KR20070089784A - Light emitting device, lighting equipment, or liquid crystal display device using such light emitting device - Google Patents

Light emitting device, lighting equipment, or liquid crystal display device using such light emitting device Download PDF

Info

Publication number
KR20070089784A
KR20070089784A KR1020077007653A KR20077007653A KR20070089784A KR 20070089784 A KR20070089784 A KR 20070089784A KR 1020077007653 A KR1020077007653 A KR 1020077007653A KR 20077007653 A KR20077007653 A KR 20077007653A KR 20070089784 A KR20070089784 A KR 20070089784A
Authority
KR
South Korea
Prior art keywords
light emitting
emitting device
aluminum nitride
substrate
light
Prior art date
Application number
KR1020077007653A
Other languages
Korean (ko)
Other versions
KR100867970B1 (en
Inventor
게이이치 야노
Original Assignee
가부시끼가이샤 도시바
도시바 마테리알 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 도시바 마테리알 가부시키가이샤 filed Critical 가부시끼가이샤 도시바
Publication of KR20070089784A publication Critical patent/KR20070089784A/en
Application granted granted Critical
Publication of KR100867970B1 publication Critical patent/KR100867970B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

A light emitting device (11) is characterized in that at least one light emitting element (15) is mounted on a surface of a cofired substrate (13) made of aluminum nitride by flip chip method; and a reflector (16), which has an inclined plane (14) for reflecting the light emitted from the light emitting element (15) in a front direction, is bonded on the surface of the aluminum nitride substrate (13) so as to surround the circumference of the light emitting element (15). The light emitting device can be manufactured by a simple manufacturing process, has excellent heat dissipating performance, permits a larger current to flow, has high light emitting efficiency and remarkably increases luminance.

Description

발광 장치 및 그것을 이용한 조명 기구 또는 액정표시장치{LIGHT EMITTING DEVICE, LIGHTING EQUIPMENT, OR LIQUID CRYSTAL DISPLAY DEVICE USING SUCH LIGHT EMITTING DEVICE}LIGHT EMITTING DEVICE, LIGHTING EQUIPMENT, OR LIQUID CRYSTAL DISPLAY DEVICE USING SUCH LIGHT EMITTING DEVICE}

본 발명은 절연 기판 표면에 탑재한 발광 다이오드(LED:Light Emitting Diode)나 반도체 레이저 등의 발광 소자를 포함하는 발광 장치 및 조명 기구(실내 조명) 또는 액정 표시장치에 관한 것이다. 더 상세하게는, 본 발명은 간소한 공정을 통해 제조될 수 있고, 소형화될 수 있고, 방열성이 우수하고, 더 큰 전류를 흐르게 할 수 있고, 발광 효율이 높은 휘도를 크게 증가시킬 수 있는 발광 장치 및 그것을 이용한 조명 기구 또는 액정 표시장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device comprising a light emitting element such as a light emitting diode (LED) or a semiconductor laser mounted on the surface of an insulating substrate, a lighting device (indoor lighting) or a liquid crystal display device. More specifically, the present invention can be manufactured through a simple process, can be miniaturized, excellent in heat dissipation, can flow a larger current, can greatly increase the luminance of high luminous efficiency, the light emitting device And a lighting apparatus or liquid crystal display device using the same.

발광 다이오드(이하, LED 칩이라 함)는 전압을 인가하면 광원으로서 작용하고, 두개의 반도체 사이에 접촉면(pn-접합) 부근에서의 전자와 정공의 재결합의 결과에 의해서 발광하는 광을 이용한 발광 장치(발광 소자)이다. 이 발광 소자는 소형이고 전기 에너지의 광으로의 변환 효율이 높아서, 가전제품, 조명 기구, 조광식 조작 스위치(lighted operation switch), LED 표시기(LED 표시장치)로서 널리 이용되고 있다. A light emitting diode (hereinafter referred to as an LED chip) acts as a light source when a voltage is applied and uses a light that emits light as a result of recombination of electrons and holes in the vicinity of a contact surface (pn-junction) between two semiconductors. (Light emitting element). This light emitting device is compact and has high conversion efficiency of electric energy into light, and thus is widely used as home appliances, lighting equipment, lighted operation switches, and LED indicators (LED displays).

또한, 필라멘트를 이용하는 전구와는 다르게, 발광 다이오드는 반도체 소자 여서 파열(blowout)이 없고 초기 구동 특성이 우수하고 심지어 진동이나 반복된 온/오프(ON/OFF) 조작하에서도 우수한 내구성을 가진다. 따라서, 발광 다이오드는 자동차 대시보드용 표시기의 백라이트 또는 표시장치에 이용된다. 특히, 발광 다이오드는 태양광의 영향을 받지 않고 높은 채도로 선명한 색깔의 발광을 얻을 수 있기 때문에, 실외에 설치되는 표시장치, 교통용 표시장치나 신호기기 등으로도 그 용도가 확대되는 상황이다. In addition, unlike light bulbs using filaments, light emitting diodes are semiconductor devices, which have no blowout, excellent initial driving characteristics, and even excellent durability even under vibration or repeated ON / OFF operations. Thus, light emitting diodes are used in backlights or displays of automotive dashboard indicators. In particular, since the light emitting diode can obtain bright color emission with high saturation without being affected by sunlight, its use is extended to display devices, traffic display devices, signal devices, and the like, which are installed outdoors.

상술한 LED 칩과 같은 발광 소자를 탑재한 종래의 발광 장치로서는, 예를 들면 도 2에 나타난 발광 장치가 제안되고 있다(예를 들면, 특허 문헌1(일본국 공개 특허 공보 제3,316,838호) 참조). 이 발광 장치(1)는 세라믹 패키지(3), 발광 소자로서의 LED 칩(5), 제 1 금속층(6), 제 2 금속층(7) 및 수지 몰드(resin molding)(8)를 구비하여 구성된다. 세라믹 패키지(3)는 도전성 상호 접속부(도체 배선)(2)를 포함하고, 세라믹 패키지에 일체로 형성된 다수의 오목 개구부를 갖는다. 이 오목 개구부에 있어서 LED 칩(5)은 본딩 와이어(bonding wire)(4)를 통해서 도체 배선(2)과 전기적으로 접속된다. 제 1 금속층(6)과 제 2 금속층(7)은 오목 개구부의 측벽에 설치된다. 수지 몰드(8)는 오목 개구부를 밀봉한다.As a conventional light emitting device equipped with a light emitting element such as the above-described LED chip, for example, the light emitting device shown in Fig. 2 is proposed (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 3,316,838)). . This light emitting device 1 includes a ceramic package 3, an LED chip 5 as a light emitting element, a first metal layer 6, a second metal layer 7 and a resin molding 8. . The ceramic package 3 includes a conductive interconnect (conductor wiring) 2 and has a plurality of concave openings integrally formed in the ceramic package. In this recessed opening, the LED chip 5 is electrically connected to the conductor wiring 2 via a bonding wire 4. The first metal layer 6 and the second metal layer 7 are provided on the side walls of the concave openings. The resin mold 8 seals the recess opening.

특허 문헌은, 종래의 발광 장치에 따르면, 오목 개구부 내에 설치된 제 1 금속층(6)에 의해 세라믹 패키지(3)와의 밀착성이 높아지는 동시에, LED 칩(5)으로부터의 광이 제 2 금속층(7)에 의해 반사되어 광 손실이 줄어들어서, 표시장치 등의 콘트라스트(contrast)가 통상적으로 향상될 수 있다고 기술한다.According to the conventional light emitting device, the adhesion to the ceramic package 3 is enhanced by the first metal layer 6 provided in the concave opening, and the light from the LED chip 5 is transferred to the second metal layer 7. It is reflected that the light loss is reduced so that the contrast of a display device or the like can be conventionally improved.

그러나, 상기 종래의 반도체 장치에 있어서는, LED 칩을 탑재한 세라믹 패키 지가 주로 약 15 W/mㆍK 내지 20 W/mㆍK의 낮은 열 전도율을 가지는 알루미나(Al2O3)를 주체로 하여 이루어진 세라믹재로 구성되고 LED 칩을 밀봉하기 위한 몰드 수지가 역시 낮은 열 전도율을 가지기 때문에, 종래의 발광 장치는 방열성이 매우 나쁜 치명적인 결점이 있다. LED 칩은 고 전압 및 고 전류를 인가하면, 발열에 인해 파괴되기도 한다. 따라서, LED 칩에 인가될 수 있는 최대 전압이 낮아지고 전류값도 수십 밀리암페어(mA) 정도로 제한되기 때문에, 종래의 발광 장치는 발광 휘도가 낮다는 문제점이 제기되고 있다.However, in the above conventional semiconductor device, the ceramic package on which the LED chip is mounted is mainly composed of alumina (Al 2 O 3 ) having a low thermal conductivity of about 15 W / m · K to 20 W / m · K. Since the mold resin for sealing the LED chip is also made of a ceramic material which is made of a ceramic material, and also has a low thermal conductivity, the conventional light emitting device has a fatal defect that is very poor in heat dissipation. When the LED chip is applied with high voltage and high current, it may be destroyed by heat generation. Therefore, since the maximum voltage that can be applied to the LED chip is lowered and the current value is limited to about several tens of milliamperes (mA), the problem of low light emission luminance of the conventional light emitting device has been raised.

또, 상술한 종래의 LED 칩을 사용한 발광 장치에서는, 기술적으로 요구되는 발광 휘도가 낮았기 때문에, 종래의 발광 장치에서의 상술한 통전량에서도 큰 장해가 없이 실질적으로 사용되어 왔다. 그러나, LED 발광 소자의 최근 확대되고 있는 특정 용도(응용 분야)에서는, 더 높은 출력에서 통전량을 대략 수 암페어로 증가시킬 수 있어서 휘도를 향상시킬 수 있는 구조를 이루기 위한 기술적 요구가 있다.Moreover, in the light emitting device using the conventional LED chip mentioned above, since the light emission luminance technically required was low, it has been used practically without great obstacle also in the above-mentioned electricity supply amount in the conventional light emitting device. However, in the recently expanding specific applications (application fields) of LED light emitting devices, there is a technical need to achieve a structure capable of increasing the amount of energization to approximately several amperes at a higher output, thereby improving luminance.

또, 이 종래의 발광 장치에서는, 발광 소자를 수용하기 위한 다수의 오목 개구부와 일체로 형성된 세라믹 패키지가 이용되기 때문에, 이 발광 장치를 제조하는 공정이 복잡해지고, 이 장치를 구성하는 부품의 최종 정밀도가 낮아져 충분한 방출 특성(발광 특성)을 얻을 수 없는 문제가 제기되어 왔다. 즉, 다수의 오목 개구부를 단단하고 깨지기 쉬운 세라믹재에 일체로 형성하기 위한 가공 조업이 매우 어려워서, 많은 작업 비용과 처리 비용이 요구되었다.Moreover, in this conventional light emitting device, since a ceramic package formed integrally with a plurality of concave openings for accommodating the light emitting element is used, the process of manufacturing the light emitting device is complicated, and the final precision of the components constituting the device is complicated. There has been a problem that cannot be obtained so that sufficient emission characteristics (luminescence characteristics) can be obtained. That is, the machining operation for forming a plurality of concave openings integrally into a hard and brittle ceramic material is very difficult, requiring a great deal of work and processing costs.

한편, 연질의 세라믹 성형체 단계에서 드릴 작업(drilling work)에 의해 다 수의 오목 개구부를 세라믹 부재에 일체로 형성한 후 성형체를 소결(燒結)한 경우에, 재료 조성에 있어 수축 오차와 불균일성 때문에 오목 개구부의 치수 정밀도, 최종 정밀도 및 표면 거칠기의 분포가 불리하게 저하되어서 소정의 광 반사 특성을 얻을 수 없다는 문제가 제기되었다.On the other hand, when a plurality of concave openings are integrally formed in the ceramic member by drilling work in the step of soft ceramic molding and then the molded body is sintered, concave due to shrinkage error and nonuniformity in the material composition The problem has arisen that the distribution of the dimensional precision, final precision and surface roughness of the openings is disadvantageously lowered to obtain a predetermined light reflection characteristic.

상술한 발광 소자를 수용하기 위한 오목 개구부의 측면은 발광을 반사하기 위한 반사체로서 기능하지만, 이 반사체가 세라믹 기판에 일체로 형성되기 때문에, 반사체의 내측 벽면의 표면 거칠기(Ra)가 약 0.5 ㎛로 거칠어져서 광의 산란과 분산이 일어나기 쉽다는 문제가 역시 제기되었다. The side surface of the concave opening for accommodating the above-described light emitting element functions as a reflector for reflecting light emission, but since this reflector is integrally formed on the ceramic substrate, the surface roughness Ra of the inner wall surface of the reflector is about 0.5 탆. The problem has also been raised that roughening is likely to cause scattering and scattering of light.

더욱이, 광의 반사 방향을 제어하기 위해 소정의 경사 각도를 반사체의 내벽에 부여하려 하여도, 경사 각도의 변동과 분산이 커서 소정의 경사 각도를 안정하게 부여하는 것이 어려웠다. 여하간에, 오목 개구부의 형상 정밀도를 정확하게 제어하는 것이 어려웠다. 또한, 소정의 최종 정밀도를 실현하도록 작업자가 반사체를 조정 가공하여도, 단단하고 깨지기 쉬운 세락믹재를 매끄럽게 가공하기 어려워서 가공에 요하는 인시(man-hour)가 크게 증가하는 문제가 역시 제기되었다.Moreover, even when trying to give a predetermined inclination angle to the inner wall of the reflector in order to control the reflection direction of light, it was difficult to give a predetermined inclination angle stably because the variation and dispersion of the inclination angle were large. In any case, it was difficult to accurately control the shape precision of the concave opening. In addition, even if the operator adjusts the reflector so as to realize a predetermined final precision, the problem of increasing the man-hour required for processing is also difficult because it is difficult to process the hard and brittle ceramic material smoothly.

또한, 도 2에 나타난 바와 같은 종래의 발광 장치에 있어, LED 칩과 도전성 상호 접속부가 와이어 본딩 공정에 의해 전기적으로 접속되기 때문에, LED 칩 상에 설치된 와이어나 전극 패드가 발광을 부분적으로 막거나 차단하여서 광 취출(light-extraction) 효율이 저하되는 문제가 역시 제기되었다.Further, in the conventional light emitting device as shown in Fig. 2, since the LED chip and the conductive interconnect are electrically connected by a wire bonding process, a wire or an electrode pad provided on the LED chip partially blocks or blocks the light emission. The problem of lowering the light-extraction efficiency has also been raised.

또한, 본딩 와이어가 기립한 부분이 장치의 두께 방향으로 돌출하게 되고, 본딩 와이어의 가장자리를 접속하기 위한 큰 전극 영역이 불리하게 요구되므로 상 호 접속부 구조를 포함하는 LED 패키지가 대형화되는 문제가 제기되어 왔다.In addition, since a portion where the bonding wire stands up protrudes in the thickness direction of the device, and a large electrode area for connecting the edge of the bonding wire is disadvantageously required, an LED package including an interconnection structure is enlarged. come.

또한, 본 장치의 두께 방향으로 돌출되는 본딩 와이어의 악영향을 피하도록 LED 칩이 도 2에 나타난 바와 같이 오목 개구부 내에 탑재되어 수용될 때, LED 칩으로부터의 발광이 오목 개구부의 내벽에 흡수되어서, 광 손실이 증가하여 발광 효율이 저하되었다. 그리하여, 종래의 기술에 따르면, 광을 반사하는 두 금속층이 각각의 오목 개구부의 내벽에 설치되어 광 흡수 손실을 줄이고 있다.In addition, when the LED chip is mounted and accommodated in the concave opening as shown in Fig. 2 so as to avoid the adverse influence of the bonding wire protruding in the thickness direction of the apparatus, light emitted from the LED chip is absorbed by the inner wall of the concave opening, The loss increased and the luminous efficiency was lowered. Thus, according to the prior art, two metal layers that reflect light are provided on the inner wall of each concave opening to reduce light absorption loss.

그러나, 곡면형 내벽을 가지는 오목 개구부 내에 그러한 반사 금속층을 균일하게 형성하는 것은 매우 어려워서, 발광이 내벽에 의해 부분적으로 흡수되어 광 손실을 유도한다. 게다가, 오목 개구부의 내벽 자체가 광의 이동과 전송을 방해하는 구조여서 휘도가 저하되는 또 다른 문제가 역시 제기되었다.However, it is very difficult to uniformly form such a reflective metal layer in a concave opening having a curved inner wall, so that light emission is partially absorbed by the inner wall, leading to light loss. In addition, another problem has also been raised, in which the inner wall of the concave opening itself is a structure that obstructs the movement and transmission of light, so that the brightness is lowered.

본 발명은 상술한 종래의 문제를 해결하기 위해 이루어진 것이며, 본 발명의 목적은 간단한 공정을 통하여 제조될 수 있고, 방열성이 우수하고, 보다 큰 전류를 흐르게 할 수 있고, 발광 효율이 높은 휘도를 현저히 증가시킬 수 있는 발광 장치를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention can be manufactured through a simple process, excellent heat dissipation properties, a larger current can be flown, and a high luminous efficiency is achieved. It is to provide a light emitting device that can be increased.

상술한 목적을 이루기 위해서, 본 발명은 질화알루미늄 동시-소성(co-fired) 기판과, 플립-칩(flip-chip) 방법을 통하여 동시-소성 기판의 표면 상에 탑재되는 적어도 하나의 발광 소자와, 발광 소자로부터 방출된 광을 정면측 방향으로 반사하는 경사면을 가지고 이 발광 소자의 주위를 둘러싸도록 질화알루미늄 동시-소성 기판의 표면에 접합되는 반사체(광 반사체)를 포함하는 발광 장치를 제공한다. In order to achieve the above object, the present invention provides an aluminum nitride co-fired substrate, at least one light emitting device mounted on the surface of the co-fired substrate through a flip-chip method; And a reflector (light reflector) bonded to a surface of an aluminum nitride co-fired substrate to have an inclined surface reflecting light emitted from the light emitting element in a front side direction and to surround the light emitting element.

상술한 발광 장치에서, 질화알루미늄 동시-소성 기판의 이면에 인쇄 배선 기판을 배치하고, 인쇄 배선 기판의 배선이 질화알루미늄 동시-소성 기판의 이면의 외주부(outer peripheral portion)에 설치된 전극에 접속되어, 전류(구동 전력)가 인쇄 배선 기판으로부터 질화알루미늄 동시-소성 기판에 형성된 내부 배선층을 통하여 발광 소자로 공급되도록 구성하는 것이 바람직하다.In the above-described light emitting device, a printed wiring board is disposed on the back surface of an aluminum nitride co-fired substrate, and the wiring of the printed wiring board is connected to an electrode provided on an outer peripheral portion of the back surface of the aluminum nitride co-fired substrate, It is preferable that the current (driving power) is configured to be supplied from the printed wiring board to the light emitting element through the internal wiring layer formed on the aluminum nitride co-fired substrate.

또한, 본 발광 장치에서, 인쇄 배선 기판은 질화알루미늄 동시-소성 기판의 직하부에 스루홀(through hole)을 포함하고, 스루홀에 끼워 맞춰지는 볼록부를 가지는 히트싱크(heat sink)가 질화알루미늄 동시-소성 기판의 이면에 밀착 접합되는 것이 바람직하다.Also, in the present light emitting device, the printed wiring board includes a through hole directly under the aluminum nitride co-fired substrate, and a heat sink having a convex portion fitted into the through hole is simultaneously made of aluminum nitride. -It is preferable to adhere closely to the back surface of the plastic substrate.

또한, 본 발광 장치에서, 발광 소자가 탑재되는 질화알루미늄 동시-소성 기판 표면은 0.3 ㎛이하의 표면 거칠기(Ra)를 가지도록 경면-연마되는(mirror-polished) 것이 바람직하다.Further, in the present light emitting device, it is preferable that the surface of the aluminum nitride co-fired substrate on which the light emitting element is mounted is mirror-polished so as to have a surface roughness Ra of 0.3 m or less.

또한, 본 발광 장치에서, 반사체의 경사면에 알루미늄(Al) 또는 은(Ag)으로 이루어지는 금속막을 형성하는 것이 바람직하다.In the present light emitting device, it is preferable to form a metal film made of aluminum (Al) or silver (Ag) on the inclined surface of the reflector.

본 발명의 조명 기구는 기구 본체, 기구 본체에 설치된 상술한 발광 장치, 조명 기구를 턴-온(turning-on) 또는 턴-오프(turning-off)하기 위하여 기구 본체에 설치되는 턴-온 장치를 포함한다.The lighting apparatus of the present invention includes an apparatus main body, the above-described light emitting device installed in the apparatus main body, and a turn-on apparatus installed in the apparatus main body to turn on or turn off the lighting apparatus. Include.

본 발명의 액정 표시장치는 액정 표시장치 본체와, 액정 표시장치 본체에 설치된 상술한 발광 장치를 포함한다.The liquid crystal display of the present invention includes a liquid crystal display body and the above-described light emitting device provided in the liquid crystal display body.

구체적으로는, 본 발명에 따른 발광 장치는 LED 칩을 탑재하는 세라믹 기판(LED 패키지)으로서 높은 열 전도율을 가지는 질화알루미늄(AlN) 동시-소성 기판 또는 금속화 AlN 기판을 사용한다. 이 동시-소성 질화알루미늄(AlN) 기판에 내부 배선층이 형성된다. 이 동시-소성 AlN 기판으로서, 170 W/mㆍK 이상의 높은 열 전도율을 가지는 AlN 기판을 사용하는 것이 바람직하다.Specifically, the light emitting device according to the present invention uses an aluminum nitride (AlN) co-fired substrate or a metallized AlN substrate having high thermal conductivity as a ceramic substrate (LED package) on which the LED chip is mounted. An internal wiring layer is formed on this co-fired aluminum nitride (AlN) substrate. As this co-fired AlN substrate, it is preferable to use an AlN substrate having a high thermal conductivity of 170 W / m · K or more.

특히, 높은 열 전도율을 가지는 질화알루미늄을 사용함으로써, 발광 장치의 방열성이 크게 높아지고, 발광 소자의 임계 전류량이 커져서, 큰 전류가 흐르게 할 수 있고, 그로 인하여 크게 높아진 휘도를 가질 수 있다.In particular, by using aluminum nitride having a high thermal conductivity, the heat dissipation of the light emitting device is greatly increased, the critical current amount of the light emitting element is increased, and a large current can flow, thereby resulting in a significantly increased luminance.

전술한 반사체(광 반사체)는 발광 소자로부터 방출된 광을 정면측 방향으로 반사하는 경사면으로 형성되고 코바르(Kovar) 합금, 구리(Cu) 등과 같은 금속재 또는 ABS 수지 등과 같은 수지재로 형성된다. 이 반사체는 AlN 기판 본체와 일체로 형성되지 않고 독립 부품으로서 금속 또는 수지재로부터 개별적으로 형성된다. 그 후, 독립 부품으로서의 이 반사체는 발광 소자의 주위를 둘러싸도록 질화알루미늄 기판의 표면에 접합된다.The above-described reflector (light reflector) is formed of an inclined surface that reflects light emitted from the light emitting element in the front side direction and is formed of a metal material such as Kovar alloy, copper (Cu), or a resin material such as ABS resin. This reflector is not formed integrally with the AlN substrate body, but is formed separately from a metal or resin material as an independent component. Then, this reflector as an independent component is bonded to the surface of the aluminum nitride substrate so as to surround the light emitting element.

따라서, 반사체의 최종 표면의 거친 정도 치수(크기) 및 광 반사면 경사각도 등을 높은 정밀도로 정밀하게 제어할 수 있어서, 광 반사 특성이 우수한 반사체가 간단한 제조 공정을 통해 대량 생산될 수 있다. 특히, 반사체의 내벽면(경사면)을 쉽게 경면-연마할 수 있어서, 경사면의 경사각도 역시 높은 정밀도로 제어할 수 있다.Therefore, the roughness dimension (size) of the final surface of the reflector, the light reflection surface inclination angle, etc. can be precisely controlled with high precision, and the reflector excellent in the light reflection characteristic can be mass-produced through a simple manufacturing process. In particular, the inner wall surface (inclined surface) of the reflector can be easily mirror-polished, so that the inclination angle of the inclined surface can also be controlled with high precision.

또한, 질화알루미늄 기판의 이면에 인쇄 배선 기판을 설치하고, 인쇄 배선 기판의 배선을 질화알루미늄 기판의 이면의 외주부에 설치된 전극 패드에 접속하여, 전류가 인쇄 배선 기판으로부터 질화알루미늄 기판에 형성된 내부 배선층을 통해 발광 소자에 공급된다. 상술한 구조에 의해, 배선층과 전극이 발광 소자의 표면측(광 조사 방향)에 설치되지 않아서, 광 차단이 제거되어 휘도가 향상된다.Further, a printed wiring board is provided on the rear surface of the aluminum nitride substrate, and the wiring of the printed wiring board is connected to an electrode pad provided on the outer circumferential portion of the rear surface of the aluminum nitride substrate, so that an internal wiring layer formed on the aluminum nitride substrate from the printed wiring board is formed. It is supplied to the light emitting device through. With the above structure, the wiring layer and the electrode are not provided on the surface side (light irradiation direction) of the light emitting element, so that light blocking is eliminated and luminance is improved.

또한, 본 장치는 발광 소자가 플립-칩(flip-chip) 방법을 사용하여 질화알루미늄으로 이루어진 동시-소성 기판의 표면상에 탑재되고, 발광 소자에 통전 조작은 질화알루미늄 기판의 이면측에 형성된 전극단자로부터 내부 배선층을 통하여 기판의 표면측에 설치된 발광소자로 수행된다.In addition, the apparatus is characterized in that the light emitting element is mounted on the surface of a co-fired substrate made of aluminum nitride using a flip-chip method, and the energization operation to the light emitting element is performed on an electrode formed on the back side of the aluminum nitride substrate. The light emitting element is provided on the surface side of the substrate through the internal wiring layer from the terminal.

상술한 구조에 의해, 와이어 본딩 방법을 사용하여 AlN 기판의 표면측에 배선을 접속할 필요가 없어서, 배선 구조가 단순화될 수 있다. 더욱이, 두께 방향으로 본딩 와이어의 돌출부가 전혀 형성되지 않아서, 발광 장치는 소형으로 콤팩트하게 형성할 수 있다.With the above structure, it is not necessary to connect the wiring to the surface side of the AlN substrate using the wire bonding method, so that the wiring structure can be simplified. Furthermore, no projection of the bonding wire is formed at all in the thickness direction, so that the light emitting device can be formed compactly and compactly.

또한, 인쇄 배선 기판이 질화알루미늄 기판의 직하부에 스루홀을 포함하고, 스루홀에 끼워 맞춰지는 볼록부를 가지는 히트싱크가 질화알루미늄 이면에 밀착하여 접합된다. Further, the printed wiring board includes a through hole directly under the aluminum nitride substrate, and a heat sink having a convex portion fitted into the through hole is brought into close contact with the aluminum nitride back surface.

상술에 구조에 의해, 발광 소자로부터 발생된 열은 질화알루미늄 기판을 통해 히트싱크로 빠르게 전달되어 방출된다. 따라서, 높은 열 전도율을 가지는 ALN 기판의 열 전도 효과 및 히트싱크의 기능이 발광 장치의 방열성을 크게 향상시키도록 상승적으로 작용한다.By the above-described structure, heat generated from the light emitting element is quickly transferred to the heat sink through the aluminum nitride substrate and released. Therefore, the heat conduction effect of the ALN substrate having a high thermal conductivity and the function of the heat sink act synergistically to greatly improve the heat dissipation of the light emitting device.

또한, 발광 소자를 탑재하는 AlN 기판의 표면이 경면-연마될 때, 경면-연마면의 반사율이 향상되어 발광 소자의 접합면으로부터 방출된 광이 AlN 기판의 정면측으로 효과적으로 반사될 수 있어서 발광 강도(휘도)는 실질적으로 향상될 수 있다. 경면-연마면의 표면 거칠기는 일본공업규격(JIS B 0601)에 규정된 산술평균거칠기(arithmetic average roughness)(Ra) 기준에서 0.3 ㎛로 규정되어 있다. 0.3 ㎛ Ra를 초과하는 표면 거칠기를 갖도록 표면이 거칠어진다면, 연마면 상에서 방출된 광의 난반사 및 흡수가 일어나는 경향이 있어, 발광 강도가 저하되는 경향이 있다. 따라서 경면-연마면의 표면 거칠기를 0.3 ㎛Ra 이하로 설정한다. 표면 거칠기를 0.1 ㎛Ra 이하로 설정함으로써, 방출된 광의 반사율이 더욱 향상될 수 있다.In addition, when the surface of the AlN substrate on which the light emitting element is mounted is mirror-polished, the reflectivity of the mirror-polished surface is improved so that the light emitted from the bonding surface of the light emitting element can be effectively reflected to the front side of the AlN substrate so that the luminescence intensity ( Luminance) can be substantially improved. The surface roughness of the mirror-polished surface is defined as 0.3 μm in accordance with the arithmetic average roughness (Ra) standard specified in Japanese Industrial Standard (JIS B 0601). If the surface is roughened so as to have a surface roughness exceeding 0.3 µm Ra, diffuse reflection and absorption of light emitted on the polished surface tend to occur, and the luminescence intensity tends to decrease. Therefore, the surface roughness of the mirror-polished surface is set to 0.3 µm Ra or less. By setting the surface roughness to 0.1 μm Ra or less, the reflectance of the emitted light can be further improved.

더욱이, 발광 소자로부터 방출된 광을 반사하는 반사체의 경사면에 알루미늄(Al) 또는 은(Ag)으로 이루어지는 금속막을 증착법 또는 도금법에 의해 형성함으로써, 발광 장치의 정면측 방향으로의 발광 강도가 향상될 수 있다.Furthermore, by forming a metal film made of aluminum (Al) or silver (Ag) by a vapor deposition method or a plating method on the inclined surface of the reflector reflecting light emitted from the light emitting element, the light emission intensity toward the front side of the light emitting device can be improved. have.

특히, 발광 소자로부터 방출된 광에 대해서 90% 이상의 반사율을 가지는 증착 금속막을 경사면에 형성함으로써, 발광 소자에 측면으로부터 방출된 광이 증착 금속막에 의해 효과적으로 반사되어 기판의 표면측으로 반전될 수 있어서 AlN 기판의 정면측으로의 발광 강도(휘도)는 더욱 향상될 수 있다.In particular, by forming a deposited metal film on the inclined surface having a reflectance of 90% or more with respect to the light emitted from the light emitting device, the light emitted from the side surface to the light emitting device can be effectively reflected by the deposited metal film and inverted to the surface side of the substrate, thereby AlN The light emission intensity (luminance) to the front side of the substrate can be further improved.

90%이상의 반사율을 가지는 증착 금속막으로서, 알루미늄(Al) 또는 은(Ag)으로 이루어지는 금속막이 바람직하게 사용된다. 이 증착 금속막은 통상적으로 화학적 기상 증착(chemical vapor deposition:CVD)법 또는 스퍼터링(sputtering)법에 의해 약 1 ㎛ 내지 5 ㎛, 바람직하게는 1 ㎛ 내지 3 ㎛ 의 두께를 갖도록 형성된다. 상기 반사율은 입사광의 발광 강도에 대한 반사광의 발광 강도의 비로써 정의된다. As the deposited metal film having a reflectance of 90% or more, a metal film made of aluminum (Al) or silver (Ag) is preferably used. The deposited metal film is usually formed to have a thickness of about 1 μm to 5 μm, preferably 1 μm to 3 μm by chemical vapor deposition (CVD) or sputtering. The reflectance is defined as the ratio of the emission intensity of the reflected light to the emission intensity of the incident light.

또한, 상술한 발광 장치에, 기판의 이면으로부터 발광 소자에 전기적인 접속을 확보하도록 발광 소자를 탑재하는 표면으로부터 이면까지 질화알루미늄 기판을 관통하는 내부 배선층 또는 비아홀(via hole)을 형성함으로써, 플립-칩 방법을 사용하여 발광 소자를 질화알루미늄 기판 상에 탑재하는 것이 가능하게 된다. 상술한 바와 같이, 발광 소자가 플립-칩 방법에 의해 질화알루미늄 기판에 탑재되어 접속됨으로써, 전극판 등이 제거될 수 있어서, 발광 장치의 이면 전체로부터 광을 취출할 수 있다. 더욱이, 인접 발광 소자 사이의 공간 피치가 협소해질 수 있어서, 발광 소자의 탑재 밀도는 향상될 수 있고 발광 장치가 두께와 크기에 있어 소형화될 수 있다.Further, in the above-described light emitting device, an internal wiring layer or via hole penetrating through the aluminum nitride substrate from the surface to which the light emitting element is mounted to the rear surface to secure electrical connection to the light emitting element from the rear surface of the substrate is formed, thereby providing flip- It is possible to mount a light emitting element on an aluminum nitride substrate using the chip method. As described above, the light emitting element is mounted and connected to the aluminum nitride substrate by the flip-chip method, so that the electrode plate or the like can be removed, so that light can be taken out from the entire back surface of the light emitting device. Moreover, the space pitch between adjacent light emitting elements can be narrowed, so that the mounting density of the light emitting elements can be improved and the light emitting device can be miniaturized in thickness and size.

더 구체적으로, 상호 접속(배선)은, 솔더 범프(solder bump)와 같은 금속 범프가 LED 칩과 같은 발광 소자의 접속 단부(접속 단자) 상에 형성되고, 이 범프가 상호 접속 도체의 단부 상에 설치된 랜드(land) 및 비아홀을 통해 기판의 이면에 설치된 통전(energizing) 상호 접속부에 접속되는 페이스 다운 시스템(face down system)에 따라 행해진다. 페이스 다운 시스템 방법에 의한 상기 상호 접속 구조에 따르면, 발광 소자의 표면의 임의의 위치로부터 전극을 취출할 수 있다. 이 구조는 발광소자와 상호 접속 도체 사이의 최단 거리 접속을 가능하게 하여, 발광 소자로서의 LED 칩이 심지어 증가한 수의 전극에서도 대형화되는 것을 막고, 매우 작은 두께로 LED 칩이 탑재될 수 있게 한다.More specifically, the interconnection (wiring) is such that a metal bump, such as a solder bump, is formed on a connection end (connection terminal) of a light emitting element such as an LED chip, and the bump is formed on an end of the interconnect conductor. It is done according to a face down system connected to energizing interconnections provided on the backside of the substrate via lands and via holes provided. According to the said interconnect structure by a face down system method, an electrode can be taken out from the arbitrary position of the surface of a light emitting element. This structure enables the shortest distance connection between the light emitting element and the interconnect conductor, preventing the LED chip as a light emitting element from being enlarged even with an increased number of electrodes, and allowing the LED chip to be mounted with a very small thickness.

상술한 구조를 갖는 발광 장치에 따르면, 높은 열 전도율을 가지는 질화알루미늄(AlN) 동시-소성 기판이 LED 칩을 탑재하기 위한 기판(LED 패키지)으로서 사용되기 때문에, 이 장치는 방열성이 현전히 높아지고 임계 전류가 증가할 수 있어서 큰 전류를 흐르게 할 수 있고, 휘도를 크게 증가 시킬수 있다.According to the light emitting device having the above-described structure, since the aluminum nitride (AlN) co-fired substrate having a high thermal conductivity is used as the substrate (LED package) for mounting the LED chip, the device is significantly higher in heat dissipation and is critical. The current can increase, allowing large currents to flow, and greatly increasing luminance.

또한, 본 발명에 사용된 반사체는 AlN 기판 본체와 일체로 형성되지 않고 독립 부품으로서 금속 또는 수지재로부터 개별적으로 형성된다. 그 후, 반사체는 질화알루미늄 기판의 표면에 접합된다. 따라서, 이 부품은 부품 단계에서 쉽게 가공될 수 있어서, 반사체의 최종 거친 정도, 치수(크기), 반사면의 경사각도 등을 높은 정밀도로 정확하게 제어할 수 있고, 이로 인하여 광 반사 특성이 우수한 반사체를 얻을 수 있고 광 취출 효율을 높일 수 있다.In addition, the reflector used in the present invention is not formed integrally with the AlN substrate body, but is formed separately from a metal or a resin material as an independent component. Thereafter, the reflector is bonded to the surface of the aluminum nitride substrate. Therefore, this part can be easily machined at the component stage, so that the final roughness, the size (size) of the reflector, the inclination angle of the reflecting surface, and the like can be precisely controlled with high precision, thereby providing a reflector having excellent light reflection characteristics. Can be obtained and the light extraction efficiency can be improved.

또한, 발광 소자는 플립 칩 방법에 의해 AlN 기판에 탑재되어 접속되어서, 발광 소자의 이면 전체에서 광을 취출할 수 있다. 또한, 인접 발광 소자 사이의 공간 피치를 협소하게 할 수 있어서, 발광 소자의 탑재 밀도가 증가될 수 있고, 그로 인하여 발광 장치는 두께와 크기에 있어 소형화된다.In addition, the light emitting element is mounted on the AlN substrate by the flip chip method and connected to it, and light can be taken out from the entire back surface of the light emitting element. In addition, the space pitch between adjacent light emitting elements can be made narrow, so that the mounting density of the light emitting elements can be increased, whereby the light emitting device can be miniaturized in thickness and size.

도 1은 본 발명에 따른 발광 장치의 일 실시예를 나타낸 단면도.1 is a cross-sectional view showing an embodiment of a light emitting device according to the present invention.

도 2는 종래의 발광 장치의 구조의 일례를 나타낸 단면도.2 is a cross-sectional view showing an example of the structure of a conventional light emitting device.

이하, 본 발명에 따른 발광 장치에 실시예를 첨부된 도면 및 이하의 예를 참조하여 더욱 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings and the following examples.

[예 1][Example 1]

도 1은 본 발명에 따른 발광 장치의 일 실시예를 나타내는 단면도이다. 즉, 발광 장치(11)의 실시예는 질화알루미늄 동시-소성 기판(AlN 다층 기판)(13)과, 플립 칩 방법을 통하여 동시-소성 AlN 기판의 표면에 탑재된 발광 소자로서의 3개의 LED 칩(15)과, 발광 소자로서의 LED 칩(15)으로부터 방출된 광을 정면측 방향으로 반사하기 위한 경사면(14)을 갖고 LED 칩(15)의 주위를 둘러싸도록 질화알루미늄 동시-소성 기판(13)의 표면에 솔더-본딩된 반사체(16)를 포함하도록 구성된다.1 is a cross-sectional view showing an embodiment of a light emitting device according to the present invention. That is, the embodiment of the light emitting device 11 includes an aluminum nitride co-fired substrate (AlN multilayer substrate) 13 and three LED chips as light emitting elements mounted on the surface of the co-fired AlN substrate through the flip chip method ( 15) of the aluminum nitride co-fired substrate 13 to surround the circumference of the LED chip 15 with an inclined surface 14 for reflecting light emitted from the LED chip 15 as a light emitting element in the front side direction. It is configured to include a solder-bonded reflector 16 on the surface.

상술한 동시-소성 기판(AlN 다층 기판)(13)으로서, 200 W/mㆍK의 높은 열 전도율과 2층 구조이고 5mm-길이×5mm-폭×0.5mm-두께의 사이즈를 가지는 동시-소성 AlN 다층 기판을 사용하였다. As the above-described co-fired substrate (AlN multilayer substrate) 13, a co-fired structure having a high thermal conductivity of 200 W / mK and a two-layer structure and having a size of 5 mm length x 5 mm width x 0.5 mm thickness AlN multilayer substrates were used.

또한, 질화알루미늄 기판(13)의 이면에 인쇄 배선 기판(19)을 배치하고, 인쇄 배선 기판(19)의 배선은 질화알루미늄 기판(13)의 이면의 외주부에 설치된 전극 패드(17)에 접속된다. 플립-칩 접속을 위한 전극 패드는 질화알루미늄 기판(13)의 정면측에 형성된다. 이 전극 패드는 비아홀을 통하여 질화알루미늄 기판(13)의 내부 배선층(12)에 전기적으로 접속된다.In addition, the printed wiring board 19 is arrange | positioned at the back surface of the aluminum nitride board | substrate 13, and the wiring of the printed wiring board 19 is connected to the electrode pad 17 provided in the outer peripheral part of the back surface of the aluminum nitride board | substrate 13. As shown in FIG. . An electrode pad for flip-chip connection is formed on the front side of the aluminum nitride substrate 13. The electrode pad is electrically connected to the internal wiring layer 12 of the aluminum nitride substrate 13 through the via hole.

내부 배선층(12)은 AlN 기판(13)의 중앙부에 형성된 전극 패드로부터 AlN 기판(13)의 외주부까지 이어져 있다. 인쇄 배선 기판(19)을 접속하기 위한 전극 패드(17)가 AlN 기판(13)의 이면의 외주부에 형성된다. 질화알루미늄 기판(13)의 표면 상에 설치된 플립-칩 접속을 위한 전극 패드 상에, Au, Al 또는 솔더로 이루어지는 범프가 형성된다. LED 칩은 이 범프를 통하여 AlN 기판(13) 상에 접합된다.The internal wiring layer 12 extends from the electrode pad formed in the center portion of the AlN substrate 13 to the outer peripheral portion of the AlN substrate 13. An electrode pad 17 for connecting the printed wiring board 19 is formed in the outer peripheral portion of the rear surface of the AlN substrate 13. On the electrode pad for flip-chip connection provided on the surface of the aluminum nitride substrate 13, bumps made of Au, Al or solder are formed. The LED chip is bonded onto the AlN substrate 13 through this bump.

인쇄 배선 기판(19)에는 AlN 기판(13)의 이면의 외주부에 형성된 전극 단자의 위치에 대응하는 부분에 배선이 형성되고, 이 배선은 AlN 기판(13)의 전극 부분 에 솔더-본딩 된다. 그리하여, 본 장치는 전력이 인쇄 배선 기판(19)으로부터, 비아홀, 및 내부 배선층(12)을 통하여 LED 칩(15)까지 공급되도록 구성된다.In the printed wiring board 19, wiring is formed in the part corresponding to the position of the electrode terminal formed in the outer peripheral part of the back surface of the AlN substrate 13, and the wiring is solder-bonded to the electrode portion of the AlN substrate 13. Thus, the apparatus is configured such that electric power is supplied from the printed wiring board 19 to the LED chip 15 through the via hole and the internal wiring layer 12.

또한, 인쇄 배선 기판(19)은 질화알루미늄 기판(13)의 직하부에 스루홀(20)을 구비하여 질화알루미늄 기판(13)의 이면이 스루홀(20)에 노출된다. 스루홀(20)에 끼워 맞춰지는 볼록부(21a)를 가지는 구리로 만들어진 히트싱크(21)가 방열 그리스(grease) 또는 솔더를 통하여 질화알루미늄 기판(13)의 이면에 밀착 접합된다. 형광재(형광체)(22) 와 몰드 수지(18)가 반사체(16)의 내부 공간과 LED 칩(15)의 윗 공간에 충전된다. 형광재(22)는 LED 칩(15)으로부터 방출된 광을 흡수시 특정한 파장을 가지는 광을 방출한다.In addition, the printed wiring board 19 includes a through hole 20 directly under the aluminum nitride substrate 13 so that the back surface of the aluminum nitride substrate 13 is exposed to the through hole 20. A heat sink 21 made of copper having a convex portion 21a fitted to the through hole 20 is closely bonded to the rear surface of the aluminum nitride substrate 13 through heat dissipation grease or solder. The fluorescent material (phosphor) 22 and the mold resin 18 are filled in the internal space of the reflector 16 and the space above the LED chip 15. The fluorescent material 22 emits light having a specific wavelength when absorbing light emitted from the LED chip 15.

상술한 바와 같이 구성되는 된 발광 장치에서, 인쇄 배선 기판(19)으로부터 전극 패드(17), 비아홀 및 내부 배선층(12)를 통하여 LED 칩(15)까지 전력이 공급되면, LED 칩(15)은 발광한다. 그 후, 이 광은 형광체(22)에 조사되어서, 특정한 파장을 가지는 광을 방출한다.In the light emitting device configured as described above, when electric power is supplied from the printed wiring board 19 to the LED chip 15 through the electrode pad 17, the via hole and the internal wiring layer 12, the LED chip 15 is It emits light. This light is then irradiated onto the phosphor 22 to emit light having a specific wavelength.

이 때, LED 칩(15)의 일 측면에서 방출된 광은 반사체(16)의 경사면(14)에서 반사된다. 그 후, 반사광은 정면측 방향으로 방사된다.At this time, the light emitted from one side of the LED chip 15 is reflected on the inclined surface 14 of the reflector 16. Thereafter, the reflected light is emitted in the front side direction.

LED 칩(15)이 탑재되는 질화알루미늄 기판(13)의 표면이 경면-연마되어 0.3 ㎛ 이하의 표면 거칠기(Ra)를 가지는 경우에, LED 칩(15)의 이면측 방향으로 방출된 광은 질화알루미늄 기판(13)에서 반사된다. 그 결과적로써, 발광 장치(11)의 정면측 방향으로 방사된 광의 휘도를 증가시킬 수 있다.When the surface of the aluminum nitride substrate 13 on which the LED chip 15 is mounted is mirror-polished to have a surface roughness Ra of 0.3 μm or less, the light emitted toward the rear surface side of the LED chip 15 is nitrided. Reflected on the aluminum substrate 13. As a result, the luminance of the light emitted in the front side direction of the light emitting device 11 can be increased.

한편, 발열한 LED 칩(15)으로부터 방출된 열은 질화알루미늄 기판(13)을 통 해서 히트싱크(21)에 빠르게 전도 및 전달될 수 있다. 따라서, 높은 열 전도율을 가지는 AlN 기판(13)의 열 전도 효과와 상승하여 발광 장치(11)의 방열성이 향상된다.On the other hand, the heat emitted from the heat generated LED chip 15 can be quickly conducted and transferred to the heat sink 21 through the aluminum nitride substrate (13). Therefore, the heat conduction effect of the AlN substrate 13 having a high thermal conductivity is increased and the heat dissipation of the light emitting device 11 is improved.

이런 맥락에서, 본 실시예에서, 반사체(16)가 코바르 합금으로 형성되기 때문에, 경사면(14)이 매우 매끄럽게 형성될 수 있어서, 경사면(14)은 충분한 광-반사 기능을 가진다. 그러나, 은(Ag) 또는 알루미늄(Al)으로 이루어지는 금속막을 화학적 기상 증착법 등에 의해서 이 경사면(14)에 형성하는 경우, 반사체(16)에서의 광 반사 특성은 더 향상될 수 있다.In this context, in the present embodiment, since the reflector 16 is formed of a Kovar alloy, the inclined surface 14 can be formed very smoothly, so that the inclined surface 14 has a sufficient light reflection function. However, when a metal film made of silver (Ag) or aluminum (Al) is formed on the inclined surface 14 by chemical vapor deposition or the like, the light reflection characteristic in the reflector 16 can be further improved.

이 실시예의 발광 장치(11)에 따르면, 높은 열 전도율을 가지는 질화알루미늄(AlN) 동시-소성 기판(13)을 LED 칩(15)을 탑재하기 위한 기판(LED 패키지)으로 사용하므로, 본 장치(11)는 크게 높아진 방열성과 증대한 임계 전류(인가할 수 있는 최대 전류량)를 가질 수 있어서, 큰 전류가 흐르게 허용하고, 높아진 향상된 휘도를 가질 수 있다.According to the light emitting device 11 of this embodiment, since the aluminum nitride (AlN) co-fired substrate 13 having high thermal conductivity is used as a substrate (LED package) for mounting the LED chip 15, the present apparatus ( 11) can have a significantly higher heat dissipation and an increased threshold current (maximum amount of current that can be applied), allowing a large current to flow, and having a higher improved luminance.

또한, 반사체(16)는 AlN 기판 본체와 일체로 형성되지 않고, 독립 부품으로 개별적으로 형성된다. 그 후, 반사체(16)는 질화알루미늄 기판(13)의 표면에 접합된다. 따라서, 부품은 부품 단계에서 쉽게 가공될 수 있어서, 반사체(16)의 최종 표면의 거친 정도, 치수(크기), 경사면(광 반사면)(14)의 경사각도 등을 높은 정밀도로 정확하게 제어 가능하게 되어서, 광 반사 특성이 우수한 반사체(16)가 얻어지고, 광 취출 효율이 높아질 수 있다.In addition, the reflector 16 is not formed integrally with the AlN substrate main body, but is formed individually as an independent component. Thereafter, the reflector 16 is bonded to the surface of the aluminum nitride substrate 13. Therefore, the part can be easily processed at the part stage, so that the roughness of the final surface of the reflector 16, the size (size), the inclination angle of the inclined surface (light reflecting surface) 14 and the like can be precisely controlled with high precision. Thus, the reflector 16 excellent in the light reflection characteristic can be obtained, and the light extraction efficiency can be increased.

또한, 발광 소자로서 LED 칩(15)은 플립 칩 방법에 의해서 AlN 기판(13)에 탑재되어 접속되므로, 광이 LED 칩(15)의 이면 전체로부터 취출될 수 있다. 또한, 인접 LED 칩(15) 사이에 공간 피치를 협소하게 할 수 있어서, LED 칩(15)의 탑재 밀도가 향상되어 발광 장치(11)가 두께와 크기에 있어 소형화될 수 있다.In addition, since the LED chip 15 as a light emitting element is mounted and connected to the AlN substrate 13 by the flip chip method, light can be taken out from the entire back surface of the LED chip 15. In addition, the space pitch can be narrowed between the adjacent LED chips 15, so that the mounting density of the LED chips 15 is improved, so that the light emitting device 11 can be miniaturized in thickness and size.

또한, 질화알루미늄 기판(13)의 이면에 인쇄 배선 기판(19)을 배치하고, 인쇄 배선 기판(19)의 배선이 질화알루미늄 기판(13)의 이면의 외주부에 설치된 전극 패드(17)에 접속되고, 전원이 내부 배선층(12)을 통하여 인쇄 배선 기판(19)으로부터 LED 칩(15)까지 공급되는 구성에 의해, 배선층과 전극이 LED 칩(15)의 표면측 부분에 설치되지 않는다. 따라서, 배선층과 전극에 의한 광의 차단이 제거될 수 있어서, 발광의 휘도가 높아질 수 있다.In addition, the printed wiring board 19 is arrange | positioned at the back surface of the aluminum nitride board | substrate 13, and the wiring of the printed wiring board 19 is connected to the electrode pad 17 provided in the outer peripheral part of the back surface of the aluminum nitride board | substrate 13, With the configuration in which power is supplied from the printed wiring board 19 to the LED chip 15 via the internal wiring layer 12, the wiring layer and the electrode are not provided on the surface side portion of the LED chip 15. Therefore, blocking of light by the wiring layer and the electrode can be eliminated, so that the luminance of light emission can be increased.

또한, 본 장치(11)는 LED 칩(15)이 플립 칩 방법을 사용하여 질화알루미늄 으로 이루어지는 동시-소성 기판(13)의 표면 상에 탑재되고, LED 칩(15)으로의 통전(전력 공급) 조작은 내부 배선층(12)을 통하여 질화알루미늄 기판(13)의 이면측에 형성된 전극 패드(17)로부터 기판(13)의 표면측에 설치된 LED 칩(15)으로 수행되는 구조를 가지고 있다. In addition, the device 11 is mounted on the surface of the co-fired substrate 13 made of aluminum nitride using the flip chip method, and the current is supplied to the LED chip 15 (power supply). The operation is carried out from the electrode pad 17 formed on the back surface side of the aluminum nitride substrate 13 via the internal wiring layer 12 to the LED chip 15 provided on the surface side of the substrate 13.

상술한 구조 때문에, 와이어 본딩 방법을 사용하여서 AlN 기판(13)의 표면측에 배선을 접속할 필요가 없어서, 배선 구조가 단순화될 수 있다. 또한, 두께 방향으로 본딩 와이어의 돌출부가 전혀 형성되지 않아서, 발광 장치(11)는 작은 두께와 크기로 밀집하여 형성될 수 있다.Because of the above-described structure, it is not necessary to connect the wiring to the surface side of the AlN substrate 13 using the wire bonding method, so that the wiring structure can be simplified. In addition, since no protruding portion of the bonding wire is formed in the thickness direction, the light emitting device 11 may be formed by compactly having a small thickness and size.

또한, 인쇄 배선 기판(19)은 질화알루미늄 기판(13)의 직하부에 스루홀(20)을 구비하고, 스루홀(20)에 끼워 맞춰지는 볼록부를 가지는 히트싱크(21)가 질화알 루미늄 기판(13)의 이면에 밀착 접합된다.In addition, the printed wiring board 19 includes a through hole 20 directly under the aluminum nitride substrate 13, and the heat sink 21 having a convex portion fitted into the through hole 20 is an aluminum nitride substrate. It is closely bonded to the back surface of (13).

상술한 구조에 의해, LED 칩(15)으로부터 발생한 열이 질화알루미늄 기판(13)을 통해 히트싱크(21)쪽으로 빠르게 전도 및 전달될 수 있다. 따라서, 높은 열 전도율을 가지는 AlN 기판(13)의 열 전도 효과와 히트싱크(21)의 기능은 발광 장치(11)의 방열성을 크게 높이는데 상승적으로 작용한다.By the above-described structure, heat generated from the LED chip 15 can be quickly conducted and transferred to the heat sink 21 through the aluminum nitride substrate 13. Therefore, the heat conduction effect of the AlN substrate 13 having a high thermal conductivity and the function of the heat sink 21 act synergistically to greatly increase the heat dissipation of the light emitting device 11.

[예 2][Example 2]

도 1에 도시한 반사체(16)의 경사면(14) 상에 은(Ag)으로 이루어지고 2 ㎛의 두께를 가지는 금속막(23)이 형성되는 것 이외에는, 예 1에서와 동일한 제조 공정을 반복하여 예 2의 발광 장치를 준비하였다.The same manufacturing process as in Example 1 was repeated except that a metal film 23 made of silver (Ag) and having a thickness of 2 μm was formed on the inclined surface 14 of the reflector 16 shown in FIG. The light emitting device of Example 2 was prepared.

[예 3]Example 3

도 1에 도시한 히트싱크(21)가 장착되지 않은 점 이외에는, 예 1에서와 동일한 제조 공정을 반복하여 예 3의 발광 장치를 준비하였다.Except that the heat sink 21 shown in FIG. 1 was not mounted, the same manufacturing process as in Example 1 was repeated to prepare the light emitting device of Example 3. FIG.

[예 4]Example 4

도 1에 도시한 볼록부(21a)가 없는 판형(plate-shaped)의 히트싱크(21)가 스루홀이 없는 인쇄 배선 기판을 통해서 AlN 기판(13)에 접합된 것 이외에는 예 1에 에서와 동일한 제조 공정을 반복하여 예 4의 발광 장치를 준비하였다.The same as in Example 1 except that the plate-shaped heat sink 21 without the convex portion 21a shown in FIG. 1 was bonded to the AlN substrate 13 through the printed wiring board without the through hole. The light emitting device of Example 4 was prepared by repeating the manufacturing process.

상술한 각각의 예 1 내지 예 4의 각각에 따른 10개의 장치에 대해서, 각각의 LED 칩에 인가되는 전류량이 점차 증가하는 동안 LED 칩이 파손되지 않고 안정하게 발광하는 범위 내에서 열 저항과 LED 최대 전류량이 결정하고, 각각의 발광 장치의 열 저항, 최대 전류량 및 휘도를 측정하였다.For the ten devices according to each of Examples 1 to 4 described above, the thermal resistance and the LED maximum within a range in which the LED chip does not break stably and emit light stably while the amount of current applied to each LED chip gradually increases. The amount of current was determined, and the thermal resistance, the maximum amount of current, and the brightness of each light emitting device were measured.

이하, 테이블 1에 평균값의 결과를 나타낸다.The result of the average value is shown in Table 1 below.

[테이블 1][Table 1]

샘플 번호.Sample number. 열 저항 (℃/w)Heat resistance (℃ / w) LED 인가 가능 최대 전류량(mA)Maximum amount of current that can be applied to LED (mA) 휘도(Lm)Luminance (Lm) 예 1Example 1 1.11.1 11001100 9.89.8 예 2 (금속막 존재)Example 2 (metal film present) 1.11.1 11001100 11.511.5 예 3 (히트싱크 생략)Example 3 (without heatsink) 2020 9898 0.90.9 예 4 (간단한 적층 타입)Example 4 (simple lamination type) 1919 112112 1.21.2

테이블 1에 나타난 결과로부터 명백한 바와 같이, 은(Ag)으로 이루어진 금속막(23)이 반사체(16)의 경사면(14) 상에 형성된 예 2의 발광 장치에 따르면, 경사면(14)에서의 광 반사율(반사도)이 향상되었다. 결과적으로, 예 1의 장치와 비교하여 휘도가 10 % 내지 20 %로 향상된 것이 증명되었다.As is apparent from the results shown in Table 1, according to the light emitting device of Example 2 in which the metal film 23 made of silver (Ag) was formed on the inclined surface 14 of the reflector 16, the light reflectance at the inclined surface 14 (Reflection) has been improved. As a result, it was proved that the brightness was improved from 10% to 20% compared with the device of Example 1.

또한, 히트싱크(21)가 장착되지 않은 예 3의 발광 장치의 경우에, 열 저항값이 예 1 및 예 2의 것보다 18배 이상 불리하게 상승하여, LED 최대 전류량과 발광 휘도가 상대적으로 낮아졌다.In addition, in the case of the light emitting device of Example 3, in which the heat sink 21 is not mounted, the thermal resistance value rose unfavorably 18 times or more than those of Examples 1 and 2, whereby the LED maximum current amount and the luminance of light emitted were relatively low. .

한편, 볼록부(21a)가 없는 판형 히트싱크(21)가 스루홀이 없는 판형 인쇄 배선 기판을 통하여 AlN 기판에 적층된 예 4의 발광 장치에 따르면, 히크싱크가 AlN 기판(13)에 직접 접촉되지 않아서, 열 저항이 크게 증가하였고 휘도는 상대적으로 낮아졌다.On the other hand, according to the light emitting device of Example 4 in which the plate heat sink 21 without the convex portion 21a is laminated on the AlN substrate through the plate-shaped printed wiring board without the through hole, the heat sink is in direct contact with the AlN substrate 13. In this case, the thermal resistance was greatly increased and the luminance was relatively low.

[예 5]Example 5

예 1 및 예 2의 각각의 발광 장치를 조명 기구 본체에 조립한 후, 조명 기구를 턴-온 또는 턴-오프 하기 위한 턴-온 장치를 이 기구 본체에 설치하여, 예 5의 각각의 조명 기구를 준비하였다. 각각의 조명 기구는 우수한 방열성을 갖고, 큰 전류(LED 최대 전류량)를 본 기구에 인가하는 것이 가능하게 되었다. 발광 효율이 높은 휘도를 크게 증가시킬 수 있는 것이 확인되었다.After assembling each light emitting device of Examples 1 and 2 to the luminaire main body, a turn-on device for turning on or off the luminaire is installed in the main assembly, and the respective luminaires of Example 5 Was prepared. Each lighting fixture has excellent heat dissipation, and it is possible to apply a large current (maximum amount of LED current) to the apparatus. It was confirmed that the luminance with high luminous efficiency can be greatly increased.

이런 맥락에서, 도 1에 나타난 복수의 발광 장치는 종 방향이나 횡 방향으로 열(列) 형상으로 배치하는 경우 선형-발광원이 얻어질 수 있었다. 한편, 복수의 발광 장치를 모든 방향으로 배치하여 2차원 배열을 형성하는 경우, 면(area)-발광 광원이 효과적으로 얻어질 수 있었다.In this context, when the plurality of light emitting devices shown in Fig. 1 are arranged in a columnar shape in the longitudinal direction or the transverse direction, a linear-light emitting source can be obtained. On the other hand, when a plurality of light emitting devices are arranged in all directions to form a two-dimensional array, an area-emitting light source can be effectively obtained.

[예 6]Example 6

백라이트로서 예 1 및 예 2의 각각의 발광 장치를 액정 표시장치(LCD) 본체에 설치하여, 예 6의 각각의 액정 표시장치를 조립하였다. 그와 같이 준비한, 예 6의 각각의 액정 표시장치는 발광 장치를 구성하는 기판으로서 방열성이 우수한 질화알루미늄(AlN)을 구조적으로 포함하여서, 더 큰 전류(LED 최대 전류량)를 본 장치에 인가할 수 있다. 발광 장치 효율이 높은 액정 표시장치의 휘도를 크게 증가시킬 수 있는 것이 확인되었다. Each light emitting device of Examples 1 and 2 was provided in a liquid crystal display (LCD) main body as a backlight, and each liquid crystal display of Example 6 was assembled. Each of the liquid crystal displays of Example 6 prepared as described above structurally contains aluminum nitride (AlN) having excellent heat dissipation as a substrate constituting the light emitting device, so that a larger current (maximum amount of LED current) can be applied to the device. have. It was confirmed that the luminance of the liquid crystal display device having high light emitting device efficiency can be greatly increased.

이런 맥락에서, 본 발명은 200 W/mㆍK의 열 전도율을 갖는 다층 AlN 기판이 사용된 예를 들어서 설명하였지만, 본 발명은 그것에 한정되지 않는다. 170 W/mㆍK 또는 230 W/mㆍK의 열 전도율을 가지는 AlN 기판을 사용하는 경우에도, 우수한 방열성과 우수한 발광 특성을 역시 얻을 수 있었다. 구체적으로, 170 W/mㆍK의 열 전도율을 가지는 AlN 기판이 이용된 경우와 비교하여, 200 W/mㆍK 또는 230 W/mㆍK의 열 전도율을 갖는 AlN 기판을 이용했을 때, 열 저항은 20-30% 까지 감소하였고, 임계 전류(최대 흐를 수 있는 전류 또는 인가할 수 최대 전류량)와 휘도가 20-30% 까지 증가 될 수 있었다.In this context, the present invention has been described by way of example in which a multilayer AlN substrate having a thermal conductivity of 200 W / m · K is used, but the present invention is not limited thereto. Even when using an AlN substrate having a thermal conductivity of 170 W / m · K or 230 W / m · K, excellent heat dissipation and excellent luminescence properties could also be obtained. Specifically, when an AlN substrate having a thermal conductivity of 200 W / m · K or 230 W / m · K is used, compared with the case where an AlN substrate having a thermal conductivity of 170 W / m · K is used, The resistance was reduced by 20-30%, and the threshold current (maximum flowable current or maximum current to be applied) and brightness could be increased by 20-30%.

상술한 바와 같이, 본 발명의 발광 장치에 따르면, LED 칩을 탑재하기 위한 기판(LED 패키지)으로서 높은 열 전도율을 가지는 질화알루미늄(AlN) 동시-소성 기판을 사용하므로, 발광 장치의 발열성이 크게 높아져서, 임계 전류(인가할 수 있는 최대 전류량)가 증가하고, 그로 인하여 큰 전류가 LED 칩을 통해서 흐르게 할 수 있고 휘도가 크게 높아질 수 있다.As described above, according to the light emitting device of the present invention, since the aluminum nitride (AlN) co-fired substrate having a high thermal conductivity is used as the substrate (LED package) for mounting the LED chip, the heat generating property of the light emitting device is greatly increased. As a result, the threshold current (the maximum amount of current that can be applied) increases, thereby allowing a large current to flow through the LED chip and greatly increasing the brightness.

또한, 본 발명에 사용된 반사체는 AlN 기판 본체와 일체로 형성되지 않고 독립 부품으로써 개별적으로 형성된다. 그 후, 본 반사체는 질화알루미늄 기판에 접합된다. 따라서, 본 부품이 부품 단계에서 쉽게 가공될 수 있어서, 반사체의 최종 표면의 거친 정도, 치수(크기), 광 반사면의 경사각도 등을 높은 정밀도로 정확하게 제어가능하게 되어서, 광 반사 특성이 우수한 반사체를 얻을 수 있고, 발광 효율이 크게 높아질 수 있다. In addition, the reflector used in the present invention is not formed integrally with the AlN substrate body but separately formed as an independent component. Thereafter, the present reflector is bonded to the aluminum nitride substrate. Therefore, this part can be easily machined at the component stage, so that it is possible to precisely control the roughness of the final surface of the reflector, the size (size), the inclination angle of the light reflecting surface, etc. with high precision, and the reflector having excellent light reflecting characteristics. Can be obtained, and the luminous efficiency can be greatly increased.

또한, 플립 칩 방법에 의하여 본 발광 소자가 AlN 기판에 탑재되어 접속되어서, 광이 발광 소자의 이면 전체로부터 취출될 수 있다. 또한, 인접 발광 소자 사이에 공간 피치를 협소하게 할 수 있어서, 발광 소자의 탑재 밀도가 높아질 수 있고, 그로 인하여 발광 장치는 두께와 크기에 있어 소형화될 수 있다.In addition, the light emitting element is mounted on the AlN substrate and connected by the flip chip method, so that light can be extracted from the entire back surface of the light emitting element. In addition, the space pitch between adjacent light emitting elements can be narrowed, so that the mounting density of the light emitting elements can be increased, thereby making the light emitting device small in thickness and size.

Claims (7)

질화알루미늄 동시-소성(co-fired) 기판과,Aluminum nitride co-fired substrate, 플립-칩(flip-chip) 방법을 통하여 상기 동시-소성 기판의 표면 상에 탑재되는 적어도 하나의 발광 소자와,At least one light emitting element mounted on a surface of the co-fired substrate through a flip-chip method, 상기 발광 소자로부터 정면측 방향으로 광을 반사하는 경사면을 갖는 반사체 - 여기서, 상기 반사체는 상기 발광 소자의 둘레를 감싸도록 상기 질화알루미늄 동시-소성 기판의 표면에 접합됨 - 를 포함하는 발광 장치.And a reflector having an inclined surface that reflects light in a frontward direction from the light emitting element, wherein the reflector is bonded to a surface of the aluminum nitride co-fired substrate to surround the light emitting element. 제 1 항에 있어서,The method of claim 1, 상기 질화알루미늄 동시-소성 기판의 이면에 인쇄 배선 기판을 배치하고, 상기 인쇄 배선 기판의 배선을 상기 질화알루미늄 동시-소성 기판의 상기 이면의 외주부(outer peripheral portion)에 설치된 전극에 접속하여서, 전류를 상기 인쇄 기판으로부터 상기 질화 알루미늄 동시-소성 기판에 형성된 내부 배선층을 통하여 상기 발광 소자에 공급하는 발광 장치.A printed wiring board is disposed on the back surface of the aluminum nitride co-fired substrate, and the wiring of the printed wiring board is connected to an electrode provided at an outer peripheral portion of the back side of the aluminum nitride co-fired substrate, thereby providing a current. And a light emitting device supplied from the printed board to the light emitting element through an internal wiring layer formed on the aluminum nitride co-fired substrate. 제 2 항에 있어서,The method of claim 2, 상기 인쇄 배선 기판은 상기 질화알루미늄 동시-소성 기판의 직하부에 스루홀(through hole)을 구비하고, 상기 스루홀에 끼워 맞춰지는 볼록부를 가지는 히트싱크(heat sink)가 상기 질화알루미늄 동시-소성 기판의 상기 이면에 밀착하여 접 합되는 발광 장치.The printed wiring board has a through hole directly under the aluminum nitride co-fired substrate, and a heat sink having a convex portion fitted into the through hole is the aluminum nitride co-fired substrate. A light emitting device that is in close contact with the back of the. 제 1 항에 있어서,The method of claim 1, 상기 발광 소자가 탑재되는 상기 질화알루미늄 동시-소성 기판의 표면이 경면-연마(mirror-polished)되어, 0.3 ㎛ 이하의 표면 거칠기(Ra)를 갖는 발광 장치.A surface of the aluminum nitride co-fired substrate on which the light emitting element is mounted is mirror-polished to have a surface roughness Ra of 0.3 μm or less. 제 1 항에 있어서,The method of claim 1, 상기 반사체의 상기 경사면에 알루미늄 또는 은으로 이루어진 금속막을 형성한 발광 장치.And a metal film made of aluminum or silver on the inclined surface of the reflector. 조명 기구 본체와,With the lighting fixture body, 상기 조명 기구 본체에 설치되는 제 1 항 내지 제 4 항 중 어느 한 항에 따른 발광 장치와,A light emitting device according to any one of claims 1 to 4 provided in the luminaire body; 상기 조명 기구를 턴-온(turning-on) 또는 턴-오프(turning-off)하기 위하여 상기 조명 기구에 설치되는 턴-온 장치를 포함하는 조명 기구.And a turn-on device mounted to the luminaire for turning the luminaire on or off. 액정 표시장치 본체와, A liquid crystal display body, 상기 액정 표시장치 본체에 설치되는 제 1 항 내지 제 4 항 중 어느 한 항에 따른 발광 장치를 포함하는 액정 표시장치.A liquid crystal display comprising the light emitting device according to any one of claims 1 to 4 provided in the liquid crystal display body.
KR1020077007653A 2004-10-04 2005-09-30 Light emitting device, lighting equipment, or liquid crystal display device using such light emitting device KR100867970B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004291608 2004-10-04
JPJP-P-2004-00291608 2004-10-04

Publications (2)

Publication Number Publication Date
KR20070089784A true KR20070089784A (en) 2007-09-03
KR100867970B1 KR100867970B1 (en) 2008-11-11

Family

ID=36142933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077007653A KR100867970B1 (en) 2004-10-04 2005-09-30 Light emitting device, lighting equipment, or liquid crystal display device using such light emitting device

Country Status (7)

Country Link
US (1) US7812360B2 (en)
EP (1) EP1806789B1 (en)
JP (1) JP4960099B2 (en)
KR (1) KR100867970B1 (en)
CN (1) CN101036238B (en)
TW (1) TW200616265A (en)
WO (1) WO2006038543A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931927B1 (en) * 2007-12-26 2009-12-15 알티전자 주식회사 LED package module
KR100969145B1 (en) * 2008-01-28 2010-07-08 알티전자 주식회사 Lighting module using light emitting diode and method of fabricating the same
KR101037789B1 (en) * 2009-04-22 2011-05-27 주식회사 엠디티 package for light emitting diode, comprising of metal housing and insulator on which conductive element is painted
US8519418B2 (en) 2010-02-04 2013-08-27 Lg Innotek Co., Ltd. Light emitting device package having dielectric pattern on reflective layer
KR20140097901A (en) * 2013-01-30 2014-08-07 엘지이노텍 주식회사 Light Emitting Device
KR101456921B1 (en) * 2012-06-01 2014-11-03 주식회사티티엘 LED Package and LED Light Source Module using Ceramic PCB, and Manufacturing method
KR102248022B1 (en) * 2020-07-13 2021-05-04 (주)포인트엔지니어링 Substrate for optical device package and optical device package comprising the same

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US7355276B1 (en) * 2005-03-11 2008-04-08 Maxtor Corporation Thermally-enhanced circuit assembly
WO2006095949A1 (en) * 2005-03-11 2006-09-14 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
JP4863203B2 (en) * 2006-04-28 2012-01-25 スタンレー電気株式会社 Semiconductor light emitting device
WO2007142018A1 (en) 2006-06-02 2007-12-13 Hitachi Chemical Co., Ltd. Package for mounting optical semiconductor element and optical semiconductor device employing the same
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US20080205057A1 (en) * 2007-02-23 2008-08-28 Frontend Analog And Digital Technology Corporation Light source device assembly
CN101578714B (en) * 2007-08-03 2011-02-09 松下电器产业株式会社 Light-emitting device
US20110163348A1 (en) * 2008-03-25 2011-07-07 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base heat spreader and inverted cavity in bump
US20090284932A1 (en) * 2008-03-25 2009-11-19 Bridge Semiconductor Corporation Thermally Enhanced Package with Embedded Metal Slug and Patterned Circuitry
US8193556B2 (en) * 2008-03-25 2012-06-05 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and cavity in post
US20100181594A1 (en) * 2008-03-25 2010-07-22 Lin Charles W C Semiconductor chip assembly with post/base heat spreader and cavity over post
US8314438B2 (en) * 2008-03-25 2012-11-20 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base heat spreader and cavity in bump
US8232576B1 (en) 2008-03-25 2012-07-31 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and ceramic block in post
US8415703B2 (en) * 2008-03-25 2013-04-09 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base/flange heat spreader and cavity in flange
US8148747B2 (en) * 2008-03-25 2012-04-03 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base/cap heat spreader
US20100052005A1 (en) * 2008-03-25 2010-03-04 Lin Charles W C Semiconductor chip assembly with post/base heat spreader and conductive trace
US8288792B2 (en) * 2008-03-25 2012-10-16 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base/post heat spreader
US8531024B2 (en) * 2008-03-25 2013-09-10 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and multilevel conductive trace
US8324723B2 (en) * 2008-03-25 2012-12-04 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base heat spreader and dual-angle cavity in bump
US8067784B2 (en) 2008-03-25 2011-11-29 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and substrate
US8212279B2 (en) * 2008-03-25 2012-07-03 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader, signal post and cavity
US20100072511A1 (en) * 2008-03-25 2010-03-25 Lin Charles W C Semiconductor chip assembly with copper/aluminum post/base heat spreader
US8129742B2 (en) * 2008-03-25 2012-03-06 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and plated through-hole
US8269336B2 (en) * 2008-03-25 2012-09-18 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and signal post
US8329510B2 (en) * 2008-03-25 2012-12-11 Bridge Semiconductor Corporation Method of making a semiconductor chip assembly with a post/base heat spreader with an ESD protection layer
US8207553B2 (en) * 2008-03-25 2012-06-26 Bridge Semiconductor Corporation Semiconductor chip assembly with base heat spreader and cavity in base
US8525214B2 (en) * 2008-03-25 2013-09-03 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader with thermal via
US8354688B2 (en) 2008-03-25 2013-01-15 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base/ledge heat spreader, dual adhesives and cavity in bump
US20110278638A1 (en) 2008-03-25 2011-11-17 Lin Charles W C Semiconductor chip assembly with post/dielectric/post heat spreader
US20110156090A1 (en) * 2008-03-25 2011-06-30 Lin Charles W C Semiconductor chip assembly with post/base/post heat spreader and asymmetric posts
US8203167B2 (en) * 2008-03-25 2012-06-19 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and adhesive between base and terminal
US8310043B2 (en) * 2008-03-25 2012-11-13 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader with ESD protection layer
US8378372B2 (en) * 2008-03-25 2013-02-19 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and horizontal signal routing
JP5073095B2 (en) * 2008-04-30 2012-11-14 チョーチアン マネラックス ライティング カンパニー リミテッド White light emitting diode and white light emitting diode lamp
JP5155890B2 (en) 2008-06-12 2013-03-06 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
WO2010007781A1 (en) * 2008-07-17 2010-01-21 株式会社 東芝 Light emitting device, backlight using the device, liquid crystal display device, and illumination device
JP5232555B2 (en) * 2008-07-23 2013-07-10 スタンレー電気株式会社 Optical semiconductor device module
TWI478370B (en) 2008-08-29 2015-03-21 Epistar Corp A light-emitting semiconductor device and package with a wavelength conversion structure
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
JP4780203B2 (en) * 2009-02-10 2011-09-28 日亜化学工業株式会社 Semiconductor light emitting device
US8610156B2 (en) 2009-03-10 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
KR101047603B1 (en) * 2009-03-10 2011-07-07 엘지이노텍 주식회사 Light emitting device package and its manufacturing method
EP2448027A1 (en) * 2009-06-24 2012-05-02 Furukawa Electric Co., Ltd. Lead frame for optical semiconductor device, process for manufacturing lead frame for optical semiconductor device, and optical semiconductor device
US20110013403A1 (en) * 2009-07-15 2011-01-20 Wen-Sung Hu Illumination-Improving Structure for LED or SMD LED lights
US8324653B1 (en) 2009-08-06 2012-12-04 Bridge Semiconductor Corporation Semiconductor chip assembly with ceramic/metal substrate
KR101168316B1 (en) * 2009-12-01 2012-07-25 삼성전자주식회사 Apparatus for inspecting light emitting diode
US20110225818A1 (en) * 2010-03-19 2011-09-22 Shih-Bin Chiu Method of manufacturing an led illuminator device
TWI403663B (en) * 2010-07-20 2013-08-01 Foxsemicon Integrated Tech Inc Led light emitting device
US8371715B2 (en) * 2010-09-21 2013-02-12 Catcher Technology Co., Ltd. LED illuminator module with high heat-dissipating efficiency and manufacturing method therefor
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
US9300062B2 (en) 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
TW201228508A (en) * 2010-12-29 2012-07-01 Bridge Semiconductor Corp Mobile electronic device containing heat dissipative flexible circuit board structure and manufacturing method thereof
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
CN102800798B (en) * 2011-10-26 2016-06-08 清华大学 A kind of LED encapsulation structure and method for packing thereof
CN104081112B (en) 2011-11-07 2016-03-16 克利公司 High voltage array light-emitting diode (LED) device, equipment and method
US10043960B2 (en) * 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
JP2013131744A (en) * 2011-11-25 2013-07-04 Citizen Electronics Co Ltd Method for mounting light emitting element, and light emitting device including light emitting element
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
US9735198B2 (en) 2012-03-30 2017-08-15 Cree, Inc. Substrate based light emitter devices, components, and related methods
DE102012102847A1 (en) 2012-04-02 2013-10-02 Osram Opto Semiconductors Gmbh A light-emitting semiconductor component and method for producing a light-emitting semiconductor component
CN102637804A (en) * 2012-04-23 2012-08-15 木林森股份有限公司 Inversion structure for bonding-free LED (Light Emitting Diode) chip
AT513780B1 (en) * 2012-12-21 2015-02-15 Hella Fahrzeugteile Austria Gmbh Cooling device for an LED
US9316382B2 (en) * 2013-01-31 2016-04-19 Cree, Inc. Connector devices, systems, and related methods for connecting light emitting diode (LED) modules
KR102099439B1 (en) * 2013-10-08 2020-04-09 엘지이노텍 주식회사 Light emitting Device, and package including the deivce
KR102098594B1 (en) * 2014-03-14 2020-04-08 삼성전자주식회사 LED package
JP6519311B2 (en) * 2014-06-27 2019-05-29 日亜化学工業株式会社 Light emitting device
JP6256700B2 (en) * 2014-11-11 2018-01-10 豊田合成株式会社 Light emitting device
JP6501606B2 (en) * 2015-05-19 2019-04-17 ルネサスエレクトロニクス株式会社 Semiconductor device
CN104900638B (en) * 2015-05-27 2017-10-24 深圳市华星光电技术有限公司 Light-emitting component package assembly
WO2017017885A1 (en) * 2015-07-24 2017-02-02 日本電気株式会社 Mount structure, method of manufacturing mount structure, and wireless device
JP2017135253A (en) * 2016-01-27 2017-08-03 オムロン株式会社 Light-emitting device and method of manufacturing the same
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
JP7444537B2 (en) 2018-12-27 2024-03-06 デンカ株式会社 Method for manufacturing a phosphor substrate, method for manufacturing a light emitting substrate, and method for manufacturing a lighting device
KR20210097855A (en) * 2020-01-30 2021-08-10 삼성전자주식회사 Metal based wiring board and electirc device module
JP2022148613A (en) * 2021-03-24 2022-10-06 富士フイルムビジネスイノベーション株式会社 Light-emitting device, heat transfer member, and light measuring device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714801A (en) * 1995-03-31 1998-02-03 Kabushiki Kaisha Toshiba Semiconductor package
US6046499A (en) * 1996-03-27 2000-04-04 Kabushiki Kaisha Toshiba Heat transfer configuration for a semiconductor device
JPH09293904A (en) 1996-04-26 1997-11-11 Nichia Chem Ind Ltd Led package
JPH1012779A (en) * 1996-06-21 1998-01-16 Toshiba Corp Semiconductor mounting structure
US5909058A (en) * 1996-09-25 1999-06-01 Kabushiki Kaisha Toshiba Semiconductor package and semiconductor mounting part
JP3477340B2 (en) 1997-04-04 2003-12-10 株式会社トクヤマ Metallized composition and method for manufacturing aluminum nitride substrate using the same
CN2419463Y (en) * 1999-12-21 2001-02-14 王启明 Lighting lamp for fire service
KR100419611B1 (en) 2001-05-24 2004-02-25 삼성전기주식회사 A Light Emitting Diode, a Lighting Emitting Device Using the Same and a Fabrication Process therefor
TW567619B (en) * 2001-08-09 2003-12-21 Matsushita Electric Ind Co Ltd LED lighting apparatus and card-type LED light source
US6498355B1 (en) 2001-10-09 2002-12-24 Lumileds Lighting, U.S., Llc High flux LED array
JP2003192442A (en) 2001-12-26 2003-07-09 Toshiba Corp Aluminum nitride substrate, aluminum nitride substrate having thin film, and submount material for laser light- emitting element obtained by using the same
US6936855B1 (en) * 2002-01-16 2005-08-30 Shane Harrah Bendable high flux LED array
JP4114437B2 (en) * 2002-08-27 2008-07-09 松下電工株式会社 Manufacturing method of LED chip mounting member and LED mounting board using the LED chip mounting member
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
US6998777B2 (en) * 2002-12-24 2006-02-14 Toyoda Gosei Co., Ltd. Light emitting diode and light emitting diode array
JP4383059B2 (en) * 2003-01-24 2009-12-16 京セラ株式会社 Light emitting element storage package and light emitting device
JP4307094B2 (en) * 2003-02-04 2009-08-05 パナソニック株式会社 LED light source, LED illumination device, and LED display device
DE602004027890D1 (en) 2003-03-18 2010-08-12 Sumitomo Electric Industries HOUSING FOR LIGHT-EMITTING ELEMENT AND USE OF SEMI-FINISHED COMPONENT
US20040188696A1 (en) * 2003-03-28 2004-09-30 Gelcore, Llc LED power package
JP2005210042A (en) 2003-09-11 2005-08-04 Kyocera Corp Light emitting apparatus and illumination apparatus
KR100808705B1 (en) 2003-09-30 2008-02-29 가부시끼가이샤 도시바 Light emitting device
JP2005150408A (en) * 2003-11-17 2005-06-09 Sumitomo Electric Ind Ltd Light source apparatus and package for mounting light emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931927B1 (en) * 2007-12-26 2009-12-15 알티전자 주식회사 LED package module
KR100969145B1 (en) * 2008-01-28 2010-07-08 알티전자 주식회사 Lighting module using light emitting diode and method of fabricating the same
KR101037789B1 (en) * 2009-04-22 2011-05-27 주식회사 엠디티 package for light emitting diode, comprising of metal housing and insulator on which conductive element is painted
US8519418B2 (en) 2010-02-04 2013-08-27 Lg Innotek Co., Ltd. Light emitting device package having dielectric pattern on reflective layer
KR101456921B1 (en) * 2012-06-01 2014-11-03 주식회사티티엘 LED Package and LED Light Source Module using Ceramic PCB, and Manufacturing method
KR20140097901A (en) * 2013-01-30 2014-08-07 엘지이노텍 주식회사 Light Emitting Device
KR102248022B1 (en) * 2020-07-13 2021-05-04 (주)포인트엔지니어링 Substrate for optical device package and optical device package comprising the same
WO2022014949A1 (en) * 2020-07-13 2022-01-20 (주)포인트엔지니어링 Optical element package substrate and optical element package including same

Also Published As

Publication number Publication date
EP1806789A2 (en) 2007-07-11
JP4960099B2 (en) 2012-06-27
WO2006038543A2 (en) 2006-04-13
KR100867970B1 (en) 2008-11-11
US20070247855A1 (en) 2007-10-25
TW200616265A (en) 2006-05-16
US7812360B2 (en) 2010-10-12
TWI295860B (en) 2008-04-11
CN101036238B (en) 2014-01-08
EP1806789B1 (en) 2012-05-09
JPWO2006038543A1 (en) 2008-05-15
WO2006038543A3 (en) 2006-05-26
EP1806789A4 (en) 2009-09-02
CN101036238A (en) 2007-09-12

Similar Documents

Publication Publication Date Title
KR100867970B1 (en) Light emitting device, lighting equipment, or liquid crystal display device using such light emitting device
KR100808705B1 (en) Light emitting device
KR100703218B1 (en) Light emitting diode package
US9842973B2 (en) Method of manufacturing ceramic LED packages with higher heat dissipation
KR100738933B1 (en) Led module for illumination
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
US7335522B2 (en) Package structure for light emitting diode and method thereof
US7868345B2 (en) Light emitting device mounting substrate, light emitting device housing package, light emitting apparatus, and illuminating apparatus
US9793247B2 (en) Solid state lighting component
US20060018120A1 (en) Illuminator and production method
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JPH11163412A (en) Led illuminator
WO2006064996A1 (en) Package for light emitting device and method for packaging the same
KR100764461B1 (en) Semiconductor Package Having a Buffer Layer
KR101940987B1 (en) Printed circuit board with heatsink for led lighting apparatus
JP2005150408A (en) Light source apparatus and package for mounting light emitting element
KR100645657B1 (en) Flip-chip printed circuit board and white light-emitting diode module having the flip-chip printed circuit board
JP2000236111A (en) Light source equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181018

Year of fee payment: 11