JP5713005B2 - 色素増感太陽電池用色素および色素増感太陽電池 - Google Patents

色素増感太陽電池用色素および色素増感太陽電池 Download PDF

Info

Publication number
JP5713005B2
JP5713005B2 JP2012507063A JP2012507063A JP5713005B2 JP 5713005 B2 JP5713005 B2 JP 5713005B2 JP 2012507063 A JP2012507063 A JP 2012507063A JP 2012507063 A JP2012507063 A JP 2012507063A JP 5713005 B2 JP5713005 B2 JP 5713005B2
Authority
JP
Japan
Prior art keywords
dye
anthranyl
naphthyl
sensitized solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012507063A
Other languages
English (en)
Other versions
JPWO2011118715A1 (ja
Inventor
浩司 瀬川
浩司 瀬川
聡 内田
聡 内田
久保 貴哉
貴哉 久保
健太 秋津
健太 秋津
直樹 大谷
直樹 大谷
隆行 田村
隆行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2012507063A priority Critical patent/JP5713005B2/ja
Publication of JPWO2011118715A1 publication Critical patent/JPWO2011118715A1/ja
Application granted granted Critical
Publication of JP5713005B2 publication Critical patent/JP5713005B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、色素増感太陽電池用色素およびこの色素を用いた色素増感太陽電池に関する。
近年直面しているエネルギー問題や地球環境問題を解決するために、従来の化石燃料に代替し得るエネルギーに関して多様な研究が進められている。
中でも、太陽光エネルギーを利用する太陽電池は、資源が無限であるのみならず、環境調和型デバイスであるため大きな注目を集めている。
特に、色素増感太陽電池は、使用する材料が安価であること、製造プロセスに真空装置を用いなくても済むことなどの利点から、グレッツェルらにより提案されて以来、実用化に向けた研究が盛んに行われている。
この色素増感太陽電池では、多孔質状の金属酸化物からなる半導体電極に色素を吸着させた、光吸収作用を有する半導体電極が用いられている。
太陽電池の光電変換効率は、太陽光の吸収によって発生した電子量に比例することから、変換効率を向上させるためには、半導体電極上の色素吸着量を大きくする必要がある。
このため、色素増感太陽電池用の色素には、金属酸化物に対する、高い親和性や密着性を有することが求められる。
また、半導体電極への色素の吸着は、一般的に、色素を有機溶媒に溶解してなる溶液に、半導体電極を浸漬することにより行われているため、有機溶媒に対する優れた溶解性も色素に求められる重要な性質である。
色素増感太陽電池用色素として、オリゴチオフェン化合物の末端にカルボン酸を導入し、多孔質状の金属酸化物への親和性や密着性を改善させた例が報告されている(非特許文献1参照)。
また、色素増感太陽電池用色素として、ポリチオフェン化合物に酢酸基およびマロン酸基を導入し、多孔質状の金属酸化物への親和性や密着性を改善させた例が報告されている(非特許文献2、3参照)。
しかしながら、吸収できる波長領域が広いポリチオフェン化合物において、メチレン基やメチン基を介さずに、直接カルボン酸を結合させる色素の設計は行われていない。
Tanaka K. et al., Chemistry Letters, 2006, 35(6), p.592-593 Yanagida S. et al., Journal of Photochemistry and Photobiology. A, Chemistry, 2004, 166, p75-80 Yanagida S. et al., Solar Energy Materials and Solar Cells, 2005, 88(3), p315-322
本発明は、このような事情に鑑みてなされたものであり、光吸収率および光エネルギーを電気エネルギーに変換する効率に優れた色素増感太陽電池用色素、およびこれを用いた色素増感太陽電池を提供することを目的とする。
一般的に色素増感太陽電池の効率を向上させるためには、第一に色素増感太陽電池に入射してくる光を最大限利用できるよう光吸収率を高めることが重要であり、第二に吸収した光エネルギーを電気エネルギーに変換する効率を高めることが重要である。
色素増感太陽電池では、光吸収は光増感色素によって担われることから、光増感色素はできるだけ広い吸収領域を吸収できる色素を選択することによって、光吸収率を高めることができると期待される。
また、光増感色素により吸収された光エネルギーは、金属酸化物と電解液により電荷分離され、電気エネルギーに変換されることから、色素から金属酸化物への電荷注入効率を上げるために、光吸収部位と金属酸化物への吸着部位が近接した色素を選択することによって、吸収された光エネルギーの電気エネルギーへの変換効率を高めることができると期待される。
本発明者らは、これらの観点を踏まえ、上記目的を達成するために鋭意検討を重ねた結果、カルボキシル基またはアルコキシカルボニル(カルボン酸エステル)基を有するポリまたはオリゴチオフェン化合物を含む色素増感太陽電池用色素が、光吸収率およびエネルギーの変換効率に優れていることを見出し、本発明を完成した。
すなわち、本発明は、
1. 式(1)で表されるカルボニルチオフェン化合物を含むことを特徴とする色素増感太陽電池用色素、
Figure 0005713005
(式中、R1〜R6は、それぞれ独立して、水素原子または炭素数1〜20アルキル基を表し、m、n、およびoは、それぞれ独立して、0または1以上の整数を表し、pは、1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1,000を満足し、Zは、下記式(2)〜(4)から選ばれる2価の有機基であり、
Figure 0005713005
7〜R16は、それぞれ独立して、水素原子または炭素数1〜20アルキル基を表す。)
2. 前記R1〜R4が水素原子であり、当該水素原子が第4級アンモニウム塩とカチオン交換してなる1の色素増感太陽電池用色素、
3. 前記第4級アンモニウム塩が、テトラアルキルアンモニウムヒドロキシドである2の色素増感太陽電池用色素、
4. 前記R1〜R4の一部が水素原子であり、残部が炭素数1〜20アルキル基である1の色素増感太陽電池用色素、
5. 1〜4のいずれかの色素増感太陽電池用色素を含む組成物、
6. 1〜4のいずれかの色素増感太陽電池用色素を含むワニス、
7. 1〜4のいずれかの色素増感太陽電池用色素を含む有機薄膜、
8. 1〜4のいずれかのワニスから作製される有機薄膜、
9. 光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、前記多孔質半導体の表面に1〜4のいずれかの色素増感太陽電池用色素が吸着されていることを特徴とする半導体電極、
10. 6のワニスに多孔質半導体を有する基板を浸漬し、前記色素増感太陽電池用色素を前記多孔質半導体に吸着させてなる9の半導体電極、
11. 9の半導体電極と、対極と、これら半導体電極および対極間に介在する電解質と、を備えて構成される色素増感太陽電池、
12. 前記電解質がアルコールを含む11の色素増感太陽電池
を提供する。
本発明によれば、光吸収率および光エネルギーを電気エネルギーに変換する効率に優れた色素増感太陽電池用色素、およびこれを用いた色素増感太陽電池を提供できる。
合成例3で得られたポリチオフェン誘導体Cの吸収スペクトルを示す図である。 合成例4で得られたポリチオフェン誘導体Dの吸収スペクトルを示す図である。 実施例1で作製した色素増感太陽電池の概略断面図である。 実施例1で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例2で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例3で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例4で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例5で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例6で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例9で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例10で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例11で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例12で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例11および12で得られた色素増感太陽電池セルの電流電圧特性を示す図である。
以下、本発明についてさらに詳しく説明する。
なお、本明細書中、「n」はノルマルを、「i」はイソを、「s」はセカンダリーを、「t」はターシャリーを、「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを意味し、「Me」はメチル基を、「Et」はエチル基を、「Pr」はプロピル基を、「Bu」はブチル基を、「Ph」はフェニル基を意味する。
本発明における色素増感太陽電池用色素は、上記式(1)で示されるカルボニルチオフェン化合物を含むものである。
式(1)において、炭素数1〜20アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、c−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、c−ブチル基、n−ペンチル基、1−メチル−n−ブチル基、2−メチル−n−ブチル基、3−メチル−n−ブチル基、1,1−ジメチル−n−プロピル基、c−ペンチル基、2−メチル−c−ブチル基、n−ヘキシル基、1−メチル−n−ペンチル基、2−メチル−n−ペンチル基、1,1−ジメチル−n−ブチル基、1−エチル−n−ブチル基、1,1,2−トリメチル−n−プロピル基、c−ヘキシル基、1−メチル−c−ペンチル基、1−エチル−c−ブチル基、1,2−ジメチル−c−ブチル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等が挙げられる。
本発明の色素増感太陽電池用色素において、R1〜R4としては、半導体電極を構成する金属酸化物に対する吸着性や、ワニス調製時の有機溶媒に対する溶解性をより高めることを考慮すると、水素原子、炭素数1〜10アルキル基が好ましく、得られる色素増感太陽電池の開放電圧を向上させるということを考慮すると、その一部が水素原子で、残部が炭素数1〜10アルキル基であること、すなわち、カルボキシル基とカルボン酸エステル基が混在していることが好ましい。
また、得られる色素増感太陽電池の開放電圧を向上させるという点から、R1〜R4が全て水素原子で示されるカルボキシチオフェン化合物の水素原子を、第4級アンモニウム塩とカチオン交換させてもよい。
この場合、第4級アンモニウム塩としては、特に限定されるものではないが、本発明においては、テトラC1〜10アルキルアンモニウムヒドロキシドが好ましく、テトラC1〜5アルキルアンモニウムヒドロキシドがより好ましく、テトラn−ブチルアンモニウムヒドロキシドが最適である。
また、R5およびR6としては、水素原子、炭素数1〜10アルキル基が好ましく、水素原子がより好ましい。
式(1)におけるZは、上記式(2)〜(4)から選ばれる少なくとも1種の2価の有機基であるが、特に、式(2)で表される2価の有機基が好適であり、特に、R7およびR8が共に水素原子である非置換チオフェニル基が好適である。
上記m、n、oおよびpは、それぞれ独立して、0または1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1000を満足する整数であるが、2≦m+n+o+p≦200が好ましく、5≦m+n+o+p≦200がより好ましい。特に、n、m、oおよびpのいずれか2つが0である化合物、さらには、n、mおよびoのいずれか2つが0である化合物が好適である。
なお、この化合物は、2≦m+n+o+p≦20を満たす程度のオリゴマーでも、20≦m+n+o+p≦1000を満たすポリマーでもよい。
カルボニルチオフェン化合物の分子量は特に限定されるものではないが、ポリマーの場合、重量平均分子量1,000〜100,000が好ましく、1,000〜50,000がより好ましい。
なお、本発明における重量平均分子量は、ゲル濾過クロマトグラフィーによるポリスチレン換算値である。
上記カルボニルチオフェン化合物の両末端は、互いに独立して水素原子、ハロゲン原子、炭素数1〜20モノアルキルアミノ基、炭素数1〜20ジアルキルアミノ基、置換または非置換のフェニル基、置換または非置換のナフチル基、置換または非置換のアントラニル基、炭素数1〜10トリアルキルスタニル基、炭素数1〜10トリアルキルシリル基等が好適であるが、特に、水素原子が好ましい。
ここで、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられる。
炭素数1〜20モノアルキルアミノ基の具体例としては、NHMe、NHEt、NHPr−n、NHPr−i、NHBu−n、NHBu−i、NHBu−s、NHBu−t、NHPen−n、NHCHEt2、NHHex−n、NHHep−n、NHOct−n、NHDec−n等が挙げられる。
炭素数1〜20ジアルキルアミノ基の具体例としては、NMe2、NEt2、N(Pr−n)2、N(Pr−i)2、N(Bu−n)2、N(Bu−i)2、N(Bu−s)2、N(Bu−t)2、N(Pen−n)2、N(CHEt22、N(Hex−n)2、N(Hep−n)2、N(Oct−n)2、N(Dec−n)2、N(Me)(Bu−n)、N(Me)(Pen−n)、N(Me)(Hex−n)、N(Me)(Hep−n)、N(Me)(Oct−n)、N(Me)(Dec−n)等が挙げられる。
炭素数1〜10トリアルキルスタニル基の具体例としては、SnMe3、SnEt3、Sn(Pr−n)3、Sn(Pr−i)3、Sn(Bu−n)3、Sn(Bu−i)3、Sn(Bu−s)3、Sn(Bu−t)3等が挙げられる。
炭素数1〜10トリアルキルシリル基の具体例としては、SiMe3、SiEt3、Si(Pr−n)3、Si(Pr−i)3、Si(Bu−n)3、Si(Bu−i)3、Si(Bu−s)3、Si(Bu−t)3等が挙げられる。
置換または非置換のフェニル基の具体例としては、フェニル、o−メチルフェニル、m−メチルフェニル、p−メチルフェニル、o−トリフルオロメチルフェニル、m−トリフルオロメチルフェニル、p−トリフルオロメチルフェニル、p−エチルフェニル、p−i−プロピルフェニル、p−t−ブチルフェニル、o−クロルフェニル、m−クロルフェニル、p−クロルフェニル、o−ブロモフェニル、m−ブロモフェニル、p−ブロモフェニル、o−フルオロフェニル、p−フルオロフェニル、o−メトキシフェニル、m−メトキシフェニル、p−メトキシフェニル、o−トリフルオロメトキシフェニル、p−トリフルオロメトキシフェニル、o−ニトロフェニル、m−ニトロフェニル、p−ニトロフェニル、o−ジメチルアミノフェニル、m−ジメチルアミノフェニル、p−ジメチルアミノフェニル、p−シアノフェニル、3,5−ジメチルフェニル、3,5−ビストリフルオロメチルフェニル、3,5−ジメトキシフェニル、3,5−ビストリフルオロメトキシフェニル、3,5−ジエチルフェニル、3,5−ジ−i−プロピルフェニル、3,5−ジクロルフェニル、3,5−ジブロモフェニル、3,5−ジフルオロフェニル、3,5−ジニトロフェニル、3,5−ジシアノフェニル、2,4,6−トリメチルフェニル、2,4,6−トリストリフルオロメチルフェニル、2,4,6−トリメトキシフェニル、2,4,6−トリストリフルオロメトキシフェニル、2,4,6−トリクロルフェニル、2,4,6−トリブロモフェニル、2,4,6−トリフルオロフェニル、o−ビフェニリル、m−ビフェニリル、p−ビフェニリル等が挙げられる。
置換または非置換のナフチル基の具体例としては、1−ナフチル、2−ナフチル、2−ブチル−1−ナフチル、3−ブチル−1−ナフチル、4−ブチル−1−ナフチル、5−ブチル−1−ナフチル、6−ブチル−1−ナフチル、7−ブチル−1−ナフチル、8−ブチル−1−ナフチル、1−ブチル−2−ナフチル、3−ブチル−2−ナフチル、4−ブチル−2−ナフチル、5−ブチル−2−ナフチル、6−ブチル−2−ナフチル、7−ブチル−2−ナフチル、8−ブチル−2−ナフチル、2−ヘキシル−1−ナフチル、3−ヘキシル−1−ナフチル、4−ヘキシル−1−ナフチル、5−ヘキシル−1−ナフチル、6−ヘキシル−1−ナフチル、7−ヘキシル−1−ナフチル、8−ヘキシル−1−ナフチル、1−ヘキシル−2−ナフチル、3−ヘキシル−2−ナフチル、4−ヘキシル−2−ナフチル、5−ヘキシル−2−ナフチル、6−ヘキシル−2−ナフチル、7−ヘキシル−2−ナフチル、8−ヘキシル−2−ナフチル、2−オクチル−1−ナフチル、3−オクチル−1−ナフチル、4−オクチル−1−ナフチル、5−オクチル−1−ナフチル、6−オクチル−1−ナフチル、7−オクチル−1−ナフチル、8−オクチル−1−ナフチル、1−オクチル−2−ナフチル、3−オクチル−2−ナフチル、4−オクチル−2−ナフチル、5−オクチル−2−ナフチル、6−オクチル−2−ナフチル、7−オクチル−2−ナフチル、8−オクチル−2−ナフチル、2−フェニル−1−ナフチル、3−フェニル−1−ナフチル、4−フェニル−1−ナフチル、5−フェニル−1−ナフチル、6−フェニル−1−ナフチル、7−フェニル−1−ナフチル、8−フェニル−1−ナフチル、1−フェニル−2−ナフチル、3−フェニル−2−ナフチル、4−フェニル−2−ナフチル、5−フェニル−2−ナフチル、6−フェニル−2−ナフチル、7−フェニル−2−ナフチル、8−フェニル−2−ナフチル、2−メトキシ−1−ナフチル、3−メトキシ−1−ナフチル、4−メトキシ−1−ナフチル、5−メトキシ−1−ナフチル、6−メトキシ−1−ナフチル、7−メトキシ−1−ナフチル、8−メトキシ−1−ナフチル、1−メトキシ−2−ナフチル、3−メトキシ−2−ナフチル、4−メトキシ−2−ナフチル、5−メトキシ−2−ナフチル、6−メトキシ−2−ナフチル、7−メトキシ−2−ナフチル、8−メトキシ−2−ナフチル、2−エトキシ−1−ナフチル、3−エトキシ−1−ナフチル、4−エトキシ−1−ナフチル、5−エトキシ−1−ナフチル、6−エトキシ−1−ナフチル、7−エトキシ−1−ナフチル、8−エトキシ−1−ナフチル、1−エトキシ−2−ナフチル、3−エトキシ−2−ナフチル、4−エトキシ−2−ナフチル、5−エトキシ−2−ナフチル、6−エトキシ−2−ナフチル、7−エトキシ−2−ナフチル、8−エトキシ−2−ナフチル、2−ブトキシ−1−ナフチル、3−ブトキシ−1−ナフチル、4−ブトキシ−1−ナフチル、5−ブトキシ−1−ナフチル、6−ブトキシ−1−ナフチル、7−ブトキシ−1−ナフチル、8−ブトキシ−1−ナフチル、1−ブトキシ−2−ナフチル、3−ブトキシ−2−ナフチル、4−ブトキシ−2−ナフチル、5−ブトキシ−2−ナフチル、6−ブトキシ−2−ナフチル、7−ブトキシ−2−ナフチル、8−ブトキシ−2−ナフチル、2−アミノ−1−ナフチル、3−アミノ−1−ナフチル、4−アミノ−1−ナフチル、5−アミノ−1−ナフチル、6−アミノ−1−ナフチル、7−アミノ−1−ナフチル、8−アミノ−1−ナフチル、1−アミノ−2−ナフチル、3−アミノ−2−ナフチル、4−アミノ−2−ナフチル、5−アミノ−2−ナフチル、6−アミノ−2−ナフチル、7−アミノ−2−ナフチル、8−アミノ−2−ナフチル、2−(N,N−ジメチルアミノ)−1−ナフチル、3−(N,N−ジメチルアミノ)−1−ナフチル、4−(N,N−ジメチルアミノ)−1−ナフチル、5−(N,N−ジメチルアミノ)−1−ナフチル、6−(N,N−ジメチルアミノ)−1−ナフチル、7−(N,N−ジメチルアミノ)−1−ナフチル、8−(N,N−ジメチルアミノ)−1−ナフチル、1−(N,N−ジメチルアミノ)−2−ナフチル、3−(N,N−ジメチルアミノ)−2−ナフチル、4−(N,N−ジメチルアミノ)−2−ナフチル、5−(N,N−ジメチルアミノ)−2−ナフチル、6−(N,N−ジメチルアミノ)−2−ナフチル、7−(N,N−ジメチルアミノ)−2−ナフチル、8−(N,N−ジメチルアミノ)−2−ナフチル、2−(N,N−ジフェニルアミノ)−1−ナフチル、3−(N,N−ジフェニルアミノ)−1−ナフチル、4−(N,N−ジフェニルアミノ)−1−ナフチル、5−(N,N−ジフェニルアミノ)−1−ナフチル、6−(N,N−ジフェニルアミノ)−1−ナフチル、7−(N,N−ジフェニルアミノ)−1−ナフチル、8−(N,N−ジフェニルアミノ)−1−ナフチル、1−(N,N−ジフェニルアミノ)−2−ナフチル、3−(N,N−ジフェニルアミノ)−2−ナフチル、4−(N,N−ジフェニルアミノ)−2−ナフチル、5−(N,N−ジフェニルアミノ)−2−ナフチル、6−(N,N−ジフェニルアミノ)−2−ナフチル、7−(N,N−ジフェニルアミノ)−2−ナフチル、8−(N,N−ジフェニルアミノ)−2−ナフチル等が挙げられる。
置換または非置換のアントラニル基の具体例としては、1−アントラニル、2−アントラニル、9−アントラニル、2−ブチル−1−アントラニル、3−ブチル−1−アントラニル、4−ブチル−1−アントラニル、5−ブチル−1−アントラニル、6−ブチル−1−アントラニル、7−ブチル−1−アントラニル、8−ブチル−1−アントラニル、9−ブチル−1−アントラニル、10−ブチル−1−アントラニル、1−ブチル−2−アントラニル、3−ブチル−2−アントラニル、4−ブチル−2−アントラニル、5−ブチル−2−アントラニル、6−ブチル−2−アントラニル、7−ブチル−2−アントラニル、8−ブチル−2−アントラニル、9−ブチル−2−アントラニル、10−ブチル−2−アントラニル、1−ブチル−9−アントラニル、2−ブチル−9−アントラニル、3−ブチル−9−アントラニル、4−ブチル−9−アントラニル、10−ブチル−9−アントラニル、2−ヘキシル−1−アントラニル、3−ヘキシル−1−アントラニル、4−ヘキシル−1−アントラニル、5−ヘキシル−1−アントラニル、6−ヘキシル−1−アントラニル、7−ヘキシル−1−アントラニル、8−ヘキシル−1−アントラニル、9−ヘキシル−1−アントラニル、10−ヘキシル−1−アントラニル、1−ヘキシル−2−アントラニル、3−ヘキシル−2−アントラニル、4−ヘキシル−2−アントラニル、5−ヘキシル−2−アントラニル、6−ヘキシル−2−アントラニル、7−ヘキシル−2−アントラニル、8−ヘキシル−2−アントラニル、9−ヘキシル−2−アントラニル、10−ヘキシル−2−アントラニル、1−ヘキシル−9−アントラニル、2−ヘキシル−9−アントラニル、3−ヘキシル−9−アントラニル、4−ヘキシル−9−アントラニル、10−ヘキシル−9−アントラニル、2−オクチル−1−アントラニル、3−オクチル−1−アントラニル、4−オクチル−1−アントラニル、5−オクチル−1−アントラニル、6−オクチル−1−アントラニル、7−オクチル−1−アントラニル、8−オクチル−1−アントラニル、9−オクチル−1−アントラニル、10−オクチル−1−アントラニル、1−オクチル−2−アントラニル、3−オクチル−2−アントラニル、4−オクチル−2−アントラニル、5−オクチル−2−アントラニル、6−オクチル−2−アントラニル、7−オクチル−2−アントラニル、8−オクチル−2−アントラニル、9−オクチル−2−アントラニル、10−オクチル−2−アントラニル、1−オクチル−9−アントラニル、2−オクチル−9−アントラニル、3−オクチル−9−アントラニル、4−オクチル−9−アントラニル、10−オクチル−9−アントラニル、2−フェニル−1−アントラニル、3−フェニル−1−アントラニル、4−フェニル−1−アントラニル、5−フェニル−1−アントラニル、6−フェニル−1−アントラニル、7−フェニル−1−アントラニル、8−フェニル−1−アントラニル、9−フェニル−1−アントラニル、10−フェニル−1−アントラニル、1−フェニル−2−アントラニル、3−フェニル−2−アントラニル、4−フェニル−2−アントラニル、5−フェニル−2−アントラニル、6−フェニル−2−アントラニル、7−フェニル−2−アントラニル、8−フェニル−2−アントラニル、9−フェニル−2−アントラニル、10−フェニル−2−アントラニル、1−フェニル−9−アントラニル、2−フェニル−9−アントラニル、3−フェニル−9−アントラニル、4−フェニル−9−アントラニル、10−フェニル−9−アントラニル、2−メトキシ−1−アントラニル、3−メトキシ−1−アントラニル、4−メトキシ−1−アントラニル、5−メトキシ−1−アントラニル、6−メトキシ−1−アントラニル、7−メトキシ−1−アントラニル、8−メトキシ−1−アントラニル、9−メトキシ−1−アントラニル、10−メトキシ−1−アントラニル、1−メトキシ−2−アントラニル、3−メトキシ−2−アントラニル、4−メトキシ−2−アントラニル、5−メトキシ−2−アントラニル、6−メトキシ−2−アントラニル、7−メトキシ−2−アントラニル、8−メトキシ−2−アントラニル、9−メトキシ−2−アントラニル、10−メトキシ−2−アントラニル、1−メトキシ−9−アントラニル、2−メトキシ−9−アントラニル、3−メトキシ−9−アントラニル、4−メトキシ−9−アントラニル、10−メトキシ−9−アントラニル、2−エトキシ−1−アントラニル、3−エトキシ−1−アントラニル、4−エトキシ−1−アントラニル、5−エトキシ−1−アントラニル、6−エトキシ−1−アントラニル、7−エトキシ−1−アントラニル、8−エトキシ−1−アントラニル、9−エトキシ−1−アントラニル、10−エトキシ−1−アントラニル、1−エトキシ−2−アントラニル、3−エトキシ−2−アントラニル、4−エトキシ−2−アントラニル、5−エトキシ−2−アントラニル、6−エトキシ−2−アントラニル、7−エトキシ−2−アントラニル、8−エトキシ−2−アントラニル、9−エトキシ−2−アントラニル、10−エトキシ−2−アントラニル、1−エトキシ−9−アントラニル、2−エトキシ−9−アントラニル、3−エトキシ−9−アントラニル、4−エトキシ−9−アントラニル、10−エトキシ−9−アントラニル、2−ブトキシ−1−アントラニル、3−ブトキシ−1−アントラニル、4−ブトキシ−1−アントラニル、5−ブトキシ−1−アントラニル、6−ブトキシ−1−アントラニル、7−ブトキシ−1−アントラニル、8−ブトキシ−1−アントラニル、9−ブトキシ−1−アントラニル、10−ブトキシ−1−アントラニル、1−ブトキシ−2−アントラニル、3−ブトキシ−2−アントラニル、4−ブトキシ−2−アントラニル、5−ブトキシ−2−アントラニル、6−ブトキシ−2−アントラニル、7−ブトキシ−2−アントラニル、8−ブトキシ−2−アントラニル、9−ブトキシ−2−アントラニル、10−ブトキシ−2−アントラニル、1−ブトキシ−9−アントラニル、2−ブトキシ−9−アントラニル、3−ブトキシ−9−アントラニル、4−ブトキシ−9−アントラニル、10−ブトキシ−9−アントラニル、2−アミノ−1−アントラニル、3−アミノ−1−アントラニル、4−アミノ−1−アントラニル、5−アミノ−1−アントラニル、6−アミノ−1−アントラニル、7−アミノ−1−アントラニル、8−アミノ−1−アントラニル、9−アミノ−1−アントラニル、10−アミノ−1−アントラニル、1−アミノ−2−アントラニル、3−アミノ−2−アントラニル、4−アミノ−2−アントラニル、5−アミノ−2−アントラニル、6−アミノ−2−アントラニル、7−アミノ−2−アントラニル、8−アミノ−2−アントラニル、9−アミノ−2−アントラニル、10−アミノ−2−アントラニル、1−アミノ−9−アントラニル、2−アミノ−9−アントラニル、3−アミノ−9−アントラニル、4−アミノ−9−アントラニル、10−アミノ−9−アントラニル、2−(N,N−ジメチルアミノ)−1−アントラニル、3−(N,N−ジメチルアミノ)−1−アントラニル、4−(N,N−ジメチルアミノ)−1−アントラニル、5−(N,N−ジメチルアミノ)−1−アントラニル、6−(N,N−ジメチルアミノ)−1−アントラニル、7−(N,N−ジメチルアミノ)−1−アントラニル、8−(N,N−ジメチルアミノ)−1−アントラニル、9−(N,N−ジメチルアミノ)−1−アントラニル、10−(N,N−ジメチルアミノ)−1−アントラニル、1−(N,N−ジメチルアミノ)−2−アントラニル、3−(N,N−ジメチルアミノ)−2−アントラニル、4−(N,N−ジメチルアミノ)−2−アントラニル、5−(N,N−ジメチルアミノ)−2−アントラニル、6−(N,N−ジメチルアミノ)−2−アントラニル、7−(N,N−ジメチルアミノ)−2−アントラニル、8−(N,N−ジメチルアミノ)−2−アントラニル、9−(N,N−ジメチルアミノ)−2−アントラニル、10−(N,N−ジメチルアミノ)−2−アントラニル、1−(N,N−ジメチルアミノ)−9−アントラニル、2−(N,N−ジメチルアミノ)−9−アントラニル、3−(N,N−ジメチルアミノ)−9−アントラニル、4−(N,N−ジメチルアミノ)−9−アントラニル、10−(N,N−ジメチルアミノ)−9−アントラニル、2−(N,N−ジフェニルアミノ)−1−アントラニル、3−(N,N−ジフェニルアミノ)−1−アントラニル、4−(N,N−ジフェニルアミノ)−1−アントラニル、5−(N,N−ジフェニルアミノ)−1−アントラニル、6−(N,N−ジフェニルアミノ)−1−アントラニル、7−(N,N−ジフェニルアミノ)−1−アントラニル、8−(N,N−ジフェニルアミノ)−1−アントラニル、9−(N,N−ジフェニルアミノ)−1−アントラニル、10−(N,N−ジフェニルアミノ)−1−アントラニル、1−(N,N−ジフェニルアミノ)−2−アントラニル、3−(N,N−ジフェニルアミノ)−2−アントラニル、4−(N,N−ジフェニルアミノ)−2−アントラニル、5−(N,N−ジフェニルアミノ)−2−アントラニル、6−(N,N−ジフェニルアミノ)−2−アントラニル、7−(N,N−ジフェニルアミノ)−2−アントラニル、8−(N,N−ジフェニルアミノ)−2−アントラニル、9−(N,N−ジフェニルアミノ)−2−アントラニル、10−(N,N−ジフェニルアミノ)−2−アントラニル、1−(N,N−ジフェニルアミノ)−9−アントラニル、2−(N,N−ジフェニルアミノ)−9−アントラニル、3−(N,N−ジフェニルアミノ)−9−アントラニル、4−(N,N−ジフェニルアミノ)−9−アントラニル、10−(N,N−ジフェニルアミノ)−9−アントラニル等が挙げられる。
本発明の色素増感太陽電池用色素として用いられる、式(1)で示されるカルボニルチオフェン化合物は、市販のアルキル チオフェン−3−カルボキシレートをN−ハロスクシンイミド等のハロゲン化試薬でハロゲン化して得られたカルボニルチオフェンモノマー化合物を、適宜な手法により、カップリングや、重合することで製造できる。
カップリング法としては、特に限定されるものでなく、例えば、ビアリールカップリング、Stilleカップリング、Suzukiカップリング、Ullmannカップリング、Heck反応、薗頭カップリング、Grignard反応等を用いることができる。
重合法としては、カルボニルチオフェン化合物を重合できる手法であれば特に限定されるものではなく、例えば、化学酸化重合、電解酸化重合、触媒重合等の公知の重合法から適宜選択すればよいが、本発明においては、触媒重合が好適である。
触媒重合は、カルボニルチオフェンモノマー化合物、および必要に応じて用いられる上記Zに対応するモノマーを、金属触媒の存在下で反応させ、式(1)で表されるカルボニルチオフェンオリゴマーまたはポリマー化合物とする方法である。
触媒重合に用いられるカルボニルチオフェンモノマー化合物や、Zを与えるモノマーとしては、末端(重合部位)置換基がハロゲン原子のカルボニルチオフェン化合物が好ましい。中でも、末端が臭素原子のものが好適である。
金属触媒としては、ニッケル錯体等が挙げられ、具体例としては、ビス(1,5−シクロオクタジエン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)等に代表されるニッケル(0)錯体、または塩化ニッケル、ビス(トリフェニルホスフィン)ニッケル(II)ジクロライド、[1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロライド、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロライド、トリス(2,2’−ビピリジル)ニッケル(II)ジブロマイド等に代表されるニッケル(II)錯体と1,5−シクロオクタジエン、2,2’−ビピリジン、トリフェニルホスフィンに代表される各種の配位子との組み合わせが挙げられる。これらの中でも、得られるポリマーの重合度を高めることを考慮すると、ビス(1,5−シクロオクタジエン)ニッケル、1,5−シクロオクタジエンおよび2,2’−ビピリジンの組み合わせが好ましい。
金属触媒の使用量は、基質の全モノマー化合物が有するハロゲン原子に対して0.05〜2.0モル倍が好ましく、特に0.5〜0.8モル倍が好ましい。
配位子の使用量は、基質の全モノマー化合物が有するハロゲン原子に対して0.05〜2.0モル倍が好ましく、特に0.5〜0.8モル倍が好ましい。
反応溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド化合物類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;テトラヒドロフラン(THF)、1,4−ジオキサン、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル化合物類が好ましい。中でも、1,4−ジオキサンが生成したポリマーの重合度が高いという点で好適である。
反応温度は、使用溶媒の沸点以下であればよく、通常、20〜200℃程度である。
反応時間は、特に限定されるものではないが、通常、1〜48時間程度である。
本発明に係る色素増感太陽電池は、上述した式(1)で示されるカルボニルチオフェン化合物を色素として用いるものであり、具体的には、光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、多孔質半導体の表面に本発明の色素増感太陽電池用色素が吸着されている半導体電極と、対極と、これら各極間に介在する電解質とを備えて構成される。
本発明の色素増感太陽電池においては、上述した式(1)で示されるカルボニルチオフェン化合物を色素として用いることにその特徴があるため、その他の太陽電池構成部材としては特に限定されるものではなく、公知のものから適宜選択して用いることができる。
それらの一例を挙げると、光透過性を有する基板としては、光透過性を有し、導電層の基板となり得るものであれば、特に制限はなく、ガラス基板、透明ポリマーフィルム、これらの積層体などを用いることができる。
上記透明ポリマーフィルムの材料としては、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート、ポリスルフォン、ポリエステルスルフォン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を用いることができる。
透明導電膜を構成する材料としては、例えば、白金,金,銀,銅,亜鉛,チタン,アルミニウム,インジウム,これらの合金等の金属、インジウム−スズ複合酸化物,フッ素またはアンチモンをドープした酸化スズ等の導電性金属酸化物などを用いることができるが、特に、フッ素またはアンチモンをドープした二酸化スズ、インジウム−スズ酸化物を用いることが好ましい。この透明導電層は、上記透明基体の表面に塗布または蒸着することで形成できる。
半導体を構成する金属酸化物としては、TiO2、SnO2、Fe23、WO3、ZnO、Nb25等が挙げられる。
対極としては、色素増感太陽電池の正極として作用するものであれば、特に限定はなく、例えば、ガラス基板やプラスチックフィルム等に、白金、金、銀、銅、アルミニウム、およびマグネシウムから選ばれる少なくとも1種の金属を塗布または蒸着させた電極等が挙げられる。
電解質としては、例えば、LiI,NaI,KI,CsI,CaI2等の金属ヨウ化物、4級ピリジニウムまたはイミダゾリウム化合物のヨウ素塩、テトラアルキルアンモニウム化合物のヨウ素塩等の電解質塩と、これから生じるI-と酸化還元対を形成し得るヨウ素と、有機溶媒とを含むものが挙げられる。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート類;ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等のエーテル類;メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等のアルコール類;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類などが挙げられる。
その他、本発明の色素増感太陽電池には、保護層や反射防止層などの機能層を適宜な位置に設けてもよい。
多孔質半導体の表面に本発明の色素増感太陽電池用色素を吸着させる方法としては、上記色素を含む溶液(ワニス)を調製し、この中に多孔質半導体を有する基板を浸漬させる方法、上記色素を含む溶液(ワニス)を、多孔質半導体を有する基板に塗布する方法等を用いることができる。
色素を含む溶液(ワニス)を調製する際の溶媒は、色素の溶解能を有するものであれば特に限定はなく、メタノール、エタノール、ジメチルスルホキシド(DMSO)、クロロホルムなどが挙げられる。
溶液(ワニス)中の色素濃度は、特に限定されるものではないが、0.01〜10mmol/L程度とすることができる。
色素の全吸着量は、例えば、半導体の単位表面積(1m2)あたり、0.01〜100mmol程度とすることができる。
なお、本発明の色素増感太陽電池では、本発明の色素に加え、金属錯体色素、メチン色素、ポルフィリン系色素、フタロシアニン系色素等の公知の色素を併用してもよい。
これらの中でも、高い光学活性を有し、半導体への吸着性および耐久性に優れているということから、ルテニウム−ビピリジン錯体、中でも、シス−ジ(チオシアナト)−N,N’−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)が好適である。
以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
なお、実施例にて使用した分析装置および条件は、下記のとおりである。
[1]1H−NMR
機種:JNM−A500(JEOL Ltd.)、またはAVANCE 400S(Bruker)
[2]ゲル濾過クロマトグラフィー(GPC)
機種:TOSOH:HLC−8220GPC,カラム:SHODEX GPC KF−804L+GPC KF−805L,カラム温度:40℃,検出器:UV検出器(254nm)およびRI検出器,溶離液:THF,カラム流速:1.0ml/min.
[3]吸収スペクトル
機種:UV−3600、島津製作所(株)製
[4]IPCE(incident-photon conversion efficiency)スペクトル
500WのXeランプを分光器(SM−250、分光計器(株)製)を用い、300nm〜1100nmの範囲で分光し、10nm間隔で単色光を照射し、セルからの光電流を電流計(6487、Keithley製)で検出し、この光電流スペクトルを基準シリコン受光素子で計測したスペクトルを分光感度で補正し、測定した。
[5]電流電圧測定
ソーラーシミュレーター(YSS−80、山下電装(株)製)を用い、擬似太陽光源(AM1.5,100mW/cm2)を照射し、太陽電池セルの電流電圧特性(HSV−100、HOKUTO DENKO製)を測定した。
[合成例1]メチル 2,5−ジブロモチオフェン−3−カルボキシレートの製造
Figure 0005713005
市販のメチル チオフェン−3−カルボキシレート、N,N−ジメチルホルムアミド、酢酸を反応容器に投入し、75℃に昇温した。そこにN−ブロモスクシイミドを加え、75℃で2.5時間加熱した。反応終了後、酢酸エチルで抽出し、有機層を10質量%チオ硫酸ナトリウム水溶液、水で順次洗浄し、溶媒を留去した。得られた粗生成物をシリカゲルカラムで精製(酢酸エチル/ヘキサン=1/10→1/6)し、白色の固体を得た。
1H−NMR(CDCl3):3.87(s,3H),7.35(s,1H)
[合成例2]ポリチオフェン誘導体AおよびBの製造
Figure 0005713005
合成例1で得られたメチル 2,5−ジブロモチオフェン−3−カルボキシレートと2,5−ジブロモチオフェン、2,2’−ビピリジル(1.2当量)、1,5−シクロオクタジエン(1.0当量)、およびビス(1,5−シクロオクタジエン)ニッケル(0)(1.2当量)を反応容器に投入し、窒素雰囲気下でN,N−ジメチルホルムアミドを加え、60℃で4時間加熱した。反応終了後、反応液をセライトでろ過し、クロロホルムで残渣を洗浄した。ろ液を14質量%アンモニア水、2M塩酸水溶液、水で洗浄し、有機層に無水硫酸ナトリウムを加えて乾燥し、溶媒を留去した。これをシリカゲルカラムで精製(クロロホルム/メタノール=100/0→95/5)で精製し、Mw=2700(ポリチオフェン誘導体A)および1300(ポリチオフェン誘導体B)の濃赤色固体を得た。
Mw(GPC)=2700(ポリチオフェン誘導体A)および1300(ポリチオフェン誘導体B)
[合成例3]ポリチオフェン誘導体Cの製造
Figure 0005713005
合成例2で得られたポリチオフェン誘導体A、N,N−ジメチルホルムアミドを反応容器に投入し、100℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(12当量)を滴下し、100℃で2時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2700
[合成例4]ポリチオフェン誘導体Dの製造
Figure 0005713005
合成例2で得られたポリチオフェン誘導体B、N,N−ジメチルホルムアミドを反応容器に投入し、65℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(0.6当量)を滴下し、65℃で1.5時間加熱した。その後、20質量%水酸化ナトリウム水溶液(2.4当量)を滴下し、65℃で1.5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=1100
[合成例5]ポリチオフェン誘導体Fの製造
Figure 0005713005
合成例2と同様の方法にて得られたMw=2300のポリチオフェン誘導体E、およびN,N−ジメチルホルムアミドを反応容器に投入し、50℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(20当量)を滴下し、50℃で5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2300
[合成例6]ポリチオフェン誘導体Gの製造
Figure 0005713005
合成例2と同様の方法にて得られたMw=2300のポリチオフェン誘導体E、およびN,N−ジメチルホルムアミドを反応容器に投入し、50℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(2当量)を滴下し、50℃で5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2300
[実施例1]
[1]光電変換電極の作製
図3に示されるように、表面抵抗値10Ω/sqのFTO(F:SnO2)膜12付きガラス基板11(サイズ:15mm×25mm)上に、チタニアペースト(Ti−Nanoxide T/S,SOLARONIXS社製)をスクリーン印刷法により塗布し、120℃で3分間乾燥させた後、500℃で30分間焼成し、チタニア半導体層13を形成した。焼成後のチタニア半導体層13の膜厚を触針式膜厚計(型番:ET4000A、(株)小阪研究所製)で計測したところ、8μmであった。
次に、合成例3で得られたポリチオフェン誘導体Cのジメチルスルホキシド溶液(濃度:0.1mM)に、上記焼成後の基板を浸漬し、ポリチオフェン誘導体C(色素)(図示省略)をチタニア半導体層13に吸着させ、光電変換電極10を作製した。
[2]太陽電池セルの作製
直径0.7mmの電解液注入孔を2つ有するFTO膜付きガラス基板15上に、Pt層14を成膜(膜厚:1nm)した対極20の周囲にエチレン−メタクリル酸共重合体アイオノマー樹脂膜(ハイミラン、三井・デュポンポリケミカル(株)製)(膜厚:30nm)を配置し、上記で得られた光電変換電極10と貼り合わせた。その後、電解液注入孔から、0.5mol/LのN,N,N,N−テトラブチルアンモニウムアイオダイド、0.05mol/Lのヨウ素を含むアセトニトリル溶液からなる電解質30を注入し、色素増感太陽電池セル1を作製した。
実施例1で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図4に示す。図4に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表1に示す。表1に示されるように、測定時によってデータに多少のばらつきはあるものの、1.80%の光電変換効率が得られていることがわかる。
[実施例2]
ポリチオフェン誘導体Cを、合成例4で得られたポリチオフェン誘導体Dに変更した以外は、実施例1と同様にして、光電変換電極および太陽電池セルを作製した。
実施例2で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図5に示す。図5に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表1に示す。表1に示されるように、1.95%の光電変換効率が得られていることがわかる。
[実施例3]
チタニア半導体層13の膜厚を4μmに変更した以外は実施例2と同様にして、光電変換電極および太陽電池セルを作製した。
実施例3で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図6に示す。図6に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、0.45%の光電変換効率が得られていることがわかる。
[実施例4]
ポリチオフェン誘導体Dを溶解させる溶媒をクロロホルムに変更した以外は、実施例3と同様にして、光電変換電極および太陽電池セルを作製した。
実施例4で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図7に示す。図7に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、1.09%の光電変換効率が得られていることがわかる。
[実施例5]
ポリチオフェン誘導体Dを溶解させる溶媒をエタノールに変更した以外は、実施例3と同様にして、光電変換電極および太陽電池セルを作製した。
実施例5で得られた太陽電池セルについて、300〜1100nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図8に示す。図8に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、0.79%の光電変換効率が得られていることがわかる。
[実施例6]
ポリチオフェン誘導体Dを溶解させる溶媒をメタノールに変更した以外は、実施例1と同様にして、光電変換電極および太陽電池セルを作製した。
実施例6で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図9に示す。図9に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、1.29%の光電変換効率が得られていることがわかる。
Figure 0005713005
Figure 0005713005
[実施例7]
ポリチオフェン誘導体Dを溶解させる溶媒をメタノールに変更した以外は、実施例2と同様にして、光電変換電極および太陽電池セルを作製した。
実施例7で得られた太陽電池セルについて、電流電圧特性を表3に示す。表3に示されるように、2.4%の光電変換効率が得られていることがわかる。
[実施例8]
ポリチオフェン誘導体Dのメタノール溶液にポリチオフェン誘導体Dのカルボン酸に対して2当量のN,N,N,N−テトラn−ブチルアンモニウムヒドロキシドを添加した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
実施例8で得られた太陽電池セルについて、電流電圧特性を表3に示す。表3に示されるように、3.3%の光電変換効率が得られていることがわかる。
[実施例9]
実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
実施例9で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図10に示す。図10に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表4に示す。表4に示されるように、2.3%の光電変換効率が得られていることがわかる。
[実施例10]
電解質を0.5mol/LのN,N,N,N−テトラブチルアンモニウムアイオダイド、0.05mol/Lのヨウ素を含むアセトニトリル/メタノール=90/10(vol/vol)溶液に変更した以外は、実施例9と同様にして、光電変換電極および太陽電池セルを作製した。
実施例10で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図11に示す。図11に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表4に示す。表4に示されるように、2.7%の光電変換効率が得られていることがわかる。
[実施例11]
ポリチオフェン誘導体Dを、合成例5で得られたポリチオフェン誘導体Fに変更した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
実施例11で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図12に示す。図12に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
[実施例12]
ポリチオフェン誘導体Dを、合成例6で得られたポリチオフェン誘導体Gに変更した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
実施例12で得られた太陽電池セルについて、300〜800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図13に示す。図13に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
また、実施例11および12で得られた太陽電池セルの電流電圧特性を測定した。その結果を図14に示す。図14の太線で示されたポリチオフェン誘導体Gを用いた実施例12の方が、開放電圧、短絡電流密度ともに高くなっており、光電変換効率が向上していることがわかる。
Figure 0005713005
Figure 0005713005
1 太陽電池セル(色素増感太陽電池)
10 光電変換電極
11 ガラス基板(光透過性を有する基板)
12 FTO膜(透明導電膜)
13 光増感色素が吸着したチタニア半導体層(多孔質半導体)
14 Pt層
15 ガラス基板
20 対極
30 電解質

Claims (12)

  1. 式(1)で表されるカルボニルチオフェン化合物を含むことを特徴とする色素増感太陽電池用色素。
    Figure 0005713005
    (式中、R1〜R6は、それぞれ独立して、水素原子または炭素数1〜20アルキル基を表し、
    m、n、およびoは、それぞれ独立して、0または1以上の整数を表し、pは、1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1,000を満足し、
    Zは、下記式(2)〜(4)から選ばれる2価の有機基であり、
    Figure 0005713005
    7〜R16は、それぞれ独立して、水素原子または炭素数1〜20アルキル基を表す。)
  2. 前記R1〜R4が水素原子であり、当該水素原子が第4級アンモニウム塩とカチオン交換してなる請求項1記載の色素増感太陽電池用色素。
  3. 前記第4級アンモニウム塩が、テトラアルキルアンモニウムヒドロキシドである請求項2記載の色素増感太陽電池用色素。
  4. 前記R1〜R4の一部が水素原子であり、残部が炭素数1〜20アルキル基である請求項1記載の色素増感太陽電池用色素。
  5. 請求項1〜4のいずれか1項記載の色素増感太陽電池用色素を含む組成物。
  6. 請求項1〜4のいずれか1項記載の色素増感太陽電池用色素を含むワニス。
  7. 請求項1〜4のいずれか1項記載の色素増感太陽電池用色素を含む有機薄膜。
  8. 請求項1〜4のいずれか1項記載のワニスから作製される有機薄膜。
  9. 光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、
    前記多孔質半導体の表面に請求項1〜4のいずれか1項記載の色素増感太陽電池用色素が吸着されていることを特徴とする半導体電極。
  10. 請求項6記載のワニスに多孔質半導体を有する基板を浸漬し、前記色素増感太陽電池用色素を前記多孔質半導体に吸着させてなる請求項9記載の半導体電極。
  11. 請求項9記載の半導体電極と、対極と、これら半導体電極および対極間に介在する電解質と、を備えて構成される色素増感太陽電池。
  12. 前記電解質がアルコールを含む請求項11記載の色素増感太陽電池。
JP2012507063A 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池 Expired - Fee Related JP5713005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507063A JP5713005B2 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010072136 2010-03-26
JP2010072136 2010-03-26
JP2012507063A JP5713005B2 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池
PCT/JP2011/057200 WO2011118715A1 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池

Publications (2)

Publication Number Publication Date
JPWO2011118715A1 JPWO2011118715A1 (ja) 2013-07-04
JP5713005B2 true JP5713005B2 (ja) 2015-05-07

Family

ID=44673261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012507063A Expired - Fee Related JP5713005B2 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池

Country Status (2)

Country Link
JP (1) JP5713005B2 (ja)
WO (1) WO2011118715A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109860A (en) * 1980-12-26 1982-07-08 Mitsubishi Chem Ind Ltd Disazo dye for polyester fiber
JP2004253333A (ja) * 2003-02-21 2004-09-09 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2005135656A (ja) * 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池
JP2011204546A (ja) * 2010-03-26 2011-10-13 Koji Segawa 多孔質半導体および色素増感太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109860A (en) * 1980-12-26 1982-07-08 Mitsubishi Chem Ind Ltd Disazo dye for polyester fiber
JP2004253333A (ja) * 2003-02-21 2004-09-09 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2005135656A (ja) * 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池
JP2011204546A (ja) * 2010-03-26 2011-10-13 Koji Segawa 多孔質半導体および色素増感太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011030898; Zhen Fang, Aaron A.Eshbaugh, and Kirk S.Schanze: 'Low-Bandgap Donor-Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells' Journal of the American Chemical Society Vol.133, 20110209, Page 3063-3069 *

Also Published As

Publication number Publication date
JPWO2011118715A1 (ja) 2013-07-04
WO2011118715A1 (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
Xu et al. Energy-level and molecular engineering of organic D-π-A sensitizers in dye-sensitized solar cells
JP5491419B2 (ja) 高分子吸光係数金属色素
Yin et al. Facile synthesis of poly (3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells
Driscoll et al. Enhanced photoresponse in solid-state excitonic solar cells via resonant energy transfer and cascaded charge transfer from a secondary absorber
Wang et al. Effects of the acceptors in triphenylamine-based D–A′–π–A dyes on photophysical, electrochemical, and photovoltaic properties
Tigreros et al. Influence of acetylene-linked π-spacers on triphenylamine–fluorene dye sensitized solar cells performance
JP5569091B2 (ja) 多孔質半導体および色素増感太陽電池
Mikroyannidis et al. Novel broadly absorbing sensitizers with cyanovinylene 4-nitrophenyl segments and various anchoring groups: synthesis and application for high-efficiency dye-sensitized solar cells
Abdellah et al. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies
Lai et al. New bithiazole-functionalized organic photosensitizers for dye-sensitized solar cells
Roh et al. Strategy for improved photoconversion efficiency in thin photoelectrode films by controlling π-spacer dihedral angle
Mansha et al. 1, 5-Naphthyridine-based conjugated polymers as co-sensitizers for dye-sensitized solar cells
Long et al. Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells
JP5494473B2 (ja) 色素増感太陽電池の半導体電極作製用ワニスおよび色素増感太陽電池
JP6043493B2 (ja) スクアリリウム化合物、それを含む薄膜および有機薄膜太陽電池
Tamilavan et al. Synthesis of triphenylamine-based thiophene-(N-aryl) pyrrole-thiophene dyes for dye-sensitized solar cell applications
Zhang et al. Synthesis and photovoltaic properties of polymeric metal complexes containing 8-hydroxyquinoline as dye sensitizers for dye-sensitized solar cells
KR102448440B1 (ko) 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
Sil et al. Effect and position of spiro-bipropylenedioxythiophene π-spacer in donor-π-spacer-acceptor dyes for dye-sensitized solar cell
JP5569090B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池
JP5713005B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池
JP6101625B2 (ja) 光電変換素子用色素、それを用いた光電変換膜、電極及び太陽電池
Wang et al. Electrochemical Polymerization-Fabricated Several Triphenylamine–Carbazolyl-Based Polymers with Improved Short-Circuit Current and High Adsorption Stability in Dye-Sensitized Solar Cells
KR101264082B1 (ko) 벤조씨아졸을 함유하는 염료감응 태양전지용 염료 및 이를 이용한 염료감응 태양전지
Im et al. Synthesis and characterization of Y-shape electron donor–acceptor type organic dyes for dye-sensitized solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5713005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees