KR20070114195A - 중합체 섬유 직물을 함유하는 광학 소자 - Google Patents

중합체 섬유 직물을 함유하는 광학 소자 Download PDF

Info

Publication number
KR20070114195A
KR20070114195A KR1020077022034A KR20077022034A KR20070114195A KR 20070114195 A KR20070114195 A KR 20070114195A KR 1020077022034 A KR1020077022034 A KR 1020077022034A KR 20077022034 A KR20077022034 A KR 20077022034A KR 20070114195 A KR20070114195 A KR 20070114195A
Authority
KR
South Korea
Prior art keywords
fibers
polymer
fiber
scattering
optical body
Prior art date
Application number
KR1020077022034A
Other languages
English (en)
Inventor
앤드류 제이. 오우더커크
리차드 씨. 알렌
올스터 쥬니어 벤슨
제임스 씨. 브레이스터
연-종 조
패트릭 알. 플레밍
윌리엄 제이. 코페키
다이안 노스
로저 제이. 스투모
크리스틴 엘. 선호르스트
브루스 비. 윌슨
Original Assignee
쓰리엠 이노베이티브 프로퍼티즈 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쓰리엠 이노베이티브 프로퍼티즈 컴파니 filed Critical 쓰리엠 이노베이티브 프로퍼티즈 컴파니
Publication of KR20070114195A publication Critical patent/KR20070114195A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polarising Elements (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

중합체 매트릭스 내에 실질적으로 평행하게 중합체 섬유가 배열되어 편광판이 형성된다. 중합체 섬유는 적어도 제1 및 제2 중합체 물질로 형성된다. 중합체 매트릭스 및 제1 및 제2 중합체 물질 중 적어도 하나는 복굴절성이며, 인접 물질과의 복굴절성 계면을 제공한다. 광선은 복굴절성 계면에서 광선의 편광에 대해 선택적으로 반사 및/또는 산란된다. 일부 실시양태에서, 중합체 섬유는 충전제 내에 배치되어 복합 섬유를 형성하는 복수의 산란 중합체 섬유가 있는 복합 섬유로서 형성된다. 다른 실시양태에서, 중합체 섬유는 다층 중합체 섬유이다. 중합체 섬유는 섬유 직물의 일부로서 중합체 매트릭스 내에 배열될 수 있다.
Figure 112007069337515-PCT00002
중합체 매트릭스, 편광판, 중합체 섬유, 복굴절성 계면, 다층 중합체 섬유

Description

중합체 섬유 직물을 함유하는 광학 소자 {OPTICAL ELEMENTS CONTAINING A POLYMER FIBER WEAVE}
본 발명은 중합체 광학 소자, 더 구체적으로는 중합체 섬유 포함 직물을 함유하는 중합체 광학 소자에 관한 것이다.
비편광 광파는 광 빔의 축 주위의 다수의 평면에서 진동한다. 파동이 단지 하나의 평면에서 진동하는 경우에는, 광선이 평면 편광되었다고 한다. 여러 유용한 광학 시스템은 편광 광선을 사용하여 실행될 수 있다. 예를 들어, 전기광학 디바이스, 예컨대 액정 디스플레이 스크린은 편광된 광선으로 조명되며, 번지지정가능한 액정 층간(addressable liquid crystal interlayer)과 함께 교차 편광판(polarizer)을 사용하여, 화상 형성을 디스플레이하기 위한 기재를 제공한다. 사진 분야에서는, 편광 필터가 거울 반사의 섬광 및 휘도를 감소시키는데 사용된다. 디스플레이 디바이스 스크린에서의 섬광 감소를 위해서는 편광 필터, 원형 편광판 또는 다른 광학 부품이 또한 사용된다.
비편광 광선을 편광시키기 위해서는 여러 상이한 종류의 편광 필름이 이용가능하다. 흡수 (색선별(dichroic)) 편광판에는 내포 상으로서 종종 요오드 함유 사슬인 편광의존 흡수종이 있으며, 이는 중합체 매트릭스 내에 정렬되어 있다. 이러 한 필름은 흡수종에 대해 평행하게 정렬된 그의 전기장 벡터로 편광된 광선을 흡수하며, 흡수종에 대해 수직으로 편광된 광선을 투과시킨다. 이러한 필름의 광학 특성은 전형적으로 필름을 통한 확산 투과 또는 필름 표면으로부터의 확산 반사가 거의 없는 거울반사성이다.
또다른 종류의 편광 필름으로는 한 상태의 광선을 투과시키고 다른 상태의 광선을 반사시킴으로써 상이한 편광 상태의 광선을 분리하는 반사 편광판이 있다. 반사 편광판의 한 종류로는 교대 중합체 물질의 많은 층의 스택으로 형성된 필름인 다층 광학 필름 (MOF)이 있다. 물질들 중 하나는 광학적으로 등방성이며, 다른 것은 그의 굴절률들 중 하나가 등방성 물질의 굴절률과 매치되는 복굴절성이다. 폭넓은 파장 범위, 예를 들어 가시 영역에 걸쳐 파동층을 4분하기 위해, 층 두께는 스택의 전체에 걸쳐 다양할 수 있다. 한 편광 상태의 입사광은 매치되는 굴절률을 겪게되어, 실질적으로 편광판을 통해 거울 투과된다. 그러나, 다른 편광 상태의 입사광은 상이한 층들 사이의 계면에서 다중 간섭 또는 비간섭 반사를 겪게되어, 편광판에 의해 반사된다. 교대 중합체층은 실질적으로 평면형이기 때문에, 반사광은 대부분 거울 반사된다.
또다른 종류의 반사 편광 필름은 연속 상 매트릭스 내에 분산된 내포물로부터 구성된다. 내포물은 필름의 폭 및 높이에 비해 작다. 이러한 내포물의 특징은 필름에 일정 범위의 반사 및 투과 특성을 제공하기 위해 조작될 수 있다. 내포물은 연속 상 매트릭스 내의 분산 중합체 상을 구성한다. 내포물 크기 및 정렬은 필름을 연신시킴으로써 변경될 수 있다. 연속 상 또는 분산 상은 복굴절성 물질의 굴절률들 중 하나가 광학적으로 등방성인 다른 상의 굴절률과 매치되는 복굴절성이다. 연신의 정도와 함께 연속 및 분산 상을 위한 물질의 선택은 분산 상과 연속 상 사이의 복굴절 굴절률 미스매치의 정도에 영향을 미칠 수 있다. 조정될 수 있는 다른 특징에는 필름 내의 파장에 대한 내포물 크기, 내포물 모양 및 내포물 체적 채움 인자(fill factor)가 포함된다. 이러한 시스템에서, 분산 상과 연속 상 사이에서 굴절률 미스매치를 겪도록 편광된 광선은 확산 반사되는 반면에, 수직 편광된 광선은 거울 투과된다.
<발명의 개요>
본 발명의 한 특정 실시양태는 매트릭스 중합체 물질을 포함하는 중합체 매트릭스 및 중합체 매트릭스 내에 배치된 하나 이상의 섬유 직물을 포함하는 광학체에 관한 것이다. 섬유 직물은 제1 중합체 섬유 물질 및 제2 중합체 섬유 물질을 포함하는 복수의 중합체 섬유를 포함한다. 매트릭스 중합체 물질, 제1 섬유 중합체 물질 및 제2 섬유 중합체 물질 중 하나 이상은 복굴절성이다.
본 발명의 상기 개요는 본 발명의 각 예시한 실시양태 또는 모든 구현을 기재하려는 의도는 아니다. 다음의 도면 및 상세한 설명에 이러한 실시양태가 더 구체적으로 예시된다.
본 발명은 첨부 도면과 관련된 다음의 본 발명의 여러 실시양태의 상세한 설명을 고려하면 더 완전하게 이해될 것이다.
도 1A 및 1B는 각각 거울 반사 및 확산 반사를 설명하는 편광판의 개략도이 다.
도 2는 본 발명의 원칙에 따른 편광판의 일 실시양태의 절단면의 개략도이다.
도 3A 내지 3D는 본 발명의 원칙에 따른 광학 소자의 실시양태의 횡단면 개략도이다.
도 3E는 모든 중합체 섬유가 평행하지는 않은 본 발명의 원칙에 따른 광학 소자의 일 실시양태의 개략도이다.
도 3F 내지 3H는 본 발명의 원칙에 따른 광학 소자의 실시양태의 횡단면 개략도이다.
도 3I 내지 3M은 구조화된 표면을 갖는 본 발명의 원칙에 따른 광학 소자의 실시양태의 횡단면 개략도이다.
도 4A 내지 4C는 본 발명의 원칙에 따른 다층 섬유의 횡단면 개략도이다.
도 4D 내지 4G는 본 발명의 원칙에 따른 다층 섬유를 사용한 편광판의 횡단면 개략도이다.
도 5A 내지 5K는 본 발명의 원칙에 따른 복합 섬유의 실시양태의 횡단면 개략도이다.
도 6A 내지 6I는 본 발명의 원칙에 따른 복합 섬유의 실시양태의 횡단면 개략도이다.
도 7은 산란 섬유 반지름의 함수로서 광 산란 효율을 나타낸 그래프를 나타낸다.
도 8A는 본 발명의 원칙에 따른 분산 상 복굴절성 중합체 섬유의 일 실시양태의 개략도이다.
도 8B는 본 발명의 원칙에 따른 분산 상 복굴절성 복합 중합체 섬유의 일 실시양태의 개략도이다.
도 9는 본 발명의 원칙에 따른 편광판에 사용하기 위한 중합체 섬유 실(yarn)의 개략도이다.
도 10A 내지 10D는 본 발명의 원칙에 따른 중합체-섬유 광학 소자의 제작 방법의 일 실시양태의 단계의 개략도이다.
도 11은 본 발명의 원칙에 따른 중합체-섬유 광학 소자의 제작 방법의 일 실시양태에서 사용되는 섬유 토우(tow)의 개략도이다.
도 12는 본 발명의 원칙에 따른 중합체-섬유 광학 소자의 제작 방법의 일 실시양태에서 사용되는 섬유 직물의 개략도이다.
도 13A 및 13B는 본 발명의 원칙에 따른 중합체-섬유 광학 소자에서 사용될 수 있는 것과 같은 중합체 섬유 직물의 실시양태의 횡단면의 개략도이다.
도 14는 본 발명의 원칙에 따른 편광판에서 사용될 수 있는 산란 섬유의 횡단면을 예시하는 사진이다.
본 발명은 다양한 변형 및 대안 형태로 수정될 수 있으며, 이의 세부사항은 도면에 예로서 나타내었고 상세하게 설명될 것이다. 그러나, 본 발명을 기재되어 있는 구체적인 실시양태로 제한하려는 의도가 아님을 이해해야 한다. 이와 반대로, 첨부된 청구의 범위에 의해 정의된 바와 같은 본 발명의 정신 및 범위 내인 모 든 변형, 등가물 및 대안을 포함하려는 의도임을 이해해야 한다.
본 발명은 광학 시스템, 더 구체적으로는 편광 광학 시스템에 적용가능하다.
본원에서 사용되는 용어 "거울 반사" 및 "거울 반사율"은 반사각이 입사각과 실질적으로 같은 경우에 물체로부터의 광선의 반사율을 말한다 (여기서, 각도는 물체의 표면에 대한 수직선에 대해 측정됨). 즉, 광선이 물체상에 특정 각도의 분포로 입사될 때, 반사광의 각도 분포가 실질적으로 같은 것을 말한다. 용어 "확산 반사" 또는 "확산 반사율"은 반사광 중 일부의 각도가 입사각과 다른 경우에 광선의 반사를 말한다. 따라서, 광선이 물체상에 특정 각도의 분포로 입사할 때, 반사광의 각도 분포는 입사광과 다르다. 용어 "전체 반사율" 또는 "전체 반사"는 모든 광선, 거울 및 확산의 합한 반사율을 말한다.
이와 유사하게, 용어 "거울 투과" 및 "거울 투과율"은 투과광의 각도 분포가 입사광의 각도 분포와 실질적으로 동일한 경우의 물체를 통한 광선의 투과를 일컫도록 본원에서 사용된다. 용어 "확산 투과" 및 "확산 투과율"은 투과광의 각도 분포가 입사광의 각도 분포와 다른 경우, 물체를 통한 광선의 투과를 설명하는데 사용된다. 용어 "전체 투과" 또는 "전체 투과율"은 모든 광선, 거울 및 확산의 합한 투과를 말한다.
도 1A 및 1B에서는 필름 형태의 반사 편광판 (100)을 개략적으로 예시한다. 본원에 도입된 규정에서, 필름의 두께 방향은 z 축이라 하며, x-y 평면은 필름의 평면에 평행하다. 비편광 광선 (102)가 편광판 (100)상에 입사될 때, 편광판 (100)의 투과 축에 대해 평행하게 편광된 광선 (104)는 투과되며, 편광판 (100)의 반사 축에 대해 평행하게 편광된 광선 (106)은 반사된다. 반사광의 각도 분포는 편광판 (100)의 여러 특징에 따라 좌우된다. 예를 들어, 도 1A에서 개략적으로 예시한 바와 같은 일부 전형적인 실시양태에서는 광선 (106)이 거울 반사될 수 있으며, 도 1B에서 개략적으로 예시한 바와 같은 다른 실시양태에서는 광선 (106)이 확산 반사될 수 있다. 다른 실시양태에서, 반사광은 거울 및 확산 성분 둘 다를 포함할 수 있다. 예시한 실시양태에서, 편광판의 투과 축은 x 축에 평행하며, 편광판 (100)의 반사 축은 y 축에 평행하다. 다른 실시양태에서, 이는 반대일 수 있다. 투과광 (104)는 거울 투과되거나 확산 투과되거나 거울 및 확산 성분의 조합으로 투과될 수 있다.
도 2는 본 발명의 전형적인 일 실시양태에 따른 반사 편광판 물체를 통한 절단면을 개략적으로 나타낸다. 광학체 (200)은 연속 상이라 또한 칭해지는 중합체 매트릭스 (202)를 포함한다. 중합체 매트릭스는 광학적으로 등방성 또는 광학적으로 복굴절성일 수 있다. 예를 들어, 중합체 매트릭스는 단일축 또는 이중축으로 복굴절성일 수 있으며, 이는 중합체의 굴절률이 한 방향에 따라 다르고 2 수직 방향에서 유사하거나 (단일축) 또는 모든 3 수직 방향에서 다를 수 있음 (이중축)을 의미한다.
중합체 섬유 (204)는 매트릭스 (202) 내에 배치된다. 중합체 섬유 (204)는 2종 이상의 물질을 포함한다. 일부 전형적인 실시양태에서는, 물질 중 하나가 복굴절성이며 다른 물질 또는 물질들은 등방성이다. 다른 실시양태에서는, 섬유를 형성하는 물질 중 둘 이상이 복굴절성이다. 또한 일부 다른 실시양태에서는, 섬유를 형성하는 물질이 등방성일 수 있다. 다른 실시양태에서는, 등방성 및 복굴절성 중합체 섬유 (204) 모두가 매트릭스 (202) 내에 배치될 수 있다.
예시한 바와 같이, 중합체 섬유 (204)는 단일 섬유로 또는 많은 다른 배열로 매트릭스 (202) 내에 편성될 수 있다. 일부 전형적인 배열로는 실, 중합체 매트릭스 내에서 한 방향으로 배열되어 있는 토우 (섬유 또는 실의 토우), 직물, 부직물, 초핑된 섬유, 초핑된 섬유 매트 (불규칙적이거나 또는 규칙적인 구성) 또는 이들 구성의 조합이 포함된다. 초핑된 섬유 매트 또는 부직물을 연신시키거나 가압하거나 배향시켜, 부직물 또는 초핑된 섬유 매트 내에 섬유를 불규칙하게 배열하는 것이 아니라 섬유를 약간 정렬할 수 있다.
제1 섬유 물질에 대한 x, y 및 z 방향의 굴절률은 n1x, n1y 및 n1z라 칭할 수 있으며, 제2 섬유 물질에 대한 x, y 및 z 방향의 굴절률은 n2x, n2y 및 n2z라 칭할 수 있다. 물질이 등방성인 경우, x, y 및 z 굴절률은 모두 실질적으로 매치된다. 제1 섬유 물질이 복굴절성인 경우, x, y 및 z 굴절률 중 적어도 하나는 다른 것과 다르다.
제1 섬유 물질과 제2 섬유 물질 사이의 각각의 섬유 (204) 내에는 다중 계면이 있다. 계면을 형성하는 물질들 중 하나 이상이 복굴절성인 경우, 계면은 복굴절성 계면이라 칭한다. 예를 들어 두 물질이 계면에서의 이들의 x 및 y 굴절률을 나타내며 n1x가 n1y과 다른 경우 (즉, 제1 물질이 복굴절성인 경우), 이때 계면은 복굴절성이다. 복굴절성 계면을 함유하는 중합체 섬유의 다른 전형적인 실시양태를 하기에 논의한다.
섬유 (204)는 도면에서 x 축으로 예시한 축에 대해 일반적으로 평행하게 배치된다. x 축에 대해 평행하게 편광된 광선에 대한 섬유 (204) 내 복굴절성 계면에서의 굴절률 차이 n1x―n2x는 y 축에 대해 평행하게 편광된 광선에 대한 굴절률 차이 n1y―n2y와 다를 수 있다. 따라서, 한 편광 상태에 대해서는 섬유 (204) 내의 복굴절성 계면에서의 굴절률 차이가 비교적 적을 수 있다. 일부 전형적인 경우에서는, 굴절률 차이가 0.05 미만일 수 있다. 이러한 조건은 실질적으로 굴절률이 매치되는 것으로 간주된다. 이러한 굴절률 차이는 0.03 미만, 0.02 미만, 또는 0.01 미만일 수 있다. 이러한 편광 방향이 x 축에 평행한 경우, x 편광된 광선은 반사가 거의 없이 또는 반사 없이 물체 (200)을 통과한다. 즉, x 편광된 광선은 물체 (200)을 통해 고도로 투과한다.
수직 편광 상태의 광선에 대한 섬유 내의 복굴절 계면에서의 굴절률 차이는 비교적 클 수 있다. 일부 전형적인 예에서는, 굴절률 차이가 0.05 이상일 수 있으며, 예를 들어 0.1 또는 0.15를 초과할 수 있거나 0.2일 수 있다. 이러한 편광 방향이 y 축에 평행한 경우, y 편광된 광선은 복굴절성 계면에서 반사된다. 따라서, y 편광된 광선은 물체 (200)에 의해 반사된다. 섬유 (204) 내의 복굴절성 계면이 실질적으로 서로 평행한 경우, 반사는 주로 거울 반사일 수 있다. 한편, 섬유 (204) 내의 복굴절성 계면이 실질적으로 서로 평행하지 않은 경우, 반사는 실질적으로 확산 반사일 수 있다. 복굴절성 계면의 일부가 평행하고 다른 계면이 평행하지 않을 수 있으며, 이는 거울 및 확산 성분 둘 다를 함유하는 반사광을 초래할 수 있다. 또한, 복굴절성 계면은 곡면형일 수 있거나 비교적 작을 수 있으며 (즉, 입사광의 파장의 크기 자리수 이내일 수 있음), 이는 확산 산란을 초래한다.
방금 기재된 전형적인 실시양태는 y 방향의 굴절률 차이가 비교적 큰 x 방향의 굴절률 매칭에 관한 것인 반면, 다른 전형적인 실시양태는 x 방향의 굴절률 차이가 비교적 큰 y 방향의 굴절률 매칭을 포함한다.
중합체 매트릭스 (202)는 실질적으로 광학적으로 등방성일 수 있으며, 예를 들어 x 및 y 방향에 대한 매트릭스의 굴절률이 각각 n3x 및 n3y인 경우, 복굴절률 n3x―n3y가 약 0.05 미만, 바람직하게는 0.01 미만일 수 있다. 다른 실시양태에서, 중합체 매트릭스 (202)는 복굴절성일 수 있다. 따라서, 일부 실시양태에서, 중합체 매트릭스와 섬유 물질 사이의 굴절률 차이는 상이한 방향에서 다를 수 있다. 예를 들어, x 굴절률 차이 n1x―n3x는 y 굴절률 차이 n1y―n3y와 다를 수 있다. 일부 실시양태에서, 이들 굴절률 차이 중 하나는 다른 굴절률 차이보다 2배 이상 클 수 있다.
일부 실시양태에서, 굴절률 차이, 복굴절성 계면의 넓이 및 모양, 및 복굴절성 계면의 상대적 위치는 입사 편광 중 하나를 다른 편광보다 더 확산 산란시킬 수 있다. 이러한 산란은 주로 후방 산란 (확산 반사), 전방 산란 (확산 투과) 또는 후방 및 전방 산란 둘의 조합일 수 있다.
중합체 매트릭스 및/또는 섬유에서 사용하기 위해 적합한 물질에는 목적하는 범위의 광파장을 투과하는 열가소성 및 열경화성 중합체가 포함된다. 일부 실시양태에서, 중합체가 물 중에 불용성인 것이 특이 유용할 수 있다. 또한, 적합한 중합체 물질은 비결정질 또는 반결정질일 수 있으며, 단일중합체, 공중합체 또는 이의 블렌드를 포함할 수 있다. 중합체 물질의 예에는 폴리(카르보네이트) (PC); 신디오탁틱 및 이소탁틱 폴리(스티렌) (PS); C1-C8 알킬 스티렌; 폴리(메틸메타크릴레이트) (PMMA) 및 PMMA 공중합체를 비롯한 알킬, 방향족 및 지방족 고리 함유 (메트)아크릴레이트; 에톡시화 및 프로폭시화 (메트)아크릴레이트; 다관능성 (메트)아크릴레이트; 아크릴화 에폭시; 에폭시; 및 다른 에틸렌계 불포화 물질; 환형 올레핀 및 환형 올레핀 공중합체; 아크릴로니트릴 부타디엔 스티렌 (ABS); 스티렌 아크릴로니트릴 공중합체 (SAN); 에폭시; 폴리(비닐시클로헥산); PMMA/폴리(비닐플루오라이드) 블렌드; 폴리(페닐렌 옥사이드) 합금; 스티렌 블록 공중합체; 폴리이미드; 폴리술폰; 폴리(비닐 클로라이드); 폴리(디메틸실록산) (PDMS); 폴리우레탄; 불포화 폴리에스테르; 복굴절률이 낮은 폴리에틸렌을 비롯한 폴리(에틸렌); 폴리(프로필렌) (PP); 폴리(알칸 테레프탈레이트), 예컨대 폴리(에틸렌 테레프탈레이트) (PET); 폴리(알칸 나프탈레이트), 예컨대 폴리(에틸렌 나프탈레이트) (PEN); 폴리아미드; 이오노머; 비닐 아세테이트/폴리에틸렌 공중합체; 셀룰로오스 아세테이트; 셀룰로오스 아세테이트 부티레이트; 플루오로중합체; 폴리(스티렌)-폴리(에틸렌) 공중합체; 폴리올레핀 PET 및 PEN를 비롯한 PET 및 PEN 공중합체; 및 폴리(카르보네이트)/지방족 PET 블렌드가 포함되지만, 이에 제한되지 않는다. 용어 "(메트)아크릴레이트"는 해당 메타크릴레이트 또는 아크릴레이트 화합물인 것으로서 정의된다. 신디오탁틱 PS를 제외하고는, 이들 중합체는 광학적으로 등방성인 형태로 사용될 수 있다.
다수의 이들 중합체는 배향시 복굴절성이 될 수 있다. 특히, PET, PEN 및 이의 공중합체, 및 액정 중합체는 배향시 복굴절률이 비교적 큰 값을 나타낸다. 중합체는 압출 및 연신을 비롯한 여러 방법을 사용하여 배향될 수 있다. 연신은 배향의 정도를 높일 수 있고 다수의 쉽게 제어가능한 외부 파라미터, 예컨대 온도 및 연신 비율에 의해 제어될 수 있기 때문에 중합체를 배향시키기 위한 특히 유용한 방법이다. 다수의 전형적인 배향 및 비배향 중합체에 대한 굴절률을 하기 표 1에 제공하였다.
Figure 112007069337515-PCT00001
PCTG 및 PETG (글리콜 개질된 폴리에틸렌 테레프탈레이트)는, 예를 들어 미국 테네시주 킹스포트 소재의 이스트만 케미칼사(Eastman Chemical Co.)로부터 상품명 이스타르(Eastar™)하에 입수가능한 코폴리에스테르의 종류이다. THV는 미국 미네소타주 세인트 폴 소재의 쓰리엠사(3M Company)로부터 상품명 디네온(Dyneon™)하에 입수가능한 테트라플루오로에틸렌, 헥사플루오로프로필렌 및 비닐리덴 플루오라이드의 중합체이다. PS/PMMA 공중합체는 공중합체의 구성 단량체의 비율을 변화시킴으로써 굴절률을 "조율"하여 목적하는 굴절률의 값을 달성할 수 있는 공중합체의 일 예이다. "S.R."로 표시된 세로줄은 연신 비율을 나타낸다. 연신 비율 1은 물질이 연신되지 않고 배향되지 않았음을 의미한다. 연신 비율 6은 샘플이 그의 처음 길이보다 6배 연신되었음을 의미한다. 온당한 온도 조건하에 연신되는 경우, 중합체 분자는 배향되고 물질은 복굴절성이 된다. 그러나, 분자의 배향 없이 물질을 연신시키는 것이 가능하다. "T"로 표시된 세로줄은 샘플을 연신시킨 온도를 나타낸다. 연신된 샘플은 시트로 연신되었다. nx, ny 및 nz로 표시된 세로줄은 물질의 굴절률을 나타낸다. ny 및 nz에 대한 값이 표에 열거되지 않은 경우, ny 및 nz의 값은 nx에 대한 값과 동일하다.
섬유의 연신하의 굴절률의 거동은 시트의 연신에 대한 굴절률의 거동과 유사한 결과를 나타낼 것으로 예상되지만, 꼭 동일하지는 않다. 중합체 섬유는 굴절률의 목적하는 값을 생성하는 임의의 목적하는 값으로 연신된다. 예를 들어, 일부 중합체 섬유는 연신 비율 3 이상을 생성하도록 연신될 수 있으며, 6 이상일 수 있다. 일부 실시양태에서, 중합체 섬유는 심지어 예를 들어 연신 비율 20까지 또는 심지어 그 초과까지 더 연신될 수 있다.
복굴절률을 달성하기 위한 연신에 적합한 온도는 켈빈으로 나타낸 중합체 융점의 대략 80%이다. 복굴절률은 또한 압출 및 필름 형성 공정 동안 겪게되는 중합체 용융물의 유동에 의한 유도 응력에 의해 유도될 수 있다. 복굴절률은 또한 필름 물품 중의 섬유와 같은 인접 표면에 대한 정렬에 의해 발현될 수 있다. 복굴절률은 양 또는 음일 수 있다. 양의 복굴절률은 선형으로 편광된 광선에 대한 전기장 축의 방향이 중합체의 배향 또는 정렬 표면에 평행할 때 가장 높은 굴절률을 겪게되는 경우로 정의된다. 음의 복굴절률은 선형으로 편광된 광선에 대한 전기장 축의 방향이 중합체의 배향 또는 정렬 표면에 평행할 때 가장 낮은 굴절률을 겪게되는 경우로 정의된다. 양의 복굴절성 중합체의 예에는 PEN 및 PET가 포함된다. 음의 복굴절성 중합체의 예로는 신디오탁틱 폴리스티렌이 포함된다.
광학체 (200)에 목적하는 특성을 제공하기 위해, 매트릭스 (202) 및/또는 중합체 섬유 (204)에는 여러 첨가제가 제공될 수 있다. 예를 들어, 이러한 첨가제에는 내후제(anti-weathering agent), UV 흡수제, 장애형 아민 광 안정화제, 항산화제, 분산제, 윤활제, 대전방지제, 안료 또는 염료, 기핵제, 난연제 및 발포제 중 하나 이상이 포함될 수 있다. 중합체의 굴절률을 변화시키거나 물질의 강도를 증가시키기 위해 다른 첨가제가 제공될 수 있다. 이러한 첨가제에는, 예를 들어 유기 첨가제, 예컨대 중합체 비드 또는 입자 및 중합체 나노 입자, 또는 무기 첨가제, 예컨대 유리, 세라믹 또는 금속 옥사이드 나노입자, 또는 제분, 분말, 비드, 박편 또는 미립자 유리, 세라믹 또는 유리-세라믹이 포함될 수 있다. 이러한 첨가제의 표면에는 중합체로의 결합을 위해 결합제가 제공될 수 있다. 예를 들어, 유리 첨가제를 중합체와 결합시키기 위해 실란 커플링제가 유리 첨가제와 함께 사용될 수 있다.
일부 실시양태에서는, 매트릭스 (202) 또는 중합체 섬유 (204)의 성분이 용매에 대해 불용성이거나 적어도 내성인 것이 바람직할 수 있다. 적합한 내용매성 물질의 예에는 폴리프로필렌, PET 및 PEN이 포함된다. 다른 실시양태에서는, 매트릭스 (202) 또는 중합체 섬유 (204)의 성분이 유기 용매 중에 가용성인 것이 바람직할 수 있다. 예를 들어, 폴리스티렌으로 형성된 매트릭스 (202) 또는 섬유 성분은 유기 용매, 예컨대 아세톤 중에 가용성이다. 다른 실시양태에서는, 매트릭스가 수용성인 것이 바람직할 수 있다. 예를 들어, 폴리비닐 아세테이트로 형성된 매트릭스 (202) 또는 섬유 성분은 물 중에 가용성이다.
광학 소자의 일부 실시양태에서, 물질의 굴절률은 x 방향의 섬유 길이에 따라 다양할 수 있다. 예를 들어, 소자는 균일하게 연신되지 않을 수 있으며, 일부 영역에서 다른 영역보다 더 큰 정도로 연신될 수 있다. 따라서, 배향성 물질의 배향의 정도는 소자에 따라 다르며, 따라서 복굴절률은 소자에 따라 공간적으로 다양할 것이다.
또한, 매트릭스 내로의 섬유의 도입은 광학 소자의 기계적 특성을 개선할 수 있다. 특히, 일부 중합체 물질, 예컨대 폴리에스테르는 필름의 형태보다 섬유의 형태에서 더 강하며, 따라서 섬유를 함유하는 광학 소자는 섬유를 함유하지 않는 유사한 치수의 것보다 더 강할 것이다.
중합체 섬유 (204)는 직선형일 수 있지만 직선형이 필수는 아니며, 예를 들어 중합체 섬유 (204)는 꼬이거나 나선형이거나 주름질 수 있다.
중합체 섬유 (204)는 많은 상이한 방식으로 매트릭스 (202) 내에 배열될 수 있다. 예를 들어, 섬유 (204)는 매트릭스 (202)의 횡단면 면적에 걸쳐 불규칙하게 위치할 수 있다. 도 2에서, y-z 평면의 상이한 섬유 (204)의 위치는 불규칙하다. 다른 횡단면 배열이 사용될 수 있다. 예를 들어, 광학 소자 (300)의 횡단면을 나타낸 도 3A에서 개략적으로 예시한 전형적인 실시양태에서, 섬유 (304)는 매트릭스 (302) 내에서 1차원 대형으로 규칙적인 인접 섬유 (304) 간의 간격으로 배열된다. 이러한 실시양태의 일부 변형에서, 인접 섬유 (304) 간의 간격은 모든 섬유 (304)에 대해 동일할 필요는 없다. 광학 소자 (300)은 편광판일 수 있다.
도 3B에서 광학 소자 (310)의 횡단면으로 개략적으로 예시한 또다른 전형적인 실시양태에서, 섬유 (314)는 매트릭스 (312) 내에서 규칙적인 2차원 대형으로 배열된다. 예시한 실시양태에서는, y 방향의 인접 섬유 (314) 사이의 분리 거리 hy가 z 방향의 인접 섬유 사이의 분리 거리 hz와 동일하다. 이는 필수는 아니며, 도 3C에서 개략적으로 예시한 바와 같이 z 방향의 분리 거리 hz가 y 방향의 분리 거리 hy와 다를 수 있다. 광학 소자 (310)은 편광판일 수 있다.
예를 들어 도 3D에서 개략적으로 예시한 바와 같은 또다른 실시양태에서는, 섬유 (314)는 인접 열 사이에서 상쇄될 수 있으며, 6각형으로 패킹된 섬유 패턴을유발할 수 있다. 섬유 (314)의 다른 규칙적인 패턴 또는 섬유 (314)의 불규칙적인 패턴이 사용될 수 있다.
섬유 (314)가 모두 실질적으로 x 축에 평행할 수 있으며 (이는 필수는 아님), 일부 섬유 (314)가 x 축에 대해 더 큰 또는 더 작은 각도로 놓일 수 있다. 예를 들어, 도 3D 및 또한 도 3E에서 예시한 광학 소자 (310)의 예에서, 섬유 (314)의 제1 열 (316a)는 섬유 (314)가 y-z 평면에 평행한 평면에 서로 평행하지만 x 축에 대해 제1 각 θ1로 놓이도록 배향될 수 있다. 제2 열 (316b)의 섬유 (314)는 또한 y-z 평면에 평행한 평면 내에서 서로 평행하지만 x 축에 대해 제2 각 θ2로 놓일 수 있으며, 제1 각과 같을 필요는 없다. 또한, 제3 열 (316c)의 섬유 (314)는 y-z 평면에 평행한 평면에서 서로 평행하지만 x 축에 대해 제3 각 θ3으로 놓일 수 있다. 제3 각은 제1 또는 제2 각과 같거나 다를 수 있다. 예시한 실시양태에서는, θ3의 값이 0이고 제3 열 (316c)의 섬유 (314)는 x 축에 평행하다. 그러나, θ1, θ2 및 θ3의 상이한 값은 90°까지 도달할 수 있다.
이러한 배열은 한 열의 섬유가 제1 파장 대역의 광선에 유효하고 또다른 열의 섬유가 제1 파장 대역과 다른 제2 파장 대역의 광선에 유효한 경우에 특히 유용할 수 있다. 제1 열 (316a)의 섬유 (314)가 적색 대역폭의 반사 편광 광선에서 유효하고 제2 열 (316b)의 섬유 (314)가 청색 대역폭의 반사 편광 광선에서 유효할 경우의 실례를 들 수 있다. 따라서, 광학 소자 (310)가 적색 및 청색 광의 혼합으로 조명되는 경우, 섬유 (314)의 제1 열 (316a)는 모든 청색광을 통과시키며 각 θ1로 편광된 적색광을 투과시킬 것이다. 섬유 (314)의 제2 열 (316b)는 각 θ1로 편광된 적색광을 투과시키며 또한 각 θ2에 대해 평행하게 편광된 청색광을 투과시킬 것이다. 각 θ1 및 θ2가 90°로 분리되는 경우, 소자 (310)은 한 편광 상태의 적색광 및 수직 편광 상태의 청색광을 투과시킬 것이다. 마찬가지로, 반사된 청색광은 반사된 적색광에 대해 수직으로 편광된다. 상이한 개수의 섬유 (314)의 열이 각 각도로 정렬되고 각각의 색 대역을 위해 사용될 수 있다는 것을 인지할 것이다.
일부 실시양태에서, 섬유 (314)의 밀도는 광학 소자 (300), (310) 내에서 일정하거나 광학 소자 (300), (310) 내에서 다양할 수 있다. 예를 들어, 섬유 (314)의 밀도는 광학 소자 (300), (310)의 한 측면에서 감소될 수 있거나, 일부 다른 방식으로 다양할 수 있다. 이를 더 예시하기 위해, 도 3F에서는 섬유 (314)의 밀도가 광학 소자 (310)에 걸쳐 다양한 광학 소자 (310)의 실시양태를 개략적으로 예시한다. 특히 y 방향의 인접 섬유 간의 간격은 소자 (310)에 걸친 y의 모든 위치에 대해 일정하지 않다. 도 3G에서는 섬유 (314)의 밀도가 소자 (310)을 통해 다양한 광학 소자 (310)을 개략적으로 예시한다. 특히, z 방향의 인접 섬유 간의 간격은 소자 (310)을 통한 z의 모든 위치에 대해 일정하지 않다. 다른 변형이 가능하며, 예를 들어 가장 가까운 이웃 섬유 간의 간격은 y 방향 및 z 방향 둘 다에서 다양할 수 있다.
도 3H에서는 광학 소자 (320)에 매트릭스 (322) 내에 내포된 중합체 섬유 (324)가 있는 또다른 실시양태가 개략적으로 예시된다. 이러한 특정 실시양태에서, 인접 섬유 (324) 사이의 중심에서 중심까지의 간격은 도면의 중앙에 있는 한 영역에서 양측의 이웃 영역에 비해 감소된다. 따라서, 채움 인자, 즉 섬유 (324)가 차지하는 소자 (320)의 횡단면 면적의 분율은 그 영역에서 증가된다. 채움 인자의 이러한 변형은, 예를 들어 광원 (326)으로부터 소자 (320)을 통해 투과된 광선의 균일성을 개선하는데 유용할 수 있다. 이는, 예를 들어 소자 (320)이 개별 광원에 의해 빛나는 직시형 스크린에 포함될 때 중요할 것이며, 이러한 디바이스에서는 시청자에게 균일 조도의 화상을 제공하는 것이 중요하다. 광원이 균일 확산판(diffuser) 뒤에 놓일 때, 확산판을 통해 투과된 광선의 휘도는 광원 위에서 가장 높다. 도 3H에서 예시한 채움 인자의 변형은 광원 (326) 바로 위의 확산의 양을 증가시키는데 사용되어, 투과광의 강도의 불균일성을 감소시킬 수 있다.
본원의 광학 소자는 편평한 표면, 예를 들어 도 1A 및 1B에 나타낸 바와 같이 x-y 평면에 평행한 편평한 표면을 가질 수 있다. 소자는 또한 편광판을 통해 투과되거나 편광판에 의해 반사된 광선에 목적하는 광학 효과를 제공하도록 구조화된 하나 이상의 표면을 포함할 수 있다. 예를 들어, 도 3I에서 개략적으로 예시한 한 전형적인 실시양태에서, 편광판일 수 있는 광학 소자 (330)은 다수의 중합체 섬유 (334)를 함유하는 매트릭스 (332)로 형성되며 하나 이상의 곡면형 표면 (336)을 가질 수 있다. 곡면형 표면 (336)은 표면 (336)을 통해 투과된 광선에 광력, 집속(focusing) 또는 발산(defocusing)을 제공한다. 예시한 실시양태에서, 광선 (338)은 광학 소자 (330)의 투과 축에 대해 평행하게 편광된 광선의 예를 나타내며, 이는 곡면형 굴절 표면 (336)에 의해 집속된다. 다른 전형적인 실시양태에서는, 광선이 소자 (330)로 입사되는 소자 (330)의 입력 표면은 곡면형일 수 있거나 다른 표면 구조체가 있을 수 있다. 또한, 투과광이 광학 소자 (330)에서 나오는 출력 표면상에는 표면 구조체가 있을 수 있다. 표면 구조체의 일 예에는 프레스넬(Fresnel) 렌즈 구조체와 같은 구조체가 포함된다. 또한, 이러한 구조체는 구조화된 표면을 통해 통과하는 광선에 광력을 제공하는 것으로 여겨진다.
입력 및 출력 표면 중 하나 또는 둘의 구조화된 표면은 또한 곡면형 영역 이외에 또는 대신에 직선형 영역을 포함할 수 있다. 예를 들어, 도 3J에서 개략적으로 예시한 또다른 전형적인 실시양태에서, 중합체 섬유 (344)을 함유하는 매트릭스 (342)로 형성된 광학 소자 (340)에는 휘도 향상 표면이라 칭하는 프리즘 구조화된 표면 (346)이 제공될 수 있다. 휘도 향상 표면은 통상적으로, 예를 들어 후면발광 액정 디스플레이에서 디스플레이 패널을 조명하는 광선의 원추 각도를 감소시키는데 사용되며, 따라서 시청자에 대한 축상(on-axis) 휘도를 증가시킨다. 도면은 소자 (340) 상에서 수직으로 입사되지 않은 2개의 광선 (348) 및 (349)의 예를 나타낸다. 광선 (348)은 소자 (340)에 의해 투과된 편광 상태이며, 또한 구조화된 표면 (346)에 의해 z 축 방향으로 전환된다. 광선 (349)는 소자 (340)에 의해 확산 반사된 편광 상태이다. 휘도 향상 표면은 프리즘 구조체가 섬유 (344)에 대해 평행하도록 배열될 수 있으며, 이는 또한 예시한 바와 같이 x 축에 평행하다. 다른 실시양태에서, 프리즘 구조체는 섬유의 방향에 대해 어떤 다른 각도로 놓일 수 있다. 예를 들어, 립(rib)은 y 축에 평행하거나 섬유에 수직이거나 x 축과 y 축 사이의 어떤 각도로 놓일 수 있다.
구조화된 표면은 임의의 적합한 방법을 사용하여 매트릭스상에 형성할 수 있다. 예를 들어, 매트릭스는 그 표면이 도구, 예컨대 미세복제(microreplication) 도구의 표면과 접촉되면서 경화될 수 있으며, 그 도구 표면이 중합체 매트릭스의 표면상에 목적하는 모양을 생성시킨다.
중합체 섬유는 광학 소자의 상이한 영역에 걸쳐 존재할 수 있다. 도 3J에서, 중합체 섬유 (344)는 구조화된 표면 (346)에 의해 형성된 구조체 (347) 내에 위치하지 않고, 단지 소자 (340)의 본체 (341)에 위치한다. 다른 실시양태에서, 중합체 섬유 (344)는 상이하게 분포될 수 있다. 예를 들어 도 3K에서 개략적으로 예시한 광학 소자 (350)에서, 중합체 섬유 (344)는 소자 (350)의 본체 (341) 및 또한 구조화된 표면 (346)에 의해 형성된 구조체 (347) 둘 다에 위치한다. 도 3L에서 개략적으로 예시한 또다른 예에서, 중합체 섬유 (344)는 단지 소자 (360)의 구조체 (347)에 위치하며, 소자 (360)의 본체 (341)에 위치하지 않는다.
도 3M에서는 소자 (370)이 매트릭스 (372) 내에 중합체 섬유 (374)를 갖는 본 발명의 또다른 전형적인 실시양태가 개략적으로 예시된다. 이러한 특정 실시양태에서, 섬유 중 일부 (374a)는 매트릭스 (372) 내에 완전히 내포되어 있지 않고, 매트릭스 (372)의 표면 (376)을 관통한다.
일부 전형적인 실시양태에서, 편광판 내에 배치된 중합체 섬유는 적어도 복굴절성 물질 및 또다른 물질 (예를 들어, 실질적으로 비복굴절성인 물질)을 비롯한 다량의 상이한 중합체 물질을 함유한다. 이러한 상이한 물질은 많은 상이한 방식으로, 예를 들어 규칙적인 교대 층으로 또는 다른 물질의 "풀(pool)" 내에 배치된 한 물질의 미세 섬유로서 배열될 수 있다. 다중 내부 복굴절성 계면을 함유하는 중합체 섬유의 여러 상이한 전형적인 실시양태는 하기에서 논의된다. 매트릭스 물질은 복굴절률이 섬유 내의 복굴절성 물질보다 더 낮거나, 복굴절률이 없거나, 반대 복굴절성일 수 있다. 예를 들어 섬유의 복굴절성 물질이 nx가 ny보다 큰 경우, 매트릭스 물질은 ny가 nx보다 클 수 있다.
바람직한 전형적인 일 실시양태에서, 복굴절성 물질은 배향시 굴절률이 변화하는 종류이다. 따라서, 섬유가 배향됨에 따라, 배향의 방향에 따라 굴절률 매치 또는 미스매치가 생성된다. 배향 파라미터 및 다른 가공 조건을 신중하게 조절함으로써, 복굴절성 물질의 양의 또는 음의 복굴절률은 주어진 축에 따라 하나 또는 두 편광 광선의 확산 반사 또는 투과를 유도하는데 사용될 수 있다. 투과 및 확산 반사 사이의 상대 비율은 섬유 내의 복굴절성 계면의 농도, 섬유의 치수, 복굴절성 계면의 굴절률 차이의 제곱, 복굴절성 계면의 크기 및 형상, 및 입사 방사선의 파장 또는 파장 범위와 같은 다수의 인자에 따라 좌우되지만, 이에 제한되지 않는다.
특정 축에 따른 굴절률 매치 또는 미스매치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으로, 산란능은 굴절률 미스매치의 제곱에 비례하여 변화한다. 따라서, 특정 축에 따른 굴절률의 미스매치가 더 클수록, 그 축에 따라 편광된 광선이 더 강하게 산란된다. 반대로, 특정 축에 따른 미스매치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란되며 물체의 부피를 통한 투과가 더 거울 투과된다.
어떤 축에 따라 비복굴절성 물질의 굴절률이 복굴절성 물질의 굴절률과 매치되는 경우, 이러한 축에 평행한 전기장으로 편광된 입사광은 복굴절성 물질의 부분의 크기, 모양 및 밀도와 상관없이 산란되지 않고 섬유를 통해 통과할 것이다. 또한, 그 축에 따른 굴절률이 또한 편광판 물체의 중합체 매트릭스의 굴절률에 실질적으로 매치되는 경우, 광선은 실질적으로 산란되지 않고 물체를 통해 통과한다. 본원을 위해, 두 굴절률 사이의 실질적인 매치는 굴절률 사이의 차이가 최대 0.05 미만, 바람직하게는 0.03 미만, 0.02 미만 또는 0.01 미만인 경우에 발생한다.
복굴절성 물질과 비복굴절성 물질의 사이의 굴절률이 어떤 축을 따라 매치되지 않는 경우, 섬유는 이러한 축을 따라 편광된 광선을 산란 또는 반사시킨다. 산란의 강도는 대략 λ/30 (여기서, λ는 편광판에서의 입사광의 파장임)보다 더 큰 치수의 주어진 횡단면 면적을 갖는 산란판(scatterer)에 대한 굴절률 미스매치의 크기에 의해 적어도 일부 결정된다. 미스매치된 계면의 정확한 크기, 모양 및 정렬은 광선이 그 계면으로부터 다양한 방향으로 산란 또는 투과되는 정도를 결정하는 역할을 한다. 다중 산란 이론에 따라, 산란 층의 밀도 및 두께가 충분한 경우에는, 산란판 크기 및 모양의 세부사항과 관계없이 입사광이 반사 또는 흡수될 것이지만 투과되지 않을 것이다.
편광판에서 사용하기 전에, 섬유는 바람직하게는 횡연신 면내(inplane) 방향으로 연신시키고 어떤 치수로 이완시킴으로써 가공되어, 복굴절성 물질과 비복굴절성 물질 사이의 굴절률 차이가 상대적으로 제1 축에 따라서는 크고 다른 2개의 수직 축에 따라서는 작다. 이는 상이한 편광상태의 전자기 방사선에 대한 큰 광학 이방성을 생성한다.
본 발명의 범위 내의 편광판 중 일부는 타원형 확산 편광판이다. 일반적으로, 타원형 확산 편광판은 연신 및 비연신 방향 둘 다를 따른 복굴절성 물질과 비복굴절성 물질 사이의 굴절률에 차이가 있는 섬유를 사용하며, 한 편광상태의 광선을 확산 투과 또는 반사할 수 있다. 섬유 내의 복굴절성 물질은 또한 중합체 매트릭스 물질과 복굴절성 계면을 형성할 수 있으며, 이러한 경우 상기 계면은 또한 연신 및 횡연신 방향 둘 다에 대해 굴절률 미스매치를 포함할 수 있다.
전방 산란 대 후방 산란의 비율은 복굴절성 물질과 비복굴절성 물질 사이의 굴절률의 차이, 복굴절성 계면의 밀도, 복굴절성 계면의 크기 및 모양, 및 섬유의 전체 두께에 따라 좌우된다. 일반적으로, 타원형 확산판은 복굴절성 및 비복굴절성 물질 사이의 굴절률 차이가 비교적 작다.
바람직하게는, 본 발명에 따른 섬유에서 사용하기 위해 선택되는 물질 및 이러한 물질의 배향 정도는 최종 섬유 내의 복굴절성 및 비복굴절성 물질의 해당 굴절률들이 실질적으로 같은 축을 하나 이상 갖도록 선택된다. 필수는 아니지만 전형적으로 배향 방향에 대해 횡단 축인, 상기 축과 관련된 굴절률들이 매치되면 실질적으로 그 편광 평면에서는 광선이 반사되지 않는다.
내부 복굴절성 계면이 있고 상기한 편광판의 일부 실시양태에서 사용될 수 있는 중합체 섬유의 한 전형적인 실시양태로는 다층 섬유가 있다. 다층 섬유는 상이한 중합체 물질의 다중 층을 함유하며, 그중 하나 이상이 복굴절성인 섬유이다. 일부 전형적인 실시양태에서, 다층 섬유는 제1 물질과 제2 물질의 일련의 교대 층을 함유하며, 이중 제1 물질은 광학적으로 등방성이고 제2 물질은 한 축에 따른 굴절률이 제1 물질의 굴절률과 거의 동일하고 수직 축에 따른 굴절률이 등방성 물질의 굴절률과 상이한 복굴절성이다. 이러한 구조는, 예를 들어 미국 특허 제5,882,774호에 더 길게 논의되어 있다.
도 4A에서는 다층 섬유 (400)의 한 전형적인 실시양태의 횡단면이 개략적으로 예시된다. 섬유 (400)은 제1 물질 (402) 및 제2 물질 (404)의 교대 층을 함유한다. 제1 물질은 복굴절성이고 제2 물질은 실질적으로 등방성이며, 따라서 인접 층 사이의 계면 (406)은 복굴절성이다. 이러한 특정 실시양태에서, 계면 (406)은 실질적으로 평면형일 수 있으며, 섬유 (400)의 길이에 따라 확장된다.
섬유 (400)은 피복층 (408)에 의해 둘러싸일 수 있다. 피복층 (408)은 제1 물질 (402), 제2 물질 (404), 섬유가 내포된 중합체 매트릭스의 물질 또는 일부 다른 물질로 제조될 수 있다. 피복 (408)은 전체 디바이스의 성능에 작용상 기여할 수 있거나, 피복이 작용하지 않을 수 있다. 피복 (408)은, 예컨대 섬유 및 매트릭스의 계면에서 광선의 편광소멸(depolarization)을 최소화시킴으로써, 반사 편광판의 광학을 작용상 개선할 수 있다. 임의로, 피복 (408)은, 예컨대 섬유와 연속 상 물질 사이에 목적하는 수준의 접착력을 제공함으로써, 편광판을 기계적으로 향상시킬 수 있다. 일부 실시양태에서, 피복 (408)은, 예를 들어 섬유 (400)과 주변 중합체 매트릭스 사이에 일부 굴절률 매칭을 제공함으로써, 반사방지(antireflection) 작용을 제공하는데 사용될 수 있다.
섬유 (400)의 목적하는 광학 특징에 따라, 섬유 (400)은 상이한 다수의 층 및 상이한 크기로 형성될 수 있다. 예를 들어, 섬유 (400)은 조합된 범위의 두께와 함께 약 10층 내지 수백 층으로 형성될 수 있다. 섬유 (400)의 폭은 제한되지 않지만, 바람직한 폭의 값은 5 ㎛ 내지 약 5000 ㎛의 범위 내이고, 또한 섬유 폭은 상기 범위를 벗어날 수 있다.
다층 섬유 (400)은 다중 층의 물질을 다층 필름으로 공압출한 다음, 이어서 차후의 연신 단계에 의해 복굴절성 물질을 배향시키고 복굴절성 계면을 생성시킴으로써 제작될 수 있다. 다층 섬유는 다층 시트를 얇게 잘라 수득할 수 있다. 복굴절성 계면을 함유하는 다층 시트를 제조하기 위한 일부 방법은, 예를 들어 미국 특허 제5,269,995호, 제5,389,324호 및 제5,612,820호에 더 기재되어 있다.
상기한 바와 같이, 복굴절성 물질로 사용될 수 있는 적합한 중합체 물질의 일부 예에는 PET, PEN 및 이의 다양한 공중합체가 포함된다. 비복굴절성 물질로 사용될 수 있는 적합한 중합체 물질의 일부 예에는 상기한 광학적으로 등방성인 물질이 포함된다.
다층 섬유의 다른 형상(configuration)이 사용될 수 있다. 예를 들어, 다층 섬유 (420)의 또다른 전형적인 실시양태는 제1 물질 (422)와 제2 물질 (424)의 동심원형 교대 층으로 형성될 수 있으며, 이중 제1 물질 (422)는 복굴절성이고 제2 물질 (424)는 등방성이다. 이러한 전형적인 실시양태에서, 섬유 (420)은 섬유 (420)에 따라 확장되는 교대 층 (422), (424) 사이의 동심원형 복굴절성 계면 (426)을 포함한다.
섬유 (420)의 외각층 (428)은 제1 및 제2 물질 중 하나, 편광판의 중합체 매트릭스에서 사용되는 것과 동일한 중합체 물질, 또는 일부 다른 물질로 형성될 수 있다.
섬유 (420)은 목적하는 광학 특징, 예컨대 반사성(reflectivity) 및 파장 의존성을 제공하도록, 임의의 적합한 층의 개수 및 층 두께로 형성될 수 있다. 예를 들어, 섬유 (420)은 10 층 내지 수백 층을 함유할 수 있다. 동심원형 섬유 (420)은 다층 형성체를 공압출한 다음, 연신시켜 복굴절성 물질을 배향시킴으로써 형성될 수 있다. 편평한 다층 섬유 (400)에 사용하기 위한 임의의 상기한 물질은 또한 동심원형 섬유 (420)에서 사용될 수 있다.
상이한 유형의 횡단면이 있는 다층 섬유가 또한 사용될 수 있다. 한 이러한 예로는 도 4C에서 횡단면으로 개략적으로 예시한 다층 섬유 (440)이 있다. 이러한 섬유는 제1 물질 (442)와 제2 물질 (444)의 다수의 교대 층을 포함하며, 이중 제1 물질 (442)는 복굴절성이고 제2 물질 (444)는 광학적으로 등방성이다. 상이한 층 사이에 형성된 복굴절성 계면 (446)은 편평한 부분 (446a) 및 곡면형 부분 (446b)을 가지며, 섬유 (440)에 따라 확장된다. 상이한 층의 특정 횡단면의 모양은 주로 섬유 (440)을 공압출하는데 사용되는 피드블록의 모양에 의해 및 또한 임의의 섬유 (440)의 차후 형성에 의해 결정된다.
외각층 (448)은 제1 또는 제2 물질, 섬유 (440)이 내포된 중합체 매트릭스와 동일한 물질, 또는 일부 다른 물질로부터 형성될 수 있다. 외각층 (408), (428), (448)의 물질은 중합체 섬유와 주변 중합체 매트릭스 사이에 목적하는 접착 특성을 제공하도록 선택될 수 있다. 예를 들어 일부 실시양태에서, 외각층 (408), (428), (448)은 폴리에스테르 수지, 실란, 또는 중합체 섬유와 중합체 매트릭스 사이의 접착력을 증가시키기 위해 사용되는 일부 다른 작용제로 형성될 수 있다. 다른 실시양태에서, 외각층 (408), (428), (448)은 중합체 섬유와 주변 중합체 매트릭스 사이의 접착력을 감소시키는 물질, 예를 들어 플루오로탄소 물질, 실리콘 물질 등으로 제조될 수 있다. 일부 실시양태에서, 외각층은, 예를 들어 중합체 섬유와 중합체 매트릭스 사이에 일부 굴절률 매칭을 제공함으로써, 반사방지 작용을 제공하는데 사용될 수 있다.
다층 섬유가 섬유 횡단면상에 편평한 부분이 있는 복굴절성 계면을 함유하는 경우, 편평한 부분의 배향은 일정 범위의 선택적인 효과를 제공하도록 편광판 내에서 제어될 수 있다. 예를 들어 도 4D에서 개략적으로 예시한 편광판 (450)의 전형적인 실시양태에서, 편광판 (450)은 복굴절성 계면이 일반적으로 편광판 (450)의 표면 (456)과 평행하게 정렬된 섬유 (454)가 내포되어 있는 매트릭스 (452)를 포함한다. 입사광 (458)이 편광되지 않은 경우, 편광판은 한 편광 상태의 광선 (460)을 통과시키고 수직 편광 상태의 광선 (462)를 반사시킨다. 예시한 실시양태에서, 투과광 (460)은 도면의 평면의 바깥으로 편광되고 반사광 (462)는 도면의 평면에 대해 평행하게 편광된다.
이러한 전형적인 실시양태에서, 섬유 (454)의 복굴절성 계면이 서로 평행하게 정렬되어 있기 때문에, 반사광 (462)는 주요한 거울 성분을 포함할 수 있다. 반사광 (462)는, 예를 들어 표면 및 회절 효과로 인해 및 또한 섬유 (454) 중에서 진정한 평행으로부터의 정렬불량(misalignment)으로 인해, 확산 성분을 또한 포함할 수 있다. 또한, 복굴절성 계면이 표면 (456)에 대해 평행하게 정렬되어 있기 때문에, 편광판 (450)은 반사된 편광 상태의 광선에 대해 다소 거울처럼 거동한다.
편광판 (470)의 또다른 전형적인 실시양태가 도 4E에서 횡단면으로 개략적으로 예시된다. 이러한 편광판 (470)에서, 섬유 (454)는 복굴절성 계면의 편평한 부분이 실질적으로 서로 평행하게 정렬된다. 그러나, 이러한 경우, 복굴절성 계면의 편평한 부분은 표면 (456)에 대해 평행하게 정렬되지 않으며, 표면 (456)에 비평행하게 정렬된다. 비편광 입사광 (458)은 투과 편광 상태의 광선 (460)의 투과 및 반사 편광 상태의 광선 (462)의 반사를 생성한다. 이러한 경우, 입사광이 표면 (456)상에 수직 입사될 때, 반사광 (462)는 일반적으로 표면 (456)에 비수직 방향으로 반사될 수 있다. 반사광 (462)는 편광판 (470)의 측면으로 유도되었다 할 수 있다.
편광판 (480)의 또다른 전형적인 실시양태가 도 4F에서 횡단면으로 개략적으로 예시된다. 이러한 편광판 (480)에서, 섬유 (454)는 복굴절성 계면의 평평한 부분이 모두 평행하게 정렬되지 않지만, 편광판 (480)에 걸쳐 목적하는 배향 프로파일로 배향된다. 설명을 위해, 복굴절성 계면의 편평한 부분에 대한 수직선 (482)와 표면 (456)에 대한 수직선 (484) 사이에 형성되는 각 θ를 정의하는 것이 유용하다. θ의 값은 편광판 (480)에 걸쳐 다양할 수 있다. 예시한 실시양태에서, 편광판 (480)의 좌측에 있는 섬유 (454)는 θ의 값이 +θ0이도록 배향되어 있다. 따라서, 편광판 (480)의 이러한 부분으로부터 반사된 광선 (462L)은 우측으로 유도된다. 편광판 (480)의 우측에 있는 섬유 (454)는 θ의 값이 -θ0이도록 배향되어 있어, 편광판의 이러한 측면으로부터 반산된 광선 (462R)은 좌측으로 유도된다. 편광판의 중심에서, 복굴절성 계면의 편평한 부분 및 표면 (456)에 대한 수직선 (482), (484)는 대략 평행하며 (즉, θ가 0임), 따라서 편광판 (480)의 중심에서 반사된 광선 (462C)는 대략 표면 (456)상의 입사각으로 반사된다.
미리 결정된 프로파일로 광선이 반사되도록 θ가 편광판 (480)에 걸쳐 다양할 수 있는 방식이 선택될 수 있다는 것을 인지할 것이다. 예를 들어, 예시한 실시양태에서, 반사광은 대략 편광판의 전면에 초점을 유도할 수 있다. 예시하지 않은 또다른 전형적인 실시양태에서, 반사광의 초점이 편광판의 전면이 아니라 편광판의 측면이 되도록, 복굴절성 계면의 편평한 표면이 배향될 수 있다.
도 4G에서는 편광판 (490)의 또다른 전형적인 실시양태가 개략적으로 예시된다. 이러한 편광판 (490)에서는, 상이한 섬유 (454)의 복굴절성 계면의 편평한 부분이 불규칙하게 배향된다. 그 결과, 반사광 (462)는 더 또는 덜 확산 반사된다.
반사광이 더 또는 덜 거울 반사되거나 확산 반사되거나 거울 및 확산 특징의 일부 조합으로 반사되도록, 복굴절성 계면의 편평한 부분의 상대적인 배향이 선택될 수 있다는 것을 인지할 것이다.
일부 전형적인 실시양태에서, 섬유 (454)는 이의 길이를 따라 표면 (456)에 대해 일정 배향을 유지한다. 다른 전형적인 실시양태에서, 섬유 (454) 중 일부 또는 전부는 이의 길이를 따라 꼬일 수 있다.
내부 복굴절성 계면이 있는 중합체 섬유의 또다른 전형적인 실시양태로는 중합체 충전제가 침투된 복합 산란 섬유를 함유하는 복합 섬유가 있다. 도 5A에서는 전형적인 복합 섬유의 횡단면의 일 예가 개략적으로 예시된다. 복합 섬유 (500)은 산란 섬유 (502) 사이의 충전제 (504)와 함께 복합 산란 섬유 (502)를 포함한다. 일부 실시양태에서는, 산란 섬유 (502) 또는 충전제 (504) 중 적어도 하나가 복굴절성이다. 예를 들어 일부 전형적인 실시양태에서는, 산란 섬유 (502) 중 적어도 일부가 복굴절성 물질로 형성될 수 있고 충전제 물질 (504)가 비복굴절성일 수 있다. 다른 전형적인 실시양태에서는, 산란 섬유 (502)가 비복굴절성이고 충전제 물질 (504)이 복굴절성이다. 다른 실시양태에서는, 산란 섬유 (502) 및 충전제 (504)가 둘 다 복굴절성일 수 있다. 이러한 상이한 변형에서, 산란 섬유 (502)의 물질과 충전제 물질 (504) 사이의 각각의 계면 (508)은 복굴절성 물질과 또다른 물질 사이의 계면, 즉 복굴절성 계면이며, 선택된 편광 상태의 광선의 선택적 반사 또는 산란에 기여할 수 있다. 이러한 각각의 상이한 실시양태에서, 복합 섬유가 내포된 중합체 매트릭스는 광학적으로 등방성 또는 복굴절성일 수 있다.
일부 다른 실시양태에서, 섬유 (500)은 등방성 산란 섬유 (502)와 등방성 충전제 물질 (504)로부터 제조될 수 있다. 이러한 경우, 섬유 (500)이 내포된 매트릭스는 복굴절성이다.
복합 섬유 (500)은 상이한 횡단면 모양을 가질 수 있다. 도 5A에서, 복합 섬유 (500)은 원형의 횡단면 모양을 갖는다. 도 5B 및 5C에서 각각 개략적으로 나타낸 복합 섬유 (510) 및 (520)의 다른 전형적인 실시양태는 타원형 및 사각형 횡단면 모양이다. 다른 횡단면 모양, 예를 들어 정다각형 및 부정다각형 모양, 또는 곡면형 및 직선형 측면을 합한 횡단면 모양이 사용될 수 있다. 예시한 실시양태는 단지 전형적인 것을 의도하는 것이며, 임의의 방식으로 제한하려는 의도는 아니다.
복합 섬유에는 임의로 외각층 (506)이 제공될 수 있다. 외각층 (506)은, 예를 들어 복합 섬유와 복합 섬유가 내포된 중합체 매트릭스 사이의 접착력에 영향을 주는데 사용될 수 있다. 일부 실시양태에서, 외각층 (506)은 복합 섬유와 중합체 매트릭스 사이의 접착력을 증가시키는 물질, 예를 들어 폴리에스테르 수지 코팅, 실란 코팅, 또는 중합체 매트릭스와 중합체 섬유 사이의 접착력을 증가시키기 위해 사용되는 다른 프라이머로 형성될 수 있다. 다른 실시양태에서, 외각층 (506)은 중합체 섬유와 주변 중합체 매트릭스 사이의 접착력을 감소시키는 물질, 예를 들어 플루오로탄소 물질, 실리콘 물질 등으로 제조될 수 있다. 일부 실시양태에서, 외각층 (506)은, 예를 들어 섬유 (500)과 주변 중합체 매트릭스 사이의 굴절률 매칭을 일부 제공함으로써, 반사방지 작용을 제공하는데 사용될 수 있다.
예를 들어 도 5A 내지 5C의 전형적인 실시양태에서 개략적으로 예시한 바와 같이, 산란 섬유의 위치는 복합 섬유의 횡단면 내에서 불규칙할 수 있다. 산란 섬유의 다른 횡단면 배열이 사용될 수 있다. 예를 들어, 산란 섬유 (502)는 복합 섬유 (530)의 횡단면 내에 규칙적으로 배열될 수 있다. 예를 들어, 도 5D에서 예시한 섬유 (530)의 전형적인 실시양태는 y 방향의 인접 산란 섬유 (502) 사이의 분리 거리 dy가 z 방향의 인접 산란 섬유 (502) 사이의 분리 거리 dz와 동일한, 2차원 대형으로 배열되어 있는 산란 섬유 (502)를 나타낸다. 도 5E에서 예시한 섬유 (540)의 전형적인 실시양태에서, 산란 섬유 (502)는 y 방향의 분리 거리 dy가 z 방향의 분리 거리 dz와 다른, 2차원 대형으로 배열되어 있다. 도 5D 및 5E의 산란 섬유 (502)는 도 5D의 사각형 격자 패턴을 포함하는 것으로 이해되는 장방형 격자 패턴으로 놓여 있다. 인접 산란 섬유 (502) 간의 간격은, 예를 들어 복합 섬유 (530), (540)을 가시광으로 사용하고자 하는 경우에 50 ㎚ 내지 500 ㎚의 범위일 수 있다.
산란 섬유 (502)의 다른 규칙적인 배열이 가능하다. 예를 들어, 도 5F에서 횡단면으로 개략적으로 예시한 복합 섬유 (550)에서, 산란 섬유 (502)는 인접 열이 y 방향으로 서로 상쇄되는, y 방향에 따른 열로 놓여 있다. 이러한 특정 실시양태에서, 인접 열 사이의 상쇄는 산란 섬유 (502)가 사각형 또는 장방형 패턴이 아니라 육각형 패턴으로 배열되도록 한다. 도 5G에서는 가장 가까운 이웃 산란 섬유 (502) 사이의 분리가 y 방향보다 z 방향에서 더 큰 복합 섬유 (555)에 대한 도 5F의 배열의 변형이 개략적으로 예시된다.
다른 전형적인 실시양태에서, 산란 섬유 (502)는 다른 패턴을 형성할 수 있다. 예를 들어, 산란 섬유는 규칙적인 대형의 위치의 전부가 아닌 일부를 채우도록 배열될 수 있다. 또한, 공간 또는 간극이 인접 산란 섬유 또는 산란 섬유의 군의 사이에 도입될 수 있다. 이러한 군 또는 공간 및 간극의 크기 및 분포는 특히 바람직한 스펙트럼 특징을 생성하기 위해 선택될 수 있다. 예를 들어, 산란 섬유의 일부 배열이 스펙트럼상 선택적인 반사 및/또는 투과를 유발할 수 있는 특정 파장 범위의 광선에 대한 광결정으로서 작용할 수 있다. 광결정 광자섬유(photonic crystal photonic fiber)는 2005년 2월 28일자로 출원된 본원과 공동명의의 대리인 사건번호 제60371US002호의 미국 특허 출원 제11/068,158호 (발명의 명칭 "복합 중합체 섬유")에 더 논의되어 있다.
이제, 가능한 산란 섬유 배열의 완전한 것은 아닌 선택을 나타내는 복합 섬유의 전형적인 추가 실시양태를 기재한다.
도 5H에서 개략적으로 예시한 복합 섬유 (560)의 전형적인 실시양태에서, 일부 산란 섬유 (502)는 섬유 (560)의 중심 주변 지역에 규칙적으로 배열되지만, 섬유 (560)의 중심 부분에는 산란 섬유가 없다. 도 5I에서 개략적으로 예시한 복합 섬유 (565)의 또다른 예에서, 산란 섬유 (502)는 동심원형 고리 (506)으로 배열된다. 산란 섬유 (502)의 크기, 및 간극 및/또는 동심원형 고리의 크기는 특정 광학 특성, 예컨대 투과 및/또는 반사를 위해 선택될 수 있다. 도 5I에서 예시한 예에서, 산란 섬유는 육각형 격자로 구성된 위치로 고리에 위치하는 것으로 나타난다. 이는 필수 조건은 아니며, 예를 들어 도 5J에서 개략적으로 예시한 바와 같이, 산란 섬유 (502)는 방사상 동심원형 패턴으로 형성될 수 있다.
일부 실시양태에서, 산란 섬유 (502)는 모두 동일한 크기일 필요는 없다. 예를 들어 도 5J 및 5K에서 예시한 복합 섬유 (570) 및 (575)의 실시양태에 나타낸 바와 같이, 복합 섬유는 상이한 횡단면 크기의 산란 섬유를 포함할 수 있다. 이러한 특정 실시양태에서, 산란 섬유 (502a)는 산란 섬유 (502b)보다 횡단면이 상대적으로 더 크다. 산란 섬유 (502)는 둘 이상의 상이한 크기의 군에 해당할 수 있으며, 사실상 모두의 크기가 다를 수 있다. 또한, 예를 들어 도 51에서 예시한 바와 같이 산란 섬유 (502)는 복합 섬유의 중심에 위치할 수 있거나, 산란 섬유 (502)가 복합 섬유의 중심에 없을 수 있다. 예를 들어, 도 5J에서 산란 섬유 (502a)는 복합 섬유 (570)의 중심이 아니라 주변에 위치한다. 실질적으로, 산란 섬유 (502)의 치수는 단일한 값이 아니라 일정 범위내에 해당할 수 있다. 또한, 상이한 산란 섬유 (502)는 상이한 물질로 형성될 수 있다.
상기한 바와 같이, 복합 섬유는 모양이 원형일 필요는 없으며, 비원형 횡단면을 가질 수 있다. 예시로, 도 6A 및 6B는 각각 사각형 및 육각형 패턴의 산란 섬유 (502)를 함유하는 비원형 복합 섬유 (600), (610)을 나타낸다. 비원형 섬유는 규칙적인 격자 패턴상의 지점에 위치하는 그의 산란 섬유 (502)를 가질 수 있지만, 격자 패턴의 모든 위치가 산란 섬유 (502)와 관련될 필요는 없다. 예를 들어, 도 6C에서 개략적으로 예시한 비원형 복합 섬유 (620)은 육각형 격자상으로 위치하는 산란 섬유 (502)를 함유하지만, 일부 간극 (612)이 섬유 사이에 존재할 수 있다. 또한, 산란 섬유 (502)에 의해 형성된 패턴에는 대칭축이 없을 수 있다.
도 6D 및 6E에서는 비원형 복합 섬유 (630), (640)의 다른 전형적인 실시양태가 개략적으로 예시된다. 이러한 전형적인 비원형 복합 섬유 (630), (640)은 횡단면이 사각형이며, 상이한 전형적인 패턴으로 배열된 산란 섬유 (502)를 함유한다. 복합 섬유 (630) 내의 산란 섬유 (502)는 육각형 격자 패턴상으로 배열되는 반면에, 복합 섬유 (640) 내의 산란 섬유 (502)는 사각형 격자 패턴으로 배열된다. 각각의 경우, 산란 섬유 (502)의 배열 내에는 간극이 있다.
본 발명의 범위는 복합 섬유 내의 산란 섬유의 모든 배열을 포함하려는 의도이다. 일부 전형적인 배열에서, 산란 섬유의 상대적 위치, 산란 섬유의 크기 및 산란 섬유와 충전제 물질 사이의 굴절률의 차이는 복합 섬유에 목적하는 스펙트럼상 선택적인 특성, 예를 들어 반사 및/또는 투과를 제공하도록 설정된다. 이러한 스펙트럼상 선택적인 특성의 예에는 반사 및 투과가 포함되지만, 이에 제한되지 않는다. 복합 섬유의 일부 실시양태에서, 산란 섬유의 횡단면 소재(location)는 입사광의 비간섭 산란을 유발할 수 있다. 다른 실시양태에서, 산란 섬유의 소재는 광결정질 특성을 발생시키는 산란광의 간섭 효과를 유발할 수 있다. 복합 섬유 내의 산란 섬유의 평균 밀도는, 예를 들어 약 1% 내지 약 95%, 바람직하게는 약 10% 내지 약 90%, 더 바람직하게는 약 10% 내지 약 50%의 넓은 범위를 포함할 수 있지만, 산란 섬유 밀도는 또한 상기 범위를 벗어날 수 있다. 복합 섬유는 2005년 2월 28일자로 출원된 본원과 공동명의의 대리인 사건번호 제60371US002호의 미국 특허 출원 제11/068,158호 (발명의 명칭 "복합 중합체 섬유")에 더 상세하게 논의되어 있다.
산란 섬유 (502)의 크기는 산란에 대한 효과가 현저할 수 있다. 도 7에서, 산란 유효성, 즉 정규화된 기준 광학적 두께 (normalized, scaled optical thickness; NSOT)의 플롯이 산란 섬유의 평균 반지름의 함수로 나타나 있다. NSOT는 다음 식에 의해 주어진다.
NSOT = τ(1-g)/(tf)
상기 식에서, τ는 광학적 두께이며 tk와 같고, k는 단위 부피 당 소광(extinction) 횡단면 (소광에 대한 평균 자유 행로의 역수)이며, t는 확산판의 두께이며, f는 확산판의 부피 분율이며, g는 비대칭 파라미터이다. 순수한 전방 산란의 경우에는 g의 값이 +1이며, 순수한 후방 산란의 경우에는 -1이며, 전방 및 후방 산란이 동등한 경우에는 0이다. 플롯을 제작하기 위해 사용된 계산에서는 입사광의 진공 파장을 550 ㎚로 가정하였다.
나타낸 바와 같이, 산란 효능은 반지름 약 150 ㎚에서 피크이며, 반지름 약 50 ㎚ 내지 1000 ㎚의 범위에서 약 최대값의 절반값을 갖는다. 산란 섬유는 임의의 목적하는 횡단면 치수를 가질 수 있지만, 중심 파장이 약 550 ㎚인 광선에 대해서는 횡단면 치수가 약 50 ㎚ 내지 약 2000 ㎚, 더 바람직하게는 약 100 ㎚ 내지 약 1000 ㎚의 범위일 수 있다. 횡단면 치수는 산란 섬유가 대략 원형의 횡단면을 가지는 경우에는 지름이고, 비원형 섬유 횡단면에 대해서는 산란 섬유 폭일 수 있다. 복합 섬유가 입사광의 파장이 스펙트럼의 가시 영역 바깥, 예를 들어 자외선 또는 적외선 영역인 용도를 위해 사용되는 경우에는, 산란 섬유의 크기가 상이할 수 있다. 일반적으로, 산란 섬유의 횡단면 치수의 바람직한 범위는 약 λ/10 내지 약 4λ (여기서, λ는 광선의 진공 파장임)이다. 광선이 일정 파장 범위에 존재하는 경우, λ의 값은 파장 범위의 중앙값일 수 있지만, 복합 섬유에는 또한 치수가 일정 범위인 산란 섬유가 제공될 수 있다.
예를 들어 복합 섬유 내의 광선의 파장의 약 30분의 1 미만, 또는 진공에서 550 ㎚의 광선에 대해 약 0.012 ㎛ 미만으로 산란 섬유가 매우 작은 경우, 및 예를 들어 복합 섬유 부피의 약 60% 내지 80%의 범위로 산란 섬유의 밀도가 충분히 높은 경우에는, 편광판은 임의의 주어진 축에 따른 산란 섬유 및 충전제의 굴절률 사이에 다소 효과적인 굴절률을 갖는 매질로서 거동할 수 있다. 이러한 경우, 광선은 거의 산란되지 않는다. 산란 섬유의 횡단면 크기가 광파장보다 예를 들어 파장의 적어도 약 3배 또는 그 이상으로 매우 더 커지면, 산란 효율이 매우 낮아지고 무지개(iridescence) 효과가 발생한다.
산란 섬유의 횡단면 치수는 광학 물질의 목적하는 용도에 따라 다양할 수 있다. 따라서, 예를 들어 산란 섬유의 치수는 특정 용도에 관련된 광선의 파장에 따라 가시, 자외선, 적외선 광선의 산란 또는 투과를 위해 필요한 상이한 치수로 다양할 수 있다. 그러나 일반적으로, 물질 내의 산란 섬유의 치수는 관련된 파장 범위의 광선의 가장 짧은 파장의 약 30분의 1보다 대략 더 커야 한다.
목적하는 치수 범위의 상한에서, 물질 내의 산란 섬유의 평균 치수는 바람직하게는 관련된 파장 범위의 광선의 파장의 2배 이하, 바람직하게는 목적하는 파장의 0.5배 미만이다.
복합 섬유 내의 산란 섬유의 밀도는 수행되는 산란의 양에 영향을 미친다. 산란 섬유 간의 중심에서 중심까지의 간격이 약 λ/10 내지 약 2λ (여기서, λ는 입사광의 중심 또는 평균 진공 파장임)인 것이 유용할 수 있다.
산란 섬유는 횡단면이 원형일 수 있지만 원형일 필요는 없으며, 다른 횡단면 모양을 가질 수 있다. 도 6F에서 횡단면으로 개략적으로 예시한 전형적인 복합 섬유 (650)에서, 산란 섬유 (652)는 사각형 횡단면을 갖는다. 다른 모양의 횡단면, 예를 들어 정다각형 및 부정다각형 모양, 예컨대 삼각형, 장방형 또는 육각형, 또는 곡면형과 직선형 측면을 모두 갖는 횡단면 모양이 사용될 수 있다. 산란 섬유의 횡단면 모양은 압출 다이의 모양으로 인한 것이거나 압출 후 광학 소자의 후가공(post-processing)으로 인한 것일 수 있다. 예시에 나타낸 횡단면 모양을 갖는 산란 섬유로 본 발명을 제한하려는 의도는 아니다.
중심에서 중심까지의 섬유 간격이 불균일할 때에는 산란 섬유가 복합 섬유의 횡단면 영역의 더 많은 부분을 채우기 때문에 비원형 횡단면을 갖는 산란 섬유를 사용하는 것이 유용하다. 예를 들어 산란 섬유가 장방형 격자상으로 배열되고 z 방향보다 y 방향으로의 중심에서 중심까지의 간격이 2배 큰 경우에는, 산란 섬유가 원형인 경우보다는 산란 섬유가 z 방향보다 y 방향으로 2배 긴 타원형 횡단면을 가질 때 산란 섬유가 복합 섬유의 횡단면을 더 많이 채운다.
도 6G 내지 6I에서는 비원형 횡단면을 갖는 산란 섬유의 일부 전형적인 추가 배열이 개략적으로 예시된다. 비원형 산란 섬유는 불규칙한 방향으로 배열된 그의 횡단면 모양으로 배열될 수 있다. 다른 실시양태에서, 산란 섬유의 횡단면은 서로 정렬될 수 있다. 예를 들어 도 6G에서, 복합 섬유 (660)은 타원형 횡단면을 갖는 산란 섬유 (662)가 내포된 충전제 (504)로 형성된다. 이러한 특정 실시양태에서, 산란 섬유 (662)는 y 축과 평행한 그의 타원형 횡단면의 긴 축으로 정렬된다.
산란 섬유는 그의 모든 횡단면이 정렬 배열될 필요는 없지만, 상이한 산란 섬유가 복합 섬유 내에서 상이하게 정렬될 수 있다. 도 6H에서 개략적으로 예시한 복합 섬유 (670)의 전형적인 실시양태에서, 산란 섬유 (672)는 타원형 횡단면을 가지며, 일부 섬유 (672a)는 z 축에 평행한 그의 긴 축으로 배열되고 다른 섬유 (672b)는 z 축에 평행한 그의 짧은 축으로 배열된다. 산란 섬유 (672)의 대략 절반이 각 방향으로 정렬된다. 또한, 섬유 (672a) 및 (672b)의 집단(population)은 복합 섬유 (670)의 횡단면 내에 규칙적으로 배열된다. 섬유 (672a) 및 (672b)의 집단이 또한 복합 섬유 (670)의 횡단면 내에 불규칙적으로 배열될 수 있는 것이 적절할 것이다.
예시한 실시양태의 다른 변형이 가능하다. 예를 들어, 모든 산란 섬유가 동일한 횡단면 모양, 크기 또는 정렬을 가질 필요는 없다. 또한, 산란 섬유가 횡단으로 정렬되어 복합 섬유 내에서 패턴을 형성할 수 있다. 도 6I에서는 이러한 복합 섬유 (680)의 한 구체적인 예가 개략적으로 예시된다. 충전제 (504)에는 2종의 상이한 유형의 횡단면을 갖는 산란 섬유인 타원형 섬유 (682) 및 원형 섬유 (684)가 내포되어 있다. 예시한 실시양태에서는, 타원형 섬유 (682)가 그의 타원형 횡단면의 짧은 축이 가장 가까운 원형 섬유 (684)로 향하도록 정렬되어 있다. 산란 섬유의 다른 패턴이 사용될 수 있다.
산란 섬유가 비원형 횡단면을 가지는 경우에는, 산란 섬유가 복합 섬유 내에서 꼬이지 않아, 산란 섬유의 면이 산란 섬유의 길이에 따른 복합 섬유의 한 면으로 배향될 수 있다. 다른 전형적인 실시양태에서는, 산란 섬유가 복합 섬유 내에서 꼬여, 산란 섬유의 길이에 따른 상이한 지점에서 산란 섬유의 면이 복합 섬유의 상이한 면으로 배향될 수 있다.
복합 섬유의 많은 실시양태에서, 복굴절성 계면은 곡면형이거나 편평할 수 있으며, 정렬되지 않을 수 있다. 이러한 실시양태에서, 광선은 복굴절성 계면에서 많은 상이한 방향으로 반사되며, 따라서 복합 섬유가 광선을 산란하는 것으로 설명할 수 있다.
굴절률 미스매치가 복합 섬유 내의 편광 의존 산란을 촉진하는 주요 인자이며, 복합 섬유의 횡단면 모양이 또한 산란에 영향을 미칠 수 있다. 예를 들어 산란 섬유가 횡단면이 타원형인 경우, 타원형 횡단면 모양은 후방 산란광 및 전방 산란광 둘 다에서 비대칭 확산에 기여할 수 있다. 굴절률 미스매치로부터 산란의 양을 증가시키거나 감소시키도록 작용할 수 있다.
일부 실시양태에서, 산란 섬유는 코어 및 쉘 구조를 가질 수 있으며, 여기서 코어 및 쉘은 동일한 또는 상이한 물질로 제조되거나, 또는 여기서 코어는 중공이다. 따라서, 예를 들어 산란 섬유는 균일 또는 불균일 횡단면의 중공 섬유일 수 있다. 섬유의 내부 공간은 비어있거나, 고체, 액체 또는 기체일 수 있고 유기 또는 무기일 수 있는 적합한 매질에 의해 채워질 수 있다. 매질의 굴절률은 복굴절성 계면에서 목적하는 반사 또는 산란의 정도가 달성되도록 복굴절성 계면에서의 굴절률 차이를 고려하여 선택될 수 있다. 적합한 등방성 및 복굴절성 중합체 물질은 하기에 논의한다.
복합 섬유를 제조하는 한 방법은 복합 섬유를 제조하기 위해 고안된 피드블록을 사용하여 복합 산란 섬유를 공압출하는 것이며, 이는 또한 종종 "해중도(island-in-the-sea)" 섬유로 공지되어 있다. 이러한 방법은 문헌 [Handbook of Fiber Science and Technology: High Technology Fibers Part D, Vol. 3; Lewin and Preston (editors), Marcel Dekker, 1996, ISBN 0-8247-9470-2]에 더 상세하게 논의되어 있다. 상기 문헌에 기재되어 있는 것을 비롯한 다른 섬유 구조 및 횡단면 분포가 사용될 수 있다. 복합 섬유는 압출 후 연신되어 복굴절성 물질을 배향시킬 수 있다. 산란 섬유를 함유하는 소자의 공압출 방법은 2005년 2월 28일자로 출원된 대리인 사건번호 제60401US002호의 미국 특허 출원 제11/068,159호 ("공동 연속 상이 있는 복합 중합체 광학 필름")에 더 상세하게 기재되어 있다.
복합 섬유를 공압출하는 일 예에서, 118개의 레이저가공 판 및 11개의 말단 밀링된 판이 있는 피드블록을 2개의 투입구 및 약 1000개의 "섬(island)" 배출구를 갖도록 조립하였다. 피드블록 내에서, 중합체 경로의 길이는 실질적으로 모두 같았다. 생성된 공압출된 복합 섬유의 횡단면을 도 14에 사진으로 나타내었다. 복합 섬유는 미국 테네시주 킹스포트 소재의 이스트만 케미칼사(Eastman Chemical Co.) 제조의 이스타르(Eastar™) 6763인 PETG 코폴리에스테르의 충전제 "바다(sea)" 중의 산란 섬유 "섬"으로서 PEN (90%)/PET (10%) 공중합체를 포함하였다. 압출된 복합 섬유는 지름이 약 200 ㎛였다. 기하학적 모양을 유지하면서 복합 섬유를 연신시켜, 지름 약 25 ㎛를 달성할 수 있었다 (즉, 약 지름의 87%가 감소하였음). 이러한 연신시, 산란 섬유 간의 간격은 약 500 ㎜일 것이다. 산란 섬유의 횡단면 치수는 2종의 상이한 중합체 물질의 유량의 비율에 따를 것이다.
상기한 바와 같이, 다층 형상, 동심원형 및 평면형 및 복합 섬유 내의 여러 작은 산란 섬유 ("해중도" 섬유)를 비롯한 섬유 내부 구조에 의한 또는 다른 접근법에 의한 복굴절성 계면으로 중합체 섬유의 적절한 광학 특성이 달성될 수 있다. 섬유 내에 중합체 복굴절성 계면을 함유하는 목적 내부 구조체의 또다른 생성 방법으로는 혼화성이 아닌 2종의 중합체 (이들 중 적어도 하나는 복굴절성임)를 사용하고, 이를 섬유로 압출 또는 주조 또는 성형하는 방법이 있다. 가공시, 연속 상 및 분산 상이 생성된다. 차후 가공 또는 배향시, 중합체 섬유의 내부 구조에 따라 분산 상은 막대상 또는 층상 구조를 나타낼 수 있다. 또한, 중합체 물질은 한 편광 방향에 대해서는 두 물질 사이에 실질적인 굴절률 매칭이 있고 다른 편광에 대해서는 상대적으로 큰 굴절률 미스매치가 있도록 배향될 수 있다. 필름 매트릭스 내의 분산 상의 생성은 미국 특허 제6,141,149호에 더 상세하게 기재되어 있다.
이러한 유형의 복굴절성 중합체 섬유는 분산 상 섬유라 칭할 수 있다. 도 8A에서는 연속 상 (804) 내에 분산 상 (802)이 있는 분산 상 섬유 (800)의 일 예가 개략적으로 예시된다. 말단 면 (806)은 섬유 (800)의 횡단면에 걸친 분산 상 부분 (802)의 불규칙 분포를 나타내는 횡단면이다. 매트릭스 (804)와 분산 상 (802) 사이의 계면은 복굴절성 계면이며, 따라서 계면에서는 감편광성(polarization sensitive) 반사 또는 산란이 발생한다.
분산 상은 또한 액정 소적(droplet), 액정 중합체 또는 중합체로 형성될 수 있다. 별법으로는, 분산 상은 공기 (미세공간(microvoid))로 이루어질 수 있다. 임의의 경우, 분산 상 섬유 내의 분산 상과 연속 상 사이의 계면은 반사 편광을 비롯한 목적하는 광학 특성을 유도할 수 있다.
복굴절성 중합체 섬유를 형성시키기 위한 또다른 접근법에서, 섬유는 복합 섬유와 유사한 방식으로, 충전제로서 제1 중합체를 사용하고 산란 섬유를 위해 제2 및 제3 중합체를 사용하여 형성될 수 있다. 일부 실시양태에서, 제2 및 제3 중합체는 서로 혼화성이 아니며, 제2 및 제3 중합체 중 적어도 하나는 복굴절성이다. 제2 및 제3 중합체는 혼합되고, 복합 섬유 중의 산란 섬유로서 압출될 수 있다. 가공시, 제1 중합체는 복합 섬유의 충전제 부분을 형성하며, 산란 섬유는 각각 제2 및 제3 중합체로부터의 연속 상 및 분산된 상을 둘 다 함유한다. 이러한 유형의 섬유를 분산 상 복합 섬유라 칭한다. 도 8B에서는 분산 상 (854)를 포함하는 산란 섬유 (852)를 나타내는 분산 상 복합 섬유 (850)의 일 예가 개략적으로 예시된다. 산란 섬유 (852)는 충전제 (856)에 의해 둘러싸여 있다. 다른 실시양태에서, 산란 섬유는 제2 중합체 및 제3 물질로 형성될 수 있으며, 이중 제3 물질은 액정 물질, 액정 중합체 또는 중합체이다.
이와 유사하게, 동심원형 다층 섬유 및 비동심원형 다층 섬유는 제1 중합체로 이루어 하나의 층 유형과 혼화성이 아닌 2종의 중합체 또는 물질의 혼합물로 이루어진 제2 층 유형의 교대 층으로 제조될 수 있다. 그러한 경우 가공시, 교대 층이 제1 중합체를 포함하는 일부 층 및 분산 상 및 연속 상을 포함하는 일부 다른 층으로 생성된다. 바람직하게는, 연속 상 및 분산 상 중 하나 또는 둘은 복굴절성이다. 차후 가공 또는 배향시, 제2 유형의 층의 분산 상은 막대상 또는 층상 구조를 나타낼 수 있다.
층상 섬유의 복굴절 영역 또는 산란 섬유에 대한 크기 필요조건은 모든 다양한 실시양태에서 유사하다. 목적하는 구동 파장 또는 파장 범위에 따라, 연속 및 분산 상을 함유하는 층 또는 섬유를 포함하는 계를 위한 목적하는 크기 규모가 달 성되도록, 섬유의 크기 또는 다층 디바이스에서의 층의 두께는 대략 스케일 증가 또는 감소될 필요가 있을 것이다.
본 발명의 편광판에 사용될 수 있는 중합체 섬유의 또다른 유형을 도 9를 참조하여 하기에 기재한다. 섬유는 실 (900)로 형성되어 있다. 실 (900)의 일부 실시양태에서, 섬유는 예를 들어 다수의 다층 섬유, 분산 상 섬유, 복합 섬유 및/또는 분산 상 복합 섬유를 함께 꼼으로써 함께 꼬인 다수의 복굴절성 중합체 섬유 (902)로 형성된다. 실 (900)은 실을 형성시키기 위해 배향된 섬유를 함께 꼼으로써 형성될 수 있거나, 또는 배향성 물질로 이루어진 등방성 섬유를 함께 꼰 후 실 (900)을 연신시켜 배향성 물질을 배향시킴으로써 형성될 수 있다.
실 (900)은 단지 복굴절성 중합체 섬유를 함유하는 것으로 제한되지 않으며, 다른 섬유, 예를 들어 다른 중합체 물질의 등방성 또는 복굴절성 섬유; 천연 섬유, 예컨대 면, 실크 또는 삼(hemp); 및 무기 섬유, 예컨대 유리, 유리-세라믹 또는 세라믹 섬유를 또한 포함할 수 있다.
실 (900)은 섬유, 또는 유리, 세라믹 및/또는 유리-세라믹 물질로 이루어진 일정 길이의 섬유를 포함할 수 있다. 일반적으로, 유리-세라믹 물질은 크기가 일반적으로 1 ㎛ 미만인 매우 작은 결정을 95 내지 98 부피% 포함한다. 일부 유리-세라믹 물질은 결정 크기가 가시광의 파장보다 매우 더 작기 때문에 가시 파장에서 효과적으로 투과하도록, 이의 결정 크기가 50 ㎚만큼 작다. 이러한 유리-세라믹이 가시적으로 투과하도록, 이에는 유리질 및 결정질 영역의 굴절률 사이의 유효한 차이가 매우 적거나 없을 수 있다. 투과도 이외에, 유리-세라믹 물질은 파열 강도가 유리의 파열 강도를 초과할 수 있으며, 열 팽창 계수가 0 또는 심지어 음의 값인 것으로 알려져 있다. 관련된 유리-세라믹의 조성은 Li2O-Al2O3-SiO2, CaO-Al2O3-SiO2, Li2O-MgO-ZnO-Al2O3-SiO2, Al2O3-SiO2, 및 ZnO-Al2O3-ZrO2-SiO2, Li2O-Al2O3-SiO2, 및 MgO-Al2O3-SiO2을 포함하지만, 이에 제한되지 않는다.
일부 세라믹의 결정 크기는 또한 거의 매치되는 굴절률을 갖는 매트릭스 중합체 내에 내포되어 있는 경우에 투명하도록 충분히 작을 수 있다. 미국 미네소타주 세인트 폴 소재의 쓰리엠사로부터 입수가능한 넥스텔(Nextel™) 세라믹 섬유가 이러한 유형의 물질의 예이며, 이미 실, 또는 직물 매트로 시판된다. 적합한 세라믹 또는 유리-세라믹 물질은 문헌 [Chemistry of Glasses, 2 nd Edition (A. Paul, Chapman and Hall, 1990); Introduction to Ceramics, 2 nd Edition (W.D. Kingery, John Wiley and Sons, 1976)]에 더 기재되어 있다.
실 (900)은 통상적으로 스테이플 섬유라 칭하는 일정 길이의 섬유를 포함할 수 있으며, 이는 실 (900)의 전체 부분에 걸쳐 확장되지는 않는다. 실 (900)은 실 (900)을 구성하는 섬유 (902) 사이의 공간을 채우는 중합체 매트릭스 내에 캡슐화될 수 있다. 다른 실시양태에서, 실 (900)에는 섬유 (902) 사이에 충전제가 있을 수 있다.
실 (900)에 사용하기 위해 적합한 복굴절성 중합체 물질에는 PET, PEN, 테레프탈레이트, 나프탈레이트 또는 둘 다를 함유하는 공중합체를 비롯한 중합체가 포 함되지만, 이에 제한되지 않는다. 다른 접근법에서, 실 (900)은 함게 꼬인 복굴절성 섬유, 예컨대 다층 또는 복합 섬유를 포함할 수 있다.
일반적으로, 중합체 섬유의 굴절성 계면은 섬유에 따른 방향으로 확장되어 연장된다. 일부 전형적인 실시양태에서, 복굴절성 섬유는 x 축에 대해 평행하며, 따라서 확산 반사광이 대개 섬유에 수직인 평면인 y-z 평면으로 산란되고, x-z 평면에서는 거의 산란되지 않는다.
이제는 도 10A 내지 10D를 참조로 본 발명에 따라 편광판을 제작하는 한 접근법을 논의한다. 도 10A에서 개략적으로 예시한 바와 같이, 중합체 섬유 (1002)는 제1 중합체층 (1004) 상에 놓여 있다. 제2 중합체층 (1006)은 중합체 섬유 (1002)상으로 주조될 수 있다 (도 10B 참조). 제1 중합체층 (1004) 및 제2 중합체층 (1006)은 동일한 중합체 물질이거나 상이한 물질일 수 있다. 필요에 따라, 제2 중합체 (1006) 층은 다양한 방법, 예를 들어 가열 및 가압, 용매 코팅 및 건조, 계내(in-situ) 중합 또는 이의 조합에 의해 섬유 (1002) 내로 침투될 수 있다.
섬유 (1002)는 개별적으로 놓일 수 있으며, 개별 중합체 섬유의 폭과 같거나 더 높은 높이의 섬유의 스택을 포함할 수 있거나, 하나 이상의 토우로 놓일 수 있다. 토우는 함께 꼬이지 않은 섬유의 배열이다. 섬유 (1002)는 복합 섬유, 다층 섬유, 섬유 실, 임의의 다른 적합한 종류의 섬유 또는 이의 조합일 수 있다. 특히, 토우 또는 토우들은 실질적으로 서로 평행한 섬유의 세트를 형성할 수 있다. 도 11에서는 섬유 토우 (1106)의 일 실시양태가 개략적으로 예시된다. 횡요소(cross-member) (1108)는 중합체 섬유 (1002)에 지지체를 제공하고 중합체 섬유 (1002)가 그 이웃에 대해 목적하는 간격으로 유지되도록 존재할 수 있다. 예를 들어 연속 공정에서 중합체 섬유 (1002)가 제1 중합체층 (1004)상으로 놓일 때에는, 횡요소 (110)가 필요 없다.
섬유 (1002)는 또한 하나 이상의 직물의 일부로서 제1 층 (1004)상에 놓일 수 있다. 도 12에서는 중합체 섬유 (1002)가 날실을 형성하고 횡섬유 (1208)가 씨실을 형성하는 직물 (1206)이 개략적으로 예시된다. 횡섬유 (1208)은 임의의 적합한 유기 또는 무기 섬유 물질로 제조될 수 있으며, 예를 들어 등방성 및/또는 복굴절성 중합체 섬유와 같은 중합체 섬유 또는 면, 실크 및 삼과 같은 천연 섬유일 수 있다. 다른 전형적인 실시양태에서, 횡섬유 (1208)은 상기한 바와 같은 유리 섬유, 예를 들어 E-유리 또는 S-유리 섬유, 유리-세라믹 섬유 또는 세라믹 섬유일 수 있다. 횡섬유 (1208)의 굴절률은 횡섬유가 편광판 내에 통과하는 광선에 대해 감소된 광학 효과를 미치도록 실질적으로 주변 중합체 매트릭스의 굴절률과 매치될 수 있다. 또한, 모든 날실 섬유가 복굴절성 계면을 함유하는 중합체 섬유일 필요는 없다. 예를 들어, 날실 섬유 중 일부는 또한 등방성 섬유일 수 있으며, 횡섬유와 동일한 종류의 섬유로 형성될 수 있다. 일부 실시양태에서, 날실 섬유 (1002)는 한 특정 파장 대역의 광선의 한 편광상태의 광선을 반사 또는 산란시키기에 유효한 복굴절성 계면이 있는 섬유일 수 있다. 횡섬유 (1208)은 또다른 특정 파장 대역의 광선의 한 편광상태의 광선을 반사 또는 산란시키기에 유효한 복굴절성 계면이 있는 섬유일 수 있다.
직물은 적합한 직조 공정을 사용하여 형성될 수 있다. 예를 들어, 직물은 예시한 바와 같은 평직물, 능직물, 주자 직물 또는 일부 다른 종류의 직물일 수 있다. 예를 들어 도 13A에서 부분 횡단면으로 개략적으로 예시한 바와 같이, 일부 전형적인 실시양태에서는, 복굴절성 섬유 (1002)가 직물 내에서 비교적 편평하다. 상기 도면이 복굴절성 섬유 (1002)가 실질적으로 x 방향에 평행하게 놓는 규정에 따랐음에 유념하기 바란다. 일부 전형적인 실시양태에서, 중합체 섬유, 예컨대 복합 섬유 또는 다층상 섬유는 꼬임 없이 직물 내에서 단일 배향을 유지한다.
다른 실시양태에서, 중합체 섬유 (1002)는 직물 내에서 편평할 필요가 없다. 도 13B에서는 이러한 직물 (1206)의 전형적인 일부 횡단면이 개략적으로 예시된다. 이러한 도면이 도 13A과 다름에 유념하는 것이 중요하다. 도 13A는 횡섬유 (1208)의 측면을 나타내는 반면에, 도 13B는 중합체 섬유 (1002)의 측면을 나타낸다. 좌표축은 상기 도면에서 사용된 규정에 따르며, 따라서 중합체 섬유 (1002)는 일반적으로 x 축에 평행한 방향으로 놓였다. 그러나, 중합체 섬유 (1002)가 직물 (1206) 내에서 기복이 있기 때문에, 모든 중합체 섬유 (1002)의 복굴절성 계면은 x 축에 정확히 평행한 것은 아니다. 따라서, 섬유 (1002)에 의해 반사 또는 산란된 광선은 x-z 평면에서 상이한 각도로 산란될 수 있다. 예시에서, 광선 (1302)는 x 축에 수직인 방향으로 섬유 (1002)상에 입사되며, 광선 (1302)가 "다운슬로프(downslope)" 또는 "업슬로프(upslope)"로 중합체 섬유 (1002)상에 입사됨에 따라, 광선 (1302)의 일부는 양의 x 방향 또는 음의 x 방향의 성분을 갖는 각 α로 반사된다. 따라서, 중합체 섬유 (1002)는 또한 x-z 평면에서 반사광을 확산시킬 수 있다. x-z 평면에서의 확산 반사의 정도는 직물 내의 중합체 섬유 (1002)의 모 양에 따라 다르며, 중합체 섬유 (1002)의 부분이 x 방향에 평행으로부터 더 벗어날수록 x-z 평면에서의 광선의 각도 분포가 커진다.
중합체 섬유 (1002)는 또한 부직물, 초핑된 섬유 또는 초핑된 섬유 매트로 제공될 수 있다.
편광판은 배치 공정 또는 연속 공정으로 형성될 수 있다. 연속 공정에서는, 바람직하게는 토우 또는 직물인 복굴절성 섬유 (1002)를 제1 중합체층 (1004)상에 놓은 후, 연속적으로 제2 중합체층 (1006)을 복굴절성 섬유 (1002)상으로 주조할 수 있다. 그 후, 제2 층 (1006)을 경화 또는 고정시킬 수 있다.
목적에 따라서는, 중합체 물질의 후속 층 (1008)에 따라 중합체 섬유 (1002)의 추가 층이 첨가할 수 있다. 예를 들어, 도 10C 및 10D는 제2 중합체층 (1006)상으로 중합체 섬유 (1002)의 세트를 첨가하고 제3 중합체층 (1008)을 적용하는 것을 나타낸다.
제1 중합체층 (1004)는 열가소성 중합체 또는 열경화형 중합체일 수 있다. 또한, 제2 및 후속 중합체층 (1006) 및 (1008)은 열가소성 또는 열경화형 중합체일 수 있다. 열가소성 중합체가 사전 중합체층 (1004)에 적용될 수 있으며, 가열 및 가압, 용매 코팅 및 건조, 또는 계내 중합을 비롯한 다양한 방법을 통해 섬유 (1002)내로 침투될 수 있다. 열경화형 중합체는 압력, 열, 화학 방사선 및/또는 시간 경과에 노출되어, 섬유 (1002) 및 사전 중합체층 (1004) 및 (1006)상에 코팅 및 경화될 수 있다.
편광판을 제작하기 위한 일 대안 접근법에서, 특정 바람직한 광학적, 물리적 또는 표면 특성을 갖는 중합체 필름 (1004)는 섬유 (1002)가 놓인 기재로서 사용될 수 있다. 열가소성 또는 열경화성 수지 또는 경화성 조성물이 제2 중합체 필름 (1006)으로 적용되어 섬유 (1002)의 층 또는 층들에 침투된 후, 제2 기재 (1008)이 적용되어 섬유 (1002) 및 수지 또는 경화성 조성물의 제2 중합체 필름 (1006) 주변에 샌드위치형 구조를 생성할 수 있다. 그 후, 경화성 수지는 경화되거나 강화되거나 반응하여, 적층체를 형성할 수 있다. 이러한 경우, 기재 (1004), (1008)은 열가소성, 열경화성 수지 또는 경화성 조성물과 동일한 물질로부터 제조될 수 있거나, 이는 상이한 물질로부터 제조될 수 있다. 광범위한 감압성 접착제 및 고온 용융 접착제가 제2 층 (1006)을 위한 열가소성 또는 열경화성 수지 또는 경화성 조성물 대신에 사용될 수 있다. 일부 실시양태에서, 제1 및 제2 기재 (1004), (1008)은 섬유 (1002)를 함유하는 열가소성 또는 열경화성 수지 또는 경화성 조성물 (1006)에 즉시 부착될 수 있다. 다른 실시양태에서, 제1 및 제2 기재 (1004), (1008)은 제거가능할 수 있다.
복굴절성 섬유의 층이 하나를 초과하는 편광판을 제작하기 위한 또다른 전형적인 접근법에서는, 섬유의 두 층 이상이 제1 중합체층의 상부에 놓일 수 있으며, 이때 단일 단계로 중합체 물질의 제2 층이 중합체 매트릭스로서 섬유상으로 주조된다.
복합 섬유가 있는 편광판을 제작하는 또다른 전형적인 방법에서는, 예를 들어 용매 중에 용해시킴으로써 복합 섬유의 충전제를 제거한 후에 복합 섬유를 중합체 매트릭스 내에 내포시킬 수 있다. 이때 중합체 매트릭스는 복합 섬유의 산란 섬유들 사이에서 충전제로서 사용될 수 있다. 이러한 방법은 복합 섬유가 토우 또는 직물로 제공되는 경우에 특히 유용할 것이다.
복합 섬유를 제조하기 위한 적합한 방법에는 복굴절성 산란 섬유 및 가용성 충전제와 함께 복합 섬유를 압출하는 것이 포함된다. 적합한 수용성 충전제에는 폴리비닐피롤리디논, 셀룰로오스 아세테이트 및 폴리비닐 알코올이 포함된다. 적합한 폴리비닐 알코올에는 약 70 내지 95% 정도로 가수분해되어 폴리비닐아세테이트로부터 제조된 것이 포함된다.
산란 섬유는 한 대형으로 압출되고, 압출된 대형을 가열하고, 산란 섬유가 연신되어 굴절률의 목적하는 값을 생성하는 연신 비율이 수득되는 적합한 장력을 적용함으로써 배향될 수 있다.
복합 섬유를 형성하는 산란 섬유의 배향된 대형은 실로 형성될 수 있다. 실에는 임의로 또한 다른 종류의 섬유가 혼입될 수 있다. 실은 바람직하게는 섬유의 토우를 형성함으로서 또는 섬유를 직조하여 패브릭을 형성함으로써 단일 방향으로 배향된다. 가용성 중합체 충전제는 압출 후의 임의의 제조 단계에서 실을 세척함으로써 제거될 수 있다.
세척된 산란 섬유에는 유체, 바람직하게는 경화성 수지 유체가 침투할 수 있다. 수지를 경화시키기 위해 임의의 적합한 기법이 사용될 수 있으며, 예를 들어 수지는 열 및/또는 방사선 경화되어 섬유를 함유하는 매트릭스를 형성할 수 있다. 일부 전형적인 실시양태에서, 수지는 매트릭스가 편평한 표면을 갖도록 경화된다. 다른 전형적인 실시양태에서, 수지는 하나 이상의 표면상에서 목적하는 구조를 갖 도록 경화될 수 있다. 예를 들어, 수지의 표면이 미세복제 도구의 미세구조화된 표면과 접촉하면서 수지가 경화될 수 있다. 적합한 미세구조화된 표면의 예에는 가공 금속 표면, 전기주조 레플리카 또는 성형 중합체 필름이 포함된다. 매트릭스 표면상에 형성된 적합한 미세구조체의 예에는 선형 프리즘 구조체, 비선형 프리즘 구조체, 프레스넬 표면, 미세렌즈 등이 포함된다.
본 발명의 일부 실시양태는, 예를 들어 액정 디스플레이 (LCD) 시스템 및 다른 편광 디스플레이 시스템에서 사용될 수 있다. 예를 들어, 상기한 종류의 섬유 기재 반사 편광판은 LCD 시스템의 백라이트(backlight)에서 LCD 패널로 전파하는 광선을 편광시키는데 사용될 수 있다. 이러한 시스템에는 LCD 패널을 사용하여 사용자에게 정보를 나타내는 LCD-TV 및 LCD 모니터, 휴대폰 디스플레이 및 다른 전자 기기, 예컨대 디지탈 스틸 및 비디오 카메라가 포함되지만, 이에 제한되지 않는다.
본 발명은 상기한 구체적인 실시예로 제한하려는 의도가 아니라, 첨부된 청구의 범위에서 완전히 나타낸 바와 같은 본 발명의 모든 국면을 포함하는 것으로 이해되어야 한다. 본 발명이 적용될 수 있는 다양한 변형, 동등한 방법 및 또한 다수의 구성은 본원의 참조시 본 발명이 속하는 업계의 숙련자에게 쉽게 명백해질 것이다. 청구의 범위는 이러한 변형 및 고안을 포함하려는 의도이다.

Claims (22)

  1. 매트릭스 중합체 물질을 포함하는 중합체 매트릭스, 및
    복굴절성인 제1 중합체 섬유 물질을 포함하는 복수의 중합체 섬유를 포함하며 중합체 매트릭스 내에 배치된 하나 이상의 섬유 직물
    을 포함하는 광학체.
  2. 제1항에 있어서, 중합체 섬유가 1종 이상의 제2 중합체 섬유 물질를 더 포함하는 것인 광학체.
  3. 제2항에 있어서, 제1 및 제2 중합체 섬유 물질 중 하나가 매트릭스 중합체 물질과 동일한 것인 광학체.
  4. 제1항에 있어서, 중합체 섬유가 제2 섬유 중합체 물질의 충전제 내에 배치된 제1 중합체 섬유 물질로 형성된 산란 중합체 섬유를 포함하는 중합체 복합 섬유인 광학체.
  5. 제4항에 있어서, 산란 중합체 섬유가 연속 상 중의 분산 상을 포함하는 분산 상 산란 중합체 섬유를 포함하는 것인 광학체.
  6. 제4항에 있어서, 복합 섬유의 횡단면이 실질적으로 비원형이며 비원형 횡단면의 배향이 직물에 따라 실질적으로 일정한 것인 광학체.
  7. 제1항에 있어서, 중합체 섬유가 중합체 섬유 실을 포함하는 것인 광학체.
  8. 제1항에 있어서, 중합체 섬유가 제1 중합체 섬유 물질 및 제2 중합체 섬유 물질의 교대 층을 포함하는 것인 광학체.
  9. 제8항에 있어서, 제1 및 제2 중합체 물질의 층이 실질적으로 평판형인 광학체.
  10. 제8항에 있어서, 교대 제1 및 제2 중합체 물질의 층이 동심원형으로 배열된 것인 광학체.
  11. 제1항에 있어서, 중합체 섬유가 제1 중합체 물질의 분산 상 및 제2 중합체 물질의 연속 상을 포함하는 분산 상 섬유를 포함하는 것인 광학체.
  12. 제1항에 있어서, 섬유 직물이 날실 섬유 및 씨실 섬유를 포함하며, 날실 및 씨실 섬유 중 적어도 하나는 복수의 중합체 섬유를 포함하는 것인 광학체.
  13. 제12항에 있어서, 날실 섬유 및 씨실 섬유 중 적어도 하나가 광학적으로 등방성인 중합체 섬유를 포함하는 것인 광학체.
  14. 제12항에 있어서, 날실 섬유 및 씨실 섬유 중 적어도 하나가 광학적으로 등방성인 천연 섬유를 포함하는 것인 광학체.
  15. 제12항에 있어서, 날실 섬유 및 씨실 섬유 중 적어도 하나가 무기 섬유를 포함하며, 무기 섬유는 유리, 세라믹 및 유리-세라믹 중 적어도 하나를 포함하는 것인 광학체.
  16. 제12항에 있어서, 날실 섬유 및 씨실 섬유 중 적어도 하나가 중합체 매트릭스의 굴절률과 실질적으로 유사한 굴절률을 갖는 광학적으로 등방성인 중합체 섬유를 포함하는 것인 광학체.
  17. 제12항에 있어서, 날실 섬유 및 씨실 섬유 중 적어도 하나가 중합체 매트릭스의 굴절률과 실질적으로 상이한 굴절률을 갖는 광학적으로 등방성인 중합체 섬유를 포함하는 것인 광학체.
  18. 제1항에 있어서, 섬유 직물의 중합체 섬유가 실질적으로 직선형인 광학체.
  19. 제1항에 있어서, 중합체 매트릭스가 실질적으로 편평한 및 평행한 표면을 갖는 복수의 중합체 섬유 함유 층으로서 형성된 것인 광학체.
  20. 제1항에 있어서, 중합체 매트릭스가 하나 이상의 구조화된 표면을 갖는 층으로서 형성된 것인 광학체.
  21. 제20항에 있어서, 하나 이상의 구조화된 표면이 광학체를 통해 투과한 광에 광력을 제공하는 것인 광학체.
  22. 제20항에 있어서, 하나 이상의 구조화된 표면이 프리즘 구조의 대형을 포함하는 것인 광학체.
KR1020077022034A 2005-02-28 2006-02-23 중합체 섬유 직물을 함유하는 광학 소자 KR20070114195A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/068,590 2005-02-28
US11/068,590 US7406239B2 (en) 2005-02-28 2005-02-28 Optical elements containing a polymer fiber weave

Publications (1)

Publication Number Publication Date
KR20070114195A true KR20070114195A (ko) 2007-11-29

Family

ID=36579449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077022034A KR20070114195A (ko) 2005-02-28 2006-02-23 중합체 섬유 직물을 함유하는 광학 소자

Country Status (10)

Country Link
US (1) US7406239B2 (ko)
EP (1) EP1853946B1 (ko)
JP (1) JP4950079B2 (ko)
KR (1) KR20070114195A (ko)
CN (1) CN100573197C (ko)
AT (1) ATE513234T1 (ko)
MX (1) MX2007010417A (ko)
MY (1) MY142311A (ko)
TW (1) TW200642839A (ko)
WO (1) WO2006093775A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917434B1 (ko) * 2008-02-22 2009-09-14 순테크널로지 주식회사 반사형 편광 필름
KR20150139146A (ko) * 2014-06-02 2015-12-11 한국생산기술연구원 반사율이 개선된 반사편광필름 및 그를 채용한 액정디스플레이용 백라이트 유닛

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622188B2 (en) * 2004-03-30 2009-11-24 Teijin Fibers Limited Islands-in-sea type composite fiber and process for producing the same
JP4671811B2 (ja) * 2004-11-05 2011-04-20 日立オートモティブシステムズ株式会社 指認証装置
US7356231B2 (en) * 2005-02-28 2008-04-08 3M Innovative Properties Company Composite polymer fibers
US7356229B2 (en) * 2005-02-28 2008-04-08 3M Innovative Properties Company Reflective polarizers containing polymer fibers
US20060257678A1 (en) * 2005-05-10 2006-11-16 Benson Olester Jr Fiber reinforced optical films
US20060257679A1 (en) * 2005-05-10 2006-11-16 Benson Olester Jr Polymeric optical body containing inorganic fibers
US20070153384A1 (en) * 2005-12-30 2007-07-05 Ouderkirk Andrew J Reinforced reflective polarizer films
US20070153162A1 (en) * 2005-12-30 2007-07-05 Wright Robin E Reinforced reflective polarizer films
US7327923B2 (en) * 2006-03-31 2008-02-05 3M Innovative Properties Company Spiral multilayer fibers
US20070236938A1 (en) * 2006-03-31 2007-10-11 3M Innovative Properties Company Structured Composite Optical Films
US20070236939A1 (en) * 2006-03-31 2007-10-11 3M Innovative Properties Company Structured Composite Optical Films
US20080274293A1 (en) * 2006-03-31 2008-11-06 3M Innovative Properties Company Spiral Multilayer Fibers
US20070237938A1 (en) * 2006-03-31 2007-10-11 3M Innovative Properties Company Reinforced Optical Films
TW200739203A (en) * 2006-04-10 2007-10-16 Chi Lin Technology Co Ltd Diffuser plate
US7583440B2 (en) * 2006-06-05 2009-09-01 Skc Haas Display Films Co., Ltd. Diffusely-reflecting polarizer having nearly isotropic continuous phase
US20070281143A1 (en) * 2006-06-05 2007-12-06 Aylward Peter T Diffusely-reflecting element and method of making
US7599592B2 (en) * 2006-08-30 2009-10-06 3M Innovative Properties Company Polymer fiber polarizers with aligned fibers
US7773834B2 (en) 2006-08-30 2010-08-10 3M Innovative Properties Company Multilayer polarizing fibers and polarizers using same
US20080057277A1 (en) * 2006-08-30 2008-03-06 3M Innovative Properties Company Polymer fiber polarizers
US7991257B1 (en) 2007-05-16 2011-08-02 Fusion Optix, Inc. Method of manufacturing an optical composite
KR101137658B1 (ko) * 2007-06-19 2012-04-20 닛토덴코 가부시키가이샤 편광 섬유, 편광자, 편광판, 적층 광학 필름 및 화상 표시 장치
JP5314013B2 (ja) * 2007-07-03 2013-10-16 スリーエム イノベイティブ プロパティズ カンパニー 透過性光学フィルム(opticalfilm)を有するバックライトアセンブリ
US7998587B2 (en) * 2007-10-31 2011-08-16 3M Innovative Properties Company Method of modifying light with silicone (meth)acrylate copolymers
KR20100126463A (ko) * 2008-03-05 2010-12-01 쓰리엠 이노베이티브 프로퍼티즈 컴파니 색상 변이 다층 중합체 섬유 및 색상 변이 다층 중합체 섬유를 포함하는 보안 물품
JP2011522290A (ja) * 2008-05-30 2011-07-28 スリーエム イノベイティブ プロパティズ カンパニー 懸架された光学フィルム
US8415691B2 (en) * 2008-08-18 2013-04-09 Tsmc Solid State Lighting Ltd. Omnidirectional reflector
KR100975351B1 (ko) * 2009-01-30 2010-08-11 웅진케미칼 주식회사 휘도강화필름
JP4930540B2 (ja) * 2009-04-13 2012-05-16 ソニー株式会社 面発光装置および液晶表示装置
WO2010137450A1 (ja) * 2009-05-27 2010-12-02 ダイセル化学工業株式会社 偏光素子及びそれを用いた表示装置
KR101666570B1 (ko) * 2009-06-15 2016-10-17 삼성디스플레이 주식회사 액정표시장치 및 이의 제조 방법
JP5520622B2 (ja) * 2010-01-29 2014-06-11 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法およびフォトニックバンドギャップファイバ
KR101167776B1 (ko) * 2010-03-30 2012-07-24 웅진케미칼 주식회사 휘도강화필름
WO2011122794A2 (ko) * 2010-04-02 2011-10-06 웅진케미칼 주식회사 휘도강화필름
US8795561B2 (en) 2010-09-29 2014-08-05 Milliken & Company Process of forming a nanofiber non-woven containing particles
US8889572B2 (en) 2010-09-29 2014-11-18 Milliken & Company Gradient nanofiber non-woven
US8559779B2 (en) * 2010-10-08 2013-10-15 The Boeing Company Transparent composites with organic fiber
SG195168A1 (en) 2011-05-31 2013-12-30 3M Innovative Properties Co Methods for making differentially pattern cured microstructured articles
WO2012166448A1 (en) 2011-05-31 2012-12-06 3M Innovative Properties Company Retroreflective articles having composite cube-corners and methods of making
EP2714357B1 (en) 2011-05-31 2016-05-04 3M Innovative Properties Company Method for making microstructured tools having discontinuous topographies, and articles produced therefrom
US20140144171A1 (en) * 2011-06-30 2014-05-29 Bha Altair, Llc Method of Wetting Evaporative Cooler Media Through a Fabric Distribution Layer
CN102650715B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导te-偏振分离器
KR101446624B1 (ko) * 2013-07-10 2014-10-06 한국생산기술연구원 섬유배향 복합재의 제조방법 및 그로부터 제조된 섬유배향 복합재
US20160154160A1 (en) * 2013-07-10 2016-06-02 Korea Institute Of Industrial Technology Method for manufacturing oriented-fiber composite material, oriented-fiber composite material manufactured thereby, reflective polarizing light film comprising oriented-fiber composite material and method for manufacturing reflective polarizing light film
CN103994366B (zh) * 2014-05-04 2016-06-15 北京京东方视讯科技有限公司 一种直下式背光模组和显示装置
JP6771951B2 (ja) * 2016-05-26 2020-10-21 トヨタ紡織株式会社 織物、意匠織物の製造方法及び内装材の製造方法
JP6634049B2 (ja) * 2017-06-29 2020-01-22 信越石英株式会社 ガラスクロス光反射体
FR3081388A1 (fr) * 2018-05-25 2019-11-29 Compagnie Plastic Omnium Joint lumineux renforce pour piece de carrosserie
US11215752B1 (en) * 2019-12-13 2022-01-04 Apple Inc. Electronic devices with image transport layers
TWI744108B (zh) * 2020-11-24 2021-10-21 勤倫有限公司 由膜材切割製成並細化以提昇物性之絲及其製法
WO2024084380A1 (en) * 2022-10-18 2024-04-25 Brioni Matteo Method for making an ornamental panel, and panel obtained with said method
KR102605718B1 (ko) * 2023-07-04 2023-11-23 김현태 방사능 보호복용 원단 및 이의 제조방법

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403731A (en) 1943-04-01 1946-07-09 Eastman Kodak Co Beam splitter
US2604817A (en) 1948-10-14 1952-07-29 Du Pont Light polarizing composition
US2687673A (en) 1949-04-04 1954-08-31 Boone Philip Textile material having oriented fibers
US4019844A (en) 1973-02-26 1977-04-26 Toray Industries, Inc. Apparatus for producing multiple layers conjugate fibers
JPS5641234A (en) 1979-09-10 1981-04-17 Asahi Chem Ind Co Ltd Novel molding dope composition
US4477522A (en) 1983-04-11 1984-10-16 Sherwood Research Corporation Reinforcing element and method of making the same
US4560411A (en) 1983-05-20 1985-12-24 Bm Chemie Kunststoff Gmbh Aggregate for concrete or mortar
US5059482A (en) 1988-09-13 1991-10-22 Kuraray Company, Ltd. Composite fiber and process for producing the same
US4963151A (en) 1988-12-28 1990-10-16 Trustees Of The University Of Pennsylvania Reinforced bone cement, method of production thereof and reinforcing fiber bundles therefor
US5047288A (en) 1989-03-31 1991-09-10 Kuraray Company Limited Nonwoven fabric comprising single filaments and filament bundles that yield improved impact resistant molded articles
US5486949A (en) 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
US5217794A (en) 1991-01-22 1993-06-08 The Dow Chemical Company Lamellar polymeric body
US5251065A (en) 1991-07-31 1993-10-05 Kuraray Co., Ltd. Polarizing screen and projector using the same
JP3013551B2 (ja) 1991-10-23 2000-02-28 住友化学工業株式会社 反射型スクリーン
US5269995A (en) 1992-10-02 1993-12-14 The Dow Chemical Company Coextrusion of multilayer articles using protective boundary layers and apparatus therefor
EP0725872B1 (en) 1993-05-03 2001-10-17 Minnesota Mining And Manufacturing Company Reinforcing elements for castable compositions
US5389324A (en) 1993-06-07 1995-02-14 The Dow Chemical Company Layer thickness gradient control in multilayer polymeric bodies
KR0142032B1 (ko) 1993-09-24 1998-07-01 마쓰오 히로또 편광 스크린
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US5629055A (en) 1994-02-14 1997-05-13 Pulp And Paper Research Institute Of Canada Solidified liquid crystals of cellulose with optically variable properties
JPH08226011A (ja) 1995-02-16 1996-09-03 Tanaka Kikinzoku Kogyo Kk 光学機能異形断面繊維製造用紡糸口金
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
US5877829A (en) 1995-11-14 1999-03-02 Sharp Kabushiki Kaisha Liquid crystal display apparatus having adjustable viewing angle characteristics
US5825543A (en) 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US5783120A (en) 1996-02-29 1998-07-21 Minnesota Mining And Manufacturing Company Method for making an optical film
US5867316A (en) 1996-02-29 1999-02-02 Minnesota Mining And Manufacturing Company Multilayer film having a continuous and disperse phase
US6590705B1 (en) 1996-02-29 2003-07-08 3M Innovative Properties Company Optical film with co-continuous phases
JP3851380B2 (ja) 1996-05-16 2006-11-29 グンゼ株式会社 光拡散性シートとその製造方法
EP1007998A1 (en) 1997-02-11 2000-06-14 Massachusetts Institute Of Technology Polymeric photonic band gap materials
JP3443124B2 (ja) 1997-03-29 2003-09-02 ドイッチェ テレコム アーゲー ファイバを集積したフォトニック結晶およびそのシステム
US6430348B1 (en) 1997-04-11 2002-08-06 Teijin Limited Fiber having optical interference function and use thereof
EP0877103A3 (en) 1997-04-28 1999-02-10 Nissan Motor Company, Limited Fiber structure, cloths using same, and textile goods
US6243521B1 (en) 1997-05-02 2001-06-05 Nissan Motor Co., Ltd. Fibers with optical function
US7226966B2 (en) 2001-08-03 2007-06-05 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
JPH11124734A (ja) * 1997-10-17 1999-05-11 Teijin Ltd 繊維構造体
KR100324459B1 (ko) 1997-10-02 2002-02-27 하나와 요시카즈 섬유 구조물 및 그를 사용한 텍스타일
US20010012149A1 (en) 1997-10-30 2001-08-09 Shawn-Yu Lin Optical elements comprising photonic crystals and applications thereof
JPH11241223A (ja) 1997-12-25 1999-09-07 Nissan Motor Co Ltd 発色性複合短繊維及びそれを結合した発色性構造体
US6531230B1 (en) 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
EP1086393B1 (en) 1998-06-09 2004-06-02 Crystal Fibre A/S A photonic band gap fibre
WO2000006506A1 (en) * 1998-07-30 2000-02-10 Corning Incorporated Method of fabricating photonic structures
JP2000052399A (ja) 1998-08-06 2000-02-22 Mitsubishi Rayon Co Ltd 光制御素子の製造方法
US6139626A (en) 1998-09-04 2000-10-31 Nec Research Institute, Inc. Three-dimensionally patterned materials and methods for manufacturing same using nanocrystals
US6630231B2 (en) 1999-02-05 2003-10-07 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
JP4115030B2 (ja) 1999-02-23 2008-07-09 ダイセル化学工業株式会社 透過型光散乱シート及びその製造方法
JP2002541508A (ja) * 1999-03-30 2002-12-03 クリスタル フィブレ アクティーゼルスカブ 偏波維持光ファイバ
US6301421B1 (en) 1999-05-27 2001-10-09 Trw Inc. Photonic crystal fiber lasers and amplifiers for high power
US6498869B1 (en) 1999-06-14 2002-12-24 Xiaotian Steve Yao Devices for depolarizing polarized light
JP2001031774A (ja) 1999-07-21 2001-02-06 Daicel Chem Ind Ltd 透過型光散乱シート及びその製造方法
US6239907B1 (en) 1999-09-03 2001-05-29 3M Innovative Properties Company Rear projection screen using birefringent optical film for asymmetric light scattering
US6433919B1 (en) 2000-05-19 2002-08-13 Wisconsin Alumni Research Foundation Method and apparatus for wavelength conversion and switching
JP3365760B2 (ja) 2000-06-07 2003-01-14 帝人株式会社 発色構造体
US6674949B2 (en) 2000-08-15 2004-01-06 Corning Incorporated Active photonic crystal waveguide device and method
US6542682B2 (en) 2000-08-15 2003-04-01 Corning Incorporated Active photonic crystal waveguide device
US7314751B2 (en) 2000-10-30 2008-01-01 The Charles Stark Draper Laboratory, Inc. Fluorescence detection system including a photonic band gap structure
WO2002039159A1 (en) 2000-11-10 2002-05-16 Crystal Fibre A/S Optical fibres with special bending and dispersion properties
US6529676B2 (en) 2000-12-08 2003-03-04 Lucent Technologies Inc. Waveguide incorporating tunable scattering material
JP2002182013A (ja) 2000-12-12 2002-06-26 Toray Ind Inc 積層光拡散性フィルム
US20020130988A1 (en) 2001-01-18 2002-09-19 Crawford Gregory P. Electrically controllable, variable reflecting element
DE60235781D1 (de) 2001-02-09 2010-05-12 Panasonic Corp Optische Vorrichtung
US20020154403A1 (en) 2001-04-23 2002-10-24 Trotter, Donald M. Photonic crystal optical isolator
US20020181911A1 (en) 2001-04-30 2002-12-05 Wadsworth William John Optical material and a method for its production
GB2397135B (en) 2001-06-08 2005-08-03 Crystal Fibre As Photonic bandgap optical fibre with higher index elongate cladding features
WO2002101422A2 (en) 2001-06-13 2002-12-19 Samsung Electronics Co., Ltd. Method for fabricating optical fiber preform using extrusion die
US7272285B2 (en) 2001-07-16 2007-09-18 Massachusetts Institute Of Technology Fiber waveguides and methods of making the same
WO2003009026A1 (en) 2001-07-20 2003-01-30 The University Of Sydney Constructing preforms from capillaries and canes
JP2003119623A (ja) 2001-08-06 2003-04-23 Nissan Motor Co Ltd 光反射機能構造体
GB2384319A (en) 2002-01-19 2003-07-23 Marconi Optical Components Ltd Polarisation converter for photonic crystal waveguide
EP1477529A4 (en) 2002-01-25 2006-05-31 Sumitomo Bakelite Co TRANSPARENT COMPOSITE COMPOSITION
CA2472965A1 (en) 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd Transparent composite composition
US6876796B2 (en) 2002-01-30 2005-04-05 Photon-X, Llc Nanocomposite microresonators
KR100451689B1 (ko) 2002-04-30 2004-10-11 삼성전자주식회사 포토닉 크리스탈을 이용한 반사형 디스플레이 장치
JP2004125919A (ja) * 2002-09-30 2004-04-22 Mitsui Chemicals Inc 偏光分離素子
JP2004151271A (ja) * 2002-10-30 2004-05-27 Nissan Motor Co Ltd 光反射機能を有する構造体
EP1420276A1 (en) 2002-11-15 2004-05-19 Alcatel Polarization-preserving photonic crystal fibers
WO2004046777A1 (en) 2002-11-21 2004-06-03 Cactus Fiber Pty Ltd Microstructured polymer signal guiding element
KR20050099996A (ko) * 2003-02-10 2005-10-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 발광 시스템 및 편광 수단 제조 방법
US6873777B2 (en) 2003-03-10 2005-03-29 Japan Aviation Electronics Industry Limited Two-dimensional photonic crystal device
US7082147B2 (en) 2003-03-24 2006-07-25 Eastman Kodak Company Organic fiber laser system and method
JP2005076127A (ja) * 2003-08-29 2005-03-24 Nissan Motor Co Ltd 可変反射機能構造体
JP2005133028A (ja) 2003-10-31 2005-05-26 Sumitomo Bakelite Co Ltd プラスチック複合透明シート及びそれを使用した表示素子
JP2005153273A (ja) 2003-11-25 2005-06-16 Nitto Denko Corp 樹脂シート、液晶セル基板、液晶表示装置、エレクトロルミネッセンス表示装置用基板、エレクトロルミネッセンス表示装置および太陽電池用基板
US20050201715A1 (en) * 2004-03-29 2005-09-15 Panorama Flat Ltd. System, method, and computer program product for magneto-optic device display
US7224854B2 (en) * 2004-02-12 2007-05-29 Panorama Labs Pty. Ltd. System, method, and computer program product for structured waveguide including polarizer region
US7050686B2 (en) * 2004-08-05 2006-05-23 Nufern Fiber optic article with inner region
JP2006099076A (ja) * 2004-09-01 2006-04-13 Nitto Denko Corp 偏光子、偏光板、光学フィルムおよび画像表示装置
US7362943B2 (en) 2005-02-28 2008-04-22 3M Innovative Properties Company Polymeric photonic crystals with co-continuous phases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917434B1 (ko) * 2008-02-22 2009-09-14 순테크널로지 주식회사 반사형 편광 필름
KR20150139146A (ko) * 2014-06-02 2015-12-11 한국생산기술연구원 반사율이 개선된 반사편광필름 및 그를 채용한 액정디스플레이용 백라이트 유닛

Also Published As

Publication number Publication date
EP1853946A2 (en) 2007-11-14
JP4950079B2 (ja) 2012-06-13
CN100573197C (zh) 2009-12-23
US20060194487A1 (en) 2006-08-31
US7406239B2 (en) 2008-07-29
TW200642839A (en) 2006-12-16
EP1853946B1 (en) 2011-06-15
CN101151554A (zh) 2008-03-26
JP2008533514A (ja) 2008-08-21
MY142311A (en) 2010-11-15
MX2007010417A (es) 2007-10-17
ATE513234T1 (de) 2011-07-15
WO2006093775A3 (en) 2007-01-11
WO2006093775A2 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
JP4805959B2 (ja) ポリマー繊維を含む反射偏光子
JP4950079B2 (ja) ポリマー繊維織物を含む光学素子
KR101279192B1 (ko) 복합 중합체 섬유
JP4856101B2 (ja) ポリマーフォトニック結晶繊維
US20080055724A1 (en) Optical devices containing birefringent polymer fibers

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application