KR20070034578A - 액정 렌즈 소자 및 광헤드 장치 - Google Patents

액정 렌즈 소자 및 광헤드 장치 Download PDF

Info

Publication number
KR20070034578A
KR20070034578A KR1020077000668A KR20077000668A KR20070034578A KR 20070034578 A KR20070034578 A KR 20070034578A KR 1020077000668 A KR1020077000668 A KR 1020077000668A KR 20077000668 A KR20077000668 A KR 20077000668A KR 20070034578 A KR20070034578 A KR 20070034578A
Authority
KR
South Korea
Prior art keywords
liquid crystal
lens element
light
crystal lens
refractive index
Prior art date
Application number
KR1020077000668A
Other languages
English (en)
Inventor
다쿠지 노무라
히로유키 고지마
Original Assignee
아사히 가라스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아사히 가라스 가부시키가이샤 filed Critical 아사히 가라스 가부시키가이샤
Publication of KR20070034578A publication Critical patent/KR20070034578A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Abstract

인가 전압의 크기에 따라서 안정된 입사광의 초점 변화에 상당하는 파워 성분을 포함하는 구면 수차 보정을 실시할 수 있는, 렌즈 기능을 갖는 액정 렌즈 소자를 제공한다.
한 쌍의 투명 기판 (11, 12) 의 일방 (12) 에는 투명 전극 (15) 과 프레넬 렌즈면 (17) 을 구비함과 함께, 한 쌍의 투명 기판의 타방 (11) 에는, 위상 보정면 (18) 과 투명 전극 (16) 을 구비하고 있다. 이와 같이, 한 쌍의 투명 전극 (15, 16) 사이에 프레넬 렌즈면 (17) 및 액정층 (14) 을 배치함으로써, 인가 전압의 크기에 따라서 액정층 (14) 의 실질적인 굴절률 분포가 변화하여, 액정층 (14), 프레넬 렌즈면 (17), 위상 보정면 (18) 을 투과하는 파면에 플러스 마이너스의 파워를 부여하도록 한다.
액정층, 투명 전극, 프레넬 렌즈면, 위상 보정면

Description

액정 렌즈 소자 및 광헤드 장치{LIQUID CRYSTAL LENS ELEMENT AND OPTICAL HEAD DEVICE}
기술분야
본 발명은, 액정 렌즈 소자 및 광헤드 장치에 관한 것으로, 특히 인가 전압의 크기에 따라서 초점거리가 달라지도록 전환할 수 있는 액정 렌즈 및 이 액정 렌즈를 탑재한 광기록 매체의 정보의 기록 및/또는 재생에 사용되는 광헤드 장치에 관한 것이다.
배경기술
광입사측 면에 형성된 정보 기록층과, 이 정보 기록층을 덮는 투명 수지로 이루어지는 커버층을 갖는 광기록 매체 (이하, 「광디스크」라고 한다) 로서, CD 나 DVD 등이 보급되어 있다. 또한, 이 DVD 에 대한 정보의 기록 및/또는 재생에 사용되는 광헤드 장치에는, 광원으로서 파장이 660㎚ 대의 반도체 레이저와, NA (개구수) 가 0.6 에서 0.65 까지의 대물 렌즈를 구비한 것이 알려져 있다.
종래, 일반적으로 사용되고 있는 DVD 는, 정보 기록층이 단층이고 커버층이 0.6㎜ 이다 (이하, 「단층 광디스크」라고 한다). 그런데 최근, 광디스크 1 장 당의 정보량을 증대시키기 위해, 정보 기록층을 2 층으로 한 재생 전용, 또는 재생 및 기록 가능한 광디스크 (이하, 「2 층 광디스크」라고 한다) 도 개발되어 있다.
이와 같이, 단층 광디스크에 대하여 수차가 제로가 되도록 최적 설계된 대물 렌즈를 갖는 광헤드 장치를 사용하여, 2 층 광디스크에 기록하거나 및/또는 재생하는 경우, 커버의 두께가 상이하면, 그 커버 두께의 차이에 따라서 구면 수차가 발생하고, 정보 기록층으로의 입사광의 집광성이 열화된다. 특히, 기록형의 2 층 광디스크에 있어서, 집광성의 열화는 기록시의 집광 파워 밀도의 저하에 대응하여, 기록 에러를 초래하기 때문에 문제가 된다.
그래서 최근, 더욱 광디스크의 기록 밀도를 향상시키기 위해, 커버 두께가 0.1㎜ 인 광디스크 (이하, 「고밀도 광디스크」라고 부른다) 도 제안되어 있다. 또한, 이 광디스크로의 정보 기록용 광헤드 장치는, 광원으로서 파장이 405㎚ 대의 레이저광을 출사하는 반도체 레이저와, NA 가 0.85 인 대물 렌즈를 구비한 것이 사용된다. 그런데, 이 경우에도, 기록형의 2 층 광디스크에 관해서는, 커버 두께의 차이에 따라서 발생하는 구면 수차가 기록 에러를 초래하기 때문에 문제가 된다.
상기한 바와 같은 2 층 광디스크 등의 커버 두께의 차이에 기인하여 발생하는 구면 수차를 보정하는 수단으로서, 가동 렌즈군이나 액정 렌즈를 사용하는 방법이 알려져 있다.
(I) 예를 들어, 가동 렌즈군을 사용하여 구면 수차 보정을 실시하기 위해, 도 8 에 나타낸 것과 같은, 광디스크 (D) 의 기록 및/또는 재생을 실시하는 광헤드 장치 (100) 가 제안되어 있다 (예를 들어, 일본 공개특허공보 2003-115127호).
이 광헤드 장치 (100) 는, 광원 (110) 과, 각종 광학계 (120) 와, 수광 소자 (130) 와, 제어 회로 (140) 와, 변조/복조 회로 (150) 의 외에, 제 1, 제 2 가동 렌즈군 (160, 170) 을 구비하고 있다. 또한, 제 1 가동 렌즈군 (160) 은, 오목 렌즈 (161) 와, 볼록 렌즈 (162) 와, 액츄에이터 (163) 를 구비하고 있고, 액츄에이터 (163) 에 고정된 볼록 렌즈 (162) 를 광축 방향으로 이동시킴으로써, 가동 렌즈군 (160) 의 파워가 플러스 (볼록 렌즈) 로부터 마이너스 (오목 렌즈) 로 연속적으로 변하는 초점거리 가변 렌즈 기능을 발현한다. 이 가동 렌즈군 (160) 은, 광디스크 (D) 의 광로 중에 배치함으로써, 광디스크 (D) 의 커버 두께가 상이한 정보 기록층 (도시 생략) 에 입사광의 집광점을 매칭시킬 수 있는 파워 성분을 포함하는 구면 수차의 보정이 가능해진다.
그런데, 이 가동 렌즈군 (160) 을 사용한 경우, 한 쌍의 렌즈 (161, 162) 와 액츄에이터 (163) 가 필요하게 되는 분만큼 광헤드 장치 (100) 의 대형화를 초래함과 함께, 가동시키기 위한 기구 설계가 복잡해지는 문제가 있었다.
(II) 또한, 광디스크의 커버 두께의 차이에 기인하여 발생하는 구면 수차를 보정하기 위해서, 도 9 에 나타낸 것과 같은 액정 렌즈 (200) 를 사용한 광헤드 장치도 제안되어 있다 (예를 들어, 일본 공개특허공보 평5-205282호).
이 액정 렌즈 (200) 는, 평탄한 일면에 투명 전극 (210) 및 배향 필름 (220) 이 형성된 기판 (230) 과, 축대칭이며 반경 (r) 의 멱승의 합인 다음 식으로 기술되는 표면 형상 (S(r)) 을 갖는 곡면에 투명 전극 (240) 과 배향 필름 (250) 이 형성된, 기판 (260) 에 의해 협지되는 네마틱 액정 (270) 을 구비한 구성으로 되어 있다.
이 액정 렌즈 (200) 는, 투명 전극 (210, 240) 사이에 전압이 인가되면, 액 정 (270) 의 분자 배향이 변화하고, 굴절률이 변한다. 그 결과, 기판 (260) 과 액정 (270) 의 굴절률차에 따라서, 투과광의 파면이 변화한다.
여기서, 기판 (260) 의 굴절률은 전압 비인가시의 액정 (270) 의 굴절률과 동등하다. 따라서, 이 전압 비인가시의 경우에는, 입사광의 투과 파면은 변화하지 않는다. 한편, 투명 전극 (210, 240) 사이에 전압을 인가하면, 기판 (260) 과 액정 (270) 에 굴절률차 (Δn) 가 발생하여, Δn·S(r) (단, S(r) 은 (1) 식 참조) 에 상당하는 투과광의 위상차가 생긴다. 따라서, 광디스크 (D) 의 커버 두께의 차이에 기인하여 발생하는 구면 수차를 보정하도록 기판 (260) 의 표면 형상 (S(r)) 을 가공하고, 인가 전압에 따라서 굴절률차 (Δn) 를 조정함으로써 수차 보정이 가능해진다.
S(r) = α1 r2+α2 r4+α3 r6+… … (1)
단, r2 = x2+y2
그런데, 도 9 에 나타내는 액정 렌즈의 경우, 인가 전압에 대한 액정 (270) 의 굴절률 변화는 최대 0.3 정도이기 때문에, 입사광의 집광점 위치를 변화시키는 파워 성분에 상당하는 큰 위상차 분포 (Δn·S(r)) 를 발생시키기 위해서는, S(r) 의 요철 차를 크게 하지 않으면 안된다. 그 결과, 액정 (270) 의 층이 두꺼워져, 구동 전압의 증가 및 응답이 지연되는 문제가 생긴다.
그래서, 액정층을 얇게 하기 위해서는 파워 성분을 제외한 수차 보정량이 가 장 적은 구면 수차만을 보정하는 것이 유효하다. 그러나, 구면 수차만을 보정하도록 기판 (260) 의 표면 형상 (S(r)) 을 가공한 경우, 광디스크의 정보 기록층에 입사광을 집광하는 대물 렌즈의 광축과 액정 렌즈의 광축이 편심되었을 때, 코마 수차가 발생하여, 정보 기록층에 대한 집광성이 열화되어서 기록이나 재생이 불가능한 문제가 생긴다.
(III) 그런데, 액정층을 두껍게 하지 않고 입사광의 집광점 위치의 변화에 상당하는 파워 성분도 가변으로 하는 실질적인 렌즈 기능을 발현시키기 위해서, 도 10 에 나타내는 바와 같은 액정 회절 렌즈 (300) 도 제안되어 있다 (예를 들어, 일본 공개특허공보 평9-189892호).
이 액정 회절 렌즈 (300) 는, 소정의 톱니모양의 릴리프 (relief) 가 형성된 기판 (310) 의 한 면에 투명 전극 (320) 이 형성되고, 이 투명 전극 (320) 과 대향 전극 (330) 에 의해 액정층 (340) 을 사이에 끼우고 있다. 이 전극 (320, 330) 사이에 전압을 인가하면, 이상광 (異常光) 편광에 대하여 액정층 (340) 의 실질적인 굴절률은 이상광 굴절률 (ne) 로부터 상광 (常光) 굴절률 (no) 로 변화한다. 여기에서, 실질적인 굴절률이란 액정층의 두께 방향의 평균 굴절률을 의미한다.
톱니모양의 릴리프 구조를 갖는 기판 (310) 의 굴절률을 nF, 입사광의 파장을 λ 로 했을 때에, 톱니모양의 릴리프의 홈의 깊이 (d) 가 d = λ/(ne-nF) 의 관계를 만족하도록 형성함으로써, 전압 비인가시에 파장 (λ) 에서 최대 회절 효율이 얻어지고, 회절 렌즈가 된다. 또한, 입사광의 파장 (λ) 이 변화하더라도, 파 장 (λ) 에서 최대 회절이 되도록 인가 전압을 조정할 수 있다.
이러한 구성의 액정 회절 렌즈 (300) 에서는, 톱니모양의 릴리프의 홈을 메우도록 액정층 (340) 을 충전하면 되기 때문에, 전술한 도 9 에 나타내는 액정 렌즈 (200) 를 사용하여 파워 성분을 포함하는 구면 수차를 보정하는 타입의 액정 (270) 과 비교하여, 액정층 (340) 은 얇게 할 수 있다.
그러나, 이 액정 회절 렌즈 (300) 에서는, 톱니모양의 릴리프면에 투명 전극 (320) 이 형성되어 있기 때문에, 플러스 마이너스 양쪽의 파워 성분을 얻기 위해서는, no<nF<ne 의 관계를 만족할 필요가 있다. 그 경우, no≠nF 이기 때문에, 상광 편광에 대해서는 φ = d×(nF-no)/λ 로 표현되는 고정된 위상차가 발생하기 때문에, 편광 광학계를 사용한 광헤드 장치에 적용하기 위해서는 문제가 있었다.
(IV) 상광 편광에 의해 투과 파면이 변화하지 않고, 플러스 마이너스 양쪽의 파워 성분을 얻기 위해서, 도 11 에 나타내는 바와 같은 액정 회절 렌즈 소자 (400) 가 있다. 이 액정 회절 렌즈 소자 (400) 는, 한 쌍의 투명 기판 (411, 412) 및 시일 (413) 로 구성되는 셀 중에 충전된 액정층 (414) 을, 투명 기판 (411, 412) 상에 형성된 투명 전극 (415, 416) 에 의해 구동한다. 투명 전극 (415) 의 표면에는, 톱니모양의 릴리프면인 프레넬 렌즈면 (417) 이 형성되어 있다. 이 액정 회절 렌즈 소자 (400) 에서는, nF = no 으로 되어 있기 때문에, 상광 편광에 대해서는 투과 파면은 변화하지 않는다. 또한, 프레넬 렌즈면 (417) 을 구성하는 재료의 비유전율에 따라서 액정층 (414) 에 실질적인 굴절률의 분포가 생기기 때문에, 인가하는 전압의 크기에 따라서, 플러스 마이너스 양쪽의 파워 성분을 발생할 수 있다.
그러나, 파워 변화가 없는 0 차광이 되는 전압을 인가한 경우, 액정층 (414) 과 투명 전극 (415) 사이에 프레넬 렌즈면 (417) 이 배치되어 있기 때문에, 액정층 (414) 에 인가되는 전압이 프레넬 렌즈면 (417) 의 형상에 따라서 분포되어, 위상차가 발생한다. 그 결과, 0 차광의 회절 효율이 저하되는 문제가 발생한다.
발명의 개시
발명이 해결하고자 하는 과제
본 발명은 상기 사정을 감안하여 이루어진 것으로, 종래 기술이 갖는 전술한 결점을 해소하고, 인가 전압의 크기에 따라서 안정된 입사광의 집광 위치의 변화에 상당하는 파워 성분을 포함하는 구면 수차 보정을 실시할 수 있는, 렌즈 기능을 갖는 액정 렌즈 소자를 제공하는 것을 목적으로 한다. 또한, 이 액정 렌즈 소자를 사용함으로써, 단층 및 2 층 광디스크에 있어서의 커버 두께의 차이에 기인하여 발생하는 구면 수차를 보정해서, 안정적인 기록 및/또는 재생이 가능한 광헤드 장치를 제공하는 것을 목적으로 한다.
과제를 해결하기 위한 수단
본 발명은, 적어도 한 쌍의 투명 기판에 의해 협지된 액정층에 인가하는 전압의 크기에 따라서 투과하는 광의 집광점을 변화시키는 액정 렌즈 소자로서, 상기 한 쌍의 투명 기판의 일방에는, 상기 광의 광축을 중심으로 하여 윤대 형상으로 배치한 단면이 요철 형상을 갖는 위상 보정면을 구비함과 함께, 상기 위상 보정면의 표면 및 상기 한 쌍의 투명 기판의 타방의 표면에는, 상기 액정층에 전압을 인가하기 위한 각각의 투명 전극을 구비하고, 또한, 상기 각각의 투명 전극의 사이에는, 상기 광의 광축에 관해서 회전 대칭성을 갖는 톱니모양의 단면 형상 또는 계단 형상에 의해 톱니모양에 근사시킨 단면 형상을 갖는 투명 재료로 이루어지는 프레넬 렌즈면과, 상기 액정층을 구비하는 것을 특징으로 하는 액정 렌즈 소자를 제공한다.
또한, 상기 프레넬 렌즈면을 구성하는 투명 재료의 굴절률이, 상기 액정층의 상광 굴절률에 대략 일치하고 있음과 함께, 상기 액정층을 투과하는 광의 편광 방향이, 상기 액정층의 이상광 굴절률 방향에 대략 일치한 직선 편광인 상기의 액정 렌즈 소자를 제공한다.
또한, 상기 프레넬 렌즈면과 상기 위상 보정면은, 상기 각각의 투명 전극 중 일방을 사이에 끼우고 동일 기판 표면에 형성되어 있는 상기의 액정 렌즈 소자를 제공한다.
또한, 상기 한 쌍의 투명 기판의 적어도 일방이 석영 유리로 이루어지고, 그 표면을 에칭함으로써 상기 위상 보정면이 형성되어 있는 상기의 액정 렌즈 소자를 제공한다.
또, 상기 액정 렌즈 소자를 제 1 액정 렌즈 소자로 한 경우에, 그 제 1 액정 렌즈 소자 외에, 제 1 액정 렌즈 소자와 동일 구성인 제 2 액정 렌즈 소자를 구비하고, 상기 제 1, 제 2 액정 렌즈 소자가, 액정층의 이상광 굴절률 방향이 서로 직교하도록 적층 일체화되어 있는 상기의 액정 렌즈 소자를 제공한다.
또한, 상기 광의 파장에 대한 위상차가 π/2 의 홀수배인 위상판이 일체화되어 있는 상기의 액정 렌즈 소자를 제공한다.
또한, 상기 위상 보정면을 구성하는 투명 재료의 굴절률은, 상기 액정층의 상광 굴절률과 동등한 상기의 액정 렌즈 소자를 제공한다.
또한, 상기 위상 보정면에 형성된 단면이 요철 형상을 갖는 윤대 형상의 오목부 또는 볼록부와 프레넬 렌즈면이 형성하는 윤대 형상의 볼록부가 광축 방향으로 중복되도록 형성되어 있는 상기의 액정 렌즈 소자를 제공한다.
또한, 본 발명은, 광원과, 이 광원으로부터의 출사광을 광기록 매체 상에 집광시키는 대물 렌즈와, 집광되어 광기록 매체에 의해 반사된 반사광을 검출하는 광 검출기와, 상기 광원과 상기 대물 렌즈 사이의 광로 중에 형성된 청구항 1 내지 6 항 중 어느 한 항에 기재된 액정 렌즈 소자를 구비하는 것을 특징으로 하는 광헤드 장치를 제공한다.
그리고, 상기 광기록 매체의 기록층을 덮는 커버층의 두께가 상이한 3 종류이고, 각각의 3 종류의 두께에 따라서 상기 액정 렌즈 소자에 인가되는 전압이 3 가지 전환됨으로써, 각각의 기록층에 있어서의 집광 성능이 최적으로 되는 상기의 광헤드 장치를 제공한다.
발명의 효과
본 발명에 의하면, 인가 전압의 크기에 따라서 투과 파면이 변화하기 때문에, 초점거리 가변 액정 렌즈가 실현된다. 또, 본 발명의 액정 렌즈 소자가 구비하는 프레넬 렌즈면에 의해 액정층의 두께를 얇게 할 수 있게 되어, 저전압 구동 및 고속 응답으로 이어진다. 그리고, 본 발명의 액정 렌즈 소자가 구비하는 위상 보정면에 의해, 광이용 효율이 높은 액정 렌즈 소자를 제공할 수 있다. 따라서, 이러한 액정 렌즈 소자를 구비한 광헤드 장치에는, 2 층 광디스크에 있어서의 커버 두께의 차이에 기인하여 발생하는 구면 수차를 보정할 수 있고, 또한, 트래킹시에 대물 렌즈가 액정 렌즈 소자와 편심을 일으킨 경우라도 수차 열화가 적기 때문에, 안정적인 기록 및/또는 재생할 수 있는 광헤드 장치가 실현된다.
도 1 은 본 발명에 관련된 액정 렌즈 소자의 제 1 실시형태를 나타내는 단면도이다.
도 2 는 본 발명에 관련된 액정 렌즈 소자의 액정 렌즈에 의해 생성되는 투과 파면의 위상차를 나타내는 그래프로서, P1, P2 는 위상차를 파장 (λ) 단위로 표기한 그래프, F1, F2 는 P1, P2 로부터 파장 (λ) 의 정수배를 가감하여, 제로 이상 λ 이하의 위상차로 한 그래프이다.
도 3 은 본 발명에 관련된 액정 렌즈 소자의 제 1 실시형태에 있어서의 단면 확대도이다.
도 4 는 액정 렌즈 소자의 윤대 내에 발생하는 위상차 (φ(rm)) 의 인가 전압 (V) 에 대한 변화를 나타내는 모식도로서, (a) 는 종래의 액정 렌즈 소자, (b) 는 본 발명의 액정 렌즈 소자이다.
도 5 는 본 발명에 관련된 액정 렌즈 소자의 제 2 실시형태를 나타내는 단면 모식도이다.
도 6 은 본 발명의 광헤드 장치의 일례를 나타내는 모식도이다.
도 7 은 본 발명의 제 1 실시예에 있어서의 액정 렌즈 소자의 프레넬 회절 효율을 나타내는 설명도이다.
도 8 은 가동 렌즈군이 구면 수차 보정 소자로서 탑재된 종래의 광헤드 장치를 나타내는 구성도이다.
도 9 는 종래의 액정 렌즈의 구성예를 나타내는 단면도이다.
도 10 은 종래의 액정 회절 렌즈의 구성예를 나타내는 단면 모식도이다.
도 11 은 종래의 액정 렌즈 소자의 구성예를 나타내는 단면 모식도이다.
(부호의 설명)
10, 20: 액정 렌즈 소자 11, 12, 21, 22: 투명 기판
13, 23: 시일 14, 24: 액정층
15, 16, 25, 26: 투명 전극 17, 27: 프레넬 렌즈면
18, 28: 위상 보정면 19: 외부 신호원
31: 반도체 레이저 32: 편광 빔 스플리터
33: 콜리메이터 렌즈 35: 4 분의 1 파장판
36: 대물 렌즈 37: 실린더리컬 렌즈
38: 광 검출기 D: 광디스크
D1: 제 1 기록층 D2: 제 2 기록층
발명을 실시하기 위한 최선의 형태
이하, 본 발명의 실시형태에 관해서 첨부 도면을 참조하면서 상세히 설명한다.
[제 1 실시형태]
도 1 은 본 발명의 액정 렌즈 소자의 제 1 실시형태를 나타내는 단면도로, 본 실시형태에 관련된 액정 렌즈 소자 (10) 는, 투명 기판 (11, 12) 및 시일 (13) 에 의해 협지된 액정층 (14) 을 구비한다. 제 1 투명 기판 (12) 의 표면에는 투명 전극 (15) 과 프레넬 렌즈면 (17) 이 형성되어 있고, 제 2 투명 기판 (11) 의 표면에는 위상 보정면 (18) 과 투명 전극 (16) 이 형성되어 있다. 투명 전극 (15, 16) 은, 액정층 (14) 에 전압을 인가하기 위해서 외부 신호원 (19) 에 접속되어 있다. 도 1 에 나타나 있지는 않지만, 투명 전극 (16) 및 프레넬 렌즈면 (17) 의 표면에는, 액정층 (14) 을 배향시키기 위한 배향막이 형성되어 있다. 또, 투명 기판 (11, 12) 의 외측 표면에는 반사 방지막이 형성되어 있어도 된다.
다음으로, 이 액정 렌즈 소자 (10) 의 제작 순서의 일례에 관해서, 이하에 설명한다.
처음에, 투명 기판 (12) 의 일면에 투명 전극 (15) 을 형성한다. 또, 투명 전극 (15) 의 상면에, 굴절률 nF 의 균일 굴절률 투명 재료로, 광축을 중심으로 한 복수의 윤대로 이루어지고, 단면 형상이 톱니모양 또는 톱니를 계단형상에 근사시킨 형상인 프레넬 렌즈면 (17) 을 형성한다.
한편, 투명 기판 (11) 의 일면에는, 처음에, 굴절률 nc 의 균일 굴절률 투명 재료로, 광축을 중심으로 한 윤대 형상의 요철 형상인 위상 보정면 (18) 을 형성한다. 그리고, 위상 보정면 (18) 의 상면에 투명 전극 (16) 을 형성한다.
다음으로, 프레넬 렌즈면 (17) 에는, 투명 전극 (15) 의 면에 소정 막두께를 갖는 균일 굴절률 투명 재료층을 형성한 후, 포토리소그래피나 반응성 이온 에칭에 의해 프레넬 렌즈 형상으로 가공해도 되고, 금형을 사용하여 균일 굴절률 투명 재료층에 프레넬 렌즈 형상을 전사해도 된다. 동일한 방법으로, 위상 보정면 (18) 도, 투명 기판 (11) 의 표면에 소정의 두께와 형상이 되도록 형성한다.
다음으로, 투명 전극 (16) 및 프레넬 렌즈면 (17) 의 표면에는, 액정층 (14) 의 이상광 굴절률 방향이 Y 방향을 향하도록 평행 배향 처리를 실시한다. 배향 처리는, 폴리이미드 등을 주성분으로 하는 배향막을 기판 표면에 스핀 코트한 후, 천 등으로 러빙하는 방법이나, SiO 사증착막을 기판 표면에 형성하는 방법, 광배향막을 기판 표면에 스핀 코트한 후, 편광 자외선을 조사하는 방법 등을 이용하면 된다.
다음으로, 갭 제어재가 혼입된 도시하지 않은 접착재를 인쇄 패터닝하여 시일 (13) 을 형성하고, 상기 투명 기판 (11, 12) 을 포개어서, 압착하여 공(空)셀을 제작한다. 그리고, 시일 (13) 의 일부에 형성된 주입구 (도시 생략) 로부터 상광 굴절률 (no) 및 이상광 굴절률 (ne) (단, no≠ne) 을 갖는 액정을 주입하고, 이 주입구를 봉하여 액정을 셀 내에 밀봉해서, 본 실시형태의 액정 렌즈 소자 (10) 로 한다.
다음으로, 본 발명의 제 1 실시형태에 관련된 액정 렌즈 소자 (10) 의 동작 원리를, 이하에 설명한다.
이 액정 렌즈 소자 (10) 는, 투명 전극 (15, 16) 사이에 인가하는 전압을 전환시킴으로써, 액정층 (14) 의 실질적인 굴절률을 변화시키는 것에 의해 이산적으로 초점 가변인 프레넬 렌즈로서 기능한다. 이하, 프레넬 렌즈면 (17) 에 의한 작용, 및 위상 보정면 (18) 에 의한 작용에 관해서 상세히 설명한다.
본 발명의 액정 렌즈 소자 (10) 를 사용하여, 플러스 또는 마이너스의 파워 성분이 부여된 투과 파면을 생성하기 위해서는, 액정 렌즈 (10) 에 입사하는 투과 파면에 있어서, 광축 중심 (좌표 원점: x = y = O) 의 광축에 대하여, 반경 (r) 만큼 떨어진 위치를 통과하는 광선의 위상차 (φ) 가 다음 식과 같은 멱급수로 기술되도록 한다.
φ(0) = a1 r2+a2 r4+a3r6+a4 r8+… … (2)
단, r2 = x2+y2
a1, a2, … : 정수
여기서, 횡축을 액정 렌즈 소자의 반경 (r) 으로 하여, r = 0 즉 광축 위치에 대한 광로 길이차인 액정 소자의 위상차를 입사광의 파장 (λ) 의 단위로 표기 한 곡선의 구체예를, 도 2 에 부호 P1 및 P2 로 나타낸다.
위상이 고르게 맞춰진 코히런트한 파장 (λ) 의 입사광의 경우, λ 의 정수배의 위상차를 갖는 투과 파면은 동등한 것으로 볼 수 있다. 따라서, 도 2 의 P1, P2 로 나타내는 그래프를 파장 (λ) 간격으로 분할하여 위상차 제로의 면에 사영시킨 위상차를 나타내는 그래프 F1, F2 는, 그래프 P1, P2 와는 실질적으로 동등하다. 그래프 F1, F2 에 나타내는 위상차 분포는, 모두 파장 (λ) 이내이고, 단면이 톱니모양으로 되어 있다.
액정 렌즈 소자 (10) 에 의해, 그래프 F1, F2 에 상당하는 위상차를 얻기 위해서는, 프레넬 렌즈면 (17) 의 형상을 그래프 F1, F2 와 동일하게 가공하면 된다. 프레넬 렌즈면 (17) 은 균일 굴절률 투명 재료이면 되고, 자외선 경화 수지나 열효과 수지, 감광성 수지 등의 유기 재료여도 되고, SiO2 나 Al2O3 나 SiOxNy (단, x, y 는 O 와 N 의 원소 비율을 나타낸다) 등의 무기 재료여도 된다. 이러한 재료들은, 투명 전극 (15, 16) 을 구성하는 재료에 비해 체적 저항율이 매우 크고, 액정 재료와 비교하더라도 충분히 작지는 않기 때문에, 유전체라고 볼 수 있다.
도 3 은 본 발명의 액정 렌즈 소자 (10) 에 있어서의 단면의 확대도로, 중심에서부터 m 번째 프레넬 렌즈면 (17) 의 윤대 부분을 확대한 모식도이다. 도면에 나타내는 바와 같이, 프레넬 렌즈면 (17) 의 윤대 (m) 에 있어서, 윤대의 폭으로 규격화한 좌표계 (rm) 를 정의하고, 윤대 (m) 의 광축측을 rm = 0, 외주측을 rm = 1 로 한다. 프레넬 렌즈면 (17) 의 요철 두께를 dF(rm), 액정층 (14) 의 두께 를 dLC(rm), 위상 보정면 (18) 의 요철 두께를 dC(rm) 으로 하고, G = dF(rm)+dLC(rm)+dC(rm) 가 일정치 (G) 가 되는 것으로 한다.
프레넬 렌즈면 (17) 은 투명 전극 (15, 16) 의 사이에 설치되어 있기 때문에, 프레넬 렌즈면 (17) 을 구성하는 재료의 비유전율 (εF) 에 따라서, 액정층 (14) 에 인가되는 실효적인 전압 (VLC) 이 변화한다. 구체적으로는, 투명 전극 (15, 16) 사이에 인가한 교류 전압을 V 로 하면, VLC 는 다음 식으로 기재된다.
VLC = V/{1+(εLCF)×(dF/dLC)} … (3)
여기서, εLC 는 액정층 (14) 의 실효적인 비유전율이다. 액정은, 유전율 이방성을 가지고, 액정 분자 장축 방향의 비유전율 (ε//) 과 액정 분자 단축 방향의 비유전율 (ε⊥) 이 상이하기 때문에, 전압 인가에 수반하여 액정 분자의 배향 방향이 변화하고, 액정 분자의 배향 방향의 변화에 의해 액정층 (14) 의 비유전율 (εLC) 도 변화한다. (3) 식으로부터 액정에 인가되는 실효적인 전압 (VLC) 은 광의 입사 위치 (rm) 에 따라서 공간적으로 분포하기 때문에, rm 의 함수이다. 따라서, 금후, VLC(rm) 으로 표기한다.
본 발명의 액정 렌즈 소자에, 액정층 (14) 에 대한 이상광 편광이 입사하는 경우, 액정층 (14) 의 실질적인 굴절률 (n(VLC)) 은, 광의 입사 위치 (rm) 에 따라서 공간적으로 분포한다. 도 3 에 있어서, 투명 기판 (11, 12) 사이를 투과하는 광의 광로 길이 (OP(rm)) 는, 다음 식과 같다.
OP(rm) = nF×dF(rm)+n(VLC)×dLC(rm)+nc×dc(rm)
따라서, rm = 0 에 입사하는 광의 광로 길이 (OP(0)) 에 대한 위상차 (φ(rm)) 는 (4) 와 같이 된다. 단, 분자의 2π 를 생략하고 있다.
φ(rm) = {OP(rm)-OP(0)}/λ
= {nF×dF(rm)+n(VLC(rm))×dLC(rm)
+nc×dc(rm)-nF×dF(0)-n(VLC(0))
×dLC(0)-nc×dc(0)}/λ … (4)
도 4 는, rm = 0 을 기준으로 한 프레넬 렌즈면 (17) 의 하나의 윤대 내에 발생하는 위상차 (φ(rm)) 의 인가 전압 (V) 에 대한 변화를 나타내는 모식도로, 실선은 φ(rm = 1), 파선은 φ(rm = 0.5) 의 경우이고, 도 4(a) 에 나타내는 그래프는 도 11 에 나타내는 종래의 액정 렌즈 소자 (400) 의 경우, 도 4(b) 에 나타내는 그 래프는 본 발명의 액정 렌즈 소자 (10) 의 경우이다.
rm = 1 에서의 위상차, 즉 φ(1) ≒ λ 가 되는 전압 (V+1) 에서는, 액정 렌즈 소자에 입사하는 평면파가 도 2 의 F1 에 나타내는 바와 같이 변조되는 결과, P1 에 나타낸 바와 같은 +1 차 회절 파면으로서, 플러스의 파워를 포함하는 파면으로 변환되어 수속광이 된다. 한편, φ(1) ≒ -λ 가 되는 전압 (V-1) 에서는, 액정 렌즈 소자에 입사하는 평면파가 도 2 의 F2 에 나타내는 바와 같이 변조되는 결과, P2 에 나타낸 바와 같은 -1 차 회절 파면으로서, 마이너스의 파워를 포함하는 파면으로 변환되어 발산광이 된다. 다음으로, φ(1) ≒ 0 이 되는 전압 (V0) 에서는, 입사하는 파면이 변화하지 않기 때문에, 광선의 집광 위치는 변화하지 않는다. 그러나, 종래예인 도 4(a) 에서는, φ(0.5) ≠ 0, 즉 프레넬 렌즈면 (17) 의 윤대 중앙에서의 위상차가 제로가 되지 않고, 윤대 내에서 위상 어긋남이 발생되어 있다. 그 결과, 파면 수차가 발생하고, 광의 이용 효율 (0 차의 프레넬 회절 효율) 이 저하되는 문제가 생긴다. 이것은, 윤대 내의 위치 (rm) 에 따라 액정층 (14) 의 실질적인 굴절률 (n(VLC)) 이 상이한 것에 의한 것으로, (3) 식으로부터, εLCF 가 커질수록, 또는, dF 가 커질수록 현저해진다.
한편, 본 발명의 액정 렌즈 소자에서는, 상기 0 차광 파면의 위상 어긋남을 위상 보정면 (18) 에서 보정한다 (도 4(b)). 그 때문에, 위상 보정면을 형성하는 재료의 굴절률 nC 과 n(VLC) 의 차와 위상 보정면 (18) 의 두께 (dC(rm)) 의 곱이 상기 위상 어긋남을 상쇄하도록, nC 및 dC(rm) 을 설계한다. 전압 (V0) 에 있어서 nC<n(VLC) 이면, 도 3 에 나타내는 바와 같이, 윤대 중앙에서 볼록해지는 형상, 즉 위상 보정면 (18) 을 투명 기판 (11) 에 형성하면 된다. 따라서, 본 발명의 액정 렌즈 소자에서는 V0 에서의 위상차 어긋남이 거의 0 가 되기 때문에, 높은 광이용 효율을 얻을 수 있다.
이상과 같이, 본 발명의 액정 렌즈 소자를 사용하면, 프레넬 렌즈면에서의 회절 렌즈 효과에 의해, 인가 전압 V+1, V0, V-1 에 있어서 액정 렌즈 (10) 에 입사한 평면파를, 플러스의 파워, 파워 없음, 마이너스의 파워에 대응하는 렌즈 기능이 얻어진다. 또한, 위상 보정면에 의해 위상 보정을 실시함으로써, 특히 인가 전압 (V0) 에서의 결상 효율을 향상시킬 수 있다. 또한, 본 발명의 액정 렌즈 소자는, 한 쌍의 전극 사이에 프레넬 렌즈면을 갖고, 또한, 위상 보정면을 한 쌍의 전극 밖에 구비함으로써, 액정과 프레넬 렌즈면의 굴절률 및 비유전율, 요철 두께, 및 액정층 두께 등의 선택에 의해 얻어지는 위상차의 전기 광학 특성의 설계 자유도가 높기 때문에, 저전압 구동 또는 다종 다양한 투과 파면을 생성할 수 있다.
이상, 이상광 편광에 대한 액정 렌즈 소자의 작용을 설명하였다. 다음으로, 상광 편광에 대한 액정 렌즈 소자의 작용에 대해 설명한다.
상광 편광이 감지하는 액정의 실효적인 굴절률은 인가하는 전압에 상관없이, 항상 액정의 상광 굴절률에 일치한다. 따라서, 액정 렌즈 소자 (10) 의 위상차 (φ(rm)) 는, (5) 식과 같이 된다. 단, 분자의 2π 를 생략하고 있다.
φ(rm) = {OP(rm)-OP(0)}/λ
= {nF×dF(rm)+n0×dLC(rm)+nC×dc(rm)-nF×dF(0)
+n0×dLC(0)+nc×dc(0)}/λ
= {nF×(dF(rm)-dF(0))+n0×(dLC(rm)-dLC(0))
+nc×(dF(rm)-dF(0))}/λ
= {(nF-no)×(dF(rm)-dF(0))
+(nc-no)×(dC(rm)-dC(0))}/λ … (5)
상기 (5) 식에 있어서, 제 1 항은, 프레넬 렌즈면 (17) 의 굴절률 (nF) 과 액정의 상광 굴절률 (nO) 의 차에 비례한 고정 위상차이고, kλ (k 는 정수) 가 되도록 nF, nO 을 설정하면, 고정 초점의 액정 렌즈로서 이용할 수 있다. 상광 편광에 대하여 렌즈 작용을 부여하지 않는 경우에는, nF = nO 으로 하면 되고, 하기에 서술하는 광헤드 장치에 대한 응용에 있어서는, 복로 (復路) 광에 대하여 여분의 파워가 발생하지 않기 때문에 바람직하다. 한편, (5) 식 제 2 항은, 위상 보정면 (18) 의 굴절률 (nC) 과 액정의 상광 굴절률 (nO) 의 차에 비례한 고정 위상차이 고, 상광 편광에 대해서는 전압 의존성이 없기 때문에 nC = nO 로 하는 것이 바람직하다. 그러나, 위상차의 크기가,
(nC-nO)×(dC(rm)-dC(O))<λ/10
이면 파면에 미치는 영향은 작기 때문에 실질적으로 문제가 없고, 이 범위에서 위상 보정면 (18) 의 굴절률 (nC) 을 선택해도 된다. 특히, 석영 유리 등의 투명 기판 상에 건식 에칭 기술 등으로 직접 위상 보정면 (18) 의 형상을 형성하는 것은, 제작이 용이해지므로 바람직하다.
또한, 본 실시형태에서는, 도 2 의 P1, P2 로 나타내는 위상차를 파장 (λ) 간격으로 구분한 위상차인 F1, F2 를 생성하는 액정 렌즈 소자 이외에, 파장의 m 배, mㆍλ (m = 2 또는 3) 간격으로 구분한 위상차를 생성하는 액정 렌즈 소자의 형태여도 된다. 이 경우, 도 2 의 P1, P2 를 파장의 m 배, mㆍλ (여기서는, m = 2 또는 3) 간격으로 구분한 위상차에 대응한 투과 파면이 된다.
또한, 보정해야 할 위상차의 절대치가 입사광의 파장 (λ) 이하인 경우에는, 액정 렌즈 소자 (10) 의 균일 굴절률 투명 재료로 이루어지는 프레넬 렌즈면 (17) 의 윤대수는 1 이 되고, 프레넬 렌즈 형상으로 할 필요는 없으며, 목적으로 하는 파면에 일치한 렌즈 형상이면 된다. 이 경우, 인가 전압의 크기에 따라서 위상차는 연속적으로 변화한다. 또한, 위상 보정면 (18) 의 윤대수도 1 개가 된다.
또한, 본 실시형태에서는, 액정층 (14) 에는, 투명 전극 (15, 16) 을 통하여 교류 전압을 인가하는 구성을 갖는 것을 나타내었다. 본 발명에서는, 이것 외 에, 예를 들어 투명 전극 (15, 16) 의 적어도 일방의 전극을 공간적으로 분할하여 독립적으로 상이한 교류 전압을 인가할 수 있는 분할 전극으로 해도 된다. 이것에 의해, 더욱 다양한 위상차 분포를 생성할 수 있다.
또한, 본 실시형태에서는, 전압 비인가시에 기판면에 평행하게 배향하고, 인가 전압의 크기에 따라서 기판면에 수직 방향으로 액정 분자가 배열하는 포지티브(正)한 유전 이방성을 갖는 액정을 사용하는 예를 나타내었지만, 별도의 액정 분자 배향 또는 액정 재료여도 된다. 예를 들어, 전압 비인가시에 기판면에 수직으로 배향하고, 인가 전압 (V) 에 따라서 기판면에 평행 방향으로 액정 분자가 배열하는 네거티브(負)한 유전 이방성을 갖는 액정을 사용해도 된다.
또한, 본 실시형태에서는, 한 쌍의 투명 기판 (11, 12) 에 협지된 1 개의 액정층 (14) 을 갖는 액정 렌즈 소자 (10) 에 관해서 서술하였지만, 동일한 구성에서, 액정 분자 배향 방향이 직교하는 제 2 액정 렌즈 소자를 적층 일체화해도 된다. 이렇게 함으로써, 직교하는 2 개의 직선 편광에 관해서 동일한 광학적 작용을 미치기 때문에, 입사하는 편광에 상관없이 렌즈 기능을 얻을 수 있다. 또한, 그 밖에, 파면 수차 보정 소자 등 액정을 사용한 광학 소자를 적층 일체화해도 된다.
또한, 본 발명의 액정 렌즈 소자의 표면에, 위상차판이나, 회절 격자, 복굴절성 홀로그램 소자, 파장 의존성 회절 격자 등의 광부품을 적절히 적층하여 일체화해도 되고, 광헤드 장치를 구성할 때에는, 광 부품수가 줄어 광헤드 장치의 조립이 간이해지기 때문에 바람직하다. 또한, 상기 광 부품은, 투명 기판에 성형되 어 있거나, 부착되어 있어도 된다.
[제 2 실시형태]
다음으로, 본 발명의 제 2 실시형태에 관련된 액정 렌즈 소자의 구성예에 관해서 이하에 설명한다.
도 5 는 본 발명의 제 2 실시형태에 관련된 액정 렌즈 소자를 나타내는 단면도이다. 본 실시형태에 관련된 액정 렌즈 소자 (20) 는, 투명 기판 (21, 22) 및 시일 (23) 에 의해 협지된 액정층 (24) 을 구비하고 있다. 이 중, 제 1 투명 기판 (22) 의 표면에는 투명 전극 (25) 이 형성되어 있다. 한편, 제 2 투명 기판 (21) 의 표면에는, 위상 보정면 (28), 투명 전극 (26), 프레넬 렌즈면 (27) 이 순서대로 형성되어 있다. 투명 전극 (25, 26) 은, 액정층 (24) 에 전압을 인가하기 위해서 외부 신호원 (19) 에 접속되어 있다. 또, 도 5 에 나타나 있지 않지만, 투명 전극 (25) 및 프레넬 렌즈면 (27) 의 표면에는, 액정층 (24) 을 배향시키기 위한 배향막이 형성되어 있다. 또, 투명 기판 (21, 22) 의 외측 표면에는 반사 방지막이 형성되어 있어도 된다.
다음으로, 이 액정 렌즈 소자 (20) 의 제작 순서의 일례에 관해서, 이하에 설명한다.
처음에, 투명 기판 (22) 의 일면에는 투명 전극 (25) 을 형성한다. 또, 투명 전극 (21) 의 일면에는, 굴절률 nC 의 균일 굴절률 투명 재료로, 광축을 중심으로 한 윤대 형상의 요철 형상인 위상 보정면 (28) 을 형성한다. 다음으로, 위상 보정면 (28) 의 상면에 투명 전극 (26) 을 형성한다. 또한, 투명 전극 (26) 의 상면에, 굴절률 nF 의 균일 굴절률 투명 재료로, 광축을 중심으로 한 복수의 윤대로 이루어지고, 단면 형상이 톱니모양 또는 계단 형상에 의해 톱니모양에 근사시킨 형상인 프레넬 렌즈면 (27) 을 형성한다.
다음으로, 투명 전극 (25) 및 프레넬 렌즈면 (27) 의 표면에는, 액정층의 이상광 굴절률 방향이 Y 방향을 향하도록 평행 배향 처리를 실시한다.
다음으로, 각각 투명 전극 (25, 26) 을 형성해 놓은 투명 기판 (21, 22) 의 일면에, 갭 제어재가 혼입된 도시하지 않은 접착재를 인쇄 패터닝하여 시일 (23) 을 형성한다. 그리고 상기 투명 기판 (21, 22) 을 포개어서, 압착하여 공셀을 제작한다. 그리고, 시일 (23) 의 일부에 형성된 주입구 (도시 생략) 로부터 상광 굴절률 (no) 및 이상광 굴절률 (ne) (단, no≠ne) 을 갖는 액정을 주입한 후, 이 주입구를 봉하여 액정을 셀 내에 밀봉해서, 본 실시형태의 액정 렌즈 소자 (20) 로 한다.
또, 프레넬 렌즈면 (27), 위상 보정면 (28) 의 형성 방법 및, 배향 처리의 방법은, 상기 제 1 실시형태와 동일하면 된다. 위상 보정면 (28) 의 형상은, 제 1 실시형태에 있어서의 위상 보정면 (18) 과 동일하면 되지만, 프레넬 렌즈면 (27) 은 위상 보정면 (28) 의 요철 형상 위에 형성되기 때문에, 프레넬 렌즈면 (27) 의 두께 (dF(rm)) 가, 제 1 실시형태에서의 프레넬 렌즈면 (17) 의 두께 (dF(rm)) 와 동일한 두께가 되도록 형성한다.
본 실시형태에 있어서의 액정 렌즈 소자 (20) 는, 제 1 실시형태에 있어서의 액정 렌즈 소자 (10) 와 비교하면, 프레넬 렌즈면 (27) 의 설치 위치가 위상 보정면을 구비한 동일 기판 상에 있는 것만이 다르다. 따라서, 한 쌍의 투명 전극 (25, 26) 사이에 구비된, 프레넬 렌즈면 (27) 및 액정층 (24) 의 두께는 제 1 실시형태와 동일하기 때문에, 본 실시형태에 있어서의 액정 렌즈 소자 (20) 의 전기 광학 특성은, 제 1 실시형태와 동일하다. 본 실시형태와 같이, 프레넬 렌즈면 (27) 과 위상 보정면 (28) 을 동일한 투명 기판 (21) 상에 형성하면, 액정 렌즈 소자 (20) 를 제작하는 데에 있어서, 프레넬 렌즈면 (27) 과 위상 보정면 (28) 의 위치 어긋남을 작게 할 수 있기 때문에, 바람직하다.
[제 3 실시형태]
다음으로, 본 발명의 액정 렌즈 소자를 탑재한 광헤드 장치에 관해서 이하에 설명한다.
도 6 은, 본 발명의 액정 렌즈 소자를 탑재한 광헤드 장치 (30) 의 일례를 나타내는 모식도로, 2 층 광디스크 (D) 에 정보를 기록 및/또는 재생하게 되어 있고, 광원인 반도체 레이저 (31) 와, 편광 빔 스플리터 (32) 와, 콜리메이터 렌즈 (33) 와, 본 발명의 액정 렌즈 소자 (10 (20)) 와, 4 분의 1 파장판 (35) 과, 대물 렌즈 (36) 와, 실린더리컬 렌즈 (37), 및 광 검출기 (38) 를 구비하고 있다. 한편, 2 층 광디스크 (D) 에는 DVD 나 고밀도 광디스크 등이 사용되고 있고, 제 1 기록층 (D1) 및 제 2 기록층 (D2) 을 갖는다.
반도체 레이저 (31) 에는, 사용하는 파장으로서 광디스크 (D) 의 종류에 따 라서 780㎚ 대, 660㎚ 대, 405㎚ 대 중 어느 하나여도 되고, 별도의 장소에 상이한 파장의 복수의 반도체 레이저를 탑재해 두어도 된다. 즉, 이러한 파장대의 2 개의 조합이어도 된다. 780㎚ 대와 660㎚ 대, 또한 660㎚ 대와 405㎚ 대 등의 조합이다. 3 개의 파장대의 조합이어도 된다. 여기서 사용하는 액정 렌즈 소자는, 전술한 제 1 실시형태 또는 제 2 실시형태 등의 형태를 취할 수 있다. 이하에서는, 도 1 에 나타내는 제 1 실시형태에 있어서의 액정 렌즈 소자 (10) 를 사용하여 설명한다. 따라서, 액정 렌즈 소자의 구조 및 제작 방법이나, 동작 원리의 설명은 생략한다. 또, 본 발명에 관련된 액정 렌즈 소자를 탑재한 광헤드 장치로는, 도 6 에 나타낸 광 부품 이외에, 회절 격자, 홀로그램 소자, 편광 의존성 선택 소자, 파장 선택성 소자, 파면 변환 수단 등의 상이한 광 부품 또는 기구 부품을 적절히 조합하여 적용할 수 있다.
우선, 본 실시형태에 관련된 광헤드 장치 (30) 의 작용에 관해서 설명한다.
광원인 반도체 레이저 (31) 로부터 출사된 Y 방향의 직선 편광은, 편광 빔 스플리터 (32) 를 투과한 후, 콜리메이터 렌즈 (33), 액정 렌즈 소자 (10), 4 분의 1 파장판 (35) 을 투과한 후, 원편광으로 변환되고, 대물 렌즈 (36) 에 의해, 광디스크 (D) 가 갖는 제 1 기록층 (D1) 또는 제 2 기록층 (D2) 에 집광된다. 한편, 광디스크 (D) 로부터 반사된 광은, 재차 대물 렌즈 (36), 4 분의 1 파장판 (35) 을 통과한 후, X 방향의 직선 편광으로 변환되어, 액정 렌즈 소자 (10), 콜리메이터 렌즈 (33) 를 통과하고, 편광 빔 스플리터 (32) 에서 반사되어서, 실린더리컬 렌즈 (37) 에 의해 비점 수차가 주어지고, 광 검출기 (38) 에 입사된다.
다음으로, 본 발명의 액정 렌즈 소자를 탑재한 광헤드 장치 (30) 를 사용하여, 커버 두께가 상이한 기록층 (D1, D2) 에 정보를 기록 및/또는 재생하는 동작을 이하에 설명한다.
여기서는, 대물 렌즈 (36) 는, 제 1 기록층 (D1) 과 제 2 기록층 (D2) 의 중간인 커버 두께에 있어서 수차가 최소가 되도록 설계되어 있는 것으로 한다. 그러면, 설계와 상이한 커버 두께의 기록층에 집광할 때, 커버 두께의 기록층 두께로부터 설계 두께를 뺀 커버 두께차에 비례한 구면 수차가 발생하여, 정보의 기록 및 판독이 어려워진다. 이 구면 수차는, 대물 렌즈 (36) 로 입사되는 광을, 평면파에 파워 성분을 부가한 발산광 또는 수속광으로 함으로써 보정할 수 있다. 즉, 커버 두께차가 마이너스인 제 1 기록층 (D1) 에서는, 플러스의 파워를 부가함으로써 수속광으로 하고, 커버 두께차가 플러스인 제 2 기록층 (D2) 에서는, 마이너스의 파워를 부가함으로써 발산광으로 변환한 후, 대물 렌즈 (36) 에 의해 집광하면, 구면 수차가 보정되어 정상적으로 정보를 기록 및 판독할 수 있다. 이하, 경우를 나누어 설명한다.
(i) 제 1 기록층 (D1) (커버 두께차가 마이너스) 의 경우:
제 1 기록층 (D1) 에 대한 기록 및/또는 재생에 있어서는, 상기한 바와 같이, 액정 렌즈 소자 (10) 의 투과 파면이 약간 집광하는 구면파가 되도록 투명 전극 (15, 16) (도 1 참조) 사이에 교류 전압 (V+1) 을 인가한다. 그러면, 액정층 (14) 의 배향 방향이 변화하여, 플러스의 파워 즉 볼록 렌즈 상당의 투과 파면 이 된다. 따라서, 제 1 기록층 (D1) 으로 집광하는 광의 구면 수차를 보정할 수 있다.
(ii) 제 2 기록층 (D2) (커버 두께차가 플러스) 의 경우:
제 2 기록층 (D2) 에 대한 기록 및/또는 재생에 있어서는, 액정 렌즈 소자 (10) 의 투과 파면이 약간 발산하는 구면파가 되도록 투명 전극 (15, 16) 사이에 교류 전압 (V-1) 을 인가한다.
그러면, 액정층 (14) 의 배향 방향이 변화하여, 마이너스의 파워 즉 오목 렌즈 상당의 투과 파면이 된다. 따라서, 제 2 기록층 (D2) 으로 집광하는 광의 구면 수차를 보정할 수 있다.
(iii) 단층 광디스크 등 커버 두께차가 제로인 경우:
상기한 2 층 광디스크 (D) 대신에, 단층 광디스크 등, 대물 렌즈의 설계 커버 두께에 동등한 커버 두께를 갖는 기록층에 대한 기록 및/또는 재생에 있어서는, 액정 렌즈 소자 (10) 의 투과 파면이 변화하지 않도록 투명 전극 (15, 16) 사이에 교류 전압 (V0) 을 인가한다.
따라서, 2 층 광디스크의 기록층 (D1, D2) 용 2 개의 커버 두께와 단층 광디스크의 커버 두께, 합계 3 개의 커버 두께에 대하여 교류 전압 (V+1, V-1 및 V0) 을 인가하여, 집광 성능의 최적화 즉 구면 수차를 보정한다.
이상과 같이 하여, 액정층에 인가하는 전압을 변화시킴으로써, 상이한 커버 두께를 갖는 2 개의 기록층의 구면 수차를 보정할 수 있다.
따라서, 상이한 2 개 또는 3 개의 파장대의 레이저광에 대해서도 본 액정 렌즈 소자는 대처할 수 있다. 상이한 2 개의 파장대의 레이저광이란, 파장 780㎚ 대와 660㎚ 대, 파장 660㎚ 대와 405㎚ 대 등의 조합이다.
또한 본 실시형태에서는, 반도체 레이저 (31) 로부터 광디스크 (D) 를 향하는 광로 중 (즉 왕로(往路) 중) 에서의, 액정 렌즈 소자 (10) 에 입사되는 광은, 액정층 (14) 의 이상광 굴절률에 일치하는 직선 편광이면, 상기한 바와 같이 왕로광에 대하여 렌즈 작용이 동작한다. 한편, 복로광 (광디스크 (D) 로부터의 반사광) 에서는, 편광 방향은 4 분의 1 파장판 (35) 의 작용에 의해 90°회전하기 때문에, 액정층 (14) 의 상광 편광을 감지한다. 따라서, 전술한 바와 같이, 전압에 의존하지 않는 고정 위상차를 얻지만, 프레넬 렌즈면의 굴절률 (nF) 이나 위상 보정면의 굴절률 (nC) 을 액정층 (14) 의 상광 굴절률 (no) 과 일치시켜 놓으면, 파면은 변화하지 않기 때문에 바람직하다. 또, 복로광에 발생하는 구면 수차를 보정하는 경우에는, 액정층의 이상광 굴절률 방향이 직교하도록, 동일한 형태를 갖는 제 2 액정 렌즈 소자를 적층 일체화한 형태를 사용하면 보정할 수 있기 때문에, 보다 바람직하다.
「예 1」
다음으로, 제 1 실시형태에 나타낸 본 발명의 액정 렌즈 소자 (10) 의 실시예에 관해서, 도 1 을 참조하면서 이하에 구체적으로 설명한다.
우선, 이 액정 렌즈 소자 (10) 의 제작 방법에 관해서 설명한다.
유리를 소재로 하는 투명 기판 (12) 의 한쪽 면에 투명 도전막 (ITO 막) 을 형성하고, 패터닝을 실시하여 이것을 투명 전극 (15) 으로 한다. 또한 그 투명 전극 (15) 상에, 굴절률 (nF (= 1.52)), 비유전율 (εF (= 4)) 의 균일 굴절률 재료인 SiON 막을 막두께 (d (= 3.7㎛)) 가 되도록 증착한다. 다음으로, 그 형성된 SiON 막이 도 2 의 그래프 F2 의 형상에 상당하도록, 포토리소그래피 기술 및 에칭 기술에 의해, SiON 막으로부터 단면 형상이 톱니모양이고 입사광의 광축 (Z 축) 에 대하여 회전 대칭성을 갖는, 도 1 에 나타낸 바와 같은 프레넬 렌즈면 (17) 을 형성한다. 프레넬 렌즈면 (17) 의 요철 형상의 최대 깊이는 2.7㎛ 이다.
한편, 유리를 소재로 하는 투명 기판 (11) 의 표면에, 굴절률 (nC (= 1.52)) 의 균일 굴절률 재료인 SiON 막을 막두께 (d (= 0.35㎛)) 가 되도록 증착한다. 다음으로, 포토리소그래피 기술 및 에칭 기술에 의해, SiON 막에 대하여, 단면 형상이 윤대 중앙부에서 볼록하고, 입사광의 광축 (Z 축) 에 대하여 회전 대칭성을 갖는, 도 3 에 나타낸 바와 같은 위상 보정면 (18) 을 형성한다. 또, 위상 보정면 (18) 의 표면에 투명 도전막 (ITO 막) 을 형성하고, 패터닝을 실시하여 이것을 투명 전극 (16) 으로 한다. 그 후, 투명 전극 (16) 및 프레넬 렌즈면 (17) 의 표면에 폴리이미드로 이루어지는 액정 배향막을 도포, 소성한 후, Y 축 방향으로 러빙 배향 처리하여 액정 배향막을 형성한다. 그리고, 투명 기판 (11) 의 표면에, 직경 15㎛ 의 갭 제어재가 혼입된 접착재를 인쇄 패터닝하여 시일 (13) 을 형성한 후, 투명 기판 (11, 12) 을 포개고 압착하여, 기판 간격이 15㎛ 인 공셀을 제작한다. 그 후, 상광 굴절률 (no (= 1.52)) 및 이상광 굴절률 (ne (= 1.79)) 의 포지티브한 유전 이방성을 갖는 네마틱 액정을 공셀의 주입구 (도시 생략) 로부터 주입하여, 액정층 (14) 으로 한다. 다음으로, 주입구를 자외선 경화 수지에 의해 봉하여 도 1 에 나타내는 액정 렌즈 소자 (10) 로 한다.
이렇게 해서 얻어진 액정 렌즈 소자 (10) 를 외부 신호원 (19) 과 전기적으로 접속하고, 액정층 (14) 에 전압을 인가함과 함께, 파장 660㎚ 의 광을 입사시켜, 액정 렌즈 소자 (10) 의 렌즈 작용을 확인해 본다. 즉, 인가 전압을 0V 로부터 증가시키면, 액정층 (14) 의 러빙 방향의 실질적인 굴절률이 ne (= 1.79) 로부터 no (= 1.52) 까지 변화한다. 그러나, 액정에 인가되는 실효적인 전압 (VLC) 은 (3) 식에 의해, 프레넬 렌즈면 (17), 위상 보정면 (18) 의 형상에 따라서, 장소에 따라 달라, 액정 렌즈 소자 (10) 가 발생하는 위상차 (φ) 는, 전술한 (4) 식과 같이 변화하는 것을 알 수 있다.
도 7 은, 예 1 에 있어서의 액정 렌즈 소자 (10) 의 프레넬 회절 효율을 나타내는 도면이다. 또, 도 7 에 있어서 횡축은, 외부 신호원 (19) 을 사용하여 투명 전극 (15, 16) 사이에 인가한 전압이다.
(i) Y 방향의 직선 편광을 입사시키면, 인가 전압의 크기에 따라서 도 4(b) 에 나타내는 바와 같이 위상차가 변화하여, 액정 렌즈 소자 (10) 를 투과하는 광의 파면이 변화한다.
예를 들어, 인가 전압 3.0V 에서는, n(VLC)<nF 이고, 위상차가 +λ 가 되고, 입사 평면파는 +1 차의 프레넬 회절파로서, 약간 집광하는 파면으로 변환된다. +1 차의 프레넬 회절 효율은, 도 7 에 있어서, 그래프 A 와 같이 인가 전압 3.0V 에서 최대치 98% 가 된다. 마찬가지로, 인가 전압 1.06V 에서는, n(VLC)>nS 이고, 위상차가 -λ 가 되고, 입사 평면파는 -1 차의 프레넬 회절파로서, 약간 발산하는 파면으로 변환된다. -1 차의 프레넬 회절 효율은, 도 7 에 있어서, 그래프 C 와 같이 인가 전압 1.06V 에서 최대치 95% 가 된다. 한편, 인가 전압 1.52V 에서는, 위상 보정면 (18) 의 효과에 의해, 도 4(b) 의 인가 전압 (V0) 에 나타내는 바와 같이 위상차는 생기지 않기 때문에, 0 차의 프레넬 회절파로서 파면은 변화하지 않고서 투과한다. 0 차의 프레넬 회절 효율은, 도 7 에 있어서, 그래프 B 와 같이 인가 전압 1.52V 에서 최대치 98% 가 된다.
이상과 같이, 인가 전압을 1.06V, 1.52V, 3.0V 로 변화시키면, 본 발명의 액정 렌즈 소자는 "오목 렌즈", "렌즈 작용 없음", "볼록 렌즈" 로서 작용한다.
(ii) 다음으로, X 방향의 직선 편광을 입사하면, 액정층 (14) 의 실질적인 굴절률은 no = nF 가 되기 때문에 렌즈 작용은 없다.
따라서, 본 발명의 액정 렌즈 소자를 사용하면, Y 방향의 직선 편광에 대하여, 인가 전압에 따라서 렌즈 작용을 전환할 수 있다.
「예 2」
다음으로, 도 6 에 나타내는 광헤드 장치에, 예 1 에서 나타낸 액정 렌즈 소 자 (10) 를 액정 렌즈 소자로서 조립한 실시예에 관해서, 도 6 을 참조하면서 이하에 구체적으로 설명한다.
광원 (31) 은, 파장 660㎚ 의 반도체 레이저이고, 콜리메이터 렌즈 (33) 에 의해 평행광으로 되어, 액정 렌즈 소자 (10) 에 입사된다. 2 층 광디스크 (D) 에 구비된, 제 1 기록층 (D1) 의 커버 두께는 0.57㎜, 제 2 기록층 (D2) 의 커버 두께는 0.63㎜ 이다. 대물 렌즈 (36) 의 NA 는 0.65, 동공 직경은 4.0㎜ 이고, 단층 광디스크의 커버 두께 0.6㎜ 에서 파면 수차가 최소가 되도록 설계되어 있다. 즉, 3 개의 상이한 커버 두께에 대하여 집광 성능이 최적화되어 있다.
액정 렌즈 소자 (10) 가 렌즈 작용을 나타내지 않는 경우인, V0 = 1.52V 를 외부 신호원 (19) 으로부터 투명 전극 (15, 16) 에 인가하면, 각 기록층에 집광하는 광의 파면 수차는, 커버 두께의 차에 비례한 구면 수차의 영향에 의해 0.1λrms 이상이고, 광의 집광 성능이 현저히 열화된다.
다음으로, 투명 전극 (15, 16) 사이에 전압 (V+1) = 3.0V 를 인가하여 제 1 기록층 (D1) 에 집광하는 경우와, 투명 전극 사이에 V-1 = 1.06V 를 인가하여 제 2 기록층 (D2) 에 집광하는 경우에서는, 구면 수차는 보정되어 0.01λrms 이하가 되고, 집광 성능이 개선된다.
또, 2 층 광디스크 (D) 대신에, 커버 두께 0.6㎜ 의 단층 광디스크를 배치하고, 투명 전극 (15, 16) 사이에 전압 (V0) = 1.52V 를 인가한 결과, 액정 렌즈 소자 (10) 를 투과하는 광의 파면은 변화하지 않는다. 또한, 도 7 의 그래프 B 에 나타내는 바와 같이, 위상 보정면의 효과에 의해 액정 렌즈 소자 (10) 를 투과하는 광의 98% 를 대물 렌즈 (36) 로 인도할 수 있다.
이상과 같이, 본 발명의 액정 렌즈 소자를 사용하면, 2 층 디스크나 단층 디스크의 커버 두께차에 따라서 발생하는 구면 수차를 보정할 수 있다. 또한, 액정 렌즈 소자에 구비된 위상 보정면의 효과에 의해, 높은 프레넬 회절 효율을 얻을 수 있다.
본 발명의 액정 렌즈 소자는, 인가 전압의 크기를 전환함으로써, 초점거리가 이산적으로 크게 전환되는 초점거리 전환 렌즈로서 이용할 수 있다. 특히, 커버 두께가 상이한 2 층의 정보 기록층을 갖는 광디스크의 기록 및/또는 재생에 있어서, 본 발명의 액정 렌즈 소자는, 주로 파워 성분을 발생함으로써 구면 수차를 보정하기 때문에, 액정 렌즈 소자와 대물 렌즈가 편심되었을 때에 수차가 발생하지 않는다. 이 때문에, 배치의 제약이 경감되고, 광원이나 광 검출기나 빔 스플리터 등과 일체화된 소형 유닛으로서, 광헤드 장치 등에 이용할 수 있다.
또, 2004년 7월 15일에 출원된 일본국 특허출원 2004-208302호 명세서, 특허청구범위, 도면 및 요약서의 전체 내용을 여기에 인용하여, 본 발명 명세서의 개시로서 도입하는 것이다.

Claims (10)

  1. 적어도 한 쌍의 투명 기판에 의해 협지된 액정층에 인가하는 전압의 크기에 따라서 투과하는 광의 집광점을 변화시키는 액정 렌즈 소자로서,
    상기 한 쌍의 투명 기판의 일방에는, 상기 광의 광축을 중심으로 하여 윤대 형상으로 배치한 단면이 요철 형상을 갖는 위상 보정면을 구비함과 함께,
    상기 위상 보정면의 표면 및 상기 한 쌍의 투명 기판의 타방의 표면에는, 상기 액정층에 전압을 인가하기 위한 각각의 투명 전극을 구비하고, 또한,
    상기 각각의 투명 전극의 사이에는, 상기 광의 광축에 관해서 회전 대칭성을 갖는 톱니모양의 단면 형상 또는 계단 형상에 의해 톱니모양에 근사시킨 단면 형상을 갖는 투명 재료로 이루어지는 프레넬 렌즈면과, 상기 액정층을 구비하는 것을 특징으로 하는 액정 렌즈 소자.
  2. 제 1 항에 있어서,
    상기 프레넬 렌즈면을 구성하는 투명 재료의 굴절률은, 상기 액정층의 상광 굴절률과 실질적으로 일치하고 있음과 함께,
    상기 액정층을 투과하는 광의 편광 방향은, 상기 액정층의 이상광 굴절률 방향과 실질적으로 일치하고 있는 직선 편광인, 액정 렌즈 소자.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 프레넬 렌즈면과 상기 위상 보정면은, 상기 각각의 투명 전극 중 일방을 사이에 끼우고 동일 기판 표면에 형성되어 있는, 액정 렌즈 소자.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 한 쌍의 투명 기판의 적어도 일방이 석영 유리로 이루어지고, 그 표면을 에칭함으로써 상기 위상 보정면이 형성되어 있는, 액정 렌즈 소자.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 액정 렌즈 소자를 제 1 액정 렌즈 소자로 한 경우에, 그 제 1 액정 렌즈 소자 외에, 제 1 액정 렌즈 소자와 동일 구성인 제 2 액정 렌즈 소자를 구비하고,
    상기 제 1, 제 2 액정 렌즈 소자는, 각각의 액정층의 이상광 굴절률 방향이 서로 직교하도록 적층 일체화되어 있는, 액정 렌즈 소자.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 광의 파장에 대한 위상차가 π/2 의 홀수배인 위상판이 일체화되어 있는, 액정 렌즈 소자.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 위상 보정면을 구성하는 투명 재료의 굴절률은, 상기 액정층의 상광 굴 절률과 동등한, 액정 렌즈 소자.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 위상 보정면에 형성된 단면이 요철 형상을 갖는 윤대 형상의 오목부 또는 볼록부와 프레넬 렌즈면이 형성하는 윤대 형상의 볼록부가 광축 방향으로 중복되도록 형성되어 있는, 액정 렌즈 소자.
  9. 광원과, 이 광원으로부터의 출사광을 광기록 매체 상에 집광시키는 대물 렌즈와, 집광되어 광기록 매체에 의해 반사된 반사광을 검출하는 광 검출기와, 상기 광원과 상기 대물 렌즈 사이의 광로 중에 형성된 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 액정 렌즈 소자를 구비하는 것을 특징으로 하는 광헤드 장치.
  10. 제 9 항에 있어서,
    상기 광기록 매체의 기록층을 덮는 커버층의 두께가 상이한 3 종류이고, 각각의 3 종류의 두께에 따라서 상기 액정 렌즈 소자에 인가되는 전압이 3 가지 전환됨으로써, 각각의 기록층에 있어서의 집광 성능이 최적으로 되는, 광헤드 장치.
KR1020077000668A 2004-07-15 2005-07-14 액정 렌즈 소자 및 광헤드 장치 KR20070034578A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00208302 2004-07-15
JP2004208302 2004-07-15
PCT/JP2005/013087 WO2006006684A1 (ja) 2004-07-15 2005-07-14 液晶レンズ素子および光ヘッド装置

Publications (1)

Publication Number Publication Date
KR20070034578A true KR20070034578A (ko) 2007-03-28

Family

ID=35784020

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077000668A KR20070034578A (ko) 2004-07-15 2005-07-14 액정 렌즈 소자 및 광헤드 장치

Country Status (7)

Country Link
US (1) US7710535B2 (ko)
EP (1) EP1768116A4 (ko)
JP (1) JP4479726B2 (ko)
KR (1) KR20070034578A (ko)
CN (1) CN100485794C (ko)
TW (1) TW200613803A (ko)
WO (1) WO2006006684A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235005B1 (ko) * 2009-09-24 2013-02-19 실리콘 터치 테크놀로지 인코포레이티드 액정 광학 렌즈 및 그 제조 방법, 액정 광학 렌즈를 사용한 렌즈 장치

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
JP4752763B2 (ja) * 2004-04-30 2011-08-17 旭硝子株式会社 液晶レンズ素子および光ヘッド装置
CN100587819C (zh) * 2004-10-19 2010-02-03 旭硝子株式会社 液晶衍射透镜元件和拾光头装置
JP5037149B2 (ja) * 2006-03-01 2012-09-26 シチズンホールディングス株式会社 撮像レンズ装置
US20070216851A1 (en) * 2006-03-01 2007-09-20 Citizen Watch Co., Ltd. Liquid crystal lens and imaging lens device
US8523354B2 (en) * 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
KR20110014311A (ko) * 2009-08-05 2011-02-11 삼성전자주식회사 액정 렌즈 패널, 이의 제조 방법 및 이를 구비한 표시 장치
JP5528846B2 (ja) * 2010-02-15 2014-06-25 株式会社ジャパンディスプレイ 液晶レンズおよび表示装置
JP2012098394A (ja) * 2010-10-29 2012-05-24 Sony Corp 液晶レンズアレイ素子、およびその駆動方法ならびに立体画像表示装置
JP5378343B2 (ja) * 2010-12-06 2013-12-25 シチズンホールディングス株式会社 液晶光学素子
JP2015513691A (ja) 2012-02-07 2015-05-14 三井化学株式会社 電気駆動レンズのための導電性膜のレーザーパターニング
JP5904826B2 (ja) * 2012-03-08 2016-04-20 株式会社ジャパンディスプレイ 光学素子、表示装置、及び電子機器
KR20130107953A (ko) * 2012-03-23 2013-10-02 삼성디스플레이 주식회사 영상 표시 장치
JP2015038535A (ja) * 2012-04-27 2015-02-26 株式会社東芝 液晶光学素子及び画像表示装置
TWI707483B (zh) * 2012-07-17 2020-10-11 新加坡商新加坡恒立私人有限公司 發射可變強度分布的光線的光電模組
US9715612B2 (en) 2012-12-26 2017-07-25 Cognex Corporation Constant magnification lens for vision system camera
US10712529B2 (en) 2013-03-13 2020-07-14 Cognex Corporation Lens assembly with integrated feedback loop for focus adjustment
US11002854B2 (en) 2013-03-13 2021-05-11 Cognex Corporation Lens assembly with integrated feedback loop and time-of-flight sensor
KR102192207B1 (ko) 2014-04-29 2020-12-18 삼성디스플레이 주식회사 영상 표시 장치
US10795060B2 (en) 2014-05-06 2020-10-06 Cognex Corporation System and method for reduction of drift in a vision system variable lens
US10830927B2 (en) 2014-05-06 2020-11-10 Cognex Corporation System and method for reduction of drift in a vision system variable lens
US10437129B2 (en) 2015-11-10 2019-10-08 Verily Life Sciences Llc Dynamic diffractive liquid crystal lens
TWI589929B (zh) * 2016-01-28 2017-07-01 中強光電股份有限公司 頭戴式顯示裝置
TWI696847B (zh) * 2016-01-28 2020-06-21 中強光電股份有限公司 頭戴式顯示裝置
US10330970B2 (en) * 2017-07-07 2019-06-25 Abl Ip Holding Llc Variable light shaping optic using liquid crystals and surface relief micro-structure diffuser
CN107479248A (zh) * 2017-09-28 2017-12-15 京东方科技集团股份有限公司 一种衍射装置
CN107608088B (zh) * 2017-10-20 2021-02-02 张家港康得新光电材料有限公司 可切换电光材料透镜与显示设备
GB201810565D0 (en) 2018-06-27 2018-08-15 Univ Leeds Innovations Ltd Improvements in and relating to optical elements
US10969668B2 (en) * 2018-07-24 2021-04-06 Qualcomm Incorporated Adjustable light distribution for active depth sensing systems
US11409078B2 (en) * 2018-09-10 2022-08-09 Apple Inc. Reflection interface for camera module
CN112068332B (zh) * 2019-06-11 2021-09-24 京东方科技集团股份有限公司 液晶镜片以及液晶眼镜
CN110412801A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 显示面板和显示装置
CN115004092A (zh) 2019-12-06 2022-09-02 E-视觉智能光学公司 多深度液晶电极层透镜
CN113514974B (zh) * 2021-04-19 2022-07-08 南昌虚拟现实研究院股份有限公司 液晶透镜变焦处理方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156227A (ja) * 1984-12-28 1986-07-15 Olympus Optical Co Ltd フレネル液晶眼鏡
JPH0777031B2 (ja) 1991-10-16 1995-08-16 インターナショナル・ビジネス・マシーンズ・コーポレイション 収差補償装置
JPH09189892A (ja) 1996-01-09 1997-07-22 Olympus Optical Co Ltd 回折光学系およびこれに用いる液晶回折レンズ
JPH1139704A (ja) * 1997-07-16 1999-02-12 Matsushita Electric Ind Co Ltd 光情報読み取り及び記録装置
JP3886313B2 (ja) 2000-01-26 2007-02-28 パイオニア株式会社 光ピックアップ
JP2002251774A (ja) * 2001-02-22 2002-09-06 Sony Corp 光ピックアップ及びその波面収差補正装置
JP2002319172A (ja) * 2001-04-23 2002-10-31 Asahi Glass Co Ltd 光ヘッド装置
JP2003067966A (ja) * 2001-06-13 2003-03-07 Sony Corp 光学ピックアップ装置
JP2003067969A (ja) * 2001-08-27 2003-03-07 Olympus Optical Co Ltd 光ピックアップ
JP2003115127A (ja) 2001-10-01 2003-04-18 Sony Corp 光学ピックアップ装置
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
JP4170712B2 (ja) * 2002-09-05 2008-10-22 パイオニア株式会社 球面収差補正装置
JP4349781B2 (ja) * 2002-09-10 2009-10-21 パイオニア株式会社 液晶レンズ並びにその駆動方法及び装置
EP1713067A4 (en) * 2004-02-03 2008-12-24 Asahi Glass Co Ltd LIQUID CRYSTAL OBJECTIVE ELEMENT AND OPTICAL HEAD DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235005B1 (ko) * 2009-09-24 2013-02-19 실리콘 터치 테크놀로지 인코포레이티드 액정 광학 렌즈 및 그 제조 방법, 액정 광학 렌즈를 사용한 렌즈 장치

Also Published As

Publication number Publication date
WO2006006684A1 (ja) 2006-01-19
CN1985317A (zh) 2007-06-20
JPWO2006006684A1 (ja) 2008-05-01
TW200613803A (en) 2006-05-01
US20070109489A1 (en) 2007-05-17
EP1768116A1 (en) 2007-03-28
JP4479726B2 (ja) 2010-06-09
EP1768116A4 (en) 2008-05-07
US7710535B2 (en) 2010-05-04
CN100485794C (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
KR20070034578A (ko) 액정 렌즈 소자 및 광헤드 장치
JP4720507B2 (ja) 液晶レンズ素子および光ヘッド装置
KR101047830B1 (ko) 액정 렌즈 소자 및 광헤드 장치
JP4692489B2 (ja) 液晶回折レンズ素子および光ヘッド装置
KR20070035043A (ko) 액정 렌즈 소자 및 광헤드 장치
KR20070036742A (ko) 액정 렌즈 소자 및 광헤드 장치
JP4501611B2 (ja) 液晶レンズ素子および光ヘッド装置
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JP4508048B2 (ja) 液晶レンズおよび光ヘッド装置
JP4534907B2 (ja) 光ヘッド装置
JP2006252638A (ja) 偏光回折素子および光ヘッド装置
JP2006048818A (ja) 液晶レンズ素子および光ヘッド装置
JP4622160B2 (ja) 回折格子一体型旋光子および光ヘッド装置
JP2003288733A (ja) 開口制限素子および光ヘッド装置
JP4380477B2 (ja) 液晶レンズ素子および光ヘッド装置
JP4985799B2 (ja) 偏光回折素子および積層光学素子
JP4427877B2 (ja) 開口制限素子および光ヘッド装置
JP2010238350A (ja) 光ヘッド装置
JPH09102138A (ja) 光ヘッド装置及びその製造方法
JP2011060405A (ja) 光ヘッド装置
JP2007157205A (ja) 液晶レンズ素子及び光ヘッド装置
WO2006025629A1 (en) Wave selection type diffractive optical elements and optical pickup device has them
KR19980014892A (ko) 편광액정 홀로그램 제조방법 및 이를 이용한 광 픽업장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application