KR20100110860A - 마찰전동벨트 - Google Patents

마찰전동벨트 Download PDF

Info

Publication number
KR20100110860A
KR20100110860A KR1020107017448A KR20107017448A KR20100110860A KR 20100110860 A KR20100110860 A KR 20100110860A KR 1020107017448 A KR1020107017448 A KR 1020107017448A KR 20107017448 A KR20107017448 A KR 20107017448A KR 20100110860 A KR20100110860 A KR 20100110860A
Authority
KR
South Korea
Prior art keywords
belt
rubber layer
rubber
pulley
small holes
Prior art date
Application number
KR1020107017448A
Other languages
English (en)
Inventor
후미히로 무카이
토모유키 야마다
히로유키 다치바나
히로유키 시리이케
Original Assignee
반도 카가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 반도 카가쿠 가부시키가이샤 filed Critical 반도 카가쿠 가부시키가이샤
Publication of KR20100110860A publication Critical patent/KR20100110860A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • B29D29/103Multi-ribbed driving belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

벨트 본체의 내주측에 형성된 압축고무층이 풀리에 접촉하도록 감기는 마찰전동벨트에 있어서, 벨트주행 시의 소음 저감과 내구성의 양립을 도모할 수 있는 구성을 얻는다. 압축고무층(12)에, 기포율이 5%에서 40%이며 또 평균 지름이 5㎛에서 120㎛인 복수의 작은 구멍(15)을 형성한다.

Description

마찰전동벨트{FRICTION TRANSMISSION BELT}
본 발명은, 벨트 본체의 내주측에 형성된 압축고무층이 풀리에 접촉하도록 감겨 동력을 전달하는 마찰전동벨트에 관한 것이며, 소음 저감 및 내구성 향상의 기술분야에 속한다.
종래, 엔진이나 모터 등 구동력을 피구동측으로 전달하는 구성으로서, 구동측 및 피구동측의 회전축에 각각 풀리를 연결하고, 이들 풀리에 마찰전동벨트를 감는 구성이 널리 알려져 있다. 이와 같은 마찰전동벨트에는, 높은 동력전달능력이 요구되는 한편, 벨트주행 시의 정숙성도 요구된다. 이와 같은 요구를 만족시키기 위해서는, 벨트 표면의 마찰계수를 소정의 동력전달능력을 확보할 수 있는 정도로 저감시킬 필요가 있다.
예를 들어, 상기 마찰전동벨트가 V리브벨트인 경우에는, 특허문헌 1 등에 개시되는 바와 같이, 풀리에 접촉하는 압축고무층에 벨트 폭방향으로 배향된 단섬유가 혼입되어 보강되며, 이 단섬유가 벨트 표면에서 돌출됨으로써 벨트 표면의 마찰계수가 저감되고, 저 소음성 및 내마모성의 향상을 도모하고 있다.
여기서, 상기 특허문헌 1에는 압축고무층의 단섬유가 탈락되거나 마멸된 경우에도 마찰계수의 저감효과를 얻을 수 있도록, 열경화성 수지의 분말을 배합한 고무조성물을 이용한 구성이 개시되어 있다.
또한, 예를 들어 특허문헌 2에는, 마찰전동벨트의 마찰 전동면을 구성하는 고무층(예를 들어, V리브벨트의 압축고무층)에, 기포율이 5%에서 20%가 되도록 발포제를 배합하여, 발포시키는 구성이 개시되어 있다.
일본 특허공개 2006-266280호 공보 일본 특허공개 2007-255635호 공보
그런데 상기 특허문헌 1과 같이, 압축고무층에 단섬유가 혼입된 마찰전동벨트에서는, 높은 소음 억제효과를 얻기 위해 단섬유의 배합량을 늘릴 필요가 있으나, 그러면 단섬유의 분산 불량이나, 벨트 자체의 강성이 높아짐으로 인한 슬립 발생 등, 많은 폐해가 발생될 가능성이 있다.
이에 반해, 상기 특허문헌 2와 같이, 압축고무층에 발포제를 배합하여 발포시킴으로써, 고무층 자체의 마찰계수를 저감시킬 수 있으므로, 단섬유의 배합량을 늘릴 필요가 없어져, 전술한 바와 같은 폐해를 해소하는 것이 가능해진다.
그러나 상기 특허문헌 2와 같이, 고무층의 발포 구조를 기포율만으로 규정한 경우, 각 기포의 크기까지 제어할 수 없으므로, 큰 기포가 불연속점이 되어 굴곡피로 특성이나 마모특성 등이 악화되고, 내구성이 저하될 우려가 있다.
본 발명은 이와 같은 점에 감안하여 이루어진 것이며, 그 목적으로 하는 바는, 벨트 본체의 내주측에 형성된 압축고무층이 풀리에 접촉하도록 감기는 마찰전동벨트에 있어서, 벨트주행 시의 소음 저감과 내구성을 양립할 수 있는 구성을 얻는 데 있다.
상기 목적을 달성하기 위해, 본 발명에 관한 마찰전동벨트에서는 풀리에 접촉하는 압축고무층에, 기포율이 5%에서 40%이며 또 평균 지름이 5μm에서 120μm가 되도록 복수의 작은 구멍을 형성함으로써, 벨트주행 시의 소음 저감과 내구성 향상의 양립을 도모할 수 있도록 하였다.
구체적으로 제 1 발명에서는, 벨트 본체의 내주측에 형성된 압축고무층이 풀리에 접촉하도록 감겨 동력을 전달하는 마찰전동벨트를 대상으로 한다. 그리고 상기 압축고무층에는, 기포율이 5%에서 40%이며, 또 평균 지름이 5μm에서 120μm인 복수의 작은 구멍이 형성되는 것으로 한다.
이 구성에 의해, 마찰계수에 영향을 주는 기포율만이 아니라, 마모 등 내구성에 영향을 주는 평균 지름도 적절한 범위로 할 수 있으며, 마찰계수 저감과 내구성 향상의 양립을 도모할 수 있다. 즉 후술하는 표 1에 나타내는 바와 같이, 기포율을 5%에서 40%의 범위로 함으로써 마찰계수의 저감을 도모할 수 있으며, 이로써 슬립음 발생을 방지할 수 있다.
또, 압축고무층에 형성되는 작은 구멍의 평균 지름을 5μm에서 120μm의 범위로 함으로써, 벨트주행 시의 소음 저감 효과를 높임과 더불어, 손실 마모량의 저감을 도모할 수 있으며, 내구성 향상을 도모할 수 있다. 반대로 상기 작은 구멍의 평균 지름이 전술한 범위보다 작으면 소음 저감 효과가 낮아지는 한편, 상기 작은 구멍의 평균 지름이 전술한 범위보다 크면 벨트의 내마모성이 저하됨과 더불어, 이 작은 구멍이 균열발생의 원인이 될 우려가 있다. 여기서 상기 작은 구멍의 평균 지름은 10㎛에서 100㎛의 범위인 것이 더욱 바람직하며, 20㎛에서 80㎛의 범위인 것이 더욱 바람직하다. 또 상기 작은 구멍의 평균 지름이 전술한 범위 내에 있어도, 별개로 지름이 150㎛를 초과하는 작은 구멍이 존재하면, 그 작은 구멍이 균열발생의 원인이 될 우려가 있으므로, 지름이 150㎛를 초과하는 작은 구멍이 존재하지 않는 것이 바람직하다.
또 상기 작은 구멍은 상기 압축고무층의 고무가공공정에서, 미가교 고무 내로 초임계 유체 또는 아임계 유체를 함침시킨 후, 이 초임계 유체 또는 아임계 유체를 기체로 상 변화시킴으로써, 발포 형성되는 것이 바람직하다(제 2 발명). 이로써, 초임계 유체 또는 아임계 유체를 이용하여 작은 구멍을 발포 형성하는 것이 가능해진다. 따라서, 전술한 구성에 의해 압축고무층에 중공입자 등을 혼입시킬 필요가 없어지므로, 이 중공입자를 이용하는 경우에 비해 재료원가를 저감할 수 있다.
특히, 상기 초임계 유체 또는 아임계 유체는 이산화탄소 혹은 질소의 초임계 상태 또는 아임계 상태인 것이 바람직하다(제 3 발명). 이와 같이, 이산화탄소나 질소를 이용함으로써, 비교적 용이하게 초임계 상태 또는 아임계 상태를 실현할 수 있음과 더불어, 고무에 영향을 주는 일없이 고무의 혼련을 실시할 수 있다.
한편, 전술한 바와 같이 초임계 유체에 의해 작은 구멍을 형성하는 것이 아니라, 중공입자를 이용하여 작은 구멍을 형성하여도 된다. 즉 상기 작은 구멍은, 상기 압축고무층의 고무가공공정에서 미가교 고무에 혼입되고, 가열됨으로써 팽창하는 중공입자에 의해 형성되어도 된다(제 4 발명).
이로써, 압축고무층 내에서 중공입자의 분산을 제어하면, 작은 구멍의 분산도 제어할 수 있음과 더불어, 중공입자에 의해 거의 동일 형상을 갖는 작은 구멍을 독립시켜 다수 형성할 수 있으므로, 작은 구멍의 형상 등의 제어도 용이해진다. 따라서, 요구되는 특성에 따라 압축고무층의 풀리 접촉면 형상을 정밀도 좋게 제어하는 것이 가능해진다.
또한 이상의 구성에 있어서, 상기 벨트 본체는 V리브벨트 본체인 것이 바람직하다(제 5 발명). 일반적으로, 자동차 엔진 주변의 보기류로 동력을 전달하는 경우 등에 이용되는 V리브벨트에 있어서, 벨트주행 시의 소음을 저감하면서 내구성 향상을 도모할 수 있어, 특히 유용하다.
이상과 같이, 본 발명에 관한 마찰전동벨트에 의하면, 압축고무층에 기포율이 5%에서 40%이며 또 평균 지름이 5㎛에서 120㎛가 되도록 복수의 작은 구멍을 형성하므로, 마찰계수 저감에 의한 소음 저감과, 작은 구멍에 기인한 내구성 악화의 방지를 양립시킬 수 있다. 특히, 초임계 유체 또는 아임계 유체를 이용하면 재료원가를 저감할 수 있는 한편, 중공입자를 이용하면 작은 구멍의 분산이나 형상 등을 제어할 수 있어, 압축고무층의 표면 형상을 정밀도 좋게 제어하는 것이 가능해진다.
도 1은 본 발명의 실시형태에 관한 마찰전동벨트의 일례인 V리브벨트의 개략 구성을 나타내는 사시도이다.
도 2는 내마모성 시험용 벨트주행 시험기의 풀리 배치를 나타내는 도면이다.
도 3은 소음측정 시험용 벨트주행 시험기의 풀리 배치를 나타내는 도면이다.
이하, 본 발명의 실시형태를 도면에 기초하여 설명한다. 그리고 이하의 바람직한 실시형태의 설명은 본질적으로 예시에 지나지 않으며, 본 발명, 그 적용물, 혹은 그 용도의 제한을 의도하는 것은 아니다.
(제 1 실시형태)
본 발명의 제 1 실시형태에 관한 마찰전동벨트의 일례로서, V리브벨트(B)를 도 1에 나타낸다. 이 V리브벨트(B)는 V리브벨트 본체(10)와, 이 V리브벨트 본체(10)의 상면(배면, 외주면)측에 적층된 배면 범포층(17)을 구비하며, 상기 V리브벨트 본체(10)는 횡단면에서 보아 거의 사각형인 접착고무층(11)과, 이 접착고무층(11)의 하면측, 즉 V리브벨트 본체(10)의 하면(바닥면, 내주면)측에 적층된 압축고무층(12)으로 구성된다.
상기 배면 범포층(17)은 예를 들어, 면, 폴리아미드섬유, 폴리에스테르섬유 등의 직포에, 고무를 용제에 용융시킨 고무풀에 의한 접촉처리가 실시되며, V리브벨트 본체(10)(접착고무층(11)) 배면에 접착된다. 이로써 상기 배면 범포층(17)은 벨트 배면이 평탄한 풀리(예를 들어 배면 아이들 풀리 등)에 접촉하도록 감긴 경우의 동력 전달 역할을 수행한다.
한편, 상기 접착고무층(11)은, 내열성 및 내후성이 뛰어난 에틸렌프로필렌디엔모노머(EPDM)나 클로로플렌고무(CR), 수소첨가 니트릴고무(H-NBR) 등의 고무조성물로 이루어지며, 이 접착고무층(11) 내에는 벨트 길이방향으로 이어지며, 또 벨트 폭방향으로 소정의 피치를 두고 나열되도록 나선상으로 감긴 복수의 심선(16)이 매입된다. 여기서, 이 심선(16)은 알라미드섬유나 폴리에스테르섬유 등으로 이루어진 복수의 단사를 합연(twist)함으로써 구성된다.
상기 압축고무층(12)은, 베이스 고무로서의 EPDM을 포함한 고무조성물로 구성되며, 카본블랙과 함께 여러 종류의 고무 배합제가 배합되어 이루어진다. 고무 배합제로서는 예를 들어, 가교제, 노화방지제, 가공보조제, 중공입자 등을 들 수 있다. 또 베이스가 되는 엘라스토머는 EPDM에 한정되지 않으며, CR이나 H-NBR이라도 된다.
상기 압축고무층(12)은 중공입자를 배합하고 이 중공입자를 가열 팽창시킴으로써, 내부에, 기포율이 5%에서 40%이며, 또 평균 지름이 5㎛에서 120㎛인 다수의 작은 구멍(15)이 형성된다. 이 작은 구멍(15)은, 평균 지름이 10㎛에서 100㎛가 되도록 형성되는 것이 바람직하며, 평균 지름이 20㎛에서 80㎛가 되도록 형성되는 것이 보다 바람직하다. 상기 작은 구멍(15)의 평균 지름이 5㎛보다 작으면 소음 저감 효과가 낮아지는 한편, 상기 작은 구멍(15)의 평균 지름이 120㎛보다 크면 벨트(B)의 내마모성이 저하됨과 더불어, 이 작은 구멍(15)이 균열발생의 원인이 될 우려가 있다. 여기서, 상기 작은 구멍(15)의 평균 지름이 전술한 범위 내에 있어도, 별개로 작은 구멍(15)의 지름이 150㎛를 초과하는 작은 구멍이 존재하면, 그 작은 구멍(15)이 균열발생의 원인이 될 우려가 있으므로, 지름이 150㎛를 초과하는 작은 구멍이 존재하지 않는 것이 바람직하다.
상기 중공입자로서는 예를 들어, Matsumoto Yushi-Seiyaku Co., Ltd.제 마쯔모토 마이크로스피어 F-85나 F-80VS 등을 들 수 있다. 이 경우, 중공입자의 지름은 예를 들어, F-85가 약 15∼25㎛, F-80VS가 약 5∼8㎛이다. 이 F-85를 이용하여 형성되는 작은 구멍(15)의 평균 지름은 약 8㎛∼55㎛이며, F-80VS를 이용하여 형성되는 작은 구멍(15)의 평균 지름은 약 5㎛∼10㎛이다.
여기서, 본 실시형태에 관한 V리브벨트(B)에서는 종래의 V리브벨트에 포함된 것과 같은 단섬유는 압축고무층(12)에 배합되지 않으나, 종래와 마찬가지로, 이 압축고무층(12) 내에 단섬유를 배합해도 된다. 즉 압축고무층(12)에 단섬유를 배합하는 것은 벨트(B)의 굴곡으로 인한 균열발생 원인이 될 수 있으므로, 본 실시형태에 관한 V벨트(B)와 같이 단섬유를 압축고무층(12)에 배합하지 않는 것이 바람직하되, 고무의 경도를 변경할 경우 등에는, 베이스 엘라스토머 100중량부에 대해 10중량부 이하의 단섬유를 배합하도록 하여도 된다. 단섬유로서는 예를 들어, 알라미드섬유나 폴리에스테르섬유 등이 바람직하며, 벨트 폭방향으로 배향하도록 형성하는 것이 바람직하다.
또 상기 압축고무층(12)의 하면측에는, 각각 벨트 길이방향으로 이어지는 복수의 리브부(13, 13,…)(본 실시형태에서는 3열)가 벨트 폭방향으로 소정의 피치로 나열되도록 형성된다. 이로써, V리브벨트(B)를 풀리에 감은 경우에, 상기 압축고무층(12)의 각 리브부(13) 측면이 이 풀리 홈의 측면에 접촉한다.
다음은, 전술한 바와 같이 구성된 V리브벨트(B)의 제조방법 일례에 대해 설명한다.
상기 V리브벨트(B)의 제조에는, 외주면에 벨트 배면을 소정형상으로 형성하는 성형면을 구비한 내측 금형과, 내주면에 벨트 내면을 소정형상으로 형성하는 성형면을 구비한 고무 슬리브가 이용된다.
먼저, 상기 내측 금형의 바깥둘레를, 접착제를 부착시키는 처리를 한 직포의 배면범포로 피복한 후, 그 위에 접착고무층(11)의 배면측 부분을 형성하기 위한 미가교 고무시트를 감는다.
이어서, 그 위에 접착제를 부착시키는 처리를 실시한 심선(16)을 나선상으로 감은 후, 그 위에 접착고무층(11)의 내측면 부분을 형성하기 위한 미가교 고무시트를 감고, 다시 그 위에 압축고무층(12)을 형성하기 위한 미가교 고무시트로서, 고무가공공정에서 원료고무에 카본블랙 등 충전재나 가소제 등 고무 배합제나 중공입자를 혼입한 것을 중첩시킨다. 여기서, 각 미가교 고무시트를 감을 때, 각각의 미가교 고무시트의 감기방향의 양 단부는 중첩시키지 않고 맞붙이는 것으로 한다.
그 후, 상기 내측 금형 상의 성형체에 고무 슬리브를 외측에서 씌우고, 그것을 성형가마에 설치하여, 내측 금형을 고열의 수증기 등에 의해 가열함과 동시에, 고압을 가하여 고무 슬리브를 반지름방향 내측으로 누른다. 이때, 고무 성분이 유동됨과 동시에 가교반응이 진행되며, 심선(16) 및 배면 범포의 고무로의 접착반응도 진행된다. 또 압축고무층(12) 내의 중공입자는, 성형가교 시의 가열에 의해 입자 중의 펜탄이나 헥산 등이 휘발되어 팽창하며, 이 압축고무층(12) 내부에 다수의 작은 구멍(15)을 형성한다. 이로써 통형상의 벨트 슬래브(slab)가 성형된다.
그리고 내측 금형에서 벨트 슬래브를 떼어내고, 그것을 길이방향으로 여러 개로 분할한 후, 각각의 바깥둘레를 연삭하여, 리브부(13)를 형성한다. 이때, 리브부(13)의 풀리와의 접촉표면에 노출되는 중공입자는 일부분이 잘려 개구되며, 이 접촉표면에 오목 구멍을 형성한다.
마자막에, 분할되고 외주면 상에 리브부가 형성된 벨트 슬래브를 소정 폭으로 자르고, 각각의 표리를 뒤집음으로써 V리브벨트(B)가 얻어진다.
여기서, 상기 V리브벨트(B)의 제조방법은, 전술한 바와 같은 방법에 한정되지 않으며, 리브부 형상이 형성된 내측 틀에 압축고무층(12)부터 차례로 적층하고, 외측 틀과의 사이에서 가열하면서 누르도록 해도 된다.
이상의 구성에 의해, 다수의 작은 구멍(15)에 의해 마찰계수의 저감을 도모할 수 있음과 더불어, 이 작은 구멍(15)으로 인한 내구성 저하를 방지할 수 있다. 즉 상기 작은 구멍(15)의 기포율을 5%∼40%의 범위로 함으로써, 압축고무층(12) 접촉표면의 마찰계수를 저감할 수 있는 한편, 상기 작은 구멍(15)의 평균 지름을 5㎛∼120㎛의 범위로 함으로써, 이 작은 구멍(15)이 불연속점이 되어 마모가 발생되는 것을 최대한 억제할 수 있으며, 내구성의 저하를 방지할 수 있다.
또 전술한 바와 같이, 중공입자를 이용함으로써, 압축고무층(12) 내에 독립된 다수의 작은 구멍(15)을 확실하게 형성할 수 있다. 즉 상기 압축고무층(12) 내에 중공입자에 의해 작은 구멍(15)이 형성되므로, 이 압축고무층(12) 내의 작은 구멍(15)은 연속된 작은 구멍(15)이 아니라, 각 작은 구멍(15)이 독립되며 또 구형에 가까운 형상이 된다. 따라서, 각 작은 구멍(15)의 크기나 형상을 정밀도 좋게 제어하는 것이 가능해진다.
(제 2 실시형태)
다음은, 본 발명의 제 2 실시형태에 관한 V리브벨트에 대해 이하에서 설명한다. 이 제 2 실시형태에서는, 벨트(B)의 압축고무층(12)을 형성하기 위한 미가교 고무시트의 혼련 방법이 제 1 실시형태와 다르다.
구체적으로, 미가교의 원료고무와 필러를 혼련하여 필러함유 미가교 고무를 제조하는 고무가공공정에서, 초임계 유체 또는 아임계 유체를 이용한다.
여기서 초임계 유체란, 초임계 상태의 유체를 의미한다. 이 초임계 상태란, 온도가 유체의 임계온도(Tc) 이상이며 또 압력이 유체의 임계압력(Pc) 이상인 상태이다.
또 아임계 유체란, 아임계 상태의 유체를 의미한다. 이 아임계 상태란, 온도 또는 압력의 한쪽만이 임계상태에 달하고, 다른 쪽이 임계상태에 달하지 않은 상태, 혹은 온도 및 압력이 임계상태에 달하지 않았으나, 온도 및 압력 중 적어도 한쪽이 통상의 온도 및 압력보다 충분히 높으며, 임계상태에 가까운 상태이다.
즉 본 실시형태에 있어서, 아임계 상태란, 온도(T) 및 압력(P)이 이하의 어느 하나의 조건을 만족하는 경우이다.
0.5<T/Tc<1.0이며 0.5<P/Pc
0.5<T/Tc이며 0.5<P/Pc<1.0
그리고, 고무 혼련에 있어서 바람직한 아임계 상태는, 이하의 어느 하나의 조건을 만족하는 경우이다.
0.6<T/Tc<1.0이며 0.6<P/Pc
0.6<T/Tc이며 0.6<P/Pc<1.0
여기서 임계온도(Tc)(섭씨)가 마이너스인 경우에는, 온도조건이 만족되는 것으로 하며, 초임계 상태의 조건이 만족되지 않으며 또 0.5<P/Pc의 압력조건이 만족되면 아임계 상태에 있는 것으로 한다.
상기 초임계 유체 또는 아임계 유체를 발생시키는 물질로서는, 예를 들어, 이산화탄소, 질소, 수소, 크세논, 에탄, 암모니아, 메타놀, 물 등을 들 수 있다. 이들 물질 중, 고무의 혼련에는 이산화탄소 및 질소가 적합하다.
이산화탄소의 임계온도(Tc)는 31.1℃이며, 임계압력(Pc)은 7.38MPa이다. 따라서, 초임계 상태의 이산화탄소는, 온도(T)가 31.1℃ 이상이며 압력(P)이 7.38MPa 이상인 상태이다. 한편, 아임계 상태의 이산화탄소는, 온도(T)가 15.55℃<T<31.1℃이며 압력(P)이 3.69MPa<P의 조건을 만족하는 상태의 이산화탄소, 혹은 15.55℃<T이며 3.69MPa<P<7.38MPa의 조건을 만족하는 상태의 이산화탄소이다.
질소의 임계온도(Tc)는 -147.0℃이며, 임계압력(Pc)은 3.40MPa이다. 따라서 초임계 상태의 질소는, 온도(T)가 -147.0℃ 이상이며 압력(P)이 3.40MPa 이상인 상태이다. 한편, 아임계 상태의 질소는, 초임계 상태의 조건을 만족하지 않으며 압력(P)이 1.70MPa<P의 조건을 만족하는 상태의 질소이다.
여기서 초임계 유체 또는 아임계 유체의 존재하에서는, 고무의 혼련에 지장을 끼치지 않은 범위에서 그 밖의 액체나 기체를 공존시켜도 된다.
이와 같은 초임계 유체 또는 아임계 유체의 존재하에서의 고무 혼련은 내열성 및 내압성이 뛰어난 밀폐식의 고무 혼련실 내에 로터나 스크류 등, 혼련수단이 구성된 혼련장치를 이용함으로써 행해진다. 이와 같은 혼련장치로서, 미가교 고무 및 필러의 공급, 그리고 필러 함유 미가교 고무의 배출을 연속적으로 실행하는 연속방식의 것이라도 되며, 또 소정량의 미가교 고무 및 필러를 각각 혼련하여 회수하는 일괄방식의 것이라도 된다. 전자의 구성으로서는, 예를 들어 일본 특허공개 2002-355880호 공보에 개시된 2축 압출 혼련 장치 등을 들 수 있다. 또 후자의 구성으로서는, 예를 들어 니더(kneader)나 믹서(bumbury's mixer) 등을 들 수 있다.
상기 혼련장치 내의 혼련수단에 의해 미가교 고무 및 필러를 기계적으로 교반 혼련할 시에, 전술한 바와 같이 초임계 유체 또는 아임계 유체를 공존시킴으로써, 이 미가교 고무 내에 초임계 유체 또는 아임계 유체가 용해되고 확산된다. 그때, 필러가 용해성 및 확산성 좋은 초임계 유체 또는 아임계 유체와 함께 상기 미가교 고무 내로 확산되므로, 이 미가교 고무 내에서의 필러의 분산성을 높일 수 있다.
그리고 충분히 혼련한 후, 고무 혼련실 내의 압력을 감압하여, 혼련물 내의 초임계 유체나 아임계 유체를 팽창시킨다(기체로 상 변화 시킨다). 이때, 작은 구멍이 형성되도록 순식간에 감압한다. 또 그 후의 고무성형 가교공정의 가열에 의한 팽창도 고려하여, 요구되는 작은 구멍의 지름보다 약간 작은 지름이 되도록 압력을 제어한다. 여기서 전술한 바와 같이, 상기 초임계 유체나 아임계 유체의 존재하에서 고무를 혼련하는 것이 아니라, 이 초임계 유체나 아임계 유체를 단지 고무에 함침시키는 것만이라도 된다.
이로써, 상기 초임계 유체나 아임계 유체가 발포의 핵이 되므로, 벨트(B)의 압축고무층(12)에 중공입자를 이용하는 일없이, 다수의 작은 구멍(15)을 형성하는 것이 가능해진다. 따라서 전술한 구성에 의해, 중공입자를 이용하는 경우에 비해 재료원가를 저감할 수 있음과 더불어, 이 중공입자가 압축고무층에 대해 영향을 주는 것을 방지할 수 있다.
여기서 상기 필러로서는 예를 들어, 카본블랙이나 단섬유 등을 들 수 있다. 또 이들 필러 이외의 고무 배합제(예를 들어, 노화방지제, 가교제, 가교 촉진제 등)를 미가교 고무 및 필러에 첨가하여, 초임계 유체나 아임계 유체의 존재하에서 혼련해도 된다.
(제 3 실시형태)
다음은, 본 발명의 제 3 실시형태에 관한 V리브벨트에 대해 이하에서 설명한다. 이 제 3 실시형태에서는, 벨트(B)의 압축고무층(12)에 다수의 작은 구멍(15)을 형성하는 방법이 제 1, 2 실시형태와 다르다.
구체적으로, 압축고무층(12)의 미가교 고무를 제조할 때, 원료고무로서의 EPDM에 대해, 각종 고무 배합제를 가함과 더불어 화학 발포제를 배합한다. 이 화학 발포제로서는 예를 들어, SANKYO Chemical Co., Ltd.제 Mike CAP-500 cells 등을 들 수 있다. 상기 화학 발포제는 예를 들어, EPDM 100중량부에 대해 약 3중량부를 배합하는 것이 바람직하다.
그리고, 고무의 성형가교 시에 미가교 고무를 가열함으로써, 이 미가교 고무 내의 화학 발포제를 가열 분해시킨다. 이로써 질소가스가 발생하므로, 이 질소가스에 의해 고무 내를 발포시켜, 발포 고무조성물을 형성할 수 있다.
(그 밖의 실시형태)
상기 각 실시형태에서는, 마찰전동벨트로서 V리브벨트를 대상으로 하나, 이에 한정되는 것은 아니며, V리브벨트나 평벨트 등, 풀리에 대해 고무층이 접촉하는 벨트라면, 어떠한 벨트라도 된다.
〔실시예〕
V리브벨트에 대해 실시한 시험 및 그 평가 결과에 대해, 이하에서 설명한다.
(시험평가용 벨트)
이하의 실시예 1∼6 및 비교예 1∼5의 V리브벨트를 작성하였다. 이들 벨트의 배합에 대해서는, 후술하는 표 1에도 정리하여 나타낸다.
〈실시예 1〉
고무 성분인 원료고무로서 EPDM을 이용하고, 이 EPDM 100중량부에 대해 카본블랙 70중량부, 연화제 5중량부, 산화아연 5중량부, 가공보조제 1중량부, 노화방지제 2.5중량부, 가교제로서 유황 2중량부, 가황 촉진제 4중량부, 유기 중공입자(B) 6중량부를 배합하여 이루어진 고무조성물에 의해 압축고무층을 형성한 상기 제 1 실시형태와 마찬가지의 구성인 V리브벨트를 실시예 1로 하였다.
〈실시예 2〉
유기 중공입자(B) 15중량부를 배합하여 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 1과 동일 구성의 V리브벨트를 실시예 2로 하였다.
〈실시예 3〉
유기 중공입자(B)를 배합하는 대신, 초임계 상태의 이산화탄소 존재하(함침 압력(P)이 20MPa)에서 혼련되고, 발포온도 50℃, 감압속도 7MPa/sec에서 이산화탄소를 발포시켜 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 1과 동일구성의 V리브벨트를 실시예 3으로 하였다.
〈실시예 4〉
고무 혼련시의 함침 압력(P)이 6MPa이며, 발포온도 70℃, 감압속도 7MPa/sec에서 이산화탄소를 발포시켜 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 3과 동일구성의 V리브벨트를 실시예 4로 하였다.
〈실시예 5〉
고무 혼련시의 함침 압력(P)이 6MPa이며, 발포온도 80℃, 감압속도 7MPa/sec에서 이산화탄소를 발포시켜 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 3과 동일구성의 V리브벨트를 실시예 5로 하였다.
〈실시예 6〉
유기 중공입자(B) 대신, 화학 발포제 3중량부를 배합하여 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 1과 동일구성의 V리브벨트를 실시예 6으로 하였다.
〈비교예 1〉
유기 중공입자(B)가 배합되지 않은 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 실시예 1과 동일구성의 V리브벨트를 비교예 1로 하였다.
〈비교예 2〉
EPDM 100중량부에 대해 유기 중공입자(A) 1중량부를 배합하여 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 비교예 1과 동일구성의 V리브벨트를 비교예 2로 하였다.
〈비교예 3〉
EPDM 100중량부에 대해 유기 중공입자(B) 30중량부를 배합하여 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 비교예 1과 동일구성의 V리브벨트를 비교예 3으로 하였다.
〈비교예 4〉
초임계 상태의 이산화탄소 존재하(함침 압력(P)이 15MPa)에서 혼련되며, 발포온도 40℃, 감압속도 7MPa/sec에서 이산화탄소를 발포시켜 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 비교예 1과 동일구성의 V리브벨트를 실시예 4로 하였다.
〈비교예 5〉
고무 혼련시의 함침 압력(P)이 5MPa이며, 발포온도 90℃, 감압속도 7MPa/sec에서 이산화탄소를 발포시켜 이루어진 고무조성물에 의해 압축고무층을 형성한 것을 제외하고, 비교예 4와 동일구성의 V리브벨트를 비교예 5로 하였다.
여기서, 상기 EPDM은 The Dow Chemical Company제 Nordel IP4725P를이용하며, 상기 카본블랙은 TOKAI CARBON CO., LTD.제 SEAST 3을 이용하였다. 또 상기 연화제는 JAPAN SUN OIL COMPANY, LTD.제 Sunflex 2280, 상기 산화아연은 SAKAI CHEMICAL INDUSTRIAL CO., LTD.제 산화아연 1호, 상기 가공보조제는 NOF CORPORATION제 Camellia stearic acid beads, 상기 노화방지제는 OUCHI SHINKO CHEMICAL INDUSTRIAL제 NOCRAC 224, 상기 유황은 TSURUMI Chemical Co., Ltd.제 오일 유황, 상기 가황 촉진제는 OUCHI SHINKO CHEMICAL INDUSTRIAL제 EP-150을 각각 이용하였다. 또한 상기 화학 발포제는 SANKYO Chemical Co., Ltd.제 Mike CAP-500 cells, 상기 유기 중공입자(A)는 Matsumoto Yushi-Seiyaku Co., Ltd.제 마쯔모토 마이크로스피어 F-80VS, 상기 유기 중공입자(B)는 마쯔모토 마이크로스피어 F-85를 각각 이용하였다.
(시험평가 방법)
〈내마모성시험〉
도 2는, V리브벨트의 내마모성시험 평가용 벨트주행 시험기(30)의 배치를 나타낸다. 이 벨트주행 시험기(30)는 모두 풀리지름 60mm의 리브풀리로 된 구동 풀리(31) 및 종동 풀리(32)를 구비한다.
상기 실시예 1∼6 및 비교예 1∼5의 각 V리브벨트에 대해, 벨트 중량을 계측한 후, 리브부(13)가 풀리(31, 32)에 접촉하도록 이 풀리(31, 32)에 V리브벨트를 감는다. 이때, 구동 풀리(31)에 1177N의 사하중이 부가되도록, 이 구동 풀리(31)를 측방으로 당김과 동시에, 7W의 회전부하를 종동 풀리(32)에 부가한다. 그리고 실온에서 구동 풀리(31)를 3500rpm의 회전속도로 24시간 회전시키는 벨트주행 시험을 실시하였다.
벨트주행 후의 벨트 중량을 측정하고, 하기 식에 기초하여 손실 마모량(%)을 산출하였다.
손실 마모량(%)=(초기 중량-주행 후 중량)/초기 중량×100
〈소음측정시험〉
도 3은, V리브벨트의 소음측정용 벨트주행 시험기(40)의 배치를 나타낸다. 이 벨트주행시험기(40)는 상하로 배치된 풀리지름 120mm의 리브풀리로 이루어진 구동 풀리(41) 및 종동 풀리(42)와, 그들의 상하방향 중간위치에 배치된 풀리지름 70mm의 아이들 풀리(43)와, 상기 구동 풀리(41) 및 종동 풀리(42)의 상하방향 중간의 측방에 위치하는 풀리지름 55mm의 아이들 풀리(44)를 구비한다. 상세하게는, 상기 구동 풀리(41) 상방에 상기 종동 풀리(42)가 배치되고, 이들 풀리(41, 42)에 대해, 정면에서 보아 상하방향 중간위치에 상기 아이들 풀리(43)가 배치되며, 정면에서 보아 그 오른쪽 측방(도 3에서 지면 오른쪽)에 아이들 풀리(44)가 배치된다. 그리고 상기 아이들 풀리(43, 44)는 각각 벨트에 감기는 각도가 90。가 되도록 배치된다.
상기 실시예 1∼6 및 비교례 1∼5의 각 V리브벨트를, 상기 4개의 풀리(41∼44)에 감고, 상기 종동 풀리(42)에는 리브 1개당 2.5kW의 부하가 걸림과 동시에, 상기 아이들 풀리(44)에는 리브 1개당 설치 하중 277N이 걸리도록 상기 아이들 풀리(43, 44)를 설치하며, 상기 구동 풀리(41)를 4900rpm의 회전속도로 회전시키는 벨트주행시험을 실시하였다.
또 상기 아이들 풀리(43)에 벨트가 접하는 위치에서 측방으로 약 10cm의 위치에 소음계(RION CO., LTD제, 「NA-40」)의 마이크로폰을 설치하고, 벨트주행시험 시에 발생하는 소음을 측정하였다.
여기서, 벨트주행 중의 소음으로서, 상기 구동 풀리(41)를 일정 거리 주행시킨 후, 이 구동 풀리(41)에 대해 물을 주입(200cc/분)하였을 때의 슬립음을 검출하였다.
(시험 평가결과)
시험결과를 표 1에 나타낸다.
Figure pct00001
상기 시험결과에 따르면, 압축고무층(12)에 기포율이 5% 이상이 되도록 다수의 작은 구멍(15)을 형성한 것(실시예 1∼6 및 비교예 3, 5)은, 작은 구멍(15)을 형성하지 않은 것(비교예 1)이나 기포율이 5% 미만인 것(비교예 2)에 비해, 벨트 슬립음을 저감할 수 있음을 알 수 있다. 이것은 다수의 작은 구멍(15)을 형성함으로써, 벨트(B) 접촉면의 마찰계수를 저감할 수 있었기 때문이라고 생각할 수 있다.
한편, 기포율이 40%보다 큰 비교예 3에서는, 기포율이 40% 이하인 것(실시예 1∼6 및 비교예 2, 4)에 비해 손실 마모량이 큰 것을 알 수 있다. 이와 같이 기포율이 너무 크면, 벨트(B) 접착면의 강도가 저하되므로, 심하게 마모된다. 따라서, 상기 시험결과에 따르면, 마모량이 적은, 기포율 40% 이하인 것이 바람직하다. 여기서 기포율은, 후술하는 관찰화상의 화상처리 결과에 기초하여, 작은 구멍(15)의 단면적과 고무부분(작은 구멍(15) 이외의 부분)의 단면적과의 비율로부터 구하였다.
따라서, 기포율은 5%∼40%가 바람직하다. 즉, 손실 마모량이 특별하게 적은 실시예 1∼6과 같이, 기포율을 40% 이하로 하는 것이 바람직하며, 소음이 발생하기 어려운 실시예 1∼6과 같이, 기포율을 5% 이상으로 하는 것이 바람직하다.
또 작은 구멍(15)의 평균 지름이 큰 것(비교예 5)은, 평균 지름이 작은 것(실시예 1∼6 및 비교예 2∼4)과 비교하여 손실 마모량이 크고, 내구성이 떨어지는 것을 알 수 있다. 벨트(B)는, 손실 마모량이 3% 정도까지가 적합한 범위이므로, 상기 표 1의 결과로부터, 상기 작은 구멍(15)의 평균 지름은 5㎛∼120㎛의 범위가 바람직하다. 특히 손실 마모량이 작으며 또 벨트 슬립음의 저감효과가 높은 평균 지름 10㎛∼100㎛가 보다 바람직하며, 평균 지름 20㎛∼80㎛가 더욱 바람직하다. 여기서 상기 평균 지름은, Keyence Corporation제 디지털 마이크로스코프 VHX-200 또는 Hitachi-High-Technologies Corporation제 주사형 전자현미경 S-4800을 이용하여, 450배(마이크로스코프의 경우) 또는 10만배(주사형 전자현미경의 경우)로 관찰화상을 얻은 후, Mitani Corporation제 화상처리 소프트웨어 WinROOF를 이용하여, 관찰화상 내 작은 구멍(15) 전부의 평균값으로부터 구하였다.
따라서 이상과 같이, 벨트 슬립음 저감의 관점에서 기포율은 5% 이상이고, 벨트 내구성의 관점에서 기포율은 40% 이하이며 또 평균 지름이 5㎛∼120㎛인 것이 바람직하다. 이 범위라면, 소음 저감과 벨트 내구성 향상의 양립을 도모할 수 있다.
이상 설명한 바와 같이, 본 발명의 마찰전동벨트는 소음을 저감하면서 내구성 향상을 도모할 수 있으므로, 예를 들어 자동차 등에 있어서 풀리 사이에 감겨 동력을 전달하는 벨트에 유용하다.
B; V리브벨트(마찰전동벨트) 10; V리브벨트 본체
11; 접착고무층 12; 압축고무층
13; 리브부 15; 작은 구멍
16; 심선 17; 배면 범포층
30, 40 ; 벨트주행 시험기 31, 41; 구동 풀리
32, 42 ; 종동 풀리 43, 44; 아이들 풀리

Claims (5)

  1. 벨트 본체의 내주측에 형성된 압축고무층이 풀리에 접촉하도록 감겨 동력을 전달하는 마찰전동벨트에 있어서,
    상기 압축고무층에는 기포율이 5%에서 40%이며, 또 평균 지름이 5㎛에서 120㎛인 복수의 작은 구멍이 형성되는 것을 특징으로 하는 마찰전동벨트.
  2. 청구항 1에 있어서,
    상기 작은 구멍은, 상기 압축고무층의 고무가공공정에서 미가교 고무 내로 초임계 유체 또는 아임계 유체를 함침시킨 후, 이 초임계 유체 또는 아임계 유체를 기체로 상 변화시킴으로써 발포 형성되는 것을 특징으로 하는 마찰전동벨트.
  3. 청구항 2에 있어서,
    상기 초임계 유체 또는 아임계 유체는, 이산화탄소 혹은 질소의 초임계 상태 또는 아임계 상태인 것을 특징으로 하는 마찰전동벨트.
  4. 청구항 1에 있어서,
    상기 작은 구멍은, 상기 압축고무층의 고무가공공정에서 미가교 고무에 혼입되어, 가열됨으로써 팽창하는 중공입자에 의해 형성되는 것을 특징으로 하는 마찰전동벨트.
  5. 청구항 1에서 4 중 어느 한 항에 있어서,
    상기 벨트 본체는 V리브벨트 본체인 것을 특징으로 하는 마찰전동벨트.
KR1020107017448A 2008-02-13 2009-02-10 마찰전동벨트 KR20100110860A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-032109 2008-02-13
JP2008032109 2008-02-13

Publications (1)

Publication Number Publication Date
KR20100110860A true KR20100110860A (ko) 2010-10-13

Family

ID=40956830

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107017448A KR20100110860A (ko) 2008-02-13 2009-02-10 마찰전동벨트

Country Status (6)

Country Link
US (2) US20100331129A1 (ko)
JP (1) JPWO2009101799A1 (ko)
KR (1) KR20100110860A (ko)
CN (1) CN101939559A (ko)
DE (1) DE112009000318T5 (ko)
WO (1) WO2009101799A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422450B1 (ko) * 2011-06-17 2014-07-30 반도 카가쿠 가부시키가이샤 V 리브드 벨트의 제조방법
JP5829614B2 (ja) * 2010-10-21 2015-12-09 バンドー化学株式会社 摩擦伝動ベルト

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008007647A1 (ja) * 2006-07-14 2009-12-10 バンドー化学株式会社 摩擦伝動ベルト及びその製造方法
WO2011074182A1 (ja) * 2009-12-14 2011-06-23 バンドー化学株式会社 摩擦伝動ベルト
JP5695044B2 (ja) * 2010-06-15 2015-04-01 バンドー化学株式会社 伝動ベルト
EP2818755B1 (en) * 2012-02-24 2018-12-19 Bando Chemical Industries, Ltd. Friction transmission belt
WO2014006916A1 (ja) * 2012-07-06 2014-01-09 バンドー化学株式会社 伝動ベルト
JP6546595B2 (ja) * 2014-08-26 2019-07-17 バンドー化学株式会社 伝動ベルト及びその製造方法
CN108884908B (zh) * 2016-03-23 2019-05-07 阪东化学株式会社 切边v带的制造方法
WO2017168920A1 (ja) * 2016-03-30 2017-10-05 バンドー化学株式会社 ベルトの製造方法、それに使用する円筒金型及び架橋装置
DE102017123722B4 (de) * 2017-10-12 2020-05-28 Arntz Beteiligungs Gmbh & Co. Kg Wenigstens dreischichtiger Kraftübertragungsriemen mit geschäumter Pufferschicht und Verfahren zur Herstellung eines solchen Kraftübertragungsriemens
DE102018116084A1 (de) * 2018-07-03 2020-01-09 Arntz Beteiligungs Gmbh & Co. Kg Verfahren zur Herstellung eines Keilrippenriemens mit Rippenbeschichtung
CN111674066A (zh) * 2020-06-18 2020-09-18 浙江威格尔传动股份有限公司 耐磨皮带的生产工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054619A (en) * 1934-02-21 1936-09-15 Dayton Rubber Mfg Co Belt
US2181001A (en) * 1936-11-12 1939-11-21 John W Smith Power-transmitting belt
US2677969A (en) * 1950-07-14 1954-05-11 Dayton Rubber Company V-belt
US3473400A (en) * 1967-06-27 1969-10-21 Owens Corning Fiberglass Corp Industrial belt construction and method of manufacturing same
US5670102A (en) * 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
US6613811B1 (en) * 1999-06-03 2003-09-02 Trexel, Inc. Microcellular thermoplastic elastomeric structures
JP4094248B2 (ja) 2001-05-31 2008-06-04 株式会社日本製鋼所 超臨界流体を利用した混練・脱揮押出成形装置
JP2004352760A (ja) * 2003-05-27 2004-12-16 Bridgestone Corp 発泡ゴム組成物及びその製造方法
JP2006266280A (ja) 2005-03-22 2006-10-05 Mitsuboshi Belting Ltd 伝動ベルト
JP2006299031A (ja) * 2005-04-19 2006-11-02 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
EP1958980B1 (en) * 2005-12-05 2012-10-31 JSR Corporation Thermoplastic elastomer composition, foam product, and process for production of the composition or foam product
JP4861029B2 (ja) * 2006-03-24 2012-01-25 三ツ星ベルト株式会社 摩擦伝動ベルト
JPWO2008007647A1 (ja) * 2006-07-14 2009-12-10 バンドー化学株式会社 摩擦伝動ベルト及びその製造方法
US20080176690A1 (en) * 2007-01-18 2008-07-24 Lefkowitz Leonard R Anti-rewet transfer belt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829614B2 (ja) * 2010-10-21 2015-12-09 バンドー化学株式会社 摩擦伝動ベルト
KR101422450B1 (ko) * 2011-06-17 2014-07-30 반도 카가쿠 가부시키가이샤 V 리브드 벨트의 제조방법

Also Published As

Publication number Publication date
US20130099406A1 (en) 2013-04-25
CN101939559A (zh) 2011-01-05
DE112009000318T5 (de) 2011-03-03
WO2009101799A1 (ja) 2009-08-20
US20100331129A1 (en) 2010-12-30
JPWO2009101799A1 (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
KR20100110860A (ko) 마찰전동벨트
EP2631507B1 (en) Friction transmission belt
EP2514994B1 (en) Friction transmission belt
KR101265821B1 (ko) 마찰전동벨트
KR100907780B1 (ko) 마찰전동벨트 및 그 제조방법
JP6342760B2 (ja) 摩擦伝動ベルト
WO2016170788A1 (ja) ゴム組成物、伝動ベルト及びその製造方法
JP2007170587A (ja) Vリブドベルト
JP2007070592A (ja) ゴム組成物、ゴム組成物の製造方法及び摩擦伝動ベルト
JP2011190916A (ja) 摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置
JP2007270917A (ja) 摩擦伝動ベルト
JP2011099457A (ja) Vリブドベルト
JP2007170454A (ja) Vリブドベルト
CN107532681B (zh) 传动带
WO2014091673A1 (ja) 伝動ベルト
JP2008304053A (ja) 摩擦伝動ベルト
JP4820107B2 (ja) 伝動ベルト
JP4667956B2 (ja) 伝動ベルトとその製造方法
JP2010169215A (ja) 摩擦伝動ベルト
JP6532454B2 (ja) 摩擦伝動ベルト
JP2012067786A (ja) 摩擦伝動ベルト
JP2016211587A (ja) 伝動ベルト及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application