)-2-안트라닐, 1-(N,N-디페닐아미노)-9-안트라닐, 2-(N,N-디페닐아미노)-9-안트라닐, 3-(N,N-디페닐아미노)-9-안트라닐, 4-(N,N-디페닐아미노)-9-안트라닐, 10-(N,N-디페닐아미노)-9-안트라닐 등을 들 수 있다.
본 발명의 색소 증감 태양전지용 색소로서 사용되는 식 (1)에서 나타내는 포스포릴티오펜 화합물은 국제 공개 제2006/109895호 팜플렛에 기재된 방법으로 얻어진 포스포릴티오펜모노머 화합물을 적당한 수법에 의해 커플링이나 중합하고, 추가로 필요에 따라서 관능기 변환함으로써 제조할 수 있다.
커플링법으로서는 특별히 한정되는 것은 아니며, 예를 들어 바이아릴 커플링, Stille 커플링, Suzuki 커플링, Ullmann 커플링, Heck 반응, 소노가시라 커플링, Grignard 반응 등을 사용할 수 있다.
중합법으로서는 포스포릴티오펜 화합물을 중합할 수 있는 수법이면 특별히 한정되는 것은 아니며, 예를 들어, 화학 산화 중합, 전해 산화 중합, 촉매 중합 등의 공지의 중합법으로부터 적당히 선택하면 되는데, 본 발명에 있어서는 촉매 중합이 적합하다.
촉매 중합은 포스포릴티오펜모노머 화합물, 및 필요에 따라서 사용되는 상기 Z에 대응하는 모노머를 금속 촉매의 존재하에서 반응시켜, 식 (1)에서 나타내는 포스포릴티오펜올리고머 또는 폴리머 화합물로 하는 방법이다.
촉매 중합에 사용되는 포스포릴티오펜모노머 화합물이나, Z를 부여하는 모노머로서는 말단(중합 부위) 치환기가 할로겐 원자의 포스포릴티오펜 화합물이 바람직하다. 그 중에서도 브롬 원자가 적합하다.
금속 촉매로서는 니켈 착체 등을 들 수 있고, 구체예로서는 비스(1,5-시클로옥타디엔)니켈(0), 테트라키스(트리페닐포스핀)니켈(0) 등으로 대표되는 니켈(0) 착체, 또는 염화니켈, 비스(트리페닐포스핀)니켈(II)디클로라이드, [1,2-비스(디페닐포스피노)에탄]니켈(II)디클로라이드, [1,3-비스(디페닐포스피노)프로판]니켈(II)디클로라이드, 트리스(2,2'-비피리딜)니켈(II)디브로마이드 등으로 대표되는 니켈(II) 착체와 1,5-시클로옥타디엔, 2,2'-비피리딘, 트리페닐포스핀으로 대표되는 각종의 배위자와의 조합을 들 수 있다. 이들 중에서도 얻어지는 폴리머의 중합도를 높이는 것을 고려하면, 비스(1,5-시클로옥타디엔)니켈, 1,5-시클로옥타디엔 및 2,2'-비피리딘의 조합이 바람직하다.
금속 촉매의 사용량은 기질의 전체 모노머 화합물이 가지는 할로겐 원자에 대해서 0.05~2.0몰배가 바람직하고, 특히 0.5~0.8몰배가 바람직하다.
배위자의 사용량은 기질의 전체 모노머 화합물이 가지는 할로겐 원자에 대해서 0.05~2.0몰배가 바람직하고, 특히 0.5~0.8몰배가 바람직하다.
반응 용매로서는 예를 들어 N,N-디메틸포름아미드, N,N-디메틸아세토아미드 등의 아미드 화합물류; 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소류; 테트라히드로푸란(THF), 1,4-디옥산, 1,2-디메톡시에탄, 디에틸렌글리콜디메틸에테르 등의 에테르 화합물류가 바람직하다. 그 중에서도 1,4-디옥산이 생성한 폴리머의 중합도가 높다는 점에서 적합하다.
반응 온도는 사용 용매의 비점 이하이면 되고, 통상, 20~200℃ 정도이다.
반응 시간은 특별히 한정되는 것은 아니지만, 통상, 1~48시간 정도이다.
또한, 본 발명의 포스포릴티오펜 화합물에 있어서, 인산에스테르기를 물, 알코올로 가용매 분해하는 방법으로서는 예를 들어 저널·오브·케미컬·소사이어티(J. Chem. Soc.), 1959년, 3950페이지나, 저널·오브·어메리칸·케미컬·소사이어티(J. Am. Chem. Soc.), 1953년, 3379페이지에 기재되어 있는 방법을 기본으로 하면 된다.
또, 인산에스테르기를 아미드나 티오에스테르로 변환하는 방법으로서는 예를 들어 오가닉 포스포러스 컴파운드(Organic Phosphorus Compounds), 4권, 윌리-인터사이언스사(Wiley-Interscience), 1972년, 제9장, 155~253페이지나, 오가닉 포스포러스 컴파운드(Organic Phosphorus Compounds), 6권, 윌리-인터사이언스사(Wiley-Interscience), 1973년, 제14장, 1~209페이지나, 오가닉 포스포러스 컴파운드(Organic Phosphorus Compounds), 7권, 윌리-인터사이언스사(Wiley-Interscience), 1976년, 제18장, 1~486페이지에 기재되어 있는 방법을 기본으로 하면 된다.
또한, 인산기를 -O-N+R8R9R10R11로 변환하는 수법으로서는, 티오펜포스폰산 화합물을 반응 용매중에서 4급 암모늄염과 혼합하는 수법을 들 수 있다.
4급 암모늄염으로서는 예를 들어 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드, 테트라부틸암모늄히드록시드, 테트라헥실암모늄히드록시드, 트리메틸부틸암모늄히드록시드, 트리메틸헥실암모늄히드록시드, 트리메틸옥틸암모늄히드록시드, 트리메틸페닐암모늄히드록시드 등을 들 수 있다.
이들 중에서도, 얻어지는 폴리머의 메탄올, 에탄올 등의 알코올 용매에 대한 용해성이 높아진다는 점에서 테트라부틸암모늄히드록시드가 바람직하다.
반응 용매로서는 물, 메탄올, 에탄올이 바람직하고, 그 중에서도 메탄올이 티오펜포스폰산의 용해도가 높다는 점에서 적합하다.
반응 온도는 사용 용매의 비점 이하이면 되고, 통상, 10~40℃ 정도이다.
반응 시간은 특별히 한정되는 것은 아니지만, 통상, 5분~2시간 정도이다.
또한, 테트라알킬암모늄염 등의 소수성의 4급 암모늄염을 가지는 유도체로 변환함으로써, 메탄올, 에탄올 등의 알코올 용매를 비롯하여 각종 유기 용매에 대한 용해성이 향상된다.
본 발명에 따른 색소 증감 태양전지는 상기 서술한 식 (1)에서 나타내는 포스포릴티오펜 화합물을 색소로서 사용하는 것이며, 구체적으로는 광투과성을 가지는 기판과, 이 기판에 적층된 투명 도전막과, 이 투명 도전막에 적층된 금속 산화물로 이루어지는 다공질 반도체를 가지고, 다공질 반도체의 표면에 본 발명의 색소 증감 태양전지용 색소가 흡착되어 있는 반도체 전극과, 대극과, 이들 각 극간에 개재되는 전해질을 구비하여 구성된다.
본 발명의 색소 증감 태양전지에 있어서는, 상기 서술한 식 (1)에서 나타내는 포스포릴티오펜 화합물을 색소로서 사용하는 것에 그 특징이 있기 때문에, 그 밖의 태양전지 구성 부재로서는 특별히 한정되는 것은 아니며, 공지의 것으로부터 적당히 선택하여 사용할 수 있다.
그러한 일례를 들면, 광투과성을 가지는 기판으로서는 광투과성을 가지고, 도전층의 기판이 될 수 있는 것이면, 특별히 제한은 없고, 유리 기판, 투명 폴리머 필름, 이들의 적층체 등을 사용할 수 있다.
상기 투명 폴리머 필름의 재료로서는 트리아세틸셀룰로오스(TAC), 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 신디오탁틱폴리스티렌(SPS), 폴리페닐렌술피드(PPS), 폴리카보네이트(PC), 폴리알릴레이트, 폴리술폰, 폴리에스테르술폰(PES), 폴리이미드(PI), 폴리에테르이미드(PEI), 환상 폴리올레핀, 브롬화페녹시 등을 사용할 수 있다.
투명 도전막을 구성하는 재료로서는 예를 들어 백금, 금, 은, 구리, 아연, 티탄, 알루미늄, 인듐, 이들의 합금 등의 금속, 인듐-주석 복합 산화물, 불소 또는 안티몬을 도프한 산화주석 등의 도전성 금속 산화물 등을 사용할 수 있는데, 특히, 불소 또는 안티몬을 도프한 이산화주석, 인듐-주석 산화물을 사용하는 것이 바람직하다. 이 투명 도전층은 상기 투명 기체의 표면에 도포 또는 증착함으로써 형성할 수 있다.
반도체를 구성하는 금속 산화물로서는 TiO2, SnO2, Fe2O3, WO3, ZnO, Nb2O5 등을 들 수 있다.
대극으로서는 색소 증감 태양전지의 정극으로서 작용하는 것이면, 특별히 한정되는 것은 아니며, 예를 들어 유리 기판이나 플라스틱 필름 등에 백금, 금, 은, 구리, 알루미늄, 및 마그네슘으로부터 선택되는 적어도 1종의 금속을 도포 또는 증착시킨 전극 등을 들 수 있다.
전해질로서는 예를 들어 LiI, NaI, KI, CsI, CaI2 등의 금속 요오드화물, 4급 피리디늄 또는 이미다졸륨 화합물의 요오드염, 테트라알킬암모늄 화합물의 요오드염 등의 전해질염과, 이것으로부터 생기는 I-과 산화 환원쌍을 형성할 수 있는 요오드와, 유기 용매를 포함하는 것을 들 수 있다.
유기 용매로서는 에틸렌카보네이트, 프로필렌카보네이트 등의 카보네이트류; 디옥산, 디에틸에테르, 에틸렌글리콜디알킬에테르, 프로필렌글리콜디알킬에테르, 폴리에틸렌글리콜디알킬에테르, 폴리프로필렌글리콜디알킬에테르 등의 에테르류; 메탄올, 에탄올, 에틸렌글리콜모노알킬에테르, 프로필렌글리콜모노알킬에테르, 폴리에틸렌글리콜모노알킬에테르, 폴리프로필렌글리콜모노알킬에테르, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 글리세린 등의 알코올류; 아세토니트릴, 프로피오니트릴, 벤조니트릴 등의 니트릴류 등을 들 수 있다.
그 밖에, 본 발명의 색소 증감 태양전지에는 보호층이나 반사 방지층 등의 기능층을 적당한 위치에 설치해도 된다.
다공질 반도체의 표면에 본 발명의 색소 증감 태양전지용 색소를 흡착시키는 방법으로서는 색소를 포함하는 용액(바니시)을 조제하고, 이 중에 다공질 반도체를 가지는 기판을 침지시키는 방법, 색소를 포함하는 용액(바니시)을 다공질 반도체를 가지는 기판에 도포하는 방법 등을 사용할 수 있다.
색소를 포함하는 용액(바니시)을 조제할 때의 용매는 색소의 용해능을 가지는 것이면 특별히 한정되지 않으며, 메탄올, 에탄올 등을 들 수 있다. 용액(바니시)중의 색소 농도는 특별히 한정되는 것은 아니지만, 0.01~10mmol/L 정도로 할 수 있다.
색소의 전흡착량은 예를 들어 반도체의 단위 표면적(1m2)당, 0.01~100mmol 정도로 할 수 있다.
또한, 본 발명의 색소 증감 태양전지에서는 본 발명의 색소에 더해, 금속 착체 색소, 메틴 색소, 포르피린계 색소, 프탈로시아닌계 색소 등의 공지의 색소를 병용해도 된다.
이들 중에서도 높은 광학 활성을 가지고, 반도체에 대한 흡착성 및 내구성이 우수한 점에서, 루테늄-비피리딘 착체, 그 중에서도, 시스-디(티오시아나토)-N,N'-비스(2,2'-비피리딜-4,4'-디카르복실산)루테늄(II)이 적합하다.
(실시예)
이하, 합성예 및 실시예를 들어, 본 발명을 보다 구체적으로 설명하는데, 본 발명은 하기의 실시예에 한정되는 것은 아니다.
또한, 실시예에서 사용한 분석 장치 및 조건은 하기와 같다.
[1] 1H-NMR, 13C-NMR, 31P-NMR
기종 : JNM-A500(JEOL Ltd.), 또는 AVANCE 400S(Bruker)
[2] 겔 여과 크로마토그래피(GPC)
기종 : TOSOH:HLC-8220GPC, 칼럼:SHODEX GPC KF-804L+GPC KF-805L, 칼럼 온도:40℃, 검출기:UV 검출기(254nm) 및 RI 검출기, 용리액:THF, 칼럼 유속:1.0mL/min.
[3] 흡수 스펙트럼
기종 : UV-3600, 시마즈세이사쿠쇼(주)제
[4] IPCE(incident-photon conversion efficiency) 스펙트럼
500W의 Xe 램프를 분광기(SM-250, 분코우케이키(주)제)를 사용하여 300nm~1100nm의 범위에서 분광하고, 10nm 간격으로 단색광을 조사하고, 셀로부터의 광전류를 전류계(6487, Keithley제)로 검출하고, 이 광전류 스펙트럼을 기준 실리콘 수광 소자로 계측한 스펙트럼을 분광 감도로 보정하고 측정했다.
[5] 전류 전압 측정
솔라 시뮬레이터(YSS-80, 야마시타덴소(주)제)를 사용하고, 의사 태양 광원(AM1.5, 100mW/cm2)을 조사하여, 태양전지 셀의 전류 전압 특성(HSV-100, HOKUTO DENKO제)을 측정했다.
[합성예 1] 폴리티오펜 유도체 A의 제조
Figure pct00003
국제 공개 제2006/109895호 팜플렛에 기재된 방법으로 합성한 2,5-디브로모-3-디에톡시포스포릴티오펜, 2,2'-비피리딜(1.2당량), 1,5-시클로옥타디엔(1.0당량), 및 비스(1,5-시클로옥타디엔)니켈(0)(1.2당량)을 반응 용기에 투입하고, 질소 분위기하에서 1,4-디옥산을 가하여, 60℃에서 20시간 가열했다. 반응 종료후, 반응액을 셀라이트로 여과하고, 클로로포름으로 잔사를 세정했다. 여액을 10질량% 염산수용액으로 2회, 10질량% 식염수로 5회 세정하고, 유기층에 무수황산나트륨을 가하여 건조시키고, 용매를 증류 제거했다. 이것을 진공 펌프로 감압하여 건조시키고 주황색의 액체를 얻었다.
Mw(GPC):9,700
1H-NMR(CDCl3):1.20-1.29(6H,m),4.02-4.18(4H,m),6.91(1H,s)
[합성예 2] 폴리티오펜 유도체 B의 제조
Figure pct00004
2,5-디브로모-3-디에톡시포스포릴티오펜 0.756g(2.00mmol), 2,2'-비피리딜 0.937g(6.00mmol, 1.2당량)을 반응 용기에 투입하고, 반응 용기를 질소 치환한 후에 2,5-디브로모티오펜 0.726g(3.00mmol), 1,5-시클로옥타디엔 0.541g(5.00mmol, 1.0당량), 및 1,4-디옥산 50mL를 시린지로 가했다. 계속해서, 비스(1,5-시클로옥타디엔)니켈(0) 1.650g(6.00mmol, 1.2당량)을 가하여, 60℃에서 5시간 가열 교반했다.
반응 종료후, 반응액을 셀라이트로 여과하고, 클로로포름으로 잔사를 세정했다. 여액을 10질량% 염산수용액으로 1회, 10질량% 식염수로 3회 세정하고, 유기층에 무수황산나트륨을 가하여 건조시키고, 여과후, 용매를 증류 제거했다. 증류 제거후의 잔사에 클로로포름을 가하여 용해시켜, n-헥산에 적하하고, 석출한 고체를 여과로 회수하여, n-헥산으로 세정했다. 이것을 진공 펌프로 감압하여 건조시켜, 적색 고체를 0.351g 얻었다.
Mw(GPC):9,232
1H-NMR(CDCl3):1.29-1.35(br),4.11-4.21(br),7.13-7.22(br),7.50-7.83(br)
[합성예 3] 폴리티오펜 유도체 C의 제조
Figure pct00005
합성예 1에서 제조한 폴리티오펜 A를 반응 용기에 투입하고, 질소 분위기하에서 아세토니트릴을 가하여 용해시키고, 요오드트리메틸실란(3당량)을 천천히 적하하고, 적하 종료후, 실온에서 20시간 교반했다. 반응후, 메탄올을 가하여 1시간 교반하여 과잉의 요오드트리메틸실란을 으깬 후에, 용매를 증류 제거했다. 조생성물을 물에 용해시켜, 클로로포름으로 10회 세정하고, 이온 교환 수지(IR-120B, IRA-410)를 통과시킨 후에, 용매를 증류 제거하고, 진공 펌프로 건조시켜, 적색의 고체를 얻었다.
1H-NMR(D2O):7.14(1H, s)
13C-NMR(D2O):112.7(d,J=21.9Hz), 117.9(s,J=7.6Hz), 135.1(d,J=13.4Hz), 138.8(d,187.5Hz)
31P-NMR(D2O):4.06(s)
[합성예 4] 폴리티오펜 유도체 D의 제조
Figure pct00006
합성예 2에서 제조한 폴리티오펜 유도체 B 0.070g을 반응 용기에 투입하고, 질소 분위기하에서 염화메틸렌 7mL, 아세토니트릴 5mL를 가하여 용해시킨 후, 요오드트리메틸실란 0.096g을 천천히 적하했다. 적하 종료후, 실온에서 1시간 교반했다. 반응후, 물을 가하여 실온에서 30분간 교반하고, 28질량% 암모니아수를 가하여 조생성물을 용해시키고, 클로로포름으로 5회 세정했다. 수층으로부터 물을 증류 제거했다. 증류 제거후의 잔사에 물을 가하여 용해시켜, 아세톤에 적하하고, 석출한 고체를 여과로 회수하여, 아세톤으로 세정했다. 이것을 진공 펌프로 감압하여 건조시켜, 적색 고체를 0.055g 얻었다.
1H-NMR(CD3OD):1.14-1.32(br),3.82-4.16(br),7.22-7.78(br)
상기 합성예 1 내지 4에서 얻어진 폴리티오펜 유도체 A 내지 D에 대해서, 각각 에탄올 용액(농도:10-5mol/L)을 조제하고, 흡수 스펙트럼을 측정했다. 결과를 도 2 내지 5에 도시한다.
[합성예 5] 폴리티오펜 유도체 E의 제조
Figure pct00007
합성예 4에서 얻어진 폴리티오펜 유도체 D 10mg에 메탄올 1mL를 가하고, 또한 테트라부틸암모늄히드록시드(TBAOH)/메탄올 용액(10질량%) 0.3mL를 가하여 교반하여 용해시킨 후에 용매를 농축했다. 이것을 진공 펌프로 감압하여 건조시켜, 적색 고체를 얻었다.
1H-NMR(CD3OD):1.00-1.05(t),1.14-1.32(br),1.35-1.48(m),1.61-1.71(m),3.21-3.27(m),3.82-4.16(br),7.22-7.78(br)
합성예 4, 5에서 얻어진 폴리티오펜 유도체 D, E를 각각 3mg 계량하여 취하고, 그것에 물, 메탄올, 디메틸술폭시드를 각각 0.1mL 가하여 교반한 후, 용액의 성상을 관찰했다. 결과를 표 1에 나타냈다. 또한, 완전히 용해된 것을 ○, 용액에 색은 물들어 있지만 고체가 남아있는 것을 △, 용액에 색도 물들어 있지 않은 것을 ×로 했다.
폴리티오펜 유도체 메탄올 디메틸술폭시드
D ×
E
[실시예 1]
[1] 광전 변환 전극의 제작
도 1에 도시한 바와 같이, 표면저항값 10Ω/sq의 FTO(F:SnO2)막(12)이 부착된 유리 기판(11)(사이즈:15mm×25mm)상에 티타니아 페이스트(Ti-Nanoxide T/S, SOLARONIXS사제)를 스크린 인쇄법에 의해 도포하고, 120℃에서 3분간 건조시킨 후, 500℃에서 30분간 소성하여, 티타니아 반도체층(13)을 형성했다. 소성후의 티타니아 반도체층(13)의 막두께를 촉침식 막두께 계측기(ET4000A, (주)코사카켄큐쇼제)로 계측했더니 20μm였다.
다음에, 합성예 1에서 얻어진 폴리티오펜 유도체 A의 메탄올 용액(농도:0.1mM)에 상기 소성후의 기판을 침지하고, 폴리티오펜 유도체 A(색소)(도시하지 않음)를 티타니아 반도체층(13)에 흡착시켜, 광전 변환 전극(10)을 제작했다.
[2] 태양전지 셀의 제작
직경 0.7mm의 전해액 주입 구멍을 2개 가지는 FTO막이 부착된 유리 기판(15)상에 Pt층(14)을 성막(막두께:1nm)한 대극(20)의 주위에 에틸렌-메타크릴산 공중합체 아이오노머 수지막(하이밀란, 미츠이·듀퐁폴리케미컬(주)제)(막두께:30nm)을 배치하고, 상기에서 얻어진 광전 변환 전극(10)과 첩합시켰다. 그 후, 전해액 주입 구멍으로부터 0.1mol/L의 요오드화리튬, 0.025mol/L의 요오드, 0.5mol/L의 디메틸프로필이미다졸륨아이오다이드, 및 0.5mol/L의 t-부틸피리딘을 포함하는 아세토니트릴 용액으로 이루어지는 전해질(30)을 주입하고, 색소 증감 태양전지 셀(1)을 제작했다.
실시예 1에서 얻어진 태양전지 셀에 대해서, 300~1,100nm의 범위에서 IPCE를 계측했다. 얻어진 IPCE 스펙트럼을 도 6에 도시한다. 도 6에 도시한 바와 같이, 자외로부터 500nm에 걸쳐 광흡수에 대응한 영역에서 IPCE가 얻어지고 있는 것을 알 수 있다.
또, 얻어진 태양전지 셀의 전류 전압 특성을 측정했다. 그 결과를 표 2에 나타낸다. 표 2에 나타낸 바와 같이, 측정시에 의해 데이터에 다소의 편차는 있지만, 0.053%의 광전 변환 효율이 얻어지고 있는 것을 알 수 있다.
[실시예 2]
폴리티오펜 유도체 A를 합성예 2에서 얻어진 폴리티오펜 유도체 B로 변경한 것 이외에는 실시예 1과 마찬가지로 하여, 광전 변환 전극 및 태양전지 셀을 제작했다.
실시예 2에서 얻어진 태양전지 셀에 대해서 300~1,100nm의 범위에서 IPCE를 계측했다. 얻어진 IPCE 스펙트럼을 도 7에 도시한다. 도 7에 도시한 바와 같이, 자외로부터 550nm에 걸쳐 광흡수에 대응한 영역에서 IPCE가 얻어지고 있는 것을 알 수 있다.
또, 얻어진 태양전지 셀의 전류 전압 특성을 측정했다. 그 결과를 표 2에 나타낸다. 표 2에 나타낸 바와 같이, 0.064%의 광전 변환 효율이 얻어지고 있는 것을 알 수 있다.
[실시예 3]
폴리티오펜 유도체 A를 합성예 3에서 얻어진 폴리티오펜 유도체 C로 변경한 것 이외에는 실시예 1과 마찬가지로 하여, 광전 변환 전극 및 태양전지 셀을 제작했다.
실시예 3에서 얻어진 태양전지 셀에 대해서, 300~1,100nm의 범위에서 IPCE를 계측했다. 얻어진 IPCE 스펙트럼을 도 8에 도시한다. 도 8에 도시한 바와 같이, 자외로부터 600nm에 걸쳐 광흡수에 대응한 영역에서 IPCE가 얻어지고 있는 것을 알 수 있다.
또, 얻어진 태양전지 셀의 전류 전압 특성을 측정했다. 그 결과를 표 2에 나타낸다. 표 2에 나타낸 바와 같이, 0.469%의 광전 변환 효율이 얻어지고 있는 것을 알 수 있다.
[실시예 4]
폴리티오펜 유도체 A를 합성예 4에서 얻어진 폴리티오펜 유도체 D로 변경한 것 이외에는 실시예 1과 마찬가지로 하여, 광전 변환 전극 및 태양전지 셀을 제작했다.
실시예 4에서 얻어진 태양전지 셀에 대해서, 300~1,100nm의 범위에서 IPCE를 계측했다. 얻어진 IPCE 스펙트럼을 도 9에 도시한다. 도 9에 도시한 바와 같이, 자외로부터 600nm에 걸쳐 광흡수에 대응한 영역에서 IPCE가 얻어지고 있는 것을 알 수 있다.
또, 얻어진 태양전지 셀의 전류 전압 특성을 측정했다. 그 결과를 표 2에 나타낸다. 표 2에 나타낸 바와 같이, 0.568%의 광전 변환 효율이 얻어지고 있는 것을 알 수 있다.
Jsc
(mA/cm2)
Voc
(V)
ff η
(%)
실시예 1 0.279 0.408 0.464 0.053
실시예 2 0.273 0.461 0.506 0.064
실시예 3 1.290 0.548 0.668 0.469
실시예 4 2.117 0.515 0.523 0.568
Jsc : 단락 전류
Voc : 개방 전압
ff : 필팩터
η : 광전 변환 효율 η=Jsc×Voc×ff
1…태양전지 셀(색소 증감 태양전지)
10…광전 변환 전극
11…유리 기판(광투과성을 가지는 기판)
12…FTO막(투명 도전막)
13…광증감 색소가 흡착한 티타니아 반도체층(다공질 반도체)
14…Pt층
15…유리 기판
20…대극
30…전해질

Claims (8)

  1. 식 (1)에서 나타내는 포스포릴티오펜 화합물을 포함하는 것을 특징으로 하는 색소 증감 태양전지용 색소.
    Figure pct00008

    (식 중, R1~R4 및 R13~R16은 각각 독립적으로 -OR5, -SR6, -NR7 2, 또는 -O-N+R8R9R10R11을 나타내고, R5~R11은 각각 독립적으로 수소 원자, 탄소수 1~20 알킬기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내고,
    R12 및 R17은 각각 독립적으로 수소 원자, 할로겐 원자, 수산기, 아미노기, 실라놀기, 티올기, 카르복실기, 에스테르기, 티오에스테르기, 아미드기, 시아노기, 니트로기, 1가 탄화수소기, 오르가노옥시기, 오르가노아미노기, 오르가노실릴기, 오르가노티오기, 아실기, 술폰기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내며,
    W는 할로겐 원자, 수산기, 아미노기, 실라놀기, 티올기, 카르복실기, 에스테르기, 티오에스테르기, 아미드기, 시아노기, 니트로기, 1가 탄화수소기, 오르가노옥시기, 오르가노아미노기, 오르가노실릴기, 오르가노티오기, 아실기, 또는 술폰기를 나타내고,
    m, n, o 및 p는 각각 독립적으로 0 또는 1 이상의 정수를 나타내고, 1≤m+n+o, 또한 2≤m+n+o+p≤1,000을 만족하고,
    Z는 하기 식 [2] 내지 [10]으로부터 선택되는 2가의 유기기이며,
    Figure pct00009

    R18~R40은 각각 독립적으로 수소 원자, 탄소수 1~20 알킬기, 탄소수 1~20 할로알킬기, 탄소수 1~20 알콕시기, 탄소수 1~20 알킬티오기, 탄소수 1~20 디알킬아미노기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내고, R41은 수소 원자, 탄소수 1~20 알킬기, 탄소수 1~20 할로알킬기, 탄소수 1~20 알콕시기, 또는 W로 치환되어 있어도 되는 페닐기를 나타내며, W는 상기와 동일한 의미를 나타낸다.
    단, 당해 포스포릴티오펜 화합물의 양 말단은 서로 독립적으로 수소 원자, 할로겐 원자, 탄소수 1~20 모노알킬아미노기, 탄소수 1~20 디알킬아미노기, W로 치환되어도 되는 페닐기, W로 치환되어도 되는 나프틸기, W로 치환되어도 되는 안트라닐기, 탄소수 1~10 트리알킬스타닐기, 또는 탄소수 1~10 트리알킬실릴기이며, W는 상기와 동일한 의미를 나타낸다.)
  2. 제 1 항에 기재된 포스포릴티오펜 화합물을 포함하는 것을 특징으로 하는 조성물.
  3. 제 1 항에 기재된 포스포릴티오펜 화합물을 포함하는 것을 특징으로 하는 바니시.
  4. 제 1 항에 기재된 포스포릴티오펜 화합물을 포함하는 것을 특징으로 하는 유기 박막.
  5. 제 4 항에 기재된 바니시로 제작되는 것을 특징으로 하는 유기 박막.
  6. 광투과성을 가지는 기판과, 이 기판에 적층된 투명 도전막과, 이 투명 도전막에 적층된 금속 산화물로 이루어지는 다공질 반도체를 가지고,
    상기 다공질 반도체의 표면에는 제 1 항에 기재된 색소 증감 태양전지용 색소가 흡착되어 있는 것을 특징으로 하는 반도체 전극.
  7. 제 3 항에 기재된 바니시에 다공질 반도체를 가지는 기판을 침지하고, 상기 색소 증감 태양전지용 색소를 상기 다공질 반도체에 흡착시켜 이루어지는 것을 특징으로 하는 반도체 전극.
  8. 제 6 항에 기재된 반도체 전극과, 대극과, 이들 반도체 전극 및 대극간에 개재하는 전해질을 구비하여 구성되는 것을 특징으로 하는 색소 증감 태양전지.
KR1020107023122A 2008-03-25 2009-03-19 색소 증감 태양전지용 색소 및 색소 증감 태양전지 KR20100125418A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-078319 2008-03-25
JP2008078319 2008-03-25

Publications (1)

Publication Number Publication Date
KR20100125418A true KR20100125418A (ko) 2010-11-30

Family

ID=41113624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107023122A KR20100125418A (ko) 2008-03-25 2009-03-19 색소 증감 태양전지용 색소 및 색소 증감 태양전지

Country Status (5)

Country Link
JP (1) JP5494473B2 (ko)
KR (1) KR20100125418A (ko)
CN (1) CN102027631A (ko)
TW (1) TWI441848B (ko)
WO (1) WO2009119428A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118715A1 (ja) * 2010-03-26 2011-09-29 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池
JP5569090B2 (ja) * 2010-03-26 2014-08-13 浩司 瀬川 色素増感太陽電池用色素および色素増感太陽電池
JP2012174348A (ja) * 2011-02-17 2012-09-10 Nissan Chem Ind Ltd 色素増感太陽電池用色素及び色素増感太陽電池
WO2014046117A1 (ja) * 2012-09-18 2014-03-27 学校法人東京理科大学 色素増感太陽電池用対極および色素増感太陽電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200712060A (en) * 2005-05-19 2007-04-01 Nissan Chemical Ind Ltd Thiophene compound having phosphoric ester and process for producing the same
JPWO2007007735A1 (ja) * 2005-07-12 2009-01-29 国立大学法人大阪大学 光照射による金属酸化物表面上への有機導電性重合性材料の合成
JP4942013B2 (ja) * 2005-07-20 2012-05-30 住友大阪セメント株式会社 スクリーン印刷用の酸化チタンペースト、そのペーストを用いた酸化チタン多孔質薄膜電極及び光電変換素子並びに酸化チタンペーストの製造方法

Also Published As

Publication number Publication date
JP5494473B2 (ja) 2014-05-14
CN102027631A (zh) 2011-04-20
TW201004997A (en) 2010-02-01
JPWO2009119428A1 (ja) 2011-07-21
WO2009119428A1 (ja) 2009-10-01
TWI441848B (zh) 2014-06-21

Similar Documents

Publication Publication Date Title
Hagberg et al. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications
JP5491419B2 (ja) 高分子吸光係数金属色素
Karthikeyan et al. Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes
Chou et al. Influence of phenylethynylene of push–pull zinc porphyrins on the photovoltaic performance
EP2703468A1 (en) Diketopyrrolopyrole (DPP)-based sensitizers for electrochemical or optoelectronic devices
Sil et al. Orthogonally functionalized donor/acceptor homo-and heterodimeric dyes for dye-sensitized solar cells: an approach to introduce panchromaticity and control the charge recombination
Sutanto et al. Isomeric carbazole-based hole-transporting materials: Role of the linkage position on the photovoltaic performance of perovskite solar cells
KR20160114611A (ko) 고체 상태 태양 전지용 홀 수송 및 광 흡수 재료
Nakashima et al. Interface modification on TiO2 electrode using dendrimers in dye-sensitized solar cells
JP5569091B2 (ja) 多孔質半導体および色素増感太陽電池
JP5494473B2 (ja) 色素増感太陽電池の半導体電極作製用ワニスおよび色素増感太陽電池
Lu et al. Novel fluorous amphiphilic heteroleptic Ru-based complexes for a dye-sensitized solar cell: the first fluorous bis-ponytailed amphiphilic Ru complexes
Dai et al. Synthesis and characterization of electron donor–acceptor platinum (II) complexes composed of N, N-diphenylpyridineamine and triphenylamine ligands
Lee et al. Enhanced photovoltaic performance of quasi-solid-state dye-sensitized solar cells via incorporating quaternized ammonium iodide-containing conjugated polymer into PEO gel electrolytes
Sil et al. Effect and position of spiro-bipropylenedioxythiophene π-spacer in donor-π-spacer-acceptor dyes for dye-sensitized solar cell
JP6101625B2 (ja) 光電変換素子用色素、それを用いた光電変換膜、電極及び太陽電池
EP2548926A1 (en) Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
Bhuse et al. Ant-like small molecule metal-free dimeric porphyrin sensitizer for true energy-generating DSSC with 9.3% efficiency
Ma et al. Sensitizers of Metal Complexes with Sulfur Coordination Achieving a Power Conversion Efficiency of 12.89%
Ketavath et al. Unadorned Molecular Engineering of Phenoxazine-Core-Based Hole-Transport Materials for Sustainable Perovskite Solar Cells
CN104592499A (zh) 三并噻吩类共轭聚合物材料及其制备方法与应用
JP5569090B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池
JP5713005B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池
Harada et al. Wisely Designed Phthalocyanine Derivative for Convenient Molecular Fabrication on a Substrate
JP2005353318A (ja) 色素増感型太陽電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal