WO2011118715A1 - 色素増感太陽電池用色素および色素増感太陽電池 - Google Patents

色素増感太陽電池用色素および色素増感太陽電池 Download PDF

Info

Publication number
WO2011118715A1
WO2011118715A1 PCT/JP2011/057200 JP2011057200W WO2011118715A1 WO 2011118715 A1 WO2011118715 A1 WO 2011118715A1 JP 2011057200 W JP2011057200 W JP 2011057200W WO 2011118715 A1 WO2011118715 A1 WO 2011118715A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
anthranyl
naphthyl
sensitized solar
solar cell
Prior art date
Application number
PCT/JP2011/057200
Other languages
English (en)
French (fr)
Inventor
浩司 瀬川
聡 内田
久保 貴哉
健太 秋津
直樹 大谷
隆行 田村
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012507063A priority Critical patent/JP5713005B2/ja
Publication of WO2011118715A1 publication Critical patent/WO2011118715A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a dye for a dye-sensitized solar cell and a dye-sensitized solar cell using the dye.
  • a semiconductor electrode having a light absorption effect in which a dye is adsorbed on a semiconductor electrode made of a porous metal oxide is used. Since the photoelectric conversion efficiency of a solar cell is proportional to the amount of electrons generated by the absorption of sunlight, it is necessary to increase the dye adsorption amount on the semiconductor electrode in order to improve the conversion efficiency. For this reason, it is calculated
  • Non-Patent Document 1 As a dye-sensitized solar cell dye, an example in which carboxylic acid is introduced at the end of an oligothiophene compound to improve affinity and adhesion to a porous metal oxide has been reported (Non-Patent Document 1). reference). In addition, examples of dyes for dye-sensitized solar cells have been reported in which an acetic acid group and a malonic acid group are introduced into a polythiophene compound to improve the affinity and adhesion to a porous metal oxide. (See Patent Documents 2 and 3). However, in a polythiophene compound having a wide wavelength range that can be absorbed, a dye that directly binds a carboxylic acid without using a methylene group or a methine group has not been designed.
  • the present invention has been made in view of such circumstances, and is a dye-sensitized solar cell dye excellent in efficiency of converting light absorption rate and light energy into electric energy, and dye-sensitized solar using the same.
  • An object is to provide a battery.
  • the present inventors have made extensive studies to achieve the above object, and as a result, the dye-sensitized solar comprising a poly or oligothiophene compound having a carboxyl group or an alkoxycarbonyl (carboxylic acid ester) group.
  • the present invention has been completed by finding that the battery pigment is excellent in light absorption rate and energy conversion efficiency.
  • a dye for a dye-sensitized solar cell comprising a carbonylthiophene compound represented by the formula (1): (Wherein R 1 to R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and m, n, o and p each independently represents 0 or an integer of 1 or more. And 1 ⁇ m + n + o and 2 ⁇ m + n + o + p ⁇ 1,000, and Z is a divalent organic group selected from the following formulas (2) to (4): R 7 to R 16 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ) 2. 1.
  • a dye for a dye-sensitized solar cell wherein R 1 to R 4 are hydrogen atoms, and the hydrogen atoms are cation exchanged with a quaternary ammonium salt; 3. 2 dye-sensitized solar cell dye, wherein the quaternary ammonium salt is tetraalkylammonium hydroxide; 4).
  • a dye for dye-sensitized solar cells wherein a part of R 1 to R 4 is a hydrogen atom and the remainder is an alkyl group having 1 to 20 carbon atoms; 5.
  • a composition comprising any one of the dyes for dye-sensitized solar cells of 1 to 4, 6).
  • a dye-sensitized solar cell comprising: 9 semiconductor electrodes; a counter electrode; and an electrolyte interposed between the semiconductor electrode and the counter electrode; 12
  • An eleventh dye-sensitized solar cell in which the electrolyte contains alcohol is provided.
  • the present invention it is possible to provide a dye-sensitized solar cell dye excellent in light absorption rate and efficiency of converting light energy into electric energy, and a dye-sensitized solar cell using the same.
  • FIG. 6 is a graph showing an absorption spectrum of polythiophene derivative C obtained in Synthesis Example 3.
  • FIG. 6 is a graph showing an absorption spectrum of a polythiophene derivative D obtained in Synthesis Example 4.
  • FIG. 1 is a schematic cross-sectional view of a dye-sensitized solar cell produced in Example 1.
  • FIG. 3 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 1.
  • FIG. 4 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 2.
  • FIG. FIG. 4 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 3. It is a figure which shows the IPCE spectrum of the dye-sensitized solar cell produced in Example 4.
  • FIG. 6 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 5.
  • FIG. It is a figure which shows the IPCE spectrum of the dye-sensitized solar cell produced in Example 6.
  • 10 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 9.
  • FIG. It is a figure which shows the IPCE spectrum of the dye-sensitized solar cell produced in Example 10.
  • 10 is a diagram showing an IPCE spectrum of a dye-sensitized solar cell produced in Example 11.
  • FIG. It is a figure which shows the IPCE spectrum of the dye-sensitized solar cell produced in Example 12.
  • It is a figure which shows the current-voltage characteristic of the dye-sensitized solar cell obtained in Example 11 and 12.
  • n is normal, “i” is iso, “s” is secondary, “t” is tertiary, “c” is cyclo, “o” is ortho, “M” means meta, “p” means para, “Me” means methyl group, “Et” means ethyl group, “Pr” means propyl group, “Bu” means butyl group, “Ph” "Means a phenyl group.
  • dye for dye-sensitized solar cells in this invention contains the carbonyl thiophene compound shown by the said Formula (1).
  • the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, c-propyl group, n-butyl group, i-butyl group, s -Butyl group, t-butyl group, c-butyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1- Dimethyl-n-propyl group, c-pentyl group, 2-methyl-c-butyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 1,1-dimethyl- n-butyl group, 1-ethyl-
  • R 1 to R 4 in consideration of increasing the adsorptivity to the metal oxide constituting the semiconductor electrode and the solubility in the organic solvent at the time of varnish preparation, A hydrogen atom and an alkyl group having 1 to 10 carbon atoms are preferable, and considering that the open-circuit voltage of the resulting dye-sensitized solar cell is improved, a part thereof is a hydrogen atom and the remaining is an alkyl group having 1 to 10 carbon atoms. That is, it is preferable that a carboxyl group and a carboxylate group are mixed.
  • the carboxythiophene compound in which R 1 to R 4 are all hydrogen atoms may be cation exchanged with a quaternary ammonium salt.
  • the quaternary ammonium salt is not particularly limited, but in the present invention, tetra C 1-10 alkyl ammonium hydroxide is preferable, tetra C 1-5 alkyl ammonium hydroxide is more preferable, and tetra n -Butylammonium hydroxide is optimal.
  • R 5 and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom.
  • Z in the formula (1) is at least one divalent organic group selected from the above formulas (2) to (4), and a divalent organic group represented by the formula (2) is particularly preferable.
  • an unsubstituted thiophenyl group in which R 7 and R 8 are both hydrogen atoms is preferred.
  • M, n, o and p each independently represent 0 or an integer of 1 or more, and are integers satisfying 1 ⁇ m + n + o and 2 ⁇ m + n + o + p ⁇ 1000, preferably 2 ⁇ m + n + o + p ⁇ 200 5 ⁇ m + n + o + p ⁇ 200 is more preferable.
  • a compound in which any two of n, m, o, and p are 0, and a compound in which any two of n, m, and o are 0 are preferable.
  • This compound may be an oligomer satisfying 2 ⁇ m + n + o + p ⁇ 20 or a polymer satisfying 20 ⁇ m + n + o + p ⁇ 1000.
  • the molecular weight of the carbonylthiophene compound is not particularly limited, but in the case of a polymer, the weight average molecular weight is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
  • the weight average molecular weight in this invention is a polystyrene conversion value by gel filtration chromatography.
  • Both ends of the carbonylthiophene compound are independently of each other a hydrogen atom, a halogen atom, a C1-20 monoalkylamino group, a C1-20 dialkylamino group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted group.
  • a naphthyl group, a substituted or unsubstituted anthranyl group, a trialkylstannyl group having 1 to 10 carbon atoms, a trialkylsilyl group having 1 to 10 carbon atoms and the like are preferable, and a hydrogen atom is particularly preferable.
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.
  • Specific examples of the monoalkylamino group having 1 to 20 carbon atoms include NHMe, NHEt, NHPr-n, NHPr-i, NHBu-n, NHBu-i, NHBu-s, NHBu-t, NHPen-n, NHCHEt 2 , NHHex-n, NHHep-n, NHOct-n, NHDec-n and the like can be mentioned.
  • C 1-20 dialkylamino group examples include NMe 2 , NEt 2 , N (Pr-n) 2 , N (Pr-i) 2 , N (Bu-n) 2 , N (Bu-i). 2 , N (Bu-s) 2 , N (Bu-t) 2 , N (Pen-n) 2 , N (CHEt 2 ) 2 , N (Hex-n) 2 , N (Hep-n) 2 , N (Oct-n) 2 , N (Dec-n) 2 , N (Me) (Bu-n), N (Me) (Pen-n), N (Me) (Hex-n), N (Me) ( Hep-n), N (Me) (Oct-n), N (Me) (Dec-n) and the like.
  • trialkylstannyl group having 1 to 10 carbon atoms include SnMe 3 , SnEt 3 , Sn (Pr-n) 3 , Sn (Pr-i) 3 , Sn (Bu-n) 3 , Sn (Bu— i) 3 , Sn (Bu-s) 3 , Sn (Bu-t) 3 and the like.
  • C1-C10 trialkylsilyl group include SiMe 3 , SiEt 3 , Si (Pr—n) 3 , Si (Pr—i) 3 , Si (Bu—n) 3 , Si (Bu—i). ) 3 , Si (Bu-s) 3 , Si (Bu-t) 3 and the like.
  • substituted or unsubstituted phenyl group examples include phenyl, o-methylphenyl, m-methylphenyl, p-methylphenyl, o-trifluoromethylphenyl, m-trifluoromethylphenyl, and p-trifluoromethylphenyl.
  • substituted or unsubstituted naphthyl group examples include 1-naphthyl, 2-naphthyl, 2-butyl-1-naphthyl, 3-butyl-1-naphthyl, 4-butyl-1-naphthyl, 5-butyl-1 -Naphthyl, 6-butyl-1-naphthyl, 7-butyl-1-naphthyl, 8-butyl-1-naphthyl, 1-butyl-2-naphthyl, 3-butyl-2-naphthyl, 4-butyl-2-naphthyl 5-butyl-2-naphthyl, 6-butyl-2-naphthyl, 7-butyl-2-naphthyl, 8-butyl-2-naphthyl, 2-hexyl-1-naphthyl, 3-he
  • substituted or unsubstituted anthranyl group examples include 1-anthranyl, 2-anthranyl, 9-anthranyl, 2-butyl-1-anthranyl, 3-butyl-1-anthranyl, 4-butyl-1-anthranyl, 5 -Butyl-1-anthranyl, 6-butyl-1-anthranyl, 7-butyl-1-anthranyl, 8-butyl-1-anthranyl, 9-butyl-1-anthranyl, 10-butyl-1-anthranyl, 1-butyl -2-anthranyl, 3-butyl-2-anthranyl, 4-butyl-2-anthranyl, 5-butyl-2-anthranyl, 6-butyl-2-anthranyl, 7-butyl-2-anthranyl, 8-butyl-2 -Anthranyl, 9-butyl-2-anthranyl,
  • the carbonylthiophene compound represented by the formula (1) used as the dye for the dye-sensitized solar cell of the present invention is obtained by halogenating a commercially available alkyl thiophene-3-carboxylate with a halogenating reagent such as N-halosuccinimide.
  • the obtained carbonylthiophene monomer compound can be produced by coupling or polymerization by an appropriate method.
  • the coupling method is not particularly limited, and for example, biaryl coupling, Stille coupling, Suzuki coupling, Ullmann coupling, Heck reaction, Sonogashira coupling, Grignard reaction and the like can be used.
  • the polymerization method is not particularly limited as long as it is a method capable of polymerizing a carbonylthiophene compound, and may be appropriately selected from known polymerization methods such as chemical oxidation polymerization, electrolytic oxidation polymerization, and catalytic polymerization. In the invention, catalytic polymerization is preferred.
  • Catalytic polymerization is a method in which a carbonylthiophene monomer compound and a monomer corresponding to Z used as necessary are reacted in the presence of a metal catalyst to obtain a carbonylthiophene oligomer or polymer compound represented by the formula (1). It is.
  • a carbonylthiophene monomer compound used for catalytic polymerization and the monomer that gives Z a carbonylthiophene compound having a halogen atom at the terminal (polymerization site) substituent is preferred. Of these, those having a bromine atom at the end are preferred.
  • the metal catalyst examples include nickel complexes, and specific examples include nickel (0) represented by bis (1,5-cyclooctadiene) nickel (0), tetrakis (triphenylphosphine) nickel (0), and the like.
  • ) Complex, or nickel chloride bis (triphenylphosphine) nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel (II) dichloride, [1,3-bis (diphenylphosphino) propane ]
  • the amount of the metal catalyst used is preferably 0.05 to 2.0 moles, and particularly preferably 0.5 to 0.8 moles, relative to the halogen atoms contained in all monomer compounds of the substrate.
  • the amount of the ligand used is preferably 0.05 to 2.0 moles, particularly preferably 0.5 to 0.8 moles, relative to the halogen atoms contained in all monomer compounds of the substrate.
  • reaction solvent examples include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; aromatic hydrocarbons such as benzene, toluene and xylene; tetrahydrofuran (THF), 1,4-dioxane, Ether compounds such as 1,2-dimethoxyethane and diethylene glycol dimethyl ether are preferred.
  • THF tetrahydrofuran
  • Ether compounds such as 1,2-dimethoxyethane and diethylene glycol dimethyl ether are preferred.
  • the polymer formed from 1,4-dioxane is preferable in that the degree of polymerization is high.
  • the reaction temperature may be not higher than the boiling point of the solvent used, and is usually about 20 to 200 ° C.
  • the reaction time is not particularly limited, but is usually about 1 to 48 hours.
  • the dye-sensitized solar cell according to the present invention uses the above-described carbonylthiophene compound represented by the formula (1) as a dye, and specifically, a substrate having optical transparency and a layer laminated on the substrate.
  • a semiconductor electrode having a transparent conductive film and a porous semiconductor made of a metal oxide laminated on the transparent conductive film, wherein the dye for a dye-sensitized solar cell of the present invention is adsorbed on the surface of the porous semiconductor; , And a counter electrode and an electrolyte interposed between these electrodes.
  • the other solar cell constituent members are not particularly limited.
  • the light-transmitting substrate is not particularly limited as long as it has a light-transmitting property and can be a conductive layer substrate, and includes a glass substrate, a transparent polymer film, and a laminate thereof. Etc. can be used.
  • the material for the transparent polymer film examples include triacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • polyarylate examples of the material for the transparent polymer film
  • Polysulfone, polyester sulfone (PES), polyimide (PI), polyetherimide (PEI), cyclic polyolefin, brominated phenoxy, and the like can be used.
  • the transparent conductive film for example, platinum, gold, silver, copper, zinc, titanium, aluminum, indium, alloys such as these alloys, indium-tin composite oxide, tin oxide doped with fluorine or antimony In particular, it is preferable to use tin dioxide or indium-tin oxide doped with fluorine or antimony.
  • This transparent conductive layer can be formed by applying or vapor-depositing on the surface of the transparent substrate.
  • the metal oxide constituting the semiconductor examples include TiO 2 , SnO 2 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5 and the like.
  • the counter electrode is not particularly limited as long as it acts as a positive electrode of the dye-sensitized solar cell.
  • electrolyte salts such as metal iodides such as LiI, NaI, KI, CsI, and CaI 2 , iodine salts of quaternary pyridinium or imidazolium compounds, iodine salts of tetraalkylammonium compounds, and the resulting I ⁇ .
  • organic solvent containing iodine capable of forming a redox pair.
  • Organic solvents include carbonates such as ethylene carbonate and propylene carbonate; ethers such as dioxane, diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether; methanol, ethanol, ethylene glycol Monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin; acetonitrile, propionitrile, benzonitrile, etc. Nitrile And the like.
  • the dye-sensitized solar cell of the present invention may be provided with a functional layer such as a protective layer or an antireflection layer at an appropriate position.
  • a method for adsorbing the dye-sensitized solar cell dye of the present invention on the surface of the porous semiconductor a method of preparing a solution (varnish) containing the dye and immersing the substrate having the porous semiconductor in the above, The method etc. which apply
  • the solvent for preparing the solution (varnish) containing the dye is not particularly limited as long as it has the ability to dissolve the dye, and examples thereof include methanol, ethanol, dimethyl sulfoxide (DMSO), and chloroform.
  • the concentration of the dye in the solution (varnish) is not particularly limited, but can be about 0.01 to 10 mmol / L.
  • the total adsorption amount of the dye can be, for example, about 0.01 to 100 mmol per unit surface area (1 m 2 ) of the semiconductor.
  • dyes such as metal complex dyes, methine dyes, porphyrin dyes, and phthalocyanine dyes may be used in combination with the dye of the present invention.
  • ruthenium-bipyridine complexes particularly cis-di (thiocyanato) -N, N′-bis (2,) have high optical activity and are excellent in adsorptivity and durability to semiconductors. 2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) is preferred.
  • Mw 2300 polythiophene derivative E and N, N-dimethylformamide obtained in the same manner as in Synthesis Example 2 were charged into a reaction vessel, and the temperature was raised to 50 ° C. 20 mass% sodium hydroxide aqueous solution (20 equivalent) was dripped here, and it heated at 50 degreeC for 5 hours. After completion of the reaction, 2M aqueous hydrochloric acid solution was added, and the mixture was dried. The resulting solid was washed with water and filtered to give a dark red solid.
  • Mw (GPC) 2300
  • Mw 2300 polythiophene derivative E and N, N-dimethylformamide obtained in the same manner as in Synthesis Example 2 were charged into a reaction vessel, and the temperature was raised to 50 ° C. 20 mass% sodium hydroxide aqueous solution (2 equivalent) was dripped here, and it heated at 50 degreeC for 5 hours. After completion of the reaction, 2M aqueous hydrochloric acid solution was added, and the mixture was dried. The resulting solid was washed with water and filtered to give a dark red solid.
  • Mw (GPC) 2300
  • the substrate after baking is immersed in a dimethyl sulfoxide solution (concentration: 0.1 mM) of the polythiophene derivative C obtained in Synthesis Example 3, and the polythiophene derivative C (pigment) (not shown) is added to the titania semiconductor layer 13.
  • a dimethyl sulfoxide solution concentration: 0.1 mM
  • an electrolyte 30 composed of an acetonitrile solution containing 0.5 mol / L of N, N, N, N-tetrabutylammonium iodide and 0.05 mol / L of iodine is injected from the electrolyte injection hole, and dye sensitization is performed.
  • a solar battery cell 1 was produced.
  • IPCE For the solar cell obtained in Example 1, IPCE was measured in the range of 300 to 800 nm. The obtained IPCE spectrum is shown in FIG. As shown in FIG. 4, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm. Moreover, the current-voltage characteristic of the obtained photovoltaic cell was measured. The results are shown in Table 1. As shown in Table 1, it can be seen that a photoelectric conversion efficiency of 1.80% is obtained although there is some variation in data depending on the measurement time.
  • Example 2 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 1 except that the polythiophene derivative C was changed to the polythiophene derivative D obtained in Synthesis Example 4.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG.
  • FIG. 5 it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 1 As shown in Table 1, it can be seen that a photoelectric conversion efficiency of 1.95% is obtained.
  • Example 3 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 2 except that the thickness of the titania semiconductor layer 13 was changed to 4 ⁇ m. With respect to the solar battery cell obtained in Example 3, IPCE was measured in the range of 300 to 800 nm. The obtained IPCE spectrum is shown in FIG. As shown in FIG. 6, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm. Moreover, the current-voltage characteristic of the obtained photovoltaic cell was measured. The results are shown in Table 2. As shown in Table 2, it can be seen that a photoelectric conversion efficiency of 0.45% is obtained.
  • Example 4 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 3 except that the solvent for dissolving the polythiophene derivative D was changed to chloroform.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG. As shown in FIG. 7, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 2 As shown in Table 2, it can be seen that a photoelectric conversion efficiency of 1.09% is obtained.
  • Example 5 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 3 except that the solvent for dissolving the polythiophene derivative D was changed to ethanol.
  • IPCE was measured in the range of 300 to 1100 nm.
  • the obtained IPCE spectrum is shown in FIG. As shown in FIG. 8, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 2 As shown in Table 2, it can be seen that a photoelectric conversion efficiency of 0.79% is obtained.
  • Example 6 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 1 except that the solvent for dissolving the polythiophene derivative D was changed to methanol.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG.
  • FIG. 9 it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 2 As shown in Table 2, it can be seen that a photoelectric conversion efficiency of 1.29% is obtained.
  • Example 7 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 2 except that the solvent for dissolving the polythiophene derivative D was changed to methanol.
  • Table 3 shows the current-voltage characteristics of the solar battery cell obtained in Example 7. As shown in Table 3, it can be seen that a photoelectric conversion efficiency of 2.4% is obtained.
  • Example 8 Photoelectric conversion in the same manner as in Example 7 except that 2 equivalents of N, N, N, N-tetra n-butylammonium hydroxide with respect to the carboxylic acid of the polythiophene derivative D was added to the methanol solution of the polythiophene derivative D. Electrodes and solar cells were produced. Table 3 shows the current-voltage characteristics of the solar battery cell obtained in Example 8. As shown in Table 3, it is understood that a photoelectric conversion efficiency of 3.3% is obtained.
  • Example 9 In the same manner as in Example 7, a photoelectric conversion electrode and a solar battery cell were produced.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG.
  • FIG. 10 it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 4 it can be seen that a photoelectric conversion efficiency of 2.3% is obtained.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG.
  • FIG. 11 it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristic of the obtained photovoltaic cell was measured.
  • Table 4 As shown in Table 4, it can be seen that a photoelectric conversion efficiency of 2.7% is obtained.
  • Example 11 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 7 except that the polythiophene derivative D was changed to the polythiophene derivative F obtained in Synthesis Example 5.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG. As shown in FIG. 12, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • Example 12 A photoelectric conversion electrode and a solar battery cell were produced in the same manner as in Example 7 except that the polythiophene derivative D was changed to the polythiophene derivative G obtained in Synthesis Example 6.
  • IPCE was measured in the range of 300 to 800 nm.
  • the obtained IPCE spectrum is shown in FIG. As shown in FIG. 13, it can be seen that IPCE is obtained in a region corresponding to light absorption from ultraviolet to 650 nm.
  • the current-voltage characteristics of the solar cells obtained in Examples 11 and 12 were measured. The result is shown in FIG. In Example 12 using the polythiophene derivative G shown by the thick line in FIG. 14, both the open-circuit voltage and the short-circuit current density are higher, indicating that the photoelectric conversion efficiency is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 式(1)で表されるカルボニルチオフェン化合物を含む色素増感太陽電池用色素、およびこれを用いた色素増感太陽電池を提供すること。 (式中、R1~R6は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表し、m、n、oおよびpは、それぞれ独立して、0または1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1,000を満足し、Zは、下記式(2)~(4)から選ばれる2価の有機基であり、 R7~R16は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表す。)

Description

色素増感太陽電池用色素および色素増感太陽電池
 本発明は、色素増感太陽電池用色素およびこの色素を用いた色素増感太陽電池に関する。
 近年直面しているエネルギー問題や地球環境問題を解決するために、従来の化石燃料に代替し得るエネルギーに関して多様な研究が進められている。
 中でも、太陽光エネルギーを利用する太陽電池は、資源が無限であるのみならず、環境調和型デバイスであるため大きな注目を集めている。
 特に、色素増感太陽電池は、使用する材料が安価であること、製造プロセスに真空装置を用いなくても済むことなどの利点から、グレッツェルらにより提案されて以来、実用化に向けた研究が盛んに行われている。
 この色素増感太陽電池では、多孔質状の金属酸化物からなる半導体電極に色素を吸着させた、光吸収作用を有する半導体電極が用いられている。
 太陽電池の光電変換効率は、太陽光の吸収によって発生した電子量に比例することから、変換効率を向上させるためには、半導体電極上の色素吸着量を大きくする必要がある。
 このため、色素増感太陽電池用の色素には、金属酸化物に対する、高い親和性や密着性を有することが求められる。
 また、半導体電極への色素の吸着は、一般的に、色素を有機溶媒に溶解してなる溶液に、半導体電極を浸漬することにより行われているため、有機溶媒に対する優れた溶解性も色素に求められる重要な性質である。
 色素増感太陽電池用色素として、オリゴチオフェン化合物の末端にカルボン酸を導入し、多孔質状の金属酸化物への親和性や密着性を改善させた例が報告されている(非特許文献1参照)。
 また、色素増感太陽電池用色素として、ポリチオフェン化合物に酢酸基およびマロン酸基を導入し、多孔質状の金属酸化物への親和性や密着性を改善させた例が報告されている(非特許文献2、3参照)。
 しかしながら、吸収できる波長領域が広いポリチオフェン化合物において、メチレン基やメチン基を介さずに、直接カルボン酸を結合させる色素の設計は行われていない。
Tanaka K. et al., Chemistry Letters, 2006, 35(6), p.592-593 Yanagida S. et al., Journal of Photochemistry and Photobiology. A, Chemistry, 2004, 166, p75-80 Yanagida S. et al., Solar Energy Materials and Solar Cells, 2005, 88(3), p315-322
 本発明は、このような事情に鑑みてなされたものであり、光吸収率および光エネルギーを電気エネルギーに変換する効率に優れた色素増感太陽電池用色素、およびこれを用いた色素増感太陽電池を提供することを目的とする。
 一般的に色素増感太陽電池の効率を向上させるためには、第一に色素増感太陽電池に入射してくる光を最大限利用できるよう光吸収率を高めることが重要であり、第二に吸収した光エネルギーを電気エネルギーに変換する効率を高めることが重要である。
 色素増感太陽電池では、光吸収は光増感色素によって担われることから、光増感色素はできるだけ広い吸収領域を吸収できる色素を選択することによって、光吸収率を高めることができると期待される。
 また、光増感色素により吸収された光エネルギーは、金属酸化物と電解液により電荷分離され、電気エネルギーに変換されることから、色素から金属酸化物への電荷注入効率を上げるために、光吸収部位と金属酸化物への吸着部位が近接した色素を選択することによって、吸収された光エネルギーの電気エネルギーへの変換効率を高めることができると期待される。
 本発明者らは、これらの観点を踏まえ、上記目的を達成するために鋭意検討を重ねた結果、カルボキシル基またはアルコキシカルボニル(カルボン酸エステル)基を有するポリまたはオリゴチオフェン化合物を含む色素増感太陽電池用色素が、光吸収率およびエネルギーの変換効率に優れていることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 式(1)で表されるカルボニルチオフェン化合物を含むことを特徴とする色素増感太陽電池用色素、
Figure JPOXMLDOC01-appb-C000003
(式中、R1~R6は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表し、m、n、oおよびpは、それぞれ独立して、0または1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1,000を満足し、Zは、下記式(2)~(4)から選ばれる2価の有機基であり、
Figure JPOXMLDOC01-appb-C000004
 R7~R16は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表す。)
2. 前記R1~R4が水素原子であり、当該水素原子が第4級アンモニウム塩とカチオン交換してなる1の色素増感太陽電池用色素、
3. 前記第4級アンモニウム塩が、テトラアルキルアンモニウムヒドロキシドである2の色素増感太陽電池用色素、
4. 前記R1~R4の一部が水素原子であり、残部が炭素数1~20アルキル基である1の色素増感太陽電池用色素、
5. 1~4のいずれかの色素増感太陽電池用色素を含む組成物、
6. 1~4のいずれかの色素増感太陽電池用色素を含むワニス、
7. 1~4のいずれかの色素増感太陽電池用色素を含む有機薄膜、
8. 1~4のいずれかのワニスから作製される有機薄膜、
9. 光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、前記多孔質半導体の表面に1~4のいずれかの色素増感太陽電池用色素が吸着されていることを特徴とする半導体電極、
10. 6のワニスに多孔質半導体を有する基板を浸漬し、前記色素増感太陽電池用色素を前記多孔質半導体に吸着させてなる9の半導体電極、
11. 9の半導体電極と、対極と、これら半導体電極および対極間に介在する電解質と、を備えて構成される色素増感太陽電池、
12. 前記電解質がアルコールを含む11の色素増感太陽電池
を提供する。
 本発明によれば、光吸収率および光エネルギーを電気エネルギーに変換する効率に優れた色素増感太陽電池用色素、およびこれを用いた色素増感太陽電池を提供できる。
合成例3で得られたポリチオフェン誘導体Cの吸収スペクトルを示す図である。 合成例4で得られたポリチオフェン誘導体Dの吸収スペクトルを示す図である。 実施例1で作製した色素増感太陽電池の概略断面図である。 実施例1で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例2で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例3で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例4で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例5で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例6で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例9で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例10で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例11で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例12で作製した色素増感太陽電池セルのIPCEスペクトルを示す図である。 実施例11および12で得られた色素増感太陽電池セルの電流電圧特性を示す図である。
 以下、本発明についてさらに詳しく説明する。
 なお、本明細書中、「n」はノルマルを、「i」はイソを、「s」はセカンダリーを、「t」はターシャリーを、「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを意味し、「Me」はメチル基を、「Et」はエチル基を、「Pr」はプロピル基を、「Bu」はブチル基を、「Ph」はフェニル基を意味する。
 本発明における色素増感太陽電池用色素は、上記式(1)で示されるカルボニルチオフェン化合物を含むものである。
 式(1)において、炭素数1~20アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、c-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、c-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、c-ペンチル基、2-メチル-c-ブチル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、c-ヘキシル基、1-メチル-c-ペンチル基、1-エチル-c-ブチル基、1,2-ジメチル-c-ブチル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基等が挙げられる。
 本発明の色素増感太陽電池用色素において、R1~R4としては、半導体電極を構成する金属酸化物に対する吸着性や、ワニス調製時の有機溶媒に対する溶解性をより高めることを考慮すると、水素原子、炭素数1~10アルキル基が好ましく、得られる色素増感太陽電池の開放電圧を向上させるということを考慮すると、その一部が水素原子で、残部が炭素数1~10アルキル基であること、すなわち、カルボキシル基とカルボン酸エステル基が混在していることが好ましい。
 また、得られる色素増感太陽電池の開放電圧を向上させるという点から、R1~R4が全て水素原子で示されるカルボキシチオフェン化合物の水素原子を、第4級アンモニウム塩とカチオン交換させてもよい。
 この場合、第4級アンモニウム塩としては、特に限定されるものではないが、本発明においては、テトラC1~10アルキルアンモニウムヒドロキシドが好ましく、テトラC1~5アルキルアンモニウムヒドロキシドがより好ましく、テトラn-ブチルアンモニウムヒドロキシドが最適である。
 また、R5およびR6としては、水素原子、炭素数1~10アルキル基が好ましく、水素原子がより好ましい。
 式(1)におけるZは、上記式(2)~(4)から選ばれる少なくとも1種の2価の有機基であるが、特に、式(2)で表される2価の有機基が好適であり、特に、R7およびR8が共に水素原子である非置換チオフェニル基が好適である。
 上記m、n、oおよびpは、それぞれ独立して、0または1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1000を満足する整数であるが、2≦m+n+o+p≦200が好ましく、5≦m+n+o+p≦200がより好ましい。特に、n、m、oおよびpのいずれか2つが0である化合物、さらには、n、mおよびoのいずれか2つが0である化合物が好適である。
 なお、この化合物は、2≦m+n+o+p≦20を満たす程度のオリゴマーでも、20≦m+n+o+p≦1000を満たすポリマーでもよい。
 カルボニルチオフェン化合物の分子量は特に限定されるものではないが、ポリマーの場合、重量平均分子量1,000~100,000が好ましく、1,000~50,000がより好ましい。
 なお、本発明における重量平均分子量は、ゲル濾過クロマトグラフィーによるポリスチレン換算値である。
 上記カルボニルチオフェン化合物の両末端は、互いに独立して水素原子、ハロゲン原子、炭素数1~20モノアルキルアミノ基、炭素数1~20ジアルキルアミノ基、置換または非置換のフェニル基、置換または非置換のナフチル基、置換または非置換のアントラニル基、炭素数1~10トリアルキルスタニル基、炭素数1~10トリアルキルシリル基等が好適であるが、特に、水素原子が好ましい。
 ここで、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられる。
 炭素数1~20モノアルキルアミノ基の具体例としては、NHMe、NHEt、NHPr-n、NHPr-i、NHBu-n、NHBu-i、NHBu-s、NHBu-t、NHPen-n、NHCHEt2、NHHex-n、NHHep-n、NHOct-n、NHDec-n等が挙げられる。
 炭素数1~20ジアルキルアミノ基の具体例としては、NMe2、NEt2、N(Pr-n)2、N(Pr-i)2、N(Bu-n)2、N(Bu-i)2、N(Bu-s)2、N(Bu-t)2、N(Pen-n)2、N(CHEt22、N(Hex-n)2、N(Hep-n)2、N(Oct-n)2、N(Dec-n)2、N(Me)(Bu-n)、N(Me)(Pen-n)、N(Me)(Hex-n)、N(Me)(Hep-n)、N(Me)(Oct-n)、N(Me)(Dec-n)等が挙げられる。
 炭素数1~10トリアルキルスタニル基の具体例としては、SnMe3、SnEt3、Sn(Pr-n)3、Sn(Pr-i)3、Sn(Bu-n)3、Sn(Bu-i)3、Sn(Bu-s)3、Sn(Bu-t)3等が挙げられる。
 炭素数1~10トリアルキルシリル基の具体例としては、SiMe3、SiEt3、Si(Pr-n)3、Si(Pr-i)3、Si(Bu-n)3、Si(Bu-i)3、Si(Bu-s)3、Si(Bu-t)3等が挙げられる。
 置換または非置換のフェニル基の具体例としては、フェニル、o-メチルフェニル、m-メチルフェニル、p-メチルフェニル、o-トリフルオロメチルフェニル、m-トリフルオロメチルフェニル、p-トリフルオロメチルフェニル、p-エチルフェニル、p-i-プロピルフェニル、p-t-ブチルフェニル、o-クロルフェニル、m-クロルフェニル、p-クロルフェニル、o-ブロモフェニル、m-ブロモフェニル、p-ブロモフェニル、o-フルオロフェニル、p-フルオロフェニル、o-メトキシフェニル、m-メトキシフェニル、p-メトキシフェニル、o-トリフルオロメトキシフェニル、p-トリフルオロメトキシフェニル、o-ニトロフェニル、m-ニトロフェニル、p-ニトロフェニル、o-ジメチルアミノフェニル、m-ジメチルアミノフェニル、p-ジメチルアミノフェニル、p-シアノフェニル、3,5-ジメチルフェニル、3,5-ビストリフルオロメチルフェニル、3,5-ジメトキシフェニル、3,5-ビストリフルオロメトキシフェニル、3,5-ジエチルフェニル、3,5-ジ-i-プロピルフェニル、3,5-ジクロルフェニル、3,5-ジブロモフェニル、3,5-ジフルオロフェニル、3,5-ジニトロフェニル、3,5-ジシアノフェニル、2,4,6-トリメチルフェニル、2,4,6-トリストリフルオロメチルフェニル、2,4,6-トリメトキシフェニル、2,4,6-トリストリフルオロメトキシフェニル、2,4,6-トリクロルフェニル、2,4,6-トリブロモフェニル、2,4,6-トリフルオロフェニル、o-ビフェニリル、m-ビフェニリル、p-ビフェニリル等が挙げられる。
 置換または非置換のナフチル基の具体例としては、1-ナフチル、2-ナフチル、2-ブチル-1-ナフチル、3-ブチル-1-ナフチル、4-ブチル-1-ナフチル、5-ブチル-1-ナフチル、6-ブチル-1-ナフチル、7-ブチル-1-ナフチル、8-ブチル-1-ナフチル、1-ブチル-2-ナフチル、3-ブチル-2-ナフチル、4-ブチル-2-ナフチル、5-ブチル-2-ナフチル、6-ブチル-2-ナフチル、7-ブチル-2-ナフチル、8-ブチル-2-ナフチル、2-ヘキシル-1-ナフチル、3-ヘキシル-1-ナフチル、4-ヘキシル-1-ナフチル、5-ヘキシル-1-ナフチル、6-ヘキシル-1-ナフチル、7-ヘキシル-1-ナフチル、8-ヘキシル-1-ナフチル、1-ヘキシル-2-ナフチル、3-ヘキシル-2-ナフチル、4-ヘキシル-2-ナフチル、5-ヘキシル-2-ナフチル、6-ヘキシル-2-ナフチル、7-ヘキシル-2-ナフチル、8-ヘキシル-2-ナフチル、2-オクチル-1-ナフチル、3-オクチル-1-ナフチル、4-オクチル-1-ナフチル、5-オクチル-1-ナフチル、6-オクチル-1-ナフチル、7-オクチル-1-ナフチル、8-オクチル-1-ナフチル、1-オクチル-2-ナフチル、3-オクチル-2-ナフチル、4-オクチル-2-ナフチル、5-オクチル-2-ナフチル、6-オクチル-2-ナフチル、7-オクチル-2-ナフチル、8-オクチル-2-ナフチル、2-フェニル-1-ナフチル、3-フェニル-1-ナフチル、4-フェニル-1-ナフチル、5-フェニル-1-ナフチル、6-フェニル-1-ナフチル、7-フェニル-1-ナフチル、8-フェニル-1-ナフチル、1-フェニル-2-ナフチル、3-フェニル-2-ナフチル、4-フェニル-2-ナフチル、5-フェニル-2-ナフチル、6-フェニル-2-ナフチル、7-フェニル-2-ナフチル、8-フェニル-2-ナフチル、2-メトキシ-1-ナフチル、3-メトキシ-1-ナフチル、4-メトキシ-1-ナフチル、5-メトキシ-1-ナフチル、6-メトキシ-1-ナフチル、7-メトキシ-1-ナフチル、8-メトキシ-1-ナフチル、1-メトキシ-2-ナフチル、3-メトキシ-2-ナフチル、4-メトキシ-2-ナフチル、5-メトキシ-2-ナフチル、6-メトキシ-2-ナフチル、7-メトキシ-2-ナフチル、8-メトキシ-2-ナフチル、2-エトキシ-1-ナフチル、3-エトキシ-1-ナフチル、4-エトキシ-1-ナフチル、5-エトキシ-1-ナフチル、6-エトキシ-1-ナフチル、7-エトキシ-1-ナフチル、8-エトキシ-1-ナフチル、1-エトキシ-2-ナフチル、3-エトキシ-2-ナフチル、4-エトキシ-2-ナフチル、5-エトキシ-2-ナフチル、6-エトキシ-2-ナフチル、7-エトキシ-2-ナフチル、8-エトキシ-2-ナフチル、2-ブトキシ-1-ナフチル、3-ブトキシ-1-ナフチル、4-ブトキシ-1-ナフチル、5-ブトキシ-1-ナフチル、6-ブトキシ-1-ナフチル、7-ブトキシ-1-ナフチル、8-ブトキシ-1-ナフチル、1-ブトキシ-2-ナフチル、3-ブトキシ-2-ナフチル、4-ブトキシ-2-ナフチル、5-ブトキシ-2-ナフチル、6-ブトキシ-2-ナフチル、7-ブトキシ-2-ナフチル、8-ブトキシ-2-ナフチル、2-アミノ-1-ナフチル、3-アミノ-1-ナフチル、4-アミノ-1-ナフチル、5-アミノ-1-ナフチル、6-アミノ-1-ナフチル、7-アミノ-1-ナフチル、8-アミノ-1-ナフチル、1-アミノ-2-ナフチル、3-アミノ-2-ナフチル、4-アミノ-2-ナフチル、5-アミノ-2-ナフチル、6-アミノ-2-ナフチル、7-アミノ-2-ナフチル、8-アミノ-2-ナフチル、2-(N,N-ジメチルアミノ)-1-ナフチル、3-(N,N-ジメチルアミノ)-1-ナフチル、4-(N,N-ジメチルアミノ)-1-ナフチル、5-(N,N-ジメチルアミノ)-1-ナフチル、6-(N,N-ジメチルアミノ)-1-ナフチル、7-(N,N-ジメチルアミノ)-1-ナフチル、8-(N,N-ジメチルアミノ)-1-ナフチル、1-(N,N-ジメチルアミノ)-2-ナフチル、3-(N,N-ジメチルアミノ)-2-ナフチル、4-(N,N-ジメチルアミノ)-2-ナフチル、5-(N,N-ジメチルアミノ)-2-ナフチル、6-(N,N-ジメチルアミノ)-2-ナフチル、7-(N,N-ジメチルアミノ)-2-ナフチル、8-(N,N-ジメチルアミノ)-2-ナフチル、2-(N,N-ジフェニルアミノ)-1-ナフチル、3-(N,N-ジフェニルアミノ)-1-ナフチル、4-(N,N-ジフェニルアミノ)-1-ナフチル、5-(N,N-ジフェニルアミノ)-1-ナフチル、6-(N,N-ジフェニルアミノ)-1-ナフチル、7-(N,N-ジフェニルアミノ)-1-ナフチル、8-(N,N-ジフェニルアミノ)-1-ナフチル、1-(N,N-ジフェニルアミノ)-2-ナフチル、3-(N,N-ジフェニルアミノ)-2-ナフチル、4-(N,N-ジフェニルアミノ)-2-ナフチル、5-(N,N-ジフェニルアミノ)-2-ナフチル、6-(N,N-ジフェニルアミノ)-2-ナフチル、7-(N,N-ジフェニルアミノ)-2-ナフチル、8-(N,N-ジフェニルアミノ)-2-ナフチル等が挙げられる。
 置換または非置換のアントラニル基の具体例としては、1-アントラニル、2-アントラニル、9-アントラニル、2-ブチル-1-アントラニル、3-ブチル-1-アントラニル、4-ブチル-1-アントラニル、5-ブチル-1-アントラニル、6-ブチル-1-アントラニル、7-ブチル-1-アントラニル、8-ブチル-1-アントラニル、9-ブチル-1-アントラニル、10-ブチル-1-アントラニル、1-ブチル-2-アントラニル、3-ブチル-2-アントラニル、4-ブチル-2-アントラニル、5-ブチル-2-アントラニル、6-ブチル-2-アントラニル、7-ブチル-2-アントラニル、8-ブチル-2-アントラニル、9-ブチル-2-アントラニル、10-ブチル-2-アントラニル、1-ブチル-9-アントラニル、2-ブチル-9-アントラニル、3-ブチル-9-アントラニル、4-ブチル-9-アントラニル、10-ブチル-9-アントラニル、2-ヘキシル-1-アントラニル、3-ヘキシル-1-アントラニル、4-ヘキシル-1-アントラニル、5-ヘキシル-1-アントラニル、6-ヘキシル-1-アントラニル、7-ヘキシル-1-アントラニル、8-ヘキシル-1-アントラニル、9-ヘキシル-1-アントラニル、10-ヘキシル-1-アントラニル、1-ヘキシル-2-アントラニル、3-ヘキシル-2-アントラニル、4-ヘキシル-2-アントラニル、5-ヘキシル-2-アントラニル、6-ヘキシル-2-アントラニル、7-ヘキシル-2-アントラニル、8-ヘキシル-2-アントラニル、9-ヘキシル-2-アントラニル、10-ヘキシル-2-アントラニル、1-ヘキシル-9-アントラニル、2-ヘキシル-9-アントラニル、3-ヘキシル-9-アントラニル、4-ヘキシル-9-アントラニル、10-ヘキシル-9-アントラニル、2-オクチル-1-アントラニル、3-オクチル-1-アントラニル、4-オクチル-1-アントラニル、5-オクチル-1-アントラニル、6-オクチル-1-アントラニル、7-オクチル-1-アントラニル、8-オクチル-1-アントラニル、9-オクチル-1-アントラニル、10-オクチル-1-アントラニル、1-オクチル-2-アントラニル、3-オクチル-2-アントラニル、4-オクチル-2-アントラニル、5-オクチル-2-アントラニル、6-オクチル-2-アントラニル、7-オクチル-2-アントラニル、8-オクチル-2-アントラニル、9-オクチル-2-アントラニル、10-オクチル-2-アントラニル、1-オクチル-9-アントラニル、2-オクチル-9-アントラニル、3-オクチル-9-アントラニル、4-オクチル-9-アントラニル、10-オクチル-9-アントラニル、2-フェニル-1-アントラニル、3-フェニル-1-アントラニル、4-フェニル-1-アントラニル、5-フェニル-1-アントラニル、6-フェニル-1-アントラニル、7-フェニル-1-アントラニル、8-フェニル-1-アントラニル、9-フェニル-1-アントラニル、10-フェニル-1-アントラニル、1-フェニル-2-アントラニル、3-フェニル-2-アントラニル、4-フェニル-2-アントラニル、5-フェニル-2-アントラニル、6-フェニル-2-アントラニル、7-フェニル-2-アントラニル、8-フェニル-2-アントラニル、9-フェニル-2-アントラニル、10-フェニル-2-アントラニル、1-フェニル-9-アントラニル、2-フェニル-9-アントラニル、3-フェニル-9-アントラニル、4-フェニル-9-アントラニル、10-フェニル-9-アントラニル、2-メトキシ-1-アントラニル、3-メトキシ-1-アントラニル、4-メトキシ-1-アントラニル、5-メトキシ-1-アントラニル、6-メトキシ-1-アントラニル、7-メトキシ-1-アントラニル、8-メトキシ-1-アントラニル、9-メトキシ-1-アントラニル、10-メトキシ-1-アントラニル、1-メトキシ-2-アントラニル、3-メトキシ-2-アントラニル、4-メトキシ-2-アントラニル、5-メトキシ-2-アントラニル、6-メトキシ-2-アントラニル、7-メトキシ-2-アントラニル、8-メトキシ-2-アントラニル、9-メトキシ-2-アントラニル、10-メトキシ-2-アントラニル、1-メトキシ-9-アントラニル、2-メトキシ-9-アントラニル、3-メトキシ-9-アントラニル、4-メトキシ-9-アントラニル、10-メトキシ-9-アントラニル、2-エトキシ-1-アントラニル、3-エトキシ-1-アントラニル、4-エトキシ-1-アントラニル、5-エトキシ-1-アントラニル、6-エトキシ-1-アントラニル、7-エトキシ-1-アントラニル、8-エトキシ-1-アントラニル、9-エトキシ-1-アントラニル、10-エトキシ-1-アントラニル、1-エトキシ-2-アントラニル、3-エトキシ-2-アントラニル、4-エトキシ-2-アントラニル、5-エトキシ-2-アントラニル、6-エトキシ-2-アントラニル、7-エトキシ-2-アントラニル、8-エトキシ-2-アントラニル、9-エトキシ-2-アントラニル、10-エトキシ-2-アントラニル、1-エトキシ-9-アントラニル、2-エトキシ-9-アントラニル、3-エトキシ-9-アントラニル、4-エトキシ-9-アントラニル、10-エトキシ-9-アントラニル、2-ブトキシ-1-アントラニル、3-ブトキシ-1-アントラニル、4-ブトキシ-1-アントラニル、5-ブトキシ-1-アントラニル、6-ブトキシ-1-アントラニル、7-ブトキシ-1-アントラニル、8-ブトキシ-1-アントラニル、9-ブトキシ-1-アントラニル、10-ブトキシ-1-アントラニル、1-ブトキシ-2-アントラニル、3-ブトキシ-2-アントラニル、4-ブトキシ-2-アントラニル、5-ブトキシ-2-アントラニル、6-ブトキシ-2-アントラニル、7-ブトキシ-2-アントラニル、8-ブトキシ-2-アントラニル、9-ブトキシ-2-アントラニル、10-ブトキシ-2-アントラニル、1-ブトキシ-9-アントラニル、2-ブトキシ-9-アントラニル、3-ブトキシ-9-アントラニル、4-ブトキシ-9-アントラニル、10-ブトキシ-9-アントラニル、2-アミノ-1-アントラニル、3-アミノ-1-アントラニル、4-アミノ-1-アントラニル、5-アミノ-1-アントラニル、6-アミノ-1-アントラニル、7-アミノ-1-アントラニル、8-アミノ-1-アントラニル、9-アミノ-1-アントラニル、10-アミノ-1-アントラニル、1-アミノ-2-アントラニル、3-アミノ-2-アントラニル、4-アミノ-2-アントラニル、5-アミノ-2-アントラニル、6-アミノ-2-アントラニル、7-アミノ-2-アントラニル、8-アミノ-2-アントラニル、9-アミノ-2-アントラニル、10-アミノ-2-アントラニル、1-アミノ-9-アントラニル、2-アミノ-9-アントラニル、3-アミノ-9-アントラニル、4-アミノ-9-アントラニル、10-アミノ-9-アントラニル、2-(N,N-ジメチルアミノ)-1-アントラニル、3-(N,N-ジメチルアミノ)-1-アントラニル、4-(N,N-ジメチルアミノ)-1-アントラニル、5-(N,N-ジメチルアミノ)-1-アントラニル、6-(N,N-ジメチルアミノ)-1-アントラニル、7-(N,N-ジメチルアミノ)-1-アントラニル、8-(N,N-ジメチルアミノ)-1-アントラニル、9-(N,N-ジメチルアミノ)-1-アントラニル、10-(N,N-ジメチルアミノ)-1-アントラニル、1-(N,N-ジメチルアミノ)-2-アントラニル、3-(N,N-ジメチルアミノ)-2-アントラニル、4-(N,N-ジメチルアミノ)-2-アントラニル、5-(N,N-ジメチルアミノ)-2-アントラニル、6-(N,N-ジメチルアミノ)-2-アントラニル、7-(N,N-ジメチルアミノ)-2-アントラニル、8-(N,N-ジメチルアミノ)-2-アントラニル、9-(N,N-ジメチルアミノ)-2-アントラニル、10-(N,N-ジメチルアミノ)-2-アントラニル、1-(N,N-ジメチルアミノ)-9-アントラニル、2-(N,N-ジメチルアミノ)-9-アントラニル、3-(N,N-ジメチルアミノ)-9-アントラニル、4-(N,N-ジメチルアミノ)-9-アントラニル、10-(N,N-ジメチルアミノ)-9-アントラニル、2-(N,N-ジフェニルアミノ)-1-アントラニル、3-(N,N-ジフェニルアミノ)-1-アントラニル、4-(N,N-ジフェニルアミノ)-1-アントラニル、5-(N,N-ジフェニルアミノ)-1-アントラニル、6-(N,N-ジフェニルアミノ)-1-アントラニル、7-(N,N-ジフェニルアミノ)-1-アントラニル、8-(N,N-ジフェニルアミノ)-1-アントラニル、9-(N,N-ジフェニルアミノ)-1-アントラニル、10-(N,N-ジフェニルアミノ)-1-アントラニル、1-(N,N-ジフェニルアミノ)-2-アントラニル、3-(N,N-ジフェニルアミノ)-2-アントラニル、4-(N,N-ジフェニルアミノ)-2-アントラニル、5-(N,N-ジフェニルアミノ)-2-アントラニル、6-(N,N-ジフェニルアミノ)-2-アントラニル、7-(N,N-ジフェニルアミノ)-2-アントラニル、8-(N,N-ジフェニルアミノ)-2-アントラニル、9-(N,N-ジフェニルアミノ)-2-アントラニル、10-(N,N-ジフェニルアミノ)-2-アントラニル、1-(N,N-ジフェニルアミノ)-9-アントラニル、2-(N,N-ジフェニルアミノ)-9-アントラニル、3-(N,N-ジフェニルアミノ)-9-アントラニル、4-(N,N-ジフェニルアミノ)-9-アントラニル、10-(N,N-ジフェニルアミノ)-9-アントラニル等が挙げられる。
 本発明の色素増感太陽電池用色素として用いられる、式(1)で示されるカルボニルチオフェン化合物は、市販のアルキル チオフェン-3-カルボキシレートをN-ハロスクシンイミド等のハロゲン化試薬でハロゲン化して得られたカルボニルチオフェンモノマー化合物を、適宜な手法により、カップリングや、重合することで製造できる。
 カップリング法としては、特に限定されるものでなく、例えば、ビアリールカップリング、Stilleカップリング、Suzukiカップリング、Ullmannカップリング、Heck反応、薗頭カップリング、Grignard反応等を用いることができる。
 重合法としては、カルボニルチオフェン化合物を重合できる手法であれば特に限定されるものではなく、例えば、化学酸化重合、電解酸化重合、触媒重合等の公知の重合法から適宜選択すればよいが、本発明においては、触媒重合が好適である。
 触媒重合は、カルボニルチオフェンモノマー化合物、および必要に応じて用いられる上記Zに対応するモノマーを、金属触媒の存在下で反応させ、式(1)で表されるカルボニルチオフェンオリゴマーまたはポリマー化合物とする方法である。
 触媒重合に用いられるカルボニルチオフェンモノマー化合物や、Zを与えるモノマーとしては、末端(重合部位)置換基がハロゲン原子のカルボニルチオフェン化合物が好ましい。中でも、末端が臭素原子のものが好適である。
 金属触媒としては、ニッケル錯体等が挙げられ、具体例としては、ビス(1,5-シクロオクタジエン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)等に代表されるニッケル(0)錯体、または塩化ニッケル、ビス(トリフェニルホスフィン)ニッケル(II)ジクロライド、[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロライド、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロライド、トリス(2,2’-ビピリジル)ニッケル(II)ジブロマイド等に代表されるニッケル(II)錯体と1,5-シクロオクタジエン、2,2’-ビピリジン、トリフェニルホスフィンに代表される各種の配位子との組み合わせが挙げられる。これらの中でも、得られるポリマーの重合度を高めることを考慮すると、ビス(1,5-シクロオクタジエン)ニッケル、1,5-シクロオクタジエンおよび2,2’-ビピリジンの組み合わせが好ましい。
 金属触媒の使用量は、基質の全モノマー化合物が有するハロゲン原子に対して0.05~2.0モル倍が好ましく、特に0.5~0.8モル倍が好ましい。
 配位子の使用量は、基質の全モノマー化合物が有するハロゲン原子に対して0.05~2.0モル倍が好ましく、特に0.5~0.8モル倍が好ましい。
 反応溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;テトラヒドロフラン(THF)、1,4-ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル化合物類が好ましい。中でも、1,4-ジオキサンが生成したポリマーの重合度が高いという点で好適である。
 反応温度は、使用溶媒の沸点以下であればよく、通常、20~200℃程度である。
 反応時間は、特に限定されるものではないが、通常、1~48時間程度である。
 本発明に係る色素増感太陽電池は、上述した式(1)で示されるカルボニルチオフェン化合物を色素として用いるものであり、具体的には、光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、多孔質半導体の表面に本発明の色素増感太陽電池用色素が吸着されている半導体電極と、対極と、これら各極間に介在する電解質とを備えて構成される。
 本発明の色素増感太陽電池においては、上述した式(1)で示されるカルボニルチオフェン化合物を色素として用いることにその特徴があるため、その他の太陽電池構成部材としては特に限定されるものではなく、公知のものから適宜選択して用いることができる。
 それらの一例を挙げると、光透過性を有する基板としては、光透過性を有し、導電層の基板となり得るものであれば、特に制限はなく、ガラス基板、透明ポリマーフィルム、これらの積層体などを用いることができる。
 上記透明ポリマーフィルムの材料としては、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート、ポリスルフォン、ポリエステルスルフォン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を用いることができる。
 透明導電膜を構成する材料としては、例えば、白金,金,銀,銅,亜鉛,チタン,アルミニウム,インジウム,これらの合金等の金属、インジウム-スズ複合酸化物,フッ素またはアンチモンをドープした酸化スズ等の導電性金属酸化物などを用いることができるが、特に、フッ素またはアンチモンをドープした二酸化スズ、インジウム-スズ酸化物を用いることが好ましい。この透明導電層は、上記透明基体の表面に塗布または蒸着することで形成できる。
 半導体を構成する金属酸化物としては、TiO2、SnO2、Fe23、WO3、ZnO、Nb25等が挙げられる。
 対極としては、色素増感太陽電池の正極として作用するものであれば、特に限定はなく、例えば、ガラス基板やプラスチックフィルム等に、白金、金、銀、銅、アルミニウム、およびマグネシウムから選ばれる少なくとも1種の金属を塗布または蒸着させた電極等が挙げられる。
 電解質としては、例えば、LiI,NaI,KI,CsI,CaI2等の金属ヨウ化物、4級ピリジニウムまたはイミダゾリウム化合物のヨウ素塩、テトラアルキルアンモニウム化合物のヨウ素塩等の電解質塩と、これから生じるI-と酸化還元対を形成し得るヨウ素と、有機溶媒とを含むものが挙げられる。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート類;ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等のエーテル類;メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等のアルコール類;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類などが挙げられる。
 その他、本発明の色素増感太陽電池には、保護層や反射防止層などの機能層を適宜な位置に設けてもよい。
 多孔質半導体の表面に本発明の色素増感太陽電池用色素を吸着させる方法としては、上記色素を含む溶液(ワニス)を調製し、この中に多孔質半導体を有する基板を浸漬させる方法、上記色素を含む溶液(ワニス)を、多孔質半導体を有する基板に塗布する方法等を用いることができる。
 色素を含む溶液(ワニス)を調製する際の溶媒は、色素の溶解能を有するものであれば特に限定はなく、メタノール、エタノール、ジメチルスルホキシド(DMSO)、クロロホルムなどが挙げられる。
 溶液(ワニス)中の色素濃度は、特に限定されるものではないが、0.01~10mmol/L程度とすることができる。
 色素の全吸着量は、例えば、半導体の単位表面積(1m2)あたり、0.01~100mmol程度とすることができる。
 なお、本発明の色素増感太陽電池では、本発明の色素に加え、金属錯体色素、メチン色素、ポルフィリン系色素、フタロシアニン系色素等の公知の色素を併用してもよい。
 これらの中でも、高い光学活性を有し、半導体への吸着性および耐久性に優れているということから、ルテニウム-ビピリジン錯体、中でも、シス-ジ(チオシアナト)-N,N’-ビス(2,2’-ビピリジル-4,4’-ジカルボン酸)ルテニウム(II)が好適である。
 以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例にて使用した分析装置および条件は、下記のとおりである。
[1]1H-NMR
 機種:JNM-A500(JEOL Ltd.)、またはAVANCE 400S(Bruker)
[2]ゲル濾過クロマトグラフィー(GPC)
 機種:TOSOH:HLC-8220GPC,カラム:SHODEX GPC KF-804L+GPC KF-805L,カラム温度:40℃,検出器:UV検出器(254nm)およびRI検出器,溶離液:THF,カラム流速:1.0ml/min.
[3]吸収スペクトル
 機種:UV-3600、島津製作所(株)製
[4]IPCE(incident-photon conversion efficiency)スペクトル
 500WのXeランプを分光器(SM-250、分光計器(株)製)を用い、300nm~1100nmの範囲で分光し、10nm間隔で単色光を照射し、セルからの光電流を電流計(6487、Keithley製)で検出し、この光電流スペクトルを基準シリコン受光素子で計測したスペクトルを分光感度で補正し、測定した。
[5]電流電圧測定
 ソーラーシミュレーター(YSS-80、山下電装(株)製)を用い、擬似太陽光源(AM1.5,100mW/cm2)を照射し、太陽電池セルの電流電圧特性(HSV-100、HOKUTO DENKO製)を測定した。
[合成例1]メチル 2,5-ジブロモチオフェン-3-カルボキシレートの製造
Figure JPOXMLDOC01-appb-C000005
 市販のメチル チオフェン-3-カルボキシレート、N,N-ジメチルホルムアミド、酢酸を反応容器に投入し、75℃に昇温した。そこにN-ブロモスクシイミドを加え、75℃で2.5時間加熱した。反応終了後、酢酸エチルで抽出し、有機層を10質量%チオ硫酸ナトリウム水溶液、水で順次洗浄し、溶媒を留去した。得られた粗生成物をシリカゲルカラムで精製(酢酸エチル/ヘキサン=1/10→1/6)し、白色の固体を得た。
1H-NMR(CDCl3):3.87(s,3H),7.35(s,1H)
[合成例2]ポリチオフェン誘導体AおよびBの製造
Figure JPOXMLDOC01-appb-C000006
 合成例1で得られたメチル 2,5-ジブロモチオフェン-3-カルボキシレートと2,5-ジブロモチオフェン、2,2’-ビピリジル(1.2当量)、1,5-シクロオクタジエン(1.0当量)、およびビス(1,5-シクロオクタジエン)ニッケル(0)(1.2当量)を反応容器に投入し、窒素雰囲気下でN,N-ジメチルホルムアミドを加え、60℃で4時間加熱した。反応終了後、反応液をセライトでろ過し、クロロホルムで残渣を洗浄した。ろ液を14質量%アンモニア水、2M塩酸水溶液、水で洗浄し、有機層に無水硫酸ナトリウムを加えて乾燥し、溶媒を留去した。これをシリカゲルカラムで精製(クロロホルム/メタノール=100/0→95/5)で精製し、Mw=2700(ポリチオフェン誘導体A)および1300(ポリチオフェン誘導体B)の濃赤色固体を得た。
Mw(GPC)=2700(ポリチオフェン誘導体A)および1300(ポリチオフェン誘導体B)
[合成例3]ポリチオフェン誘導体Cの製造
Figure JPOXMLDOC01-appb-C000007
 合成例2で得られたポリチオフェン誘導体A、N,N-ジメチルホルムアミドを反応容器に投入し、100℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(12当量)を滴下し、100℃で2時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2700
[合成例4]ポリチオフェン誘導体Dの製造
Figure JPOXMLDOC01-appb-C000008
 合成例2で得られたポリチオフェン誘導体B、N,N-ジメチルホルムアミドを反応容器に投入し、65℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(0.6当量)を滴下し、65℃で1.5時間加熱した。その後、20質量%水酸化ナトリウム水溶液(2.4当量)を滴下し、65℃で1.5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=1100
[合成例5]ポリチオフェン誘導体Fの製造
Figure JPOXMLDOC01-appb-C000009
 合成例2と同様の方法にて得られたMw=2300のポリチオフェン誘導体E、およびN,N-ジメチルホルムアミドを反応容器に投入し、50℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(20当量)を滴下し、50℃で5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2300
[合成例6]ポリチオフェン誘導体Gの製造
Figure JPOXMLDOC01-appb-C000010
 合成例2と同様の方法にて得られたMw=2300のポリチオフェン誘導体E、およびN,N-ジメチルホルムアミドを反応容器に投入し、50℃に昇温した。ここに、20質量%水酸化ナトリウム水溶液(2当量)を滴下し、50℃で5時間加熱した。反応終了後、2M塩酸水溶液を加えた後に、乾固した。得られた固体を水で洗浄し、ろ過して、濃赤色固体を得た。
Mw(GPC)=2300
[実施例1]
[1]光電変換電極の作製
 図3に示されるように、表面抵抗値10Ω/sqのFTO(F:SnO2)膜12付きガラス基板11(サイズ:15mm×25mm)上に、チタニアペースト(Ti-Nanoxide T/S,SOLARONIXS社製)をスクリーン印刷法により塗布し、120℃で3分間乾燥させた後、500℃で30分間焼成し、チタニア半導体層13を形成した。焼成後のチタニア半導体層13の膜厚を触針式膜厚計(型番:ET4000A、(株)小阪研究所製)で計測したところ、8μmであった。
 次に、合成例3で得られたポリチオフェン誘導体Cのジメチルスルホキシド溶液(濃度:0.1mM)に、上記焼成後の基板を浸漬し、ポリチオフェン誘導体C(色素)(図示省略)をチタニア半導体層13に吸着させ、光電変換電極10を作製した。
[2]太陽電池セルの作製
 直径0.7mmの電解液注入孔を2つ有するFTO膜付きガラス基板15上に、Pt層14を成膜(膜厚:1nm)した対極20の周囲にエチレン-メタクリル酸共重合体アイオノマー樹脂膜(ハイミラン、三井・デュポンポリケミカル(株)製)(膜厚:30nm)を配置し、上記で得られた光電変換電極10と貼り合わせた。その後、電解液注入孔から、0.5mol/LのN,N,N,N-テトラブチルアンモニウムアイオダイド、0.05mol/Lのヨウ素を含むアセトニトリル溶液からなる電解質30を注入し、色素増感太陽電池セル1を作製した。
 実施例1で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図4に示す。図4に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表1に示す。表1に示されるように、測定時によってデータに多少のばらつきはあるものの、1.80%の光電変換効率が得られていることがわかる。
[実施例2]
 ポリチオフェン誘導体Cを、合成例4で得られたポリチオフェン誘導体Dに変更した以外は、実施例1と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例2で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図5に示す。図5に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表1に示す。表1に示されるように、1.95%の光電変換効率が得られていることがわかる。
[実施例3]
 チタニア半導体層13の膜厚を4μmに変更した以外は実施例2と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例3で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図6に示す。図6に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、0.45%の光電変換効率が得られていることがわかる。
[実施例4]
 ポリチオフェン誘導体Dを溶解させる溶媒をクロロホルムに変更した以外は、実施例3と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例4で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図7に示す。図7に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、1.09%の光電変換効率が得られていることがわかる。
[実施例5]
 ポリチオフェン誘導体Dを溶解させる溶媒をエタノールに変更した以外は、実施例3と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例5で得られた太陽電池セルについて、300~1100nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図8に示す。図8に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、0.79%の光電変換効率が得られていることがわかる。
[実施例6]
 ポリチオフェン誘導体Dを溶解させる溶媒をメタノールに変更した以外は、実施例1と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例6で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図9に示す。図9に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表2に示す。表2に示されるように、1.29%の光電変換効率が得られていることがわかる。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
[実施例7]
 ポリチオフェン誘導体Dを溶解させる溶媒をメタノールに変更した以外は、実施例2と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例7で得られた太陽電池セルについて、電流電圧特性を表3に示す。表3に示されるように、2.4%の光電変換効率が得られていることがわかる。
[実施例8]
 ポリチオフェン誘導体Dのメタノール溶液にポリチオフェン誘導体Dのカルボン酸に対して2当量のN,N,N,N-テトラn-ブチルアンモニウムヒドロキシドを添加した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例8で得られた太陽電池セルについて、電流電圧特性を表3に示す。表3に示されるように、3.3%の光電変換効率が得られていることがわかる。
[実施例9]
 実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例9で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図10に示す。図10に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表4に示す。表4に示されるように、2.3%の光電変換効率が得られていることがわかる。
[実施例10]
 電解質を0.5mol/LのN,N,N,N-テトラブチルアンモニウムアイオダイド、0.05mol/Lのヨウ素を含むアセトニトリル/メタノール=90/10(vol/vol)溶液に変更した以外は、実施例9と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例10で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図11に示す。図11に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、得られた太陽電池セルの電流電圧特性を測定した。その結果を表4に示す。表4に示されるように、2.7%の光電変換効率が得られていることがわかる。
[実施例11]
 ポリチオフェン誘導体Dを、合成例5で得られたポリチオフェン誘導体Fに変更した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例11で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図12に示す。図12に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
[実施例12]
 ポリチオフェン誘導体Dを、合成例6で得られたポリチオフェン誘導体Gに変更した以外は、実施例7と同様にして、光電変換電極および太陽電池セルを作製した。
 実施例12で得られた太陽電池セルについて、300~800nmの範囲でIPCEを計測した。得られたIPCEスペクトルを図13に示す。図13に示されるように、紫外から650nmにわたって光吸収に対応した領域でIPCEが得られていることがわかる。
 また、実施例11および12で得られた太陽電池セルの電流電圧特性を測定した。その結果を図14に示す。図14の太線で示されたポリチオフェン誘導体Gを用いた実施例12の方が、開放電圧、短絡電流密度ともに高くなっており、光電変換効率が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
1 太陽電池セル(色素増感太陽電池)
10 光電変換電極
11 ガラス基板(光透過性を有する基板)
12 FTO膜(透明導電膜)
13 光増感色素が吸着したチタニア半導体層(多孔質半導体)
14 Pt層
15 ガラス基板
20 対極
30 電解質

Claims (12)

  1.  式(1)で表されるカルボニルチオフェン化合物を含むことを特徴とする色素増感太陽電池用色素。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R6は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表し、
     m、n、oおよびpは、それぞれ独立して、0または1以上の整数を表し、1≦m+n+o、かつ、2≦m+n+o+p≦1,000を満足し、
     Zは、下記式(2)~(4)から選ばれる2価の有機基であり、
    Figure JPOXMLDOC01-appb-C000002
     R7~R16は、それぞれ独立して、水素原子または炭素数1~20アルキル基を表す。)
  2.  前記R1~R4が水素原子であり、当該水素原子が第4級アンモニウム塩とカチオン交換してなる請求項1記載の色素増感太陽電池用色素。
  3.  前記第4級アンモニウム塩が、テトラアルキルアンモニウムヒドロキシドである請求項2記載の色素増感太陽電池用色素。
  4.  前記R1~R4の一部が水素原子であり、残部が炭素数1~20アルキル基である請求項1記載の色素増感太陽電池用色素。
  5.  請求項1~4のいずれか1項記載の色素増感太陽電池用色素を含む組成物。
  6.  請求項1~4のいずれか1項記載の色素増感太陽電池用色素を含むワニス。
  7.  請求項1~4のいずれか1項記載の色素増感太陽電池用色素を含む有機薄膜。
  8.  請求項1~4のいずれか1項記載のワニスから作製される有機薄膜。
  9.  光透過性を有する基板と、この基板に積層された透明導電膜と、この透明導電膜に積層された金属酸化物からなる多孔質半導体とを有し、
     前記多孔質半導体の表面に請求項1~4のいずれか1項記載の色素増感太陽電池用色素が吸着されていることを特徴とする半導体電極。
  10.  請求項6記載のワニスに多孔質半導体を有する基板を浸漬し、前記色素増感太陽電池用色素を前記多孔質半導体に吸着させてなる請求項9記載の半導体電極。
  11.  請求項9記載の半導体電極と、対極と、これら半導体電極および対極間に介在する電解質と、を備えて構成される色素増感太陽電池。
  12.  前記電解質がアルコールを含む請求項11記載の色素増感太陽電池。
PCT/JP2011/057200 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池 WO2011118715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507063A JP5713005B2 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-072136 2010-03-26
JP2010072136 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118715A1 true WO2011118715A1 (ja) 2011-09-29

Family

ID=44673261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057200 WO2011118715A1 (ja) 2010-03-26 2011-03-24 色素増感太陽電池用色素および色素増感太陽電池

Country Status (2)

Country Link
JP (1) JP5713005B2 (ja)
WO (1) WO2011118715A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109860A (en) * 1980-12-26 1982-07-08 Mitsubishi Chem Ind Ltd Disazo dye for polyester fiber
JP2005135656A (ja) * 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253333A (ja) * 2003-02-21 2004-09-09 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP5569091B2 (ja) * 2010-03-26 2014-08-13 浩司 瀬川 多孔質半導体および色素増感太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109860A (en) * 1980-12-26 1982-07-08 Mitsubishi Chem Ind Ltd Disazo dye for polyester fiber
JP2005135656A (ja) * 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHEN FANG ET AL.: "Low-Bandgap Donor-Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, 9 February 2011 (2011-02-09), pages 3063 - 3069 *

Also Published As

Publication number Publication date
JP5713005B2 (ja) 2015-05-07
JPWO2011118715A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
Mikroyannidis et al. Low band gap dyes based on 2-styryl-5-phenylazo-pyrrole: synthesis and application for efficient dye-sensitized solar cells
Xu et al. Energy-level and molecular engineering of organic D-π-A sensitizers in dye-sensitized solar cells
JP5491419B2 (ja) 高分子吸光係数金属色素
Buene et al. Effect of π-linkers on phenothiazine sensitizers for dye-sensitized solar cells
Wang et al. Effects of the acceptors in triphenylamine-based D–A′–π–A dyes on photophysical, electrochemical, and photovoltaic properties
Tigreros et al. Influence of acetylene-linked π-spacers on triphenylamine–fluorene dye sensitized solar cells performance
JP5569091B2 (ja) 多孔質半導体および色素増感太陽電池
Mikroyannidis et al. Novel broadly absorbing sensitizers with cyanovinylene 4-nitrophenyl segments and various anchoring groups: synthesis and application for high-efficiency dye-sensitized solar cells
Abdellah et al. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies
Lai et al. New bithiazole-functionalized organic photosensitizers for dye-sensitized solar cells
Roh et al. Strategy for improved photoconversion efficiency in thin photoelectrode films by controlling π-spacer dihedral angle
Mansha et al. 1, 5-Naphthyridine-based conjugated polymers as co-sensitizers for dye-sensitized solar cells
Zhang et al. Synthesis of novel sensitizers with a linear conjugated di (1-benzothieno)[3, 2-b: 2′, 3′-d] pyrrole unit for dye-sensitized solar cells
JP5351693B2 (ja) ルテニウム錯体及びそれを使用した光電部品
Long et al. Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells
Jia et al. New D–π–A dyes incorporating dithieno [3, 2-b: 2′, 3′-d] pyrrole (DTP)-based π-spacers for efficient dye-sensitized solar cells
JP5494473B2 (ja) 色素増感太陽電池の半導体電極作製用ワニスおよび色素増感太陽電池
JP6043493B2 (ja) スクアリリウム化合物、それを含む薄膜および有機薄膜太陽電池
Zhang et al. Synthesis and photovoltaic properties of polymeric metal complexes containing 8-hydroxyquinoline as dye sensitizers for dye-sensitized solar cells
Vats et al. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells
KR102448440B1 (ko) 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
Sil et al. Effect and position of spiro-bipropylenedioxythiophene π-spacer in donor-π-spacer-acceptor dyes for dye-sensitized solar cell
Wang et al. Electrochemical Polymerization-Fabricated Several Triphenylamine–Carbazolyl-Based Polymers with Improved Short-Circuit Current and High Adsorption Stability in Dye-Sensitized Solar Cells
JP5569090B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池
JP5713005B2 (ja) 色素増感太陽電池用色素および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507063

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759520

Country of ref document: EP

Kind code of ref document: A1