KR20070114033A - 탐침위치 제어장치 및 방법 - Google Patents

탐침위치 제어장치 및 방법 Download PDF

Info

Publication number
KR20070114033A
KR20070114033A KR1020070050792A KR20070050792A KR20070114033A KR 20070114033 A KR20070114033 A KR 20070114033A KR 1020070050792 A KR1020070050792 A KR 1020070050792A KR 20070050792 A KR20070050792 A KR 20070050792A KR 20070114033 A KR20070114033 A KR 20070114033A
Authority
KR
South Korea
Prior art keywords
probe
sample
sample surface
speed
frequency
Prior art date
Application number
KR1020070050792A
Other languages
English (en)
Other versions
KR100909700B1 (ko
Inventor
마사유키 아베
마사히로 오타
요시아키 스기모토
겐이치 모리타
노리아키 오야부
세조 모리타
쿠스탄스 오스카
Original Assignee
가부시키가이샤 시마쓰세사쿠쇼
고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 시마쓰세사쿠쇼, 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 filed Critical 가부시키가이샤 시마쓰세사쿠쇼
Publication of KR20070114033A publication Critical patent/KR20070114033A/ko
Application granted granted Critical
Publication of KR100909700B1 publication Critical patent/KR100909700B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • G01Q30/06Display or data processing devices for error compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/02Probe holders
    • G01Q70/04Probe holders with compensation for temperature or vibration induced errors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

본 발명은, 열 드리프트 등의 영향을 배제하고, 관찰 또는 조작 동안에 시료와 프로브의 상대위치가 열 등에 의하여 변화하는 것을 보정하는 기술을 이용함으로써, 주사형 프로브 현미경(SPM)이나 원자 매니퓰레이터(조작) 장치에 있어서, 보다 정확한 관찰 또는 조작을 가능하게 하는 기술을 제공한다.
시료표면의 원자레벨의 이미지를 얻기 위하여, 또는, 시료표면의 원자에 대하여 소정의 조작을 행하기 위하여, 본 발명은, 시료표면의 원자와 탐침의 선단 사이의 상호작용을 측정하면서, 탐침과 시료의 상대위치를 제어하는 탐침위치 제어방법에 적용될 수 있다. 본 방법에 있어서, 시료표면에 평행한 두 방향으로 각각 주파수 f1, f2로 탐침과 시료를 상대적으로 진동시키면서, 탐침과 시료를 상대적으로 이동시킨다(스텝 S1a). 한편, 시료표면에 수직인 방향의 상호작용 측정치에 상기 주파수성분 f1, f2가 나타나지 않는 점(특징점)을 검출한다(스텝 S1b). 그 후, 그 측정된 측정치가 유지되도록 탐침과 시료의 상대이동이 제어됨(특징점을 추적함, S1c)으로써, 상기 상대이동의 속도를 검출한다(스텝 S1d). 이어서, 검출된 속도를 이용하여, 상기 상대위치의 제어를 보정한다(스텝 S2).
탐침, 상대위치, 속도, 특징점, 주파수, 현미경, 원자조작, 드리프트

Description

탐침위치 제어장치 및 방법{Probe position control system and method}
도 1(a) 및 도 1(b)는, 본 발명의 일실시예인 주사형 프로브 현미경의 개략 블럭 구성도이다.
도 2(a) 및 도 2(b)는, 상기 실시예의 주사형 프로브 현미경에 있어서 올바른 원자 이미지를 얻기 위한 개략의 절차를 나타낸 플로차트이다.
도 3(a) 내지 도 3(c)는, 시료의 특징점 검출을 위한 탐침의 X, Y방향 발진과, 그에 대응하는 Z방향 진동의 관계를 나타내는 설명도이다.
도 4(a) 및 도 4(b)는, 주파수 검출방식을 이용한 비접촉 원자간 힘 현미경의 공진주파수와 진동진폭의 관계를 설명하기 위한 설명도이다.
도 5는, 본 발명의 일실시예인 원자위치 고정장치의 구성예를 나타내는 블럭도이다.
도 6은, 수평위치 제어부의 열 드리프트 속도를 산출하는 부분의 구성예를 나타내는 블럭도이다.
도 7은, 수평위치 제어부의 열 드리프트 속도를 산출하는 부분의 다른 구성예를 나타내는 블럭도이다.
도 8은, 고정위치 결정부의 기능을 설명하기 위한 설명도이다.
도 9(a) 및 도 9(b)는, 위치 미세조정부의 기능을 설명하기 위한 설명도이 다.
도 10(a) 내지 도 10(d)는, 고정위치의 예를 설명하기 위한 설명도이다.
도 11(a) 내지 도 11(d)는, 라인 프로파일의 예를 설명하기 위한 설명도이다.
도 12(a) 및 도 12(b)는, 위치고정 제어의 전후에 있어서의 Si(111) 7×7 표면의 이미지를 나타내고, 도 12(c)는, 속도제어 보정을 행하지 않는 경우에 얻어진 시료의 이미지를 나타내며, 도 12(d)는, 속도제어 보정을 행하였을 경우에 얻어진 촬영 이미지를 나타낸다.
도 13(a) 및 도 13(b)는, Si(111) 7×7 표면에서의 위치고정 보정의 예를 설명하기 위한 설명도이다.
도 14(a) 및 도 14(b)는, 역학적 분광측정(거리의존성 측정)의 개념도이다.
도 15(a) 내지 도 15(d')는, 역학적 분광측정(거리의존성 측정)의 일례를 설명하기 위한 설명도이다.
도 16은, 역학적 분광측정(거리의존성 측정)의 일례를 나타내는 플로챠트이다.
도 17은, 수평위치 제어의 일례를 나타내는 플로챠트이다.
도 18은, 수평위치 제어의 다른 일례를 나타내는 플로챠트이다.
도 19는, 역학적 분광측정(거리의존성 측정)의 다른 일례를 나타내는 플로챠트이다.
도 20(a) 내지 도 20(d')는, 역학적 분광측정(전압의존성 측정)의 일례를 설 명하기 위한 설명도이다.
도 21은, 역학적 분광측정(전압의존성 측정)의 일례를 나타내는 플로챠트이다.
도 22는, 역학적 분광측정(전압의존성 측정)의 다른 일례를 나타내는 플로챠트이다.
도 23(a) 및 도 23(b)는, 원자 조작방법의 개념도이다.
도 24(a) 내지 도 24(e)는, 본 발명의 응용례인 원자 조작방법(수직조작)의 일례를 나타내는 설명도이다.
도 25(a) 내지 도 25(e)는, 본 발명의 응용례인 원자 조작방법(수직조작)의 다른 일례를 나타내는 설명도이다.
도 26은, 본 발명의 응용례인 원자 조작방법의 플로챠트이다.
도 27(a) 내지 도 27(e)는, 본 발명의 응용례인 원자 조작방법(수평조작)의 일례를 나타내는 설명도이다.
도 28(a) 내지 도 28(e)는, 본 발명의 응용례인 원자 조작방법(수평조작)의 다른 일례를 나타내는 설명도이다.
도 29(a) 내지 도 29(e)는, 본 발명의 응용례인 원자 조작방법(수평조작)의 다른 일례를 나타내는 설명도이다.
도 30(a) 내지 도 30(e)는, 본 발명의 응용례인 원자 조작방법(수평조작)의 다른 일례를 나타내는 설명도이다.
도 31은, 본 발명의 응용례인 원자위치 고정장치의 다른 구성례를 나타내는 블럭도이다.
도 32는, 본 발명의 응용례인 원자위치 고정장치의 다른 구성례를 나타내는 블럭도이다.
[부호의 설명]
1 : 원자위치 고정장치
10 : 탐침(probe)
11 : 캔틸레버
12 : 발진부
13 : 변위검출부
14 : 발진 제어부
15 : 주파수검출부
16 : 수직위치 제어부
17, 17' : 수평위치 제어부
18 : 기울기 보정부
19 : 수직위치 주사부(scanner)
20 : 수평위치 주사부
21 : 시료지지부
31 : 발진회로
31a : 제1 발진회로
31b : 제2 발진회로
32 : 동기검파부(Synchronous Detector)
32a : 제1 동기검파부
32b : 제2 동기검파부
33a : 제1 수평위치 조정부
33b : 제1 수평위치 조정부
34a : 제1 가산부
34b : 제2 가산부
50, 50a, 50b : 원자
<기술분야>
본 발명은, 주사형 프로브 현미경(scanning probe microscope; SPM)이나 원자(原子) 매니퓰레이터(manipulator; 조작) 장치에 있어서의 탐침위치 제어방법 및 그 장치에 관한 것으로서, 특히, 그 관찰 또는 조작 동안에 시료와 프로브(탐침)의 상대위치가 열이나 온도 등에 의하여 변화하는 것을 보정하여, 시료의 보다 정확한 관찰 또는 조작을 가능하게 하는 위치 제어방법 및 장치에 관한 것이다.
<배경기술>
주사형 프로브 현미경(SPM)은, 시료의 표면에 원자레벨의 거리까지 가까이 한 탐침을 지지하는 캔틸레버(cantilever; 외팔보)를 기계적 공진주파수로 진동시켜서, 탐침과 시료표면 사이에 작용하는 상호작용을 검출한다. 시료와 탐침의 상대위치를 변화시키는 동안에 이 상호작용을 검출함으로써, 시료표면의 원자레벨의 이미지를 관찰하는 것이 가능하다. 원자 매니퓰레이션(조작) 장치도 마찬가지로 시료표면에 가까이 한 프로브를 이용한다. 탐침이 시료에 소정 거리에 달한 후, 시료표면의 원자에 대하여 소정의 조작을 행한다.
SPM 등에서 이용되는 시료와 탐침 사이의 상호작용으로서는, 터널(tunneling)전류, 원자간 상호작용력(interaction force between atoms)(화학적 결합력, 반데르발스힘, 공유결합력, 이온결합력, 금속결합력, 정전기력, 자기력, 교환(exchange)력 등), 커패시터, 근접장광(near-field lignt) 등, 다양한 것이 제안되어 있는데, 이들 상호작용을 이용하여 하나의 이미지를 얻는데 필요한 시간은, 일반적으로 수 분에서 십몇 분 정도이다.
그러나, 시료의 이미지를 측정 기록하는 이 시간 동안에 측정장치와 주위의 열 교환이 있으면, 시료가 팽창 또는 수축을 한다(즉, 열 드리프트). 상온환경의 경우, 설령 온도관리되어 있는 장소에서도, 완전히 측정장치 전체의 온도를 일정 레벨로 유지하는 것은 불가능하여, 완전히 열 드리프트를 없애는 것은 불가능하다. 또한, 시료 또는 탐침의 위치를 상대적으로 변화시킬 때에 이용되는 압전체의 크리프(creep)에 의하여, 시료 또는 탐침의 상대위치가 변화되는 경우도 있다. 측정 스케일이 원자레벨의 오더이기 때문에, 이들 열 드리프트나 크리프에 의한 측정위치의 변화는 무시할 수 없는 것이 된다. 예컨대, 본래, 도 12(d)와 같은 이미지가 얻 어져야 할 것이, 도 12(c)에 나타내는 바와 같이 얻어지는, 이미지의 왜곡이 발생한다. 이와 같은 열 드리프트 등의 영향은, 시료표면에 평행한 방향(XY평면) 뿐만이 아니라, 그 표면에 수직인 방향(Z방향)으로도 미친다.
구조를 미리 알고 있는 대칭성이 높은 고체시료 표면의 이미지를 측정하는 경우에는, 이미지 왜곡의 영향이 일견하여 명확하기 때문에 큰 문제는 되지 않는다. 하지만, 바이오시료 등과 같은 표면 형상의 대칭성이 낮은 시료의 표면을 측정하는 경우에는, 얻어진 이미지에 열 드리프트나 마이그레이션(migration) 등의 영향이 나타나 있다고 하더라도, 그 영향을 인식 또는 분리하는 것이 불가능하여, 올바른 표면형상의 측정이 실질적으로 불가능하였다. 또한, 원자 매니퓰레이션 장치에서는, 이미지의 왜곡이 이미지 내의 조작대상인 원자의 이동을 초래하여, 올바른 원자 조작을 할 수 없게 된다.
열 드리프트 등의 영향을 보상하여, 탐침과 시료의 위치결정을 정밀하게 행하는 기술로서, 원자 트래킹(atom-tracking) 기술이 있다(비특허문헌 1). 이는, 시료표면에 평행한 방향의 열 드리프트를 피드백으로 보정하는 것이다. 이 기술을 이용하여, 탐침의 주파수변화를 모니터링하면서, 시료에 대한 탐침의 3차원 초정밀 위치결정을 행하여, 탐침과 시료표면 원자의 상호작용이나 포텐셜의 측정을 행할 수 있음이 최근 연구에서 실증되었다(비특허문헌 2, 비특허문헌 3).
[특허문헌 1] 일본국 특허공개 2006-289542호
[비특허문헌 1] D. W. Pohl and R. Moeller, "Tracking tunneling microscopy", Review of Scientific Instruments, vol. 59(1988), p. 840
[비특허문헌 2] M. Abe et al., "Room-temperature reproducible spatial force spectroscopy using atom-tracking technique", Applied Physics Letters, vol. 87(2005), p. 173503
[비특허문헌 3] M. Abe, Y. Sugimoto, O, Custance and S. Morita, "Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy", Nanotechnology, vol. 16(2005), p. 3029
본 발명이 해결하고자 하는 과제는, 이러한 열 드리프트 등의 영향을 배제하는 기술을 제공하고, 그 관찰 또는 조작 동안에 열 등에 의하여 시료와 프로브의 상대위치가 변화하는 것을 보정하는 기술을 이용하여, 주사형 프로브 현미경(SPM)이나 원자 매니퓰레이터(조작) 장치에 있어서, 보다 정확한 관찰 또는 조작을 가능하게 하는 위치 제어방법 및 장치를 제공하는 것이다.
상기 과제를 해결하기 위하여 이루어진 본 발명은, 시료표면의 원자레벨의 이미지를 얻기 위하여, 또는, 시료표면의 원자에 대하여 소정의 조작을 행하기 위하여, 시료표면의 원자와 탐침의 선단 사이의 상호작용을 측정하면서, 탐침과 시료의 상대위치를 제어하는 탐침위치 제어장치에 있어서,
a) 시료표면에 수직인 방향의 상기 상호작용을 측정하는 측정수단과,
b) 각각 주파수 f1, f2로, 시료표면에 평행한 2방향으로, 탐침과 시료를 상대적으로 진동시키는 발진수단과,
c) 탐침과 시료를 상대적으로 이동시키면서 상기 상호작용을 측정하여, 상호작용 측정치에 상기 주파수성분 f1, f2가 나타나지 않는 점을 검출함과 함께, 상기 검출된 측정치가 유지되도록 탐침과 시료를 상대적으로 이동시키는 추적수단과,
d) 추적수단에 의한 상기 상대이동량에 기하여, 상기 상대이동의 속도를 검출하는 속도검출수단과,
e) 검출된 속도를 이용하여, 상기 상대위치의 제어를 보정하는 보정수단을 구비하는 것을 특징으로 하는 것이다.
상기 2방향의 주파수 f1, f2는, 서로 다르게 하여도 좋고, 동일하게 하여도 좋다. 2방향을 직교시키고, 주파수 f1, f2를 동일하게 하고, 그들의 위상을 90° 다르게 되도록 함으로써, 탐침은 시료에 대하여 원운동을 하게 된다.
속도검출수단은, 시료표면에 평행한 방향의 속도만을 검출하여도 좋고, 그에 더하여 시료표면에 수직인 방향의 속도까지도 검출하도록 하여도 좋다. 여기서, 시료표면에 수직인 방향의 속도는, 통상의 Z방향의 피드백제어에 의하여 구할 수가 있다.
<실시예>
도 1(a) 내지 도 3(c)에 의하여 본 발명의 일실시예인 주사형 프로브 현미경 을 설명한다. 도 1(a) 및 도 1(b)는, 본 발명의 일실시예인 주사형 프로브 현미경의 개략 블럭 구성도이고, 도 2(a) 및 도 2(b)는, 상기 실시예의 주사형 프로브 현미경에 있어서 올바른 원자 이미지를 얻기 위한 개략의 절차를 나타낸 플로차트이다. 본 실시예의 주사형 프로브 현미경은 도 1(a) 및 도 1(b)에 나타내는 바와 같이, 시료(S)를 올려놓는 시료대(ST)에, 시료(S)를 X, Y, Z 3방향으로 이동시키는 시료이동기구가 설치되어 있다. 시료표면 상에는 탐침(P)이 배치되어, 탐침(P)의 선단과 시료표면 사이의 거리가 원자간 힘이 미치는 정도의 작은 거리가 되도록 지지한다. 탐침(P)의 선단에서 생긴 상호작용은 상호작용 검출부(I)에 의하여 측정된다.
여기서, 도 1(a) 및 도 1(b)에서는 시료이동기구의 모든 구성요소가 시료(S) 측에 장착되어 있지만, 시료와 탐침의 상대위치를 변화시킬 수 있다면 이는 어떠한 형태 메카니즘이어도 좋고, 예컨대 X, Y, Z 구성요소 중의 어느 하나 또는 모두가 탐침(P) 측에 장착되어 있어도 좋다. 이하의 기재에서는 「시료(S)/탐침(P)이 진동/이동한다(진동/이동된다)」 등의 표현을 사용하지만, 이들은 모두 탐침과 시료의 상대위치가 변화하는 것을 의미한다.
시료를 X, Y방향으로 이동시키면, 시료표면의 요철(높이의 변화)에 의하여 탐침(P)과 시료(S)의 표면 사이의 거리가 변화한다. 이로써 탐침(P)과 시료(S) 사이의 상호작용이 변화한다. 상호작용 검출부(I)는 이 변화를 검출하며, 탐침(P)에 작용하는 상호작용이 일정(동일 레벨)하게 되도록, 시료대(ST)를 Z방향으로 이동시킨다. 이리하여 탐침(P)이 시료표면을 스캐닝함으로서, 시료표면의 2차원적인 원자 이미지가 얻어진다.
이상은 종래의 통상적인 주사형 프로브 현미경의 동작을 설명한 것인데, 본 실시예의 주사형 프로브 현미경에서는, 원자 이미지를 관찰할 때에, 도 2(a)에 나타내는 바와 같이 추가적인 스텝을 포함하는데, 먼저, 현재의 환경조건 하에서, 시료(S)의 관찰대상 부분이 어떤 속도로 이동하는지를 측정한다(스텝 S1). 그 상세한 절차에 대하여는 후술한다. 이로써 시료(S)의 관찰대상 부분의 이동속도(v)가 구하여지면, 그 속도(v)를 이용하여 시료(S)의 이동을 제어하면서, 상기와 같이 시료표면의 원자 이미지를 관찰한다(스텝 S2). 이로써, 열 드리프트 등에 의한 왜곡이 없는, 올바른 원자 이미지가 얻어진다.
스텝 S1에 있어서의 속도검출의 기본원리를 도 2(b) 및 도 3(a)에 의하여 설명한다. 탐침(P)을 시료표면에 평행한 면(XY 평면) 내(상기 X, Y방향)에서 주파수 f1으로 진동(도 2(b)의 스텝 S1a, 도 3(a)의 Osc0)시킨다. 탐침(P)이 시료(S)의 도 3(a)의 좌사면(left-side slope)에 있을 때에는, 상기와 같이 시료(S)의 표면을 스캐닝하는 탐침(P)은 발진 주파수와 동일 주파수 f1, 발진하는 힘과 동일 위상으로 Z방향으로 진동한다(Osc1). 그러나, 탐침(P)이 시료(S)의 피크 가까이에 있을 때에는, Z방향의 진동의 진폭은 거의 제로(0)가 된다(Osc2). 그리고, 탐침(P)이 시료(S)의 도 3(a)의 우사면(right-side slope)에 있을 때에는, 탐침(P)은 발진하는 힘과는 역위상으로 Z방향으로 진동한다(Osc3).
도 3(a)는 시료표면에 평행한 1방향에 대하여서만 나타냈지만, 도 3(b)에 나 타내는 바와 같이, 실제로는 시료표면에 평행한 다른 2방향에서 마찬가지의 발진 동작을 행함으로써, 시료표면의 피크점을 검출할 수가 있다(도 2(b)의 스텝 S1b). Z방향의 진동의 진폭이 최소가 되도록 하는 것은, 이러한 피크점 외에도, 바닥점(bottom), 안점(saddle)이다. 이들 점(특징점)을 검출한 후, 그 점을 소정시간 추적(스텝 S1c)함으로써, 그 점의 이동속도를 구할 수가 있다. 이 속도가 그 지점에 있어서의 시료의 이동속도가 된다(스텝 S1d).
다만, 여기서 탐침(P)에 주어지는 진동의 주파수는, 상호작용 검출부(I)를 구성하는 전자회로의 대역보다도 작은 것으로 하여, 그 회로들과 간섭하지 않도록 하여 놓는 것이 바람직하다.
탐침(P)의 시료표면에 평행한, 다른 2방향의 진동의 주파수는, 도 3(b)에 나타내는 바와 같이 서로 다른(f1≠f2) 것이어도 좋고, 서로 동일한(f1=f2) 것이어도 좋다. 두 주파수를 동일(f0)하게 하고, 그 위상을 90° 다른 것으로 함으로써, 도 3(c)에 나타내는 바와 같이, 탐침(P)은 원운동(또는 타원운동)을 하게 된다. 이렇게 함으로써, 발진기구 및 Z방향 진동의 검파기구가 간단하게 된다.
이러한 속도검출에 있어서, 도 1(a)의 기구의 각부는 다음과 같이 동작한다. 주사 프로브 현미경(SPM) 컨트롤러가 시료(S)의 3차원(XYZ방향)의 이동을 제어하는 동안, 발진부(OSC)가 상기 2방향(X, Y)의 주파수신호(f1, f2)를 가산기(ADD)에 입력하여, 시료(S)가 진동된다. 이 상태에서, 피드백제어부(FB)에 의하여 탐침(P)-시료표면의 거리가 피드백 제어되고, 록인(Lock-in)앰프(LK)에 의하여 상기와 같이 특 징점이 검출된다. 상기 특징점이 검출된 후에는, 그 특징점의 추적이 개시된다. 이 추적 프로세스 동안에, 상기와 같이 시료의 이동속도(v)가 검출된다.
시료(S)의 이동속도(v)가 검출된 후에는, 도 1(b)에 나타내는 바와 같이, SPM 컨트롤러에 그 이동속도(v)와 시간(t)을 보낸다. SPM 컨트롤러는, 시료(S)의 표면을 관찰하는 프로세스 동안에, 이들 값을 시료대의 이동제어에 대한 보정항으로서 이용한다. 이로써, 열 드리프트 등에 의한 탐침과 시료의 상대위치의 변화가 보상되어, 올바른 시료표면 이미지가 얻어진다.
여기서, 앞서 기재한 바와 같이, 시료의 관찰은 통상 겨우 수분 정도로 완료되기 때문에, 그 관찰에 앞서서 검출된 이동속도(v)의 값을 이용함으로써 상대위치의 충분한 보정을 행할 수가 있다. 하지만, 관찰시간이 긴 경우나 주변온도의 변화가 격심한 경우는, 도 2(a)의 점선으로 나타내는 바와 같이, 관찰 도중에 적절한 시간에 관찰을 정지하고 이동속도(v)의 재검출을 행하여, 이동속도(v)의 갱신을 행하여도 좋다. 이때, 도 1(b)의 위치를 보정하고 있는 상태에서, 이동속도(v)의 변화량(Δv)을 측정할 수 있다. 그리하여, 이동속도(v)를 v+Δv로 갱신하는 것이 가능해진다.
이상, 일반적인 SPM 장치의 경우에 대하여 본 발명의 구성 및 작용을 설명하였지만, 이하, 그 응용예로서, 주파수검출방식을 이용한 비접촉 원자간 힘 현미경(Non-Contact Atomic Force Microscopy, NC-AFM)에 본 발명을 적용한 예를 설명한다. NC-AFM에 본 발명을 적용함으로써, 보다 정밀도 좋은 측정을 행할 수가 있다.
도 4(a) 및 도 4(b)는, NC-AFM의 공진주파수와 진동진폭의 관계를 설명하기 위한 설명도이다. NC-AFM은, 그 길이가 극히 작은(예컨대 100~200㎛) 미소한 판 스프링과 같은 부재로 이루어지는 캔틸레버(11)의 선단에 고정된 탐침(10)을 구비한다. 탐침(10)은, 캔틸레버(11)의 고유진동수(자연주파수, 공진주파수)(fr)와 동일 주파수로 진동한다. 공진주파수(fr)는, 개략적으로, 캔틸레버(11)의 스프링상수(k), 탐침(10)의 질량(m)을 이용하면,
Figure 112007038274971-PAT00001
이다. 주파수변조방식에서는, 공진주파수(fr) 및 소정의 진폭(R)으로 탐침(10)을 진동시켜서, 탐침(10)을 시료표면(원자(50))에 가까이한다(도 4(a)). 탐침(10)이 원자(50)의 표면에 근접했을 때, 탐침(10)과 원자(50) 사이에 역학적 상호작용이 작용한다. 이때, 캔틸레버(11)의 공진주파수(fr)가 변화한다(주파수 시프트(Δf)). 주파수 시프트(Δf)는, 탐침(10)과 원자(50) 사이에 인력이 작용했을 때에는 음의 값(일점쇄선)이 되고, 척력이 작용했을 때에는 양의 값(2점쇄선)이 된다(도 4(b)). 통상의 NC-AFM에서는, 척력의 영역 내에서, 즉 탐침(10)이 원자(50)에 접촉되어 있지 않은 상태에서, 각종 측정을 행한다.
NC-AFM을 이용하여 시료표면의 상태를 검출하여 이미지화(imaging)(또는 비쥬얼화(visualizing))하는 경우, 탐침(10)(또는 시료)을, 시료표면의 법선면과 직교하는 2방향으로, 예컨대 텔레비젼의 주사선과 같이 주사시켜서, 시료표면의 각 점에 대하여 주파수 시프트(Δf)에 기한 변화량을 매핑한다. 여기서, 탐침(10)과 시료의 상대위치가 변화하도록 주사하기만 하면 된다. 탐침(10) 또는 시료 중의 어느 것을 실제로 주사시킬지는, 이용되는 장치구성에 따라서 다른 것은 말할 필요도 없다.
그런데, 이미지화의 방법에는 2가지가 있다. 하나는, 탐침(10)으로 시표를 주사함으로써 변화하는 주파수 시프트(Δf)의 변화에 기하여 이미지화하는 방법(주파수변화 이미지화)이다. 다른 하나는, 주사동작 중에 주파수 시프트(Δf)가 일정하게 유지되도록 탐침(10)의 거리를 제어하면서, 그 거리변화에 기하여 이미지화하는 방법(주파수일정 이미지화)이다. 후자의 방법에서는, 시료표면의 요철(높이변화)에 대응한 화상이 얻어진다고 생각되고 있다. 하지만, 이 방법은 주사속도에 대응하기 위하여 탐침과 시료 사이의 거리를 피드백제어할 필요가 있다. 한편, 전자의 방법에서는, 원리적으로는, 거리의 피드백제어같은 것을 할 필요는 없다. 하지만, 이 방법은 열 드리프트나 장치의 크리프현상의 영향에 의하여, 탐침과 시료의 거리가 서서히 변화되어 버리므로, 이를 보상하여야 한다. 따라서, 극히 응답이 늦은 적분피드백을 걸어서, 열 드리프트나 크리프현상에 의한 늦은 거리변화만을 탐침이 추종하도록 할 필요가 있다.
도 5는 본 발명의 일실시예인 원자위치 고정장치의 구성예를 나타내는 블럭도이다. 이 원자위치 고정장치(1)는, 캔틸레버(11), 캔틸레버(11)의 일단에 장착된 탐침(10), 및 캔틸레버(11)의 타단에 장착된 압전소자로 구성되는 발진부(12)로 구성되는 주사유닛과, 대상인 시료(S)를 올려놓기 위한 시료지지부(21), 시료지지 부(21)를 3차원방향으로 조작하기 위한 수직위치 주사부(19), 및 수평위치 주사부(20)로 구성되는 위치주사유닛과, 변위검출부(13), 발진 제어부(14), 주파수검출부(15), 수직위치 제어부(16), 및 수평위치 제어부(17)로 구성되는 제어유닛을 구비하고 있다. 여기서, 제어유닛의 각부는, 도시되지 않은 PC와 같은 컴퓨터로 제어되도록 되어 있다.
탐침(10)으로는, 예컨대 길이가 10㎛, 직경이 대략 수㎛인 호 형상의 실리콘을 이용할 수가 있다. 이러한 미세한 탐침(10)은 반도체의 미세가공기술에 의하여 얻어질 수가 있다. 탐침(10)의 재료에 대하여는 한정되는 것은 아니지만, 예컨대, 표면관찰용으로 실리콘으로 만든 탐침을 이용하는 경우, 탐침의 표면에서 산화물 및 이물질 등을 제거함으로써, 원자간 힘의 감도를 보다 높여서 분해능을 향상시키는 것이 바람직하다.
발진부(12)는, 캔틸레버(11)에 진동을 주어서 탐침(10)을 진동시키기 위한 것으로서, 예컨대, 전압을 인가함으로써 변형이 생기는 압전체에 의하여 구성된다. 여기서, 캔틸레버의 탐침장착부에는 탐침지지부가 구비되어 있어서, 소모품인 탐침(10)을 용이하게 장착 또는 교체할 수가 있도록 되어 있다.
변위검출부(13)는, 탐침(10)의 변위를 신호로서 검출하는 것으로서, 예컨대, 광원과 분할된 광검출기로 구성되며, 시중에서 입수 가능한 AFM에 이용되고 있는 광레버(lever)방식(모리타 세이죠 편저, 「주사형 프로브 현미경; 기초와 미래예측」 마루젠, 토쿄(2000)), 광파이버의 간섭을 이용하는 광간섭방식(D. Ruger et al., Applied Physics Letters, Vol. 55(1989), p. 2588), 탐침에 배치된 수정의 미소한 전류변화를 전압으로 변환하는 튜닝방식(P. Guthner et al., Applied Physics B, Vol. 48, p.89(1989)), Q-펄스 센서방식(F. J. Giessibl, Applied Physics Letters, Vol. 73), 탐침의 변위가 저항변화로서 검출되는 피에죠저항방식(F. J. Giessibl, Science, Vol. 267(1995), p. 68), 탐침의 변위가 전압변화로서 검출되는 피에죠전압방식(J. Rychen et al., Review of Scientific Instruments, Vol. 70(1999), p. 2765) 등을 들 수 있다.
주파수검출부(15)는, 탐침(10)에 작용한 역학적 상호작용에 의하여 생기는 공진주파수의 변화(주파수 시프트(Δf))를 검출한다. 주파수검출부(15)는, 예컨대 위상동기루프(PLL; Phase Lock Loop), 인덕터와 커패시터를 이용한 공진회로, 각종 필터 등을 이용하여 구성한다.
탐침(10)을 시료(S)에 접근시켰을 경우, 탐침(10)과 시료(S)에 작용하는 역학적인 상호작용에 의하여, 캔틸레버(11)의 실효적인 스프링상수가 변화하여 공진주파수가 변화한다. 그래서, 변위검출부(13)에서, 탐침(10)(캔틸레버(11)의 일단측)의 변위량을 검출하며, 검출된 변위량에 기하여, 탐침(10)과 시료(S)의 상호작용에 의한 캔틸레버(11)의 공진주파수의 변화량(주파수 시프트(Δf))을 주파수검출부(15)에서 검출한다. FM복조부(미도시)는, 검출한 기계적 공진주파수의 변화량을 반영한 신호를 생성하여 제어부(10)에 출력한다.
발진 제어부(14)는, 탐침(10)의 진동을 제어하는 것으로서, 2가지 동작모드, 즉 탐침(10)의 진동진폭을 일정하게 하는 모드(진동진폭 일정모드)와, 발진부(12)에 주어지는 신호의 진폭을 일정하게 하는 모드(발진신호 일정모드)가 있다. 고효 율로 탐침(10)을 발진하기 위하여 위상쉬프터를 이용하도록 하여도 좋다. 진동진폭의 신호에 이득(게인)을 곱하여, 발진부(12)에 신호를 주는 방법, 주파수검출부(15)에서 이용되는 PLL의 발신기에서 생성되는 신호를 발진 제어부(14)에서 공유하는 방법 등을 들 수 있다.
수직위치 주사부(19)는, 탐침(10)과 시료(S)의 수직방향의 위치, 즉 시료표면에 대하여 수직방향을 따라서 탐침(10)-시료(S) 사이의 상대위치를 변화시키기 위한 것으로서, 예컨대, 전압을 인가함으로써 변형이 생기는 압전체로 이루어진다.
수평위치 주사부(20)는, 탐침(10)과 시료(S)의 수평방향의 위치, 즉 시료표면에 대하여 평행방향을 따라서 탐침(10)-시료(S) 사이의 상대위치를 변화시키기 위한 것으로서, 수직위치 주사부(19)와 마찬가지로 압전체로 이루어진다. 압전체의 형상은, 예컨대, 튜브처럼 생긴 원통 압전체를 이용하는 튜브스캐너형, 단층 압전체를 이용하는 단층형 및 적층된 압전체를 이용하는 복층형이 포함된다.
본 실시예에서는, 시료지지부(21)에 수직위치 주사부(19)와 수평위치 주사부(20)가 배치되어 있지만, 수직 및 수평의 각각의 방향으로 탐침(10)과 시료(S)의 상대위치를 독립적으로 변화시키는 것이 가능하다면, 어느 한쪽 또는 양쪽을 탐침(10) 측에 배치하더라도 상관없다. 또한, 수직위치 주사부(19)와 수평위치 주사부(20)는, 일체로 되어 있어도 좋고, 별개로 되어 있어도 좋다. 또한, 수평위치 주사부(20)가 튜브스캐너형인 경우는, 수평주사신호를 수직주사신호에 가산하여, 결과신호를 수평위치 주사부(20)에 줌으로써, 수평위치 주사부(20)를 수직위치 주사부(19)로서 이용하여도 좋다. 또한, 발진부(12)를 수직위치 주사부(19)로서 이용하 여도 좋다.
수직위치 제어부(16)는, 주파수 시프트(Δf)가 설정한 레벨로 유지되도록 탐침(10)-시료(S) 사이의 거리(ΔZ)를 제어한다. 상기 수직위치 제어부(16)는, 상기한 2가지 이미지화 방법, 즉 주파수변화 이미지화 방법 및 주파수일정 이미지화 방법 측정에 모두 대응하고 있다. 기본적으로는, 이는 피드백회로로 구성되어, 아날로그회로 또는 디지털 시그널 프로세서(DSP)를 이용하는 디지털연산에 의하여, 비례제어, 적분제어 및 미분제어 중 적어도 하나 이상의 조합을 행한다. 또한, 수직위치 제어부(16)는, 열 드리프트 등에 의한 거리변화를 측정함으로써 Z방향의 열 드리프트 속도를 산출하여, 그 속도값에 시간을 곱한 보정치를 출력에 더하는 기능을 가진다. 이 기능에 의하여, 열 드리프트 등에 의한 탐침과 시료의 Z방향의 상대위치변화를 보상하는 것이 가능하게 된다.
특히, DSP를 사용하는 경우는, 상술한 제어 이외의 디지털제어 독자의 다양한 필터를 이용하는 것이 가능하게 된다. 거리제어는 RUN(그 제어프로그램를 실행함), HOLD(일시적으로 제어를 정지함), RESET(제어신호를 제로(0)로 리셋하는 것) 동작모드를 포함한다. 이들 동작은 수동으로 또는 컴퓨터에서 실행되고 있는 소프트웨어에 의하여 수행하는 것이 가능하다.
수평위치 제어부(17)는, 열 드리프트나 크리프현상에 의한 탐침(10)과 시료(S)의 상대위치 변화 중, 시료(S)와 평행한 2방향의 움직임(X, ΔX 및 Y, ΔY)을 보정하여, 탐침(10)의 선단을 소정(목표) 원자위치에 장시간 수평고정하기 위하여 이용된다. 실제로는, 탐침(10)의 선단을 소정 원자위치에 장시간 고정하기 위하여 는, 수평위치 제어부(17)로부터 소정의 발진 신호를 출력하여, 도 3에서 나타낸 바와 같은 탐침(10)(또는 시료)의 발진을 행한다. 동시에, 수평위치 제어부(17)는 상기 발진 신호에 대응한 주파수검출부(15)의 출력신호를 받아서, 수평위치 제어부(17)에 주어서 피드백제어를 행한다. 구체적으로는, 주파수검출부(15)에서 검출한 주파수(f1, f2)(또는 f0)성분이 제로(0)가 되도록 수평위치의 피드백제어를 행함으로써, 소정 원자위치(예컨대 원자의 정점)에 탐침(10)을 장시간 고정하는 것이 가능하다. 또한, 수평위치 제어부(17)는, 열 드리프트 등에 의한 거리변화를 측정함으로써 X방향 및 Y방향의 열 드리프트 속도를 산출하여, 이들 속도값에 시간을 곱한 보정치를 출력에 더하는 기능을 가진다. 이 기능에 의하여, 열 드리프트 등에 의한 탐침과 시료의 X방향 및 Y방향의 상대위치변화를 보상하는 것이 가능하게 된다.
다음으로, 본 발명에 특징적인 수평위치 제어부(17)의 열 드리프트 속도를 산출하는 부분에 대하여 설명한다. 도 6은 수평위치 제어부의 열 드리프트 속도를 산출하는 부분의 구성예를 나타내는 블럭도이다. 수평위치 제어부(17)는, 제1 방향인 X방향과 제2 방향인 Y방향 위치를 독립하여 제어 가능하도록, X방향의 제어용으로, 제1 발진회로(31a), 제1 동기검파부(32a), 제1 수평위치 조정부(33a) 및 제1 가산부(34a)를, Y방향의 제어용으로, 제2 발진회로(31b), 제2 동기검파부(32b), 제2 수평위치 조정부(33b) 및 제2 가산부(34b)를, 각각 포함하고 있다.
제1 발진회로(31a)(제2 발진회로(31b))는, 탐침(10)과 시료(원자(50))의 X방 향(Y방향)의 상대위치를 주기적(주파수 f1(f2))으로 변화시키는 것으로서, 출력신호를 제1 동기검파부(32a)(제2 동기검파부(32b)) 및 제1 가산부(34a)(제2 가산부(34b))에 출력한다.
이 제1 발진회로(31a)(제2 발진회로(31b))가 생성하는 진동은, 표면관찰을 위하여 캔틸레버에 부여되는 공진진동(Z방향)과는 별개의 것으로서, 그 진동주파수는, 공진주파수보다도 상당히 작게 할 필요가 있다.
제1 동기검파부(32a)(제2 동기검파부(32b))는, 주파수검출부(15)로부터 출력된 주파수 시프트(Δf)를, 제1 발진회로(31a)(제2 발진회로(31b))로부터 출력되는 신호(즉, 발진회로가 출력하는 신호의 주파수) 또는 그 고조파신호(즉, 발진회로가 출력하는 신호의 정수배의 주파수)로 동기검파하여, 제1 수평위치 조정부(33a)(제2 수평위치 조정부(33b))에 출력한다.
제1 수평위치 조정부(33a)(제2 수평위치 조정부(33b))는, 상세히는 후술할 제1 고정위치 결정부(제2 고정위치 결정부) 및 제1 위치 미세조정부(제2 위치 미세조정부)를 포함하며, 상기 주파수신호를 탐침(10) 또는 시료(원자(50))의 X방향(Y방향)의 위치 조정할 신호로 변환하여, 제1 가산부(34a)(제2 가산부(34b))에 출력한다.
제1 가산부(34a)(제2 가산부(34b))는, 제1 발진회로(31a)(제2 발진회로(31b)) 및 제1 수평위치 조정부(33a)(제2 수평위치 조정부(33b))로부터 출력된 신호와 제1 주사신호(제2 주사신호)를 가산하여 수평위치 주사부(20)에 출력한다. 여기서, 각 발진회로로부터 각 동기검파부에 출력되는 신호는, 동기검파를 행하기 위한 참조신호이며, 필요에 따라서 소정 이득(게인)을 적절히 곱하도록 하여도 좋다.
도 7은 수평위치 제어부의 열 드리프트 속도를 산출하는 부분의 다른 구성예를 나타내는 블럭도로서, 직교하는 2방향으로 동일 주파수이고 위상이 90° 어긋나 있는 두 신호를 이용하는 경우(도 3(b) 참조)에 적합한 구성이다. 수평위치 제어부(17)는, 발진회로(31), 동기검파부(32), 제1 수평위치 조정부(33a) 및 제1 가산부(34a), 그리고, 제2 수평위치 조정부(33b) 및 제2 가산부(34b)를 포함하고 있다.
발진회로(31)는, 탐침(10)과 시료(원자(50))의 상대위치를 주기적(주파수 f0)으로 변화시키는 것으로서, 서로 동기하여 있는 위상이 다른 2개의 신호를 발진한다. 본 예에서는, 위상이 90° 다른 두 신호(0°, 90°의 신호)를 출력하며, 위상이 0°인 신호를 제1 가산부(34a)에, 위상이 90°인 신호를 제2 가산부(34b)에 출력한다. 또한, 이들 신호를 동기검파부(32)에도 출력함으로써, 동기검파부(32)에서 X방향 및 Y방향의 성분을 분리하여 추출할 수 있다.
동기검파부(32)는, 주파수검출부(15)로부터 출력된 주파수 시프트(Δf)를 발진회로(31)로부터 출력되는 신호 또는 그 고조파신호에 동기하여, 위상이 다른 2개의 신호(여기서는, 위상이 0°, 90°의 2개로 함)를 검파한다. 상기 두 신호는, 제1 수평위치 조정부(33a) 및 제2 수평위치 조정부(33b)에 각각 출력한다. 기타 구성은 도 6과 마찬가지이다.
이와 같이 하면, 단 하나의 동기검파부만 사용하므로, 구성이 간단하게 될 수가 있다. 또한, 도 6의 구성에서는, 동기검파부의 지원 범위에 맞춰서, 주파수차 │f1 - f2│를 어느 정도 크게 할 필요가 있는데, 본 실시예에서는 그러한 주파수차의 고려는 불필요하다. 다만, 동기검파부(32)가 다른 위상을 가지는 두 신호를 검출하려면, 발진회로(31)의 2개의 출력신호의 위상이 고정되어 있을 필요가 있다. 실제의 측정에 있어서는, 신호는 다양한 회로를 통과하기 때문에, X방향 또는 Y방향의 어느 한쪽으로 신호를 주어서 위상맞춤을 행할 필요가 있다.
도 8은 고정위치 결정부의 기능을 설명하기 위한 설명도이다.
고정위치 결정부는, 탐침(10)이 고정될 원자위치를 결정하는 것으로서, 수평위치 조정부(33a, 33b, 33)(제어부로서 기능함)를 HOLD모드로 세팅하고, 상기 수평위치 조정부(33a, 33b, 33)의 각 출력신호에 소정의 전압을 가산함으로써, 탐침과 원자의 상대위치를 바꾼다. 선택으로서, 각 주사신호에 고정위치 결정부의 신호와 등가적인 신호를 포함시키도록 하여도 좋다. 목표 위치의 결정은 소프트웨어 프로그램으로 행하는 것도 가능하다. 고정하고자 하는 위치 근방에 탐침(10)을 배치하면, 제어부(수평위치 조정부(33a, 33b, 33))를 RUN모드로 세팅함으로써, 목표위치에 탐침(10)이 고정된다. 여기서, RUN모드에서는, 상기 수평위치의 피드백제어와 열 드리프트 속도를 이용한 보정치를 더하는 것의 2가지의 경우가 있는데, 사용자가 자유로이 양쪽 혹은 어느 한쪽을 동작(Enable)시키는(즉 RUN으로 하는) 것의 설정이 가능하다. 이하의 실시예 설명에서는, 특히 어느 쪽을 RUN(enabel) 또는 HOLD(disable) 시킬지에 대한 언급은 생략될 수 있다. Z방향으로도 상기와 마찬가지의 (enable)/(disable)기능을 작용시킬 수 있는데, 이에 관하여도 특히 언급하지 않을 수 있다. 여기서, 측정 종류에 따라서는, 보정치를 더한 상태에서도, 열 드리프트 속도가 변화하는 경우가 있다. 그런 경우에, 그 위치에 보정치를 더한 상태에서 수평(혹은 수직)위치를 더욱 보정하기 위하여, 피드백제어를 행하는 것도 가능하다. 이때는 피드백 메카니즘의 응답성을 더욱 낮게 할 수 있다. 즉 대역을 작게 하는 것이 가능하므로, 노이즈의 저감이 기대될 수 있다.
도 9(a) 내지 도 9(d)는 위치 미세조정부의 기능을 설명하기 위한 설명도이다.
위치 미세조정부는, 피드백제어에 있어서의 소위 세트포인트(set point)를 조정하는 부분으로서, 수평제어의 위치를 필요에 따라 적절히 미세조정하는 것이다. 위치 미세조정부가 없을 경우, 탐침은, 볼록부분의 정점, 오목부분의 최하점, 또는 안점(새들포인트)에서만 위치의 고정이 가능하다. 한편, 위치 미세조정부를 도입했을 경우, 더 많은 유연성이 제공되며, 제어부의 입력신호에 적절한 옵셋을 가함으로써, 즉 목표 세트포인트에 대응하는 신호를 가산 또는 감산함으로써, 원자(50)의 정점으로부터 Δx 격리한 위치에서 탐침을 고정하는 것이 가능하게 된다. 구체적으로는, 원자(50)의 정점(도 9(a))이나 보이드(Void)의 바닥점(도 9(b))에서는, 위치 미세조정부가 가산할 전압을 제로(0)로 한다. 그렇게 함으로써 제어부는 입력신호, 즉 동기검파부의 출력이 제로(0)가 되도록, 탐침(10)과 시료(원자(50))의 상대위치를 미세조정한다. 위치 미세조정부가 가산하는 전압이 제로(0)가 아닌 경우, 동기검파기가 그 전압값을 반영한 값을 출력하여, 수평상대위치가 변화된다.
도 10(a) 내지 도 10(d)는 고정위치의 예를 설명하기 위한 설명도이다.
탐침(10)의 위치를 고정하려면, 시표표면에 대하여 평행한 서로 직교하는 2개의 축(X축 및 Y축)을 결정하여, 각각의 방향에 있어서 독립적으로 수평위치의 제어를 행한다. 예컨대, 원자(50)의 정점에서 탐침(10)의 위치를 고정하는 경우(도10(a)), 보이드(Void) 결함이나 표면재구성에 의하여 생긴 홀에서 탐침(10)의 위치를 고정하는 경우(도 10(b)), 원자(50, 50) 사이의 골(谷; valley)에서 탐침(10)의 위치를 고정하는 경우(도 10(c)), 1방향으로는 정점이지만, 직교하는 방향으로는 골(谷)로 간주될 수 있는 부분에 탐침(10)의 위치를 고정하는 경우(도 10(d)) 등을 들 수 있다. 여기서, 도 10(a) 내지 도 10(d)에 있어서는, 흰 동그라미가 원자(50)를 나타내고 있다. 그런데, 원자(50)가 이미지에서 항상 위치가 높게 나타나는 것은 아니라는 점을 이해하여야 한다. 탐침(10)의 선단과 시료표면의 원자(50)를 에워싸는 전자의 상호작용에 의하여, 시료표면의 실제의 요철과 외견상 다른 결과 이미지가 얻어지는 경우가 있지만, 그 경우는 높은 위치로 원자(50)가 이미지화되었다고 간주하여도 좋다.
도 11(a) 내지 도 11(d)는, 라인 프로파일(Line Profile)의 예를 설명하기 위한 설명도이다.
서로 직교하는 2축에 대하여 독립적으로 피드백제어를 행하면 좋으므로, 고려될 수 있는 라인 프로파일의 부분은, 라인 프로파일의 피크의 정점 부분(도 11(a)), 라인 프로파일의 바닥 부분(도 11(b)), 라인 프로파일의 골(谷) 부분(도 11(c)), 기층 또는 다음 층의 원자가 보이는 부분을 가지는 라인 프로파일의 바닥 부분(도 11(d)) 등이 있다. 도 11(a)에서는, 발진회로로부터 출력되는 신호의 진폭(R)은 원자간 거리(d)의 1/2보다도 작으며(R < d/2), 신호는 발진회로로부터의 주파수(f0)(f1, f2)로 동기검파부에 의하여 동기검파된다. 도 11(b), 도 11(c)에서는, 수평위치 제어부의 출력신호를 반전함으로써, 바닥 위치에 탐침을 고정할 수 있다. 도 11(d)에서는, 기층 또는 다음 층의 원자가 트래킹 충분한 정도의 신호를 검출할 수 있다면, 상술한 경우와 마찬가지 방법으로 탐침을 고정시킬 수 있다. 하지만, 그렇지 않은 경우는, 진폭(R)이 원자간 거리(d)보다도 큰(R > d) 신호를 이용한다. 이 신호는 주파수(2f0)(2f1, 2f2)로 동기검파되며, 그 신호값이 최대가 되도록 제어부에서 피드백제어를 행하도록 한다. 이와 같이, 발진회로가 출력하는 신호의 주파수뿐만 아니라, 그 고조파신호(즉 발진회로가 출력하는 신호의 주파수의 정수배의 주파수)에서 동기검파하여도 좋다.
다음으로 본 발명의 일실시예인 원자위치 고정장치를 이용하여, 원자위치 제어의 보정 방법에 대하여 평가하였다. 도 12(a), 도 12(b)는 위치제어보정의 전후에 있어서의 Si(111) 7×7 표면의 이미지이고, 도 13은 Si(111) 7×7 표면에서의 위치제어보정의 예를 설명하기 위한 설명도이다.
도 12(a)의 이미지를 취득한 후, 재빨리 탐침을 화살표의 위치로 이동시키고, 수평 및 수직 피드백제어를 개시(RUN)하여 탐침의 위치를 고정하였다. 61분 후, 제어를 HOLD모드로 세팅하여 다른 이미지를 취득하였다(도 12(b)). 양 이미지 의 동일 위치에 동일 이물질(원으로 표시함)이 보인다. 이로써 양 이미지가 동일함을 알 수 있다. 환언하면, 양 이미지는, 61분 기간 동안 발생한 열 드리프트에도 불구하고, 탐침을 항시 목적 위치에 따라다니게 하도록(추적, 트래킹하도록) 제어하는 것이 성공적임을 보여준다. 도 13(a)에 나타내는 바와 같이, 상기 위치는 61분 동안에 XY방향 평면 내에서 약 135Å의 이동이 있었다. 즉, 본 실시예의 원자위치 고정장치를 이용하지 않았을 경우에는, 탐침(10)의 위치가 올바른 위치에서 약 135Å 어긋났을 것이라는 것을 의미한다. 하지만, 위 결과로부터, 본 실시예의 원자위치 고정장치를 이용함으로써, 탐침(10)의 원자(50)에 대한 상대위치를 장시간동안 또한 안정적으로 고정 유지시킬 수 있다는 것을 증명한다. 또한, 도 13(b)에 나타내는 바와 같이, 노이즈 레벨은 0.2Å이어서, 원자간 거리(이 경우에서는 7.5Å)에 비하여 무시할 수 있을 정도로 작다는 것을 알 수 있다. 수평 및 수직 피드백에 의한 위치의 고정에서는, 사용자가 시각으로 시료의 동일 범위를 계속 관찰할 수 있는데, 실제로 이미지를 측정 녹화하고자 할 때에는, 피드백을 HOLD모드로 설정할 필요가 있다. 따라서, 얻어진 이미지는 도 12(c)와 같이 왜곡되어 버린다. 상기 문제는 다음과 같이 하여 회피 가능하다. 수평 및 수직 피드백을 RUN모드로 세팅하여 목적 위치에 탐침을 고정하고, 열 드리프트 속도를 산출한다. 그 후, 수평 및 수직 피드백을 HOLD모드로 세팅하여 보정치에 상당하는 전압을 더한다(즉, 보정된 RUN모드). 이 모드에서 녹화된 이미지는, 도 12(d)와 같이 왜곡이 없는 화상이다. 이 방법에 의하면, 열 드리프트가 존재하는 상온환경이라 하더라도, 마치 극저온환경과 같이 열 드리프트가 없는 환경이 실현 가능하게 된다. 따라서, 예컨대, 액체 속에서의 대칭성이 낮은 생체시료를 고분해능으로 측정할 수 있게 된다.
다음으로 본 발명의 응용예에 대하여 설명한다. 도 14(a) 및 도 14(b)는 역학적 분광측정(거리의존성 측정)의 개념도이다.
탐침(10)을 시료에 가까이하면, 주파수 시프트(Δf)(본 예에서 음수임)의 진폭이 증가한다. 따라서, 예컨대, 탐침(10)을 목적 원자(50) 쪽으로 가까이하면서, 주파수 시프트(Δf)를 측정함으로써, 그 원자와 탐침 사이의 주파수 시프트(Δf)-거리(Z)의 관계를 설명하는 곡선을 얻을 수가 있다. 주파수 시프트(Δf)를 힘(force)으로 변환하는 알고리즘과 함께 상기 곡선을 이용하면, 원자의 결합력을 측정할 수 있게 된다. 종래에, 열 드리프트나 크리프현상의 영향으로 탐침(10)과 시료의 상대위치가 시간과 함께 변화하기 때문에, 실온환경 하에서는 소정의 위치에서 원자에 대한 분광측정을 수행하는 것이 곤란하였다. 하지만, 본 발명의 탐침위치 제어방법을 이용함으로써, 탐침(10)을 원하는 원자(50)의 위치에 고정할 수 있으므로, 설령 실온환경 하이더라도, 원자(50)의 결합력을 측정할 수 있게 된다.
도 15(a) 내지 도 15(d')는 역학적 분광측정(거리의존성 측정)의 일례를 설명하기 위한 설명도이다.
우선, 시료표면의 원자들(50, 50, ...) 중에서 거리의존성 측정을 행할 원자(50a)를 선택한다(도 15(a)). 다음으로, 선택한 원자(50a)의 위치에 탐침(10)을 이동시킨다(도 15(b)). 이때, 탐침(10)은 원자(50a)의 바로 위에 있는 것이 아니고, 또한 열 드리프트에 의하여 항시 그들의 상대위치가 변화하고 있다. 다음으로 본 발명의 탐침위치 제어방법에 의하여 탐침(10)의 원자(50a)에 대한 수평위치를 고정한다(도 15(c)). 그리고, 탐침(10)의 원자(50a)에 대한 수직위치를 변화시켜서 거리의존성 측정을 행한다(도 15(d)). 물론, 위치 미세조정부의 기능을 이용하여, 고려되는 라인 프로파일의 원자 고정위치로부터 조금 벗어난 위치에 탐침(10)을 고정하고, 그 위치에서 거리의존성 측정을 행하는 것이 가능하다(도 15(d')).
도 16은 역학적 분광측정(거리의존성 측정)의 일례를 나타내는 플로챠트이다.
우선, 주사형 프로브 현미경을 이용하여, 시료표면을 주사하여 시료표면의 원자들(50, 50, ...)의 이미지를 얻는다(스텝 S3). 다음으로, 이 이미지에서, 시료표면의 원자들(50, 50, ...) 중에서 거리의존성 측정을 행할 원자(50a)를 선택한다(스텝 S4). 그리고, 탐침(10)을 고정위치로 이동시키고(스텝 S5), 수평위치의 제어를 행한다(스텝 S6). 그리고, 주파수 시프트(Δf)를 측정하면서, 탐침(10)-시료(원자(50a))간 거리를 변경함으로써, 거리의존성 측정을 행한다(스텝 S7). 그리고, 거리의존성 측정이 종료하였는지 여부를 판단하여(스텝 S8), 거리의존성 측정이 종료하였다고 판단하였을 경우(스텝 S8: YES), 모든 처리를 종료한다. 한편, 거리의존성 측정이 종료되지 않았다고 판단하였을 경우(스텝 S8: NO), 처리를 S6로 되돌려서 수평위치의 제어를 다시 행하고, 거리의존성 측정을 계속한다.
수평위치제어는 서브루틴으로서 수행될 수 있다. 도 17은 수평위치제어의 일례를 나타내는 플로챠트이다. 발진회로(제1 발진회로(31a), 제2 발진회로(31b)(발진회로(31)))로부터 신호가 출력되고 있는 동안(스텝 S11), 제어부로서 기능하는 수평위치 제어부(17)가 RUN모드로 설정된다(스텝 S12). 그리고, 위치의 미세조정이 필요한지 여부를 판단한다(스텝 S13). 위치의 미세조정이 필요하다고 판단하였을 경우(스텝 S13: YES), 위치의 미세조정을 행하고(스텝 S14), 그 후 수평위치 제어부(17)를 HOLD모드로 설정하고(스텝 S15), 처리는 서브루틴을 빠져나온다. 한편, 위치의 미세조정이 필요하지 않다고 판단하였을 경우(스텝 S13: NO), 위치의 미세조정을 건너뛰고, S15로 이행하여 수평위치 제어부(17)를 HOLD모드로 설정하고, 처리는 서브루틴을 빠져나온다.
여기서, 수평위치 제어부의 서브루틴의 흐름은 상기 흐름에 한정되는 것은 아니다. 예컨대, 수평위치 제어부(17)를 HOLD모드로 설정한 후에, 위치의 미세조정을 행하여도 좋다. 도 18은 수평위치제어의 다른 일례를 나타내는 플로챠트이다. 발진회로들(제1 발진회로(31a), 제2 발진회로(31b)(발진회로(31)))로부터 신호가 출력되고 있는 동안(스텝 S21), 수평위치 제어부(17)가 RUN모드로 설정된다(스텝 S22). 그리고나서, 수평위치 제어부(17)가 HOLD모드로 설정되고(스텝 S23), 위치의 미세조정이 필요한지 여부를 판단한다(스텝 S24). 위치의 미세조정이 필요하다고 판단하였을 경우(스텝 S24: YES), 위치의 미세조정을 행하고(스텝 S25), 그 후 서브루틴처리를 종료한다. 한편, 위치의 미세조정이 필요하지 않다고 판단하였을 경우(스텝 S24: NO), 위치의 미세조정을 행하지 않고, 서브루틴처리를 종료한다.
도 16에서는, 거리의존성 측정시마다 탐침(10)의 수평위치의 제어를 행하도록 하였다. 그렇지만, 측정 목적에 따라서는 수평위치의 제어가 생략될 수 있다. 예컨대, 열 드리프트가 무시할 수 있을 정도로 극히 작은 경우 등에는, 수평위치의 제어가 불필요하다. 따라서, 도 16에 나타낸 처리절차는 도 19에 나타내는 바와 같 이 수정될 수 있다. 수정된 버전에 의하면, 거리의존성 측정이 종료하고 있지 않다고 판단하였을 경우(스텝 S8: NO), 수평위치제어가 필요한지 여부를 판단한다(스텝 S9). 수평위치제어가 필요하다고 판단하였을 때는(스텝 S9: YES), 처리를 S6으로 되돌려서 수평위치의 제어를 행하고 거리의존성 측정을 계속한다. 수평위치제어가 필요하지 않다고 판단하였을 때는(스텝 S9: NO), 처리를 S7으로 되돌려서 수평위치의 제어를 행하지 않고 거리의존성 측정을 계속하도록 한다. 기타 처리절차는, 도 16과 마찬가지이기 때문에, 대응하는 부분에 동일한 스텝 번호를 붙이고 그 상세한 설명을 생략한다.
상술한 바와 같이, 종래의 역학적 분광측정 방법에서는, 시료에 대하여 복수의 이미지 데이터를 연속으로 측정할 경우, 결과 이미지가 각각의 다른 형태로 변형되어, 서로 올바르게 겹쳐질 수 없었다. 하지만, 본 발명을 적용함으로써, 측정한 모든 데이터가 허용되는 측정오차범위 내에서 서로 잘 겹쳐질 수 있어서, 보다 정확한 데이터가 얻어진다. 이들 얻어진 데이터를 평균화함으로써, 낮은 노이즈의 측정데이터를 얻을 수가 있어서, 그 결과, 시료의 원자간 결합력의 미묘한 차이까지도 명확하게 하는 것이 가능하다.
도 20(a) 내지 도 20(d')는 역학적 분광측정(전압의존성 측정)의 일례를 설명하기 위한 설명도이다.
우선, 시료표면의 원자들(50, 50, ...) 중에서 전압의존성 측정을 행할 원자(50a)를 선택한다(도 20(a)). 다음으로, 선택된 원자(50a)의 위치에 탐침(10)을 이동시킨다(도 20(b)). 다음으로 본 발명의 탐침위치 제어방법에 의하여 탐침(10) 의 원자(50a)에 대한 수평위치를 고정한다(도 20(c)). 그리고, 탐침(10)과 원자(50a) 사이에 전압을 인가하여 전압의존성 측정을 행한다(도 20(d)). 물론, 추가적으로, 위치 미세조정부의 기능을 이용하여, 고려되는 라인 프로파일의 원자고정위치로부터 약간 벗어난 위치에 탐침(10)을 고정하고, 그 위치에서 전압의존성 측정을 행하는 것이 가능하다(도 20(d')).
도 21은 역학적 분광측정(전압의존성 측정)의 일례를 나타내는 플로챠트이다.
우선, 주사형 프로브 현미경을 이용하여, 시료표면을 주사하여 시료표면의 원자들(50, 50, ...)을 이미지화한다(스텝 S31). 다음으로, 이미지화된 시료표면의 원자들(50, 50, ...) 중에서 전압의존성 측정을 행할 원자(50a)를 선택한다(스텝 S32). 그리고, 탐침(10)을 고정위치로 이동시키고(스텝 S33), 수평위치의 제어를 행한다(스텝 S34). 그리고, 주파수 시프트(Δf)를 측정하면서, 탐침(10)-시료(원자(50a))간 전압을 변경함으로써, 전압의존성 측정을 행한다(스텝 S35). 그리고, 전압의존성 측정이 종료하였는지 여부를 판단한다(스텝 S36). 전압의존성 측정이 종료하였다고 판단하였을 경우(스텝 S36: YES), 모든 처리를 종료한다. 한편, 전압의존성 측정이 종료하지 않았다고 판단하였을 경우(스텝 S36: NO), 처리를 S34로 되돌려서 다시 수평위치의 제어를 행하여, 전압의존성 측정을 계속한다. 여기서, 수평위치제어(스텝 S34)는, 상술한 도 17 또는 도 18과 마찬가지이다.
도 21에서는 전압의존성 측정시마다 탐침(10)의 수평위치의 제어를 행하도록 하였다. 하지만, 측정 목적에 따라서는, 수평위치의 제어가 생략될 수 있다. 따라 서, 도 21에 나타내는 절차는 도 22에 나타내는 바와 같이 수정될 수 있다. 상기 수정된 버전에 있어서는, 전압의존성 측정이 종료하지 않았다고 판단하였을 경우(스텝 S36: NO), 수평위치제어가 필요한지 여부를 판단한다(스텝 S37). 수평위치제어가 필요하다고 판단하였을 때(스텝 S37: YES), 처리를 S34로 되돌려서 수평위치의 제어를 행하고, 전압의존성 측정을 계속한다. 수평위치제어가 필요하지 않다고 판단하였을 때(스텝 S37: NO), 처리를 S35로 되돌려서 수평위치의 제어를 행하지 않고, 전압의존성 측정을 계속하도록 한다. 기타 처리절차는, 도 21과 마찬가지이기 때문에, 대응하는 부분에는 동일한 스텝 번호를 붙이고 그 상세한 설명을 생략한다.
다음으로 본 발명의 다른 응용예인 원자의 위치를 조작하는 원자조작방법에 대하여 설명한다. 도 23(a) 및 도 23(b)는 원자조작방법의 개념도이다.
주파수 시프트(Δf)(본 예에서 음수임)의 진폭은, 탐침(10)을 시료에 가까이 했을 경우, 점차 증가한다. 이 과정에서, 어떤 상황 하에서는 주파수 시프트(Δf)가 불연속적으로 변화하는 경우가 있다. 예컨대, 탐침(10)가 시료표면의 원자(50) 사이에 작용하는 원자간 힘이 급격히 크게 되는 경우 등이다. 이 현상을 이용하여, 주파수 시프트(Δf)를 감시함으로써, 시료표면의 원자를 조작할 수가 있다. 주파수 시프트(Δf)에 비약적 변화가 검출되면, 탐침(10)과 시표표면의 원자 사이에 소정 레벨의 원자간 힘이 작용하였을 상태라고 판단하여, 탐침(10)을 시표표면과 수평방향 또는 수직방향으로 주사시킴으로써, 시료표면의 원자를 조작하는 것이 가능하다. 종래에는, 열 드리프트나 크리프현상의 영향에 의하여 탐침(10)과 시료의 상대 위치가 시간과 함께 변화하기 때문에, 실온환경 하에서는, 소정의 원자위치에 높은 정밀도로 탐침(10)을 배치하는 것이 곤란하였다. 하지만, 본 발명의 탐침위치 제어방법을 이용함으로써, 탐침(10)을 원하는 원자(50)의 위치에 고정하는 것이 가능하기 때문에, 설령 실온환경 하이더라도 원자(50)를 조작하는 것이 용이하게 된다.
도 24(a) 내지 도 24(e)는 본 발명의 응용예인 원자조작방법(수직조작)의 일례를 나타내는 설명도이다.
우선, 시료표면의 원자들(50, 50, ..) 중에서 원자조작을 행할 원자(50a)를 선택한다(도 24(a)). 다음으로, 선택한 원자(50a)의 위치로 탐침(10)을 이동시킨다(도 24(b)). 다음으로 본 발명의 탐침위치 제어방법에 의하여, 탐침(10)의 원자(50a)에 대한 수평위치를 고정한다(도 24(c)). 그리고, 탐침(10)에 소정 레벨의 원자간 힘이 작용하기까지, 탐침(10)을 원자(50a)에 가까이한다(도 24(d)). 이 과정 중에서, 주파수 시프트(Δf)에 비약적 변화가 발생하였을 경우에는, 탐침(10)에 소정 레벨의 원자간 힘이 작용한 상태라고 판단한다. 따라서, 탐침(10)을 시료표면에서 멀리한다. 이때, 탐침(10)과 원자(50a)에는 소정의 원자간 힘이 작용하고 있으므로, 원자(50a)도 시료표면에서 끌어내는 것이 가능하다(도 24(e)). 여기서, 도 24(e)에서는, 탐침(10)의 선단에 원자(50a)가 붙어 있지만, 탐침(10)에서 떨어져 버리는 경우도 있다.
도 25(a) 내지 도 25(e)는 본 발명의 응용예인 원자조작방법(수직조작)의 다른 일례를 나타내는 설명도이다.
도 25(a) 내지 도 25(c)는 상술한 도 24(a) 내지 도 24(c)와 마찬가지이다. 본 예에서는, 위치 미세조정부의 기능을 이용하여, 고려되는 라인 프로파일의 원자고정위치로부터 조금 벗어난 위치에 탐침(10)을 이동한 후에, 탐침(10)에 소정 레벨의 원자간 힘이 작용하기까지, 탐침을 원자(50a)에 가까이한다(도 25(d)). 이 과정 중에서, 주파수 시프트(Δf)에 비약적 변화가 발생하였을 경우에는, 탐침(10)에 소정 레벨의 원자간 힘이 작용한 상태라고 판단한다. 따라서, 탐침(10)을 시료표면에서 멀리한다. 이때, 탐침(10)과 원자(50a) 사이에는 소정의 원자간 힘이 작용하고 있으므로, 원자(50a)도 시료표면에서 끌어내는 것이 가능하다(도 25(e)). 이와 같이, 탐침(10)과 원자(50a)의 상대위치를 미세조정하면서, 원자를 조작하는 것이 가능하다. 여기서, 도 25(e)에서는, 원자(50a)가 탐침(10)으로부터 떨어져 있지만, 탐침(10)의 선단에 붙어 있는 상태도 있을 수 있다.
도 26은 본 발명의 응용예인 원자조작방법의 플로챠트이다.
우선, 주사형 프로브 현미경을 이용하여, 시료표면을 주사하여 시료표면의 원자들(50, 50, ...)을 이미지화한다(스텝 S41). 다음으로, 이미지화된 시료표면의 원자들(50, 50, ...) 중에서 조작을 행할 원자(50a)를 선택한다(스텝 S42). 그리고, 탐침(10)을 고정위치로 이동시켜서(스텝 S43), 수평위치의 제어를 행한다(스텝 S44). 그리고, 주파수 시프트(Δf)를 측정하면서, 탐침(10)을 시료(원자(50a))에 가까이한다(스텝 S45). 그리고, 주파수 시프트(Δf)에 비약적 변화가 발생하였는지 여부를 판단한다(스텝 S46). 주파수 시프트(Δf)에 비약적 변화가 발생하였다고 판단하였을 경우(스텝 S46: YES), 탐침(10)에 소정 레벨의 원자간 힘이 작용하고 있다고 판단한다. 따라서, 탐침(10)을 시료표면에서 멀리한다(스텝 S47). 한편, 주파 수 시프트(Δf)에 비약적 변화가 발생하지 않았다고 판단하였을 경우(스텝 S46: NO), 처리를 S44로 되돌려서 다시 수평위치의 제어를 행하고, 더욱 탐침(10)을 시료(원자(50a))에 가까이한다. 여기서, 수평위치제어(스텝 S44)는, 상술한 도 17 또는 도 18과 마찬가지이다.
상술한 원자조작방법에서는, 탐침(10)을 시료표면과 수직방향으로 주사시켜서 원자(50a)를 조작하게 되는 경우에 대하여 설명하였다. 하지만, 탐침(10)을 시료표면과 수평방향으로 주사시켜서 원자(50a)를 조작하는 것도 가능하다. 도 27(a) 내지 도 27(e)는 본 발명의 응용예인 원자조작방법(수평조작)의 일례를 나타내는 설명도이다. 시료표면의 원자들(50, 50, ...)의 위에 대상 원자(50a)가 배치되어 있을 경우(도 27(a))를 상정한다. 우선, 원자(50a)의 위치로 탐침(10)을 이동시킨다(도 27(b)). 다음으로 본 발명의 탐침위치 제어방법에 의하여, 탐침(10)의 원자(50a)에 대한 수평위치를 고정한다(도 27(c)). 그리고, 탐침(10)에 소정 레벨의 원자간 힘이 작용하기까지, 탐침(10)을 원자(50a)에 가까이한다(도 27(d)). 탐침(10)에 소정 레벨의 원자간 힘이 작용한 상태일 때, 탐침(10)을 수평방향으로 이동시킨다. 이때, 탐침(10)과 원자(50a)에는 소정의 원자간 힘이 작용하고 있으므로, 원자(50a)가 탐침(10)의 이동에 추종하여, 시료표면의 이웃 원자의 위로 이동하는 것이 가능하다(도 27(e)).
또한, 도 27(a) 내지 도 27(e)에 나타내는 조작방법은, 도 28(a) 내지 도 28(e)에 나타내는 바와 같이 수정될 수 있다. 수정된 버전은, 위치 미세조정부의 기능을 이용하여, 고려되는 라인 프로파일의 원자고정위치로부터 조금 벗어난 위치 로 탐침(10)을 수평이동시킨다는 점에서 수정 전의 것과 다르다(도 28(d)). 탐침(10)과 원자(50a)에는 소정의 원자간 힘이 작용하고 있으므로, 원자(50a)가 탐침(10)의 이동에 추종하여, 시료표면의 이웃 원자의 위로 이동하는 것이 가능하다(도 28(e)). 이와 같이, 탐침(10)과 원자(50a)의 상대위치를 미세조정함으로써 원자를 조작하는 것이 가능하다. 여기서, 도 28(a) 내지 도 28(c)는 도 27(a) 내지 도 27(c)와 마찬가지이므로, 그 상세한 설명을 생략한다.
도 29(a) 내지 도 29(e)는 본 발명의 응용예인 원자조작방법(수평조작)의 다른 일례를 나타내는 설명도이다. 시료표면의 다른 원자들(예컨대 Ge 원자)(50, 50, ...)의 위에 원자(예컨대 Sn 원자)(50a)가 배치되어 있을 경우(도 29(a))를 상정한다. 우선, 원자(50a)의 위치에 탐침(10)을 이동시킨다(도 29(b)). 다음으로 본 발명의 탐침위치 제어방법에 의하여, 탐침(10)의 원자(50a)에 대한 수평위치를 고정한다(도 29(c)). 그리고, 탐침(10)에 소정 레벨의 원자간 힘이 작용하기까지, 탐침(10)을 원자(50a)에 가까이한다(도 29(d)). 탐침(10)에 소정 레벨의 원자간 힘이 작용한 상태일 때, 탐침(10)의 Z(수직)방향의 위치를 고정하고, 탐침(10)을 이웃 원자(50b)의 위치로 수평방향으로 이동시킨다(도 29(e)). 이때, 탐침(10)의 선단과 원자(50a 및 50b) 사이에 작용하는 원자간 힘에 의하여, 원자(50a)와 원자(50b)의 위치가 교환된다.
어떤 경우에는, 탐침(10)을 첫 원자(50a)로부터 둘째 원자(50b)로 움직이는 경우가, 그 반대방향으로 움직이는 경우보다, 두 원자의 위치 교환이 더 용이하게 된다. 도 30(a) 내지 도 30(e)는 그러한 경우를 나타낸다. 시료표면의 다른 원자 들(50, 50, ...)의 위에 원자(50a)가 배치되어 있다(도 30(a)). 우선, 목적 원자(50a)의 이웃 원자(50b) 위치에 탐침(10)을 이동시킨다(도 30(b)). 다음으로, 본 발명의 탐침위치 제어방법에 의하여, 탐침(10)의 원자(50b)에 대한 수평위치를 고정한다(도 30(c)). 그리고, 탐침(10)에 소정 레벨의 원자간 힘이 작용하기까지, 탐침(10)을 원자(50b)에 가까이한다(도 30(d)). 탐침(10)에 소정 레벨의 원자간 힘이 작용한 상태일 때, 탐침(10)의 Z(수직)방향의 위치를 고정하고, 탐침(10)을 목적 원자(50a)의 위치로 수평방향으로 이동시킨다(도 30(e)). 이때, 탐침(10)의 선단과 원자(50a 및 50b) 사이에 작용하는 원자간 힘에 의하여, 두 원자(50a와 50b)의 위치가 교환된다.
여기서, 상기 본 실시예에서는, 주파수검출부(15)가 공진주파수의 변화(주파수 시프트(Δf))를 검출하여, 상기 검출된 변화를 반영하는 신호를 수평위치 조정부(17)에 출력한다. 수평위치 조정부(17)는 주파수 시프트(Δf)의 신호에 포함되는 주파수(f1, f2(또는 f0)) 성분을 제로(0)가 되도록 수평위치의 피드백제어를 행하도록(도 5 참조) 한다. 이 메카니즘은 도 31에 나타내는 바와 같이 수정 가능하다. 상기 수정된 버전에서는, 수평위치 제어부(17')가, 수직위치 제어부(16)의 출력신호(ΔZ)에 기하여 수평위치 제어를 한다. 상기 수평위치 제어부(17')는, 수직위치 제어부(16)의 대역폭 및 주파수(f1 및 f2) 사이의 관계에 있어서, 상기 앞서 설명한 수평위치 제어부(17)와 다르다. 수직위치 제어부(16)의 대역폭을 fFB라 하면, f1 > fFB 및 f2 > fFB인 경우에는 도 5의 구성을, f1 < fFB 및 f2 < fFB인 경우에는 도 31의 구성을 이용하는 것이 바람직하다. 하지만, 상기 수직위치 제어부(16)의 피드백제어 기능은, 대역폭이 정확히 결정될 수 없는 다수의 필터를 이용하여 실행된다는 점을 알아야 한다.
또한, 실제의 측정에서는 시료가 기울어져 있는 경우가 있어, 탐침을 X방향, Y방향 또는 양방향으로 주사할 때 수직거리가 변화될 수 있다. 그래서, 이를 고려하여, 도 5의 구성의 경우에는, 기울기보정부(18)를 더욱 포함하여, 수평위치 제어부(17)의 출력(X, ΔX, Y, ΔY)에 기하여, 수직방향의 변위보정량(ΔZ')을 생성하여, 이를 수직위치 제어부(16)의 출력신호(ΔZ)에 더함으로써, 수직방향의 변위(ΔZ)를 조정하여 시료의 기울기를 보정하도록 하여도 좋다(도 32(a)). 마찬가지로, 도 31의 구성의 경우에도, 기울기보정부(18)를 더욱 포함한다. 이 경우, 기울기보정부(18)는, 수평위치 제어부(17')의 출력(X, ΔX, Y, ΔY)에 기하여, 수직방향의 변위보정량(ΔZ')을 생성하여, 이를 수직위치 제어부(16)에 피드백하여, 다시 탐침의 수직방향의 변위(ΔZ)를 조정하여, 시료의 기울기를 보상하도록 하여도 좋다(도 32(b)). 이 경우, 예컨대, 수직위치 제어부(16)는, 자신의 출력신호(ΔZ)와 기울기보정부(18)로부터 수신한 신호(ΔZ')를 가산한 보정된 신호를 수직위치 주사부(19)에 보내주도록 하면 좋다.
또한, 본 실시예에서는, 탐침(10)과 시료(원자(50))의 3차원의 상대위치의 변화에 관하여, 「탐침(10)을 움직이는」 경우에 대하여 설명하였다. 하지만, 상기 변화는 시료(원자(50))를 움직이는 경우, 탐침(10) 및 시료(원자(50))를 움직이는 경우에도 생길 수 있다. 이들 경우에 대하여도 본 발명을 적용 가능하다는 것은 말 할 필요도 없다.
본 발명에 관련된 탐침위치 제어장치에서는, 발진수단이 탐침과 시료를 상대적으로, 시료표면에 평행한 2방향으로 각각 주파수 f1, f2로 진동시키면서, 추적수단이 탐침과 시료를 시료표면에 평행한 방향으로 상대적으로 이동시킨다. 그 동안, 측정수단이 양자간의 상호작용을 측정하고, 추적수단은 상호작용 측정치에 상기 주파수성분 f1, f2가 나타나지 않는 점(이는, 예컨대 시료표면의 원자배열의 정점(top)이나 원자배열의 바닥점(bottom), 안점(saddle) 등에 해당함. 이하, 이를 시료의 특징점이라 함)을 검출한다. 특징점이 검출된 후에는, 추적수단은, 그 특징점을 추적하도록, 탐침과 시료를 이동시킨다. 속도검출수단은, 그 추적수단의 추적이동으로부터, 탐침과 시료의 상대이동의 속도를 검출한다. 이 상대이동은, 예컨대 상기 시료의 열 드리프트나 크리프 등에 의하여 생기기 때문에, 검출된 속도는, 이들 속도를 나타내는 것이 된다. 보정수단은, 이 검출된 속도를 이용하여, 탐침과 시료의 상대위치의 제어를 보정한다. 이로써, 예컨대 시료의 원자 이미지를 검출하고 있는 동안에 열 드리프트 등에 의하여 시료의 측정대상 위치가 이동하였다고 하더라도, 본 시스템인 탐침위치 제어장치는 이동을 올바르게 보정하여 추적할 수가 있기 때문에, 올바른 원자 이미지가 얻어진다. 시료의 목적 원자에 대하여 어떠한 조작을 행하는 경우에도 이 원자 트레킹 기술은 마찬가지로 적용 가능하다.

Claims (10)

  1. 시료표면의 원자레벨의 이미지를 얻기 위하여, 또는, 시료표면의 원자에 대하여 소정의 조작을 행하기 위하여, 시료표면의 원자와 탐침의 선단 사이의 상호작용을 측정하면서 탐침과 시료의 상대위치를 제어하는 탐침위치 제어장치에 있어서,
    a) 시료표면에 수직인 방향의 상기 상호작용을 측정하는 측정수단과,
    b) 탐침과 시료를 상대적으로, 시료표면에 평행한 두 방향으로 각각 주파수 f1, f2로 진동시키는 발진수단과,
    c) 탐침과 시료를 상대적으로 이동시키면서 상기 상호작용을 측정하고, 상호작용 측정치에서 상기 주파수성분 f1, f2가 나타나지 않는 점을 검출함과 함께, 상기 검출된 측정치가 유지되도록 탐침과 시료를 상대이동을 제어하는 추적수단과,
    d) 추적수단에 의한 상기 상대이동량에 기하여, 상기 상대이동의 속도를 검출하는 속도검출수단과,
    e) 검출된 속도를 이용하여, 상기 상대위치의 제어를 보정하는 보정수단
    을 구비하는 것을 특징으로 하는 탐침위치 제어장치.
  2. 청구항 1에 있어서,
    상기 주파수 f1, f2가 서로 같은 것을 특징으로 하는 탐침위치 제어장치.
  3. 청구항 1 또는 2에 있어서,
    상기 두 방향이 서로 직교하고 있고, 주파수 f1, f2가 90° 위상차를 가지는 것을 특징으로 하는 탐침위치 제어장치.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 속도검출수단이, 시료표면에 평행한 방향의 속도를 검출하는 것을 특징으로 하는 탐침위치 제어장치.
  5. 청구항 4에 있어서,
    상기 속도검출수단이, 시료표면에 수직인 방향의 속도도 검출하는 것을 특징으로 하는 탐침위치 제어장치.
  6. 시료표면의 원자레벨의 이미지를 얻기 위하여, 또는, 시료표면의 원자에 대하여 소정의 조작을 행하기 위하여, 시료표면의 원자와 탐침의 선단 사이의 상호작용을 측정하면서 탐침과 시료의 상대위치를 제어하는 탐침위치 제어방법에 있어서,
    a) 시료표면에 평행한 두 방향으로 각각 주파수 f1, f2로, 탐침과 시료를 상대적으로 진동시키면서 탐침과 시료를 상대적으로 이동시키고, 시료표면에 수직인 방향의 상호작용 측정치에서 상기 주파수성분 f1, f2가 나타나지 않는 점을 검출하고,
    b) 이로써 검출된 측정치가 유지되도록 탐침과 시료의 상대이동을 제어함으로써, 상기 상대이동의 속도를 검출하고,
    c) 검출된 속도를 이용하여, 상기 상대이동의 제어를 보정하는
    것을 특징으로 하는 탐침위치 제어방법.
  7. 청구항 6에 있어서,
    상기 주파수 f1, f2가 서로 같은 것을 특징으로 하는 탐침위치 제어방법.
  8. 청구항 6 또는 7에 있어서,
    상기 두 방향이 서로 직교하고 있고, 주파수 f1, f2가 90° 위상차를 가지는 것을 특징으로 하는 탐침위치 제어방법.
  9. 청구항 6 내지 청구항 8 중 어느 한 항에 있어서,
    상기 c) 속도검출단계에 있어서, 시료표면에 평행한 방향의 속도를 검출하는 것을 특징으로 하는 탐침위치 제어방법.
  10. 청구항 9에 있어서,
    상기 c) 속도검출단계에 있어서, 시료표면에 수직인 방향의 속도도 검출하는 것을 특징으로 하는 탐침위치 제어장치.
KR1020070050792A 2006-05-25 2007-05-25 탐침위치 제어장치 및 방법 KR100909700B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00145881 2006-05-25
JP2006145881A JP4873460B2 (ja) 2006-05-25 2006-05-25 探針位置制御装置

Publications (2)

Publication Number Publication Date
KR20070114033A true KR20070114033A (ko) 2007-11-29
KR100909700B1 KR100909700B1 (ko) 2009-07-29

Family

ID=38748276

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050792A KR100909700B1 (ko) 2006-05-25 2007-05-25 탐침위치 제어장치 및 방법

Country Status (4)

Country Link
US (1) US7703314B2 (ko)
JP (1) JP4873460B2 (ko)
KR (1) KR100909700B1 (ko)
CN (1) CN100578679C (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417209B1 (ko) * 2011-07-07 2014-07-11 한양대학교 산학협력단 주사 탐침 현미경을 이용하여 획득된 데이터 값들에 존재하는 왜곡의 제거 장치 및 방법
KR102216627B1 (ko) * 2019-09-17 2021-02-17 안동대학교 산학협력단 주사 탐침 현미경

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072621A1 (ja) * 2005-12-19 2007-06-28 National University Corporation Kanazawa University 走査型プローブ顕微鏡
US7712354B2 (en) * 2006-06-06 2010-05-11 Jeol Ltd. Method and apparatus for controlling Z-position of probe
JP4960724B2 (ja) * 2007-02-23 2012-06-27 パナソニック株式会社 赤外線センサおよびその製造方法
JP5424404B2 (ja) * 2008-02-12 2014-02-26 国立大学法人秋田大学 表面状態計測装置及び該装置を用いた表面状態計測方法
DE112008003880T5 (de) * 2008-05-27 2011-04-14 Sadik Hafizovic Vorrichtung zur Lock-In-Verstärkung eines Eingangssignals und Verfahren zur Erzeugung eines Referenzsignals für einen Lock-In-Verstärker
US20100100991A1 (en) * 2008-10-20 2010-04-22 Nanochip, Inc. Charge-Amp Based Piezoelectric Charge Microscopy (CPCM) Reading of Ferroelectric Bit Charge Signal
MY156153A (en) * 2009-12-01 2016-01-15 Bruker Nano Inc Method and apparatus of operating a scanning probe microscope
EP2548033B1 (en) * 2010-03-19 2021-03-03 Bruker Nano, Inc. Low Thermal Drift Scanning Probe Microscope and Method for Minimizing Thermal Drift in an Atomic Force Microscope
FR2959823B1 (fr) 2010-05-07 2013-05-17 Centre Nat Rech Scient Microscope a force atomique fonctionnant en mode circulaire, dispositif permettant sa mise en oeuvre et procede de mesure
CN102346202A (zh) * 2010-07-29 2012-02-08 鸿富锦精密工业(深圳)有限公司 机械手
JP5592841B2 (ja) * 2011-06-16 2014-09-17 株式会社日立製作所 磁気力顕微鏡及びそれを用いた磁場観察方法
US8490211B1 (en) 2012-06-28 2013-07-16 Western Digital Technologies, Inc. Methods for referencing related magnetic head microscopy scans to reduce processing requirements for high resolution imaging
US8989511B1 (en) 2012-06-28 2015-03-24 Western Digital Technologies, Inc. Methods for correcting for thermal drift in microscopy images
JP6185701B2 (ja) * 2012-10-15 2017-08-23 株式会社ミツトヨ 形状測定装置
US8860505B2 (en) 2013-02-04 2014-10-14 Zurich Instruments Ag Lock-in amplifier with phase-synchronous processing
US9075080B2 (en) 2013-03-15 2015-07-07 Bruker Nano, Inc. Method and apparatus for adaptive tracking using a scanning probe microscope
JP6274949B2 (ja) * 2014-04-04 2018-02-07 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
KR101710337B1 (ko) * 2015-06-02 2017-02-28 파크시스템스 주식회사 조정 가능한 스캔 속도를 가지는 측정 장치 및 측정 방법
US10175263B2 (en) * 2015-06-25 2019-01-08 Bruker Nano, Inc. Sample vessel retention structure for scanning probe microscope
KR101607606B1 (ko) * 2015-08-17 2016-03-31 한국표준과학연구원 원자간력 현미경의 측정 방법
JP6848640B2 (ja) * 2017-04-17 2021-03-24 株式会社島津製作所 走査型プローブ顕微鏡
CN107967693B (zh) * 2017-12-01 2021-07-09 北京奇虎科技有限公司 视频关键点处理方法、装置、计算设备及计算机存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169281B1 (en) * 1998-07-29 2001-01-02 International Business Machines Corporation Apparatus and method for determining side wall profiles using a scanning probe microscope having a probe dithered in lateral directions
JP4576520B2 (ja) 2000-07-18 2010-11-10 国立大学法人北陸先端科学技術大学院大学 試料表面の電子エネルギ準位の測定方法
US7013717B1 (en) 2001-12-06 2006-03-21 Veeco Instruments Inc. Manual control with force-feedback for probe microscopy-based force spectroscopy
US7473887B2 (en) * 2002-07-04 2009-01-06 University Of Bristol Of Senate House Resonant scanning probe microscope
JP4872074B2 (ja) 2005-04-08 2012-02-08 国立大学法人大阪大学 原子位置固定装置、原子位置固定方法、原子操作方法及び原子間力測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417209B1 (ko) * 2011-07-07 2014-07-11 한양대학교 산학협력단 주사 탐침 현미경을 이용하여 획득된 데이터 값들에 존재하는 왜곡의 제거 장치 및 방법
KR102216627B1 (ko) * 2019-09-17 2021-02-17 안동대학교 산학협력단 주사 탐침 현미경

Also Published As

Publication number Publication date
CN100578679C (zh) 2010-01-06
JP4873460B2 (ja) 2012-02-08
US7703314B2 (en) 2010-04-27
KR100909700B1 (ko) 2009-07-29
JP2007315918A (ja) 2007-12-06
US20070272005A1 (en) 2007-11-29
CN101083151A (zh) 2007-12-05

Similar Documents

Publication Publication Date Title
KR100909700B1 (ko) 탐침위치 제어장치 및 방법
JP5654477B2 (ja) 動的なプローブ検出システム
KR101488059B1 (ko) 탐침 검출 시스템
US7907288B2 (en) Shape measuring apparatus
JPH1130619A (ja) 走査プローブ顕微鏡
EP0890820A1 (en) Scanning probe microscope
JP4496350B2 (ja) 原子間力顕微鏡
US20130042375A1 (en) Control system for a scanning probe microscope
JP2010032544A (ja) 走査過程に及ぼす機械振動の騒乱効果を補償するラスタモード走査装置
US8151368B2 (en) Dynamic mode AFM apparatus
JP4872074B2 (ja) 原子位置固定装置、原子位置固定方法、原子操作方法及び原子間力測定方法
US11656244B2 (en) Compensating control signal for raster scan of a scanning probe microscope
JP5354220B2 (ja) 原子位置固定装置、原子位置固定方法及び原子操作方法
JP3935350B2 (ja) 距離制御方法およびそれを用いた走査型プローブ顕微鏡
JP2005520281A (ja) 顕微鏡のひずみの影響を低減するためのデバイス
JP3216093B2 (ja) 走査形プローブ顕微鏡
JP3453277B2 (ja) 走査プローブ顕微鏡
RU2703607C1 (ru) Устройство компенсации собственных колебаний иглы зонда сканирующего микроскопа
KR20230172455A (ko) 표면을 측정하고/하거나 수정하기 위한 장치
KR20240023166A (ko) 실시간 드리프트 보정을 사용한 afm 이미징
JP3054509B2 (ja) 走査型力顕微鏡、電位計、電位及び形状測定器
JP2002022637A (ja) 走査型プローブ顕微鏡
JP2024520387A (ja) クリープ補正を備えるafmイメージング
JP2000227436A (ja) 走査探針顕微鏡および試料観察方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130705

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 10