KR20060132641A - 광 영상화 시스템의 파면 측정 장치 및 방법 그리고마이크로리소그래피 투사 노출기 - Google Patents

광 영상화 시스템의 파면 측정 장치 및 방법 그리고마이크로리소그래피 투사 노출기 Download PDF

Info

Publication number
KR20060132641A
KR20060132641A KR1020067013832A KR20067013832A KR20060132641A KR 20060132641 A KR20060132641 A KR 20060132641A KR 1020067013832 A KR1020067013832 A KR 1020067013832A KR 20067013832 A KR20067013832 A KR 20067013832A KR 20060132641 A KR20060132641 A KR 20060132641A
Authority
KR
South Korea
Prior art keywords
wavefront
periodic structure
detection unit
optical element
image
Prior art date
Application number
KR1020067013832A
Other languages
English (en)
Other versions
KR101244103B1 (ko
Inventor
볼프강 에메르
Original Assignee
칼 짜이스 에스엠테 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠테 아게 filed Critical 칼 짜이스 에스엠테 아게
Publication of KR20060132641A publication Critical patent/KR20060132641A/ko
Application granted granted Critical
Publication of KR101244103B1 publication Critical patent/KR101244103B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Abstract

1. 광 영상화 시스템의 파면 측정을 위한 장치 및 방법 그리고 마이크로리소그래피 투사 노출기.
2.1 본 발명은 광 영상화 시스템의 파면 측정을 위한 장치 및 방법 그리고 이러한 장치가 장착된 마이크로리소그래피 노출기에 관한 것이다.
2.2 본 발명에 따르면, 상기 장치는 측정 대상 영상화 시스템의 오브젝트측에 배치되는 한편, 오브젝트측 주기적 구조(2)를 갖는 광학 소자(1)와 상기 오브젝트측 주기적 구조를 측정 방사선으로 조사하는 광원부를 구비하는 파면 생성부, 및 측정 대상 영상화 시스템의 영상측에 배치되는 한편, 영상측 주기적 구조(4)를 갖는 광학 소자(3)와 영상화된 오브젝트측 주기적 구조와 영상측 주기적 구조의 중첩 패턴을 검출하는 검출 유닛 소자를 구비하는 검출 유닛를 포함한다. 상기 파면 생성 유닛는 필드점(7)으로부터 방사하는 측정 방사선의 각스펙트럼(6)을 제한하도록 설계되되, 각각의 경우에 각 필드점(7)으로부터 방사하는 측정 방사선은 적어도 광 영상화 시스템의 한 퓨필 면(9)의 하나의 부영역(8)에만 조사되도록 설계된다.
2.3 용도, 예를 들어, 마이크로리소그래피 투사 렌즈의 파면 측정.
파면, 오브젝트, 마이크로리소그래피, 광원, 회절 격자

Description

광 영상화 시스템의 파면 측정 장치 및 방법 그리고 마이크로리소그래피 투사 노출기{Device and method for wavefront measurement of an optical imaging system, and a microlithography projection exposure machine}
본 발명은 일반적으로 광 영상화 시스템의 파면(wavefront) 측정을 위한 장치 및 방법에 관한 것으로, 특히 투사 렌즈와 이러한 장치를 구비한 마이크로리소그래피 투사 노출기(microlithography projection exposure machine)에 관한 것이다.
파면 측정을 위한 방법 및 장치들은 광 영상화 시스템들, 특히, 마이크로리소그래피 투사 노출기의 초정밀 투사 렌즈들의 수차들을 결정하기 위해서 다양하게 이용된다. 파면 측정중 표면 형상의 편차가 이상적인 표면 형상을 참조하여 결정된다. 위와 같은 편차를 파면 수차라 한다. 영상화 시스템의 영상화 품질은 구한 수차들에 따라 그 특징이 결정될 수 있는데, 이 수차들은 제르니케 계수(Zernike coefficients)들을 이용하여 예를 들어 모든 필드점들에서 기술될 수 있다. 이어서 한 조의 제르니케 계수들은 각 필드점(field point)마다 결정될 수 있으므로 필드 분포는 각 제르니케 계수마다 특정될 수 있다. 따라서, 이것은 영상화 시스템의 모든 수차들에 대한 공간적 저 주파수 동작이 완전하게 기술될 수 있게 해준다.
공개 특허 명세서 DE 101 09 929 A1은 광학 시스템을 횡단하는 파면을 생성하기 위한 2 차원 구조를 갖는 파면 소스, 상기 광학 시스템 후방의 회절 격자, 및 이 회절 격자 뒤에 배치된 공간 해상도 검출 유닛를 포함하는 광학 시스템의 파면 측정 장치를 기재하고 있다. 회절 격자가 수평으로 배치된 전단 간섭계가 파면 측정을 위해 사용된다.
전단 간섭계의 원리에 따라 동작하는 전술한 파면 측정 장치와 더불어, 샤크-하트만(Shack-Hartmann) 퓨필(pupil) 전단의 원리에 기반한 제2 형태의 파면 측정 장치도 자주 사용된다. 미국특허 제5,978,085호는 파면 수차들을 측정하여 영상화 렌즈 시스템을 분석하는 샤크-하트만 원리에 기반을 둔 방법을 기술하고 있다. 이들 방법에 있어서, 몇 개의 작은 개구들로 이루어진 구조를 갖는 레티클(網線)이 오브젝트 면(object plane)으로 도입된다. 적어도 하나의 개구를 구비한 조리개(aperture stop)가 상기 레티클으로부터 적합한 간격으로 배치된다. 레티클은 조리개를 통해서 복수의 광점(light spots)을 생성하는 렌즈 시스템의 영상 면상에 영상화된다. 광점들의 구조는 일 실시예 층에서 포토레지스트로 코팅된 웨이퍼에 의해 기록된다. 이상적인 광점들의 회절이 제한된 위치들과 비교할 때 측정된 중심 위치들의 변위들은 웨이퍼와 중첩하고 기준 구조들과 함께 노출된 기준 판과 웨이퍼상의 구조들을 비교함으로써 결정된다. 변위들은 측정될 렌즈 시스템의 퓨필내의 파면의 구배 그리고 파면의 수차를 결정하는데 이용된다.
미국특허 제5,828,455호는 샤크-하트만 원리에 기반하는 유사한 방법을 기술하고 있다. 이 방법의 일 실시예에 있어서, 광점들의 구조는 크롬 코팅 용해된 실 리콘 웨이퍼 상에 기록된다. 각 위치에 대한 구조물들의 변위는 광학 측정 도구로 측정된다. 웨이퍼의 노출 공정이 또한 이 방법에 필요하다.
발명의 개요
본 발명은 비교적 적은 노력으로 광 영상화 시스템의 파면을 측정할 수 있는 장치 및 방법을 제공하는 기술적인 문제에 기초하고 있다. 또한, 본 발명은 위의 장치를 구비하는 마이크로리소그래피 투사 노출기의 생성에 기초하고 있다.
본 발명은 청구항 1의 특징들을 갖는 장치, 청구항 8의 특징들을 갖는 방법 그리고 청구항 12의 특징들을 갖는 마이크로리소그래피 투사 노출기를 제공하여 위의 문제를 해결한다.
본 발명에 따른 장치는 측정 대상 영상화 시스템의 오브젝트측(object side)에 배치되며, 또한 오브젝트측 주기적 구조를 갖는 광학 소자 및 상기 오브젝트측 주기적 구조를 측정 방사선을 이용하여 조사하는 광원부를 구비하는 파면 측정 장치를 포함한다. 또한, 본 발명의 장치는 측정 대상 영상화 시스템의 영상측(image-side)에 배치되며, 또한 영상측 주기적 구조를 갖는 광학 소자와 영상화된 오브젝트측 주기적 구조와 영상측 주기적 구조의 중첩 패턴을 검출하는 검출 유닛 소자를 구비하는 검출 유닛를 포함한다. 여기서, 오브젝트측 및 영상측이란 용어는 일반적으로 측정 대상 영상화 시스템의 빔 경로 상류 또는 하류의 영역을 각각 나타내는 것으로 이해해야 한다. 파면 생성 유닛는 필드점(field point)으로부터 방사하는 측정 방사선의 각스펙트럼을 제한하도록 설계되되, 각각의 경우에 필드점들 중 적어도 일부로부터 방사하는 측정 방사선은 광 영상화 시스템의 퓨필 면의 부영역에만 조사되는 한편, 적어도 2개의 다른 필드점들에 속하는 퓨필 부영역들은 부분적으로 중첩되거나 중첩되지 않도록 설계된다. 측정 방사선을 제공하는 필드점들은 전형적으로 오브젝트측 주기적 구조의 적절히 투명한 구조적 소자들로 형성된다.
오브젝트측 주기적 구조의 각 필드점과 해당 퓨필 부영역 사이의 특유한 관계는 위의 경우에 대부분 중첩을 이루지 않고 간단하게 유도될 수 있다. 그러나, 상기한 경우는 파면 측정에 있어 강제적이지는 않다. 즉, 오브젝트측 주기적 구조의 인접 영역들에 의해 조사된 퓨필 영역들은 또한 부분적으로 중첩될 수도 있다. 충분한 수의 보간점들만이 계산에 의해 파면을 구성할 수 있도록 퓨필 면내에 있는 것이 중요하며, 즉, 오브젝트측 주기적 구조의 대응 영역들에 의해 조사된 퓨필 부영역들이 퓨필의 충분히 큰 부분 전체를 형성하는 것이 중요하다.
본 발명의 전개에 있어서, 오브젝트측 구조를 갖는 광학 소자 및/또는 영상측 주기적 구조를 갖는 광학 소자는 하나 이상의 주기 방향을 따라 수평 변위를 위한 변위 장치에 할당된다. 이러한 변위 장치를 사용함으로써 주기적 구조들이 생성한 전제 패턴들이 위상 편이에 의해 평가될 수 있고 이로써 측정 정밀도를 높일 수 있다.
본 발명의 다른 전개에 있어서, 광원부는, 각각의 경우에 관련된 적합한 조사 각도로 필드점들을 형성함과 아울러 오브젝트측 주기적 구조를 갖는 하나 이상의 구조 소자들을 조사하도록 오브젝트측 주기적 구조를 갖는 광학 소자 전방에 이 격되어 위치되는 하나 이상의 점 광원들을 포함한다.
본 발명의 다른 전개에 있어서, 파면 생성 유닛는, 그 관련 조사 각이 광 영상화 시스템의 입력측 개구수와 사실상 같도록 오브젝트측 주기적 구조를 갖는 광학 소자의 전방에 이격되어 위치되는 단일 점 광원을 포함한다. 점 광원은 오브젝트측 주기적 구조 전체를 조사한다. 주기적 구조의 구조 크기가 파면과 비교하여 충분히 크게 선택되는 경우, 회절된 광 빔들의 각도 연장은 비교적 작으며, 또한 상기 구조의 인접 필드점들이 조사한 퓨필 영역들은 서로 충분히 다르게 된다.
본 발명의 다른 전개에 있어서, 파면 생성 유닛는 오브젝트측 주기적 구조를 갖는 광학 소자의 뒤에 위치한 핀홀(pinhole) 조리개 유닛 뿐만 아니라 오브젝트측 주기적 구조를 갖는 광학 소자의 전방에 위치한 하나 이상의 연장된 광원들을 구비한다. 이 경우 "연장"이란 용어는 위의 광원으로 조사된 필드점 또는 점들이 광 영상화 시스템의 입력측 개구수에 대한 적어도 각스펙트럼을 포함하는 방사 필드를 이용하여 조사되는 것을 의미한다. 핀홀 조리개 유닛는 각스펙트럼을 선택하므로 각각의 필드점이 퓨필 면의 한 위치에 할당된다. 이러한 목적으로, 핀홀 조리개 유닛는 각각 하나의 핀홀을 구비하며, 또한 이 핀홀은 이 경우에 관통하는 방사선에 대한 소정 방향 각도 제한을 이루도록 그 치수가 선택되는 개구로서 해석된다. 빔 방향을 제한하는 이들 핀홀들은 예를 들어 회절 제한 핀홀들에 비해 일반적으로 큰 치수설정이 되는 점에서 구별되고, 상기 회전 제한 핀홀들은 예를 들어 1차 회절 방사만을 선택적으로 통과시키기 위한 목적을 갖는다. 본 발명의 위의 특징은 또한 광원부가 하나 이상의 점 광원 및 서로 인접하는 하나 이상의 연장된 광원을 구비 하는 혼합된 형태이고, 연장된 광원 또는 광원들이 조사하는 필드점들은 각기 각스펙트럼 선택을 위해 핀홀 조리개 유닛의 핀홀에 할당된다.
본 발명의 다른 전개에 있어서, 영상측 주기적 구조는 검출 유닛 소자의 검출 유닛 표면 또는 상기 검출 유닛 소자의 검출 유닛 표면측으로 수평이동할 수 있는 기판상에 위치되며, 그리고/또는 상기 영상측 주기적 구조의 하류에는 상기 검출 유닛 소자의 검출 유닛 표면상에 중첩 패턴을 영상화하기 위한 검출 광학 장치가 위치한다. 검출 유닛 소자의 검출 유닛 표면상의 영상측 주기적 구조의 배치가 단일한 그리고 비용 절감적인 해법을 제공한다. 주기적 구조가 검출 유닛 표면의 전방의 수평 이동가능 기판상에 고정된다면, 이는 검출 유닛를 이동시키지 않고 수평 위상 편이를 하는 목적으로 사용될 수 있다. 하류에 위치된 검출 광학 장치를 사용한다면, 검출 유닛의 공간 해상도에 검출되는 구조의 크기가 적응시키는 것이 가능해진다.
본 발명에 따른 장치의 다른 전개에 있어서, 제1 및 제2 주기적 구조 각각은 하나 이상의 주기 방향을 갖는 모아레(moire) 구조를 포함한다. 모아레 중첩 패턴은 그 중첩 패턴이 적어도 2개의 평행하지 않은 방향을 따라 주기성을 갖는 경우, 2개의 공간 치수에서 파면을 결정하기에 충분한 고유 항목의 왜곡 정보를 결정할 수 있다. 제1 및 제2 모아레 구조가 각기 하나만의 주기 방향을 갖는 경우, 2개의 모아레 구조들을 도입하여 측정이 수행되게 되는데, 상기 구조 각각은 시간적으로 서로 인접하여, 즉, 차례로 오브젝트측과 영상측에 다른 주기 방향을 갖는다. 이와는 달리 오브젝트측 및/또는 영상측에 2개의 주기 방향들을 갖는 하나의 모아레 구 조를 사용할 수도 있다.
파면 측정을 위한 본 발명에 따른 방법은 파면 측정을 위한 본 발명에 따른 장치를 이용하고, 이 방법은 오브젝트 면에 오브젝트측 구조를 갖는 광학 소자를 배치하는 한편, 광 영상화 시스템의 영상 면에 영상측 구조를 갖는 광학 소자를 배치하는 단계; 영상화된 오브젝트측 주기적 구조와 영상측 주기적 구조의 중첩 패턴들을 생성하는 한편 이들 패턴들을 상기 검출 유닛 소자를 이용하여 검출하는 단계; 각각의 필드점으로부터 조사된 퓨필 부영역들에 대응하는 다른 보간점들에서 하나 이상의 중첩 패턴들로부터의 파면의 공간 도함수들을 계산하는 단계; 및 상기 보간점들에서 파면 도함수들로부터 상기 파면의 코스를 재구성하는 단계를 포함한다.
본 발명에 따른 방법의 전개에 있어서, 오브젝트측 구조를 갖는 광학 소자 및/또는 상기 영상측 구조를 갖는 광학 소자는 다른 위상 오프셋을 갖는 중첩 패턴들을 생성하도록 주기 방향을 따라 수평으로 배치됨으로써 측정 정밀도를 향상시킬 수 있다.
본 발명에 따른 방법의 전개에 있어서, 본 발명에 따른 장치는 파면 측정을 수행하기 전에 교정된다. 여기서 적어도 두 가지 형태의 교정 방법이 사용될 수 있는데, 제1 형태는 측정에 있어서 비 이상적인 구조들의 영향이 감소되는 것이며, 또한 제2 형태는 광 영상화 시스템의 관련 부영역들상의 오브젝트측 주기적 구조의 필드점들의 영상화가 개선되는 것이다.
본 발명에 따른 방법의 전개에 있어서, 보간점에서 각각의 중첩 패턴으로부 터 위상 정보를 결정하기 위해서, 입사하는 측정 방사선의 강도가 보간점에 할당된 검출 유닛 표면의 영역에 걸쳐 평균화되며 또한 주기적 구조들의 주기 길이보다 커진다.
본 발명의 바람직한 실시예들이 도면에 도시되고 이하에 기술된다.
도 1은 파면 측정을 위한 본 발명에 따른 장치의 개략적인 측면도이고,
도 2는 도 1의 장치를 위한 의사점(quasi-point) 광원을 구비한 파면 생성 유닛의 개략적인 측면도이고,
도 3은 도 2의 장치와는 다르고, 도 1의 장치를 위한 연장된 광원과 핀홀 조리개(diaphragm)를 구비한 파면 생성 유닛의 개략적인 측면도이고,
도 4는 도 3에 따른 형태의 파면 생성 유닛의 바람직한 구현예에 대한 개략적인 측면도이고,
도 5는 도 1의 장치에 사용을 위해 서로 90°회전된 주기 방향들을 갖는 2개의 모아레(moire) 회절 격자 구조들의 평면도이고,
도 6은 도 1의 장치에 사용을 위해 다르게 방위된 주기 방향들을 갖는 3개의 회절 격자 구조들의 평면도이고,
도 7은 도 1의 장치에 사용을 위한 체스판 모아레 패턴의 평면도이고,
도 8은 도 1의 장치를 위한 검출 유닛 표면에 주기적 구조를 갖는 검출 유닛의 개략적인 측면도이고,
도 9는 도 1의 장치를 위한 수평 이동가능한 기판에 주기적 구조를 갖는 검출 유닛의 개략적인 측면도이며, 또한
도 10은 도 1의 장치를 위한 검출 유닛를 구비하는 릴레이 광학 장치의 개략적인 측면도이다.
도 1은 마이크로리소그래피용 투사 렌즈(5)에서 파면을 측정하기 위한 본 발명에 따른 장치의 개략도로서, 상기 장치는 렌즈(5)의 오브젝트 면(object plane)측에 위치하고, 제1 주기적 모아레 구조(first periodic moire structure)(2)를 가지며, 또한 더 이상 도시되지 않은 파면 생성 유닛(wavefront generating unit)의 일부를 이루는 측정 레티클(measuring reticle)(1)을 포함한다. 간략화를 위해서 투사 렌즈(5)의 제1 입사측 렌즈(10)와 제2 출사측 렌즈(11)만을 도시한다. 렌즈(5)는 레티클에 적용되는 구조물들을 렌즈(5)의 영상 면에 위치하는 구조물 캐리어(3) 상에 투사하며 구조물 캐리어는 도시되지 않은 검출 유닛의 일부로서 제2 주기적 모아레 구조(4)를 갖는다.
도 1에 도시된 파면 측정을 위한 장치는 측정 동작과 투사 노출기의 리소그래픽 노출 동작 사이를 신속하게 절환할 수 있는 방식으로 마이크로리소그래피 투사 노출기, 예를 들어 웨이퍼 스캐너내에 통합되어 있다. 측정 레티클(1)을 갖는 파면 생성 유닛는 반도체 구조화(semiconduetor structuring)용 조사 레티클(illuminating reticle)(1)으로 교체될 수 있다. 이를 위해 파면 생성 유닛는 종래의 레티클 스테이지에 통합되거나 이와는 달리 조사 레티클으로 교체될 수 있도록 적합하게 형성되어 있다. 제2 모아레 구조(4)를 갖는 영상측 구조 캐리어(3)는 유사한 방식으로 노출 공정 중에 구조화되는 웨이퍼로 교체될 수 있으며, 이를 위해 구조물 캐리어(3)는 검출 유닛의 나머지 부분과 더불어 종래의 웨이퍼 스테이지에 통합될 수 있다. 이와는 달리, 웨이퍼 스테이지에 검출 유닛를 통합하지 않고 파면 측정중에 웨이퍼 스테이지와 검출 유닛을 교체할 수 있다.
또한, 투사 렌즈(5)가 측정 목적을 위해 도입되는 독립 측정 스테이션으로 상기 장치를 구현할 수 있다. 파면 센서 또는 소스 모듈로도 표현되는 파면 생성 유닛와 센서 모듈로도 표현되는 검출 유닛는 측정 스테이션에서 투사 렌즈(5)의 오브젝트측과 영상측에 각각 적절한 홀더들을 이용하여 배치된다. 도시된 장치는 다른 광 영상화 시스템들을 측정하는데 마찬가지로 적합함은 물론이고 통합적인 형태 또는 독립적인 측정 스테이션으로 형성된다.
장치의 동작중에 광원부(도 1에 도시되지 않음)에 의해 제1 모아레 구조(2)를 조사하는데 사용되는 측정 방사선은 제1 모아레 구조(2)에서 회절된다. 파면 생성 유닛를 적절하게 설계하면, 각각의 필드점(7), 즉, 모아레 구조(2)의 투명 부영역(subregion)으로부터 방사하는 측정 방사선이 투사 렌즈(5)의 퓨필 면(9)의 할당된 부영역(8)만 조사하는 것을 보장할 수 있으며, 이러한 설계는 이하 도 2 내지 도 4를 참조하여 보다 구체적으로 검토될 것이다. 상기 조사는 이진(binary) 모아레 구조(2)의 투명 필드점(7)에 대한 원추형 방사각 스펙트럼(6)으로 도 1에 도시된다. 여러 투명 필드점들(7)이 조사한 퓨필 부영역들(8)은 서로 중첩되지 않는다. 이상과는 달리 퓨필 부영역들(8)은 서로 부분적으로 중첩될 수 있다. 파면 측정에 있어서, 퓨필 면(9)내에 충분한 수의 보간점들이 있어야 하며, 즉, 측정 레티클(1)의 적절한 영역들이 퓨필면(9)의 상당히 큰 부분을 전체적으로 조사하며, 그리고 각각의 필드점들(7) 또는 오브젝트측 모아레 구조(2)의 투명 부영역들에 보간점들 또는 퓨필 부영역들(8)이 고유하게 할당되어야 한다.
영상측 구조 캐리어(3)의 평면에서 생성되는 제 1 이진 모아레 구조(2)의 영상의 모아레 중첩 패턴은 그 곳에 위치한 그와 유사한 제2 이진 모아레 구조(4)의 도움으로 이용하여 측정 방사(measuring radiation)에 의해 생성된다. 중첩 패턴은 검출 유닛를 이용하여 기록되며, 또한 수차 측정, 특히, 왜곡 측정을 위해 사용된다. 상기한 측정 배치에 의해서 투사 렌즈(5)에 의해 투사된 각 필드점(7)의 영상 위치가 모아레 중첩 패턴의 주기 방향으로 결정되어, 적절한 교정에 의해 이상적인 위치에 대한 상기 영상 위치의 오프셋을 구할 수 있다.
얻을 수 있는 측정 정확도는 측정 결과에 대한 비 이상적인 모아레 구조들의 영향을 효과적으로 감소시킬 수 있는 방법의 함수가 된다. 문헌에 알려진 여러 가지 교정 방법들이 상기한 목적을 위해 제공될 수 있다. 예를 들어, 이를 테면 좌표 측정기계를 이용하여 파면 측정을 위한 장치 바깥쪽의 모아레 구조들의 절대치 측정을 수행할 수 있다. 모아레 구조의 측정 에러들은 파면 구배를 계산할 때 또는 모아레 중첩 패턴의 위상으로부터 적절하게 정정된 테스트 구조들을 생성할 때 참작될 수 있다. 대안으로서 또는 부가적으로 파면 측정을 위해 다른 방법들과 비교하여 교정(calibration)을 수행하는 것, 예를 들어, N. R. Farrer et al의 저널 논문 "렌즈 수차의 현장 측정(In-situ measurement of lens abrerrations)", SPIE Proc. 4000, 페이지 18 - 29 (2000)에 기재된 방법 또는 전술한 공개 특허 명세서 DE 101 09 929 A1에 알려진 방법이 있다. 이들 방법과 본 발명에 따른 방법의 차이는 다음에 기재된 모든 측정들에 부가되는 교정 상수라고 할 수 있다.
다른 교정 변형예로서 축 방향으로 상수 교정을 하는 경우에, 투사 렌즈가 파면 측정 장치에 상대적으로 회전되며, 실제 수차들은 투사 렌즈와 회전 대칭(rotationally symmetric)되지 않을 정도로 동시 회전되나, 측정 아티팩트들은 회전불변으로(rotationally invariant) 불변하게 유지된다. 이에 따라, 특히 축방향 필드점에 대한 교정을 가능하게 해준다.
제1 모아레 구조(2)가 제2 모아레 구조(4)와 비교할 때 스케일 에러를 갖는 경우에, 이러한 선형 위상 에러는 전 기간에 걸친 위상 편이 그리고 그 후에 이루어지는 강도 신호 기간의 평가에 의해 결정될 수 있다.
또한, 수차 측정이 우선 임의의 소정 필드점에서 수행되는 자기교정 방법들이 이용될 수 있으며, 교정 이후 영상 면내의 주기적 구조 및 투사 렌즈의 오브젝트 면은 1 이상의 주기 길이에 걸쳐 서로에 대해 수평으로 변위되며, 아울러 수차 측정이 반복된다. 구조들을 연속적으로 변위시키면서 수차 측정을 반복할 뿐만 아니라 측정된 구조 차이를 축적함으로써, 예를 들어 전술한 방법들 중 한 방법을 이용하여 정정될 수 있는 스케일 에러 레벨까지 내려간 인접 기간들에서의 구조적 에러들을 결정할 수 있다.
전술한 방법 중 하나 이상의 방법을 이용하여 비 이상적인 모아레 구조들에 의해 생성된 측정 에러들에 대한 교정에 부가해서, 주기점들과 퓨필 부영역들 사이의 할당을 교정하는 것이 적절할 수 있다. 예를 들어 "서클 피트(circle fit)" 방법이 이 목적에 이용될 수 있는데, 오브젝트측 모아레 구조가 영상 면에 투사되는 경우 그것은 영상화되는 광 영상화 시스템의 통상 원형의 퓨필 내에 위치한 부영역이라는 사실을 이용한다. 결론적으로, 영상측 구조를 갖는 오브젝트측 모아레 구조의 중첩 패턴에서 위상 편이에 의한 변조는 대응 원형 영역 내에서만 발생된다. 원형 영역을 결정하기 위해서, 적절하게 선택된 변조 및/또는 강도 기준이 충분히 큰 개수의 검출 유닛의 보간점들에서 사용되며, 또한 이 검출 유닛는 원형 퓨필 안쪽에 있거나 또는 여전히 서클 바깥쪽에 있어서 퓨필 가장자리에 있는 경계 화소들을 결정하도록 영상 면내에 위치한다. 이어서, 서클이 최소 자승 에러 법을 이용하여 이들 화소에 고정되며, 또한 서클 중심 및 서클 반경의 위치는 자유 파라미터로서 작용한다. 이는 퓨필 중간점 및 퓨필 가장자리에 모아레 구조와 퓨필 사이의 고유한 할당이 이루어지도록 해준다. 다른 모든 점들에 대한 할당은 적합한 모델의 도움을 받아서 수행된다.
"서클 피트" 방법을 대신해서 또는 "서클 피트" 방법에 부가해서, 검출 유닛의 초점 위치가 동일 필드점에 대해 몇 가지 각각의 측정에서 정의된 단계별로 이동되는 교정 방법을 이용할 수 있다. 검출 유닛를 변위시킴으로써 정확하게 정의된 구면 파면 수차가 렌즈의 수차에 부가적으로 생성된다. 따라서, 여러 측정들 사이의 파면 차이를 정확하게 알 수 있다. 이제, 수차를 측정하는데 사용된 보간점들은 측정된 수차 차이가 가능한 한 정확하게 예측 수차 차이에 대응하게 되도록 단순하게 퓨필 위치들에 할당된다. 따라서, 주기적 구조의 필드점들과 퓨필 부영역들 사이의 최적의 할당이 모든 보간점들에 걸쳐 수행된다. 이러한 교정 기술은 예를 들어 공개 특허 명세서 EP 1 231 517 A1에 보다 상세하게 설명되어 있으며, 보다 구체적인 내용에 대해서는 상기 명세서가 참조될 수 있다.
모아레 중첩 패턴의 위상은 도 1에 양방향 화살표 V1 및 V2로 나타낸 바와 같이 주기 방향에서 제1 모아레 및/또는 제2 모아레 구조(2, 4)를 수평으로 변위시킴으로써 변화될 수 있다. 위와 같은 적합한 알고리즘이 예를 들어, G.T. Reid의 논문 "도량법에서의 모아레 간섭(Moire Fringes in Metrology)", Opt. Lasers Eng. 5 (2), 페이지 63-93에 기재되어 있으며, 위상 편이로 생성된 강도 값의 시퀀스로부터 위상을 재구성하는데에 사용되어, 모아레 패턴을 보다 정확하게 평가할 수 있어서 결과적으로 보다 정밀한 파면 측정을 할 수 있다.
파면 경사, 즉, 각각의 퓨필 부영역(8)의 할당된 중간점의 파면의 구배는 모아레 구조(2)의 각각의 중간 점들(7)과 예를 들어 한편으로 퓨필(9)의 부영역들(8) 사이의 고유 할당을 기반으로 제1 모아레 구조(2)의 각 필드점(7)의 화소의 편차로부터 결정될 수 있다. 따라서, 퓨필 부영역들(8)에 의해 형성한 퓨필(9)의 모든 중간점들에서 파면 구배들에 대한 정보를 얻을 수 있다. 적합한 통합 방법들을 이용하여 이들 구배들로부터 파면 수차들이 부적절한 상수로 하강되어 계산될 수 있다. 예를 들어, 최소 에러 자승을 구함으로써 파면 구배들에 제르니케 다항식들의 도함수를 정합시킬 수 있는데, 이에 대해서는 H. Schreiber의 논문 페이지 98 - 99 "측전단 간섭계를 이용하는 SI 마이크로렌즈의 특성화(Charakterisierung von SI-Mikrolinsen mit einem lateralen Shearing-Interferometer)" ["Characterization of SI microlenses with the aid of a lateral shearing interferometer"] (1998)에 설명되어 있으며, 보다 구체적인 내용에 대해서는 이 논문이 참조될 수 있다. 또한, 최소 에러 자승을 이용하여 화소방향 축적을 할 수 있는데, C. Elaster의 논문 "큰 전단을 가진 측 전단 간섭측정기록으로부터의 정확한 이차원 파면 재구성(Exact two-dimensional wavefront reconstruction from lateral shearing interferograms with large shears)", Appl. Opt. 39 페이지 5353 - 5359 (2000)에 기재되어 있다. 푸리에 영역에 축적하는 것도 가능한데, D.L. Fried의 논문 "위상차 측정 에레이에 대해 파면 왜곡 견적을 조절하는 최소 자승(Least square fitting a wave-front distortion estimate to an array of phase-difference measurements)" J. Opt. Soc. Am. 67 페이지 370 - 375 (1977)에 기재되어 있다.
도 2는 측정 동작중 제1 모아레 구조(2)를 완전하게 조사하는 하나의 의사점(qusi-point) 광원(20)을 구비하는 도 1의 장치용 파면 생성 유닛의 개략적인 측면도이다.
전체 구조(2)를 조사하는데 필요한 조사 각도가 측정될 도 1의 투사 렌즈(5)의 입력측 개구수에 대략 대응하도록 광원(20)은 모아레 구조(2)에 가까이 위치한다. 모아레 구조(2)가 측정 방사선의 파장과 비교할 때 충분히 큰 경우, 측정 방사선의 각스펙트럼(6)은 비교적 작으며, 인접 필드점들(7)로부터 조사된 퓨필 영역들은 충분히 서로 다르다. 다른 필드점들(7)로부터 조사된 퓨필 영역들의 중첩이 감소하면, 의사점 광원(20)의 중심과 각각의 필드점(7) 사이의 선택된 각도
Figure 112006049094871-PCT00001
는 커지고 측정된 방사선의 각 필드점(7)으로부터 방사된 각스펙트럼(6)의 선택된 개구각
Figure 112006049094871-PCT00002
는 작아진다. 이상적인 점 광원의 경우에는 개구각
Figure 112006049094871-PCT00003
는 광원으로부터 방사선-방사 필드점들(7)의 간격으로만 정해지고, 의사점 광원(20)의 경우에는 각 필드점(7)에서 본 광원(20)의 각도값
Figure 112006049094871-PCT00004
가 역할을 수행한다.
도 3은 파면 생성 유닛의 개략적인 측면도이며, 상기 파면 생성 유닛는 1의 장치에 대신 사용될 수 있으며, 또한 단일 연장 광원(21), 및 핀홀이라고도 불리우는 단일의 적절히 좁은 통과 개구를 가지는 핀홀 조리개 유닛(23)를 포함하며, 그 내부에는 모아레 구조(22)가 배치된다. 장치의 동작중에, 모아레 구조(22)는 투사 렌즈의 입력측 개구수의 전체 각스펙트럼(angular specturm)을 포함하는 방사 필드(radiation field)를 이용하여 조사된다. 핀홀 조리개 유닛(23)를 이용하여 필드점들(24)의 제한된 각스펙트럼에 대한 선택이 수행된다. 도 3에 있어서, 필드점들(24)로부터 방사된 측정 방사선의 개구각(aperture angle)
Figure 112006049094871-PCT00005
는 광원(21)으로부터 모아레 구조(22)의 간격과는 무관하고 핀홀 조리개 유닛(23)의 핀홀의 크기에 좌우된다. 한편, 핀홀의 크기는 퓨필 영역이 각 필드점(24)으로부터 조사되도록 가능한 한 작아야 한다. 반면에, 개구는 적어도 2차 회절(two orders of diffraction)까지는 통과하여 필드점들(24)의 영상화가 보장되도록 충분히 커야 한다. 여러 가지 필드점들(24)로부터 조사된 퓨필 영역들의 중첩은 각도
Figure 112006049094871-PCT00006
및 각도
Figure 112006049094871-PCT00007
의 함수이고, 각도
Figure 112006049094871-PCT00008
는 2개의 인접 필드점들(24) 사이의 핀홀 조리개 개구(23)의 핀홀의 중간점(midpoint)으로부터 측정된다.
도 4는 완전한 퓨필 충진을 이루면서 간섭성 조사를 형성하는 확산 스크린(26)과 핀홀(30)을 구비하며 또한 도 3에 따른 타입의 단일 광학 부품으로서 생성된 파면 생성 유닛의 실제적인 구현예를 도시한다. 화살표들로 나타낸 조사 방사선(46)은 확산 스크린(26)에서 분산되며 또한 스페이서 층(28)에 의해 핀홀 조리개(30)로부터 이격된 모아레 구조(27)와 부딪치기 전에 기판(29)을 통과한다. 도 4의 파면 생성 유닛의 모드 동작은 명확하게 도 3의 동작에 대응하므로 이에 대해서는 더 이상의 설명은 생략한다.
다른 실시예(미도시)에 있어서, 오브젝트측의 주기적 구조를 갖는 광학 소자를 조사하는 광원부는 도 2의 광원(20) 형태의 서로 인접하게 위치한 수 개의 의사점 광원들을 포함하고, 이들은 각각의 경우에 대체로 필드점들 중 일부만을 각각 조사하도록 위치한다. 또 다른 실시예에 있어서, 광원부는 도 3의 광원 형태의 서로 인접하게 위치한 수 개의 연장 광원(extended light source)들을 포함하지만, 각 연장 광원이 대체로 필드점들 중 일부만을 조사하도록 수평 연장이 짧다. 이에 따라, 핀홀 조리개 유닛는 각 연장 광원으로부터 조사된 필드점들의 그룹 각각에 대해 하나의 핀홀을 구비할 수 있다. 또 다른 실시예에 있어서, 광원부가 서로 인접하게 배치된 하나 이상의 점광원들 및 하나 이상의 연장 광원들을 구비하고, 이들 광원들이 각각의 경우에 대체로 필드점들의 해당 부분을 조사하도록 배치되는 혼합된 형태가 가능하다. 연장된 광원에 의해 조사되는 필드점들은 대응 핀홀 조리개 유닛에 의해 적합한 핀홀에 할당되며, 각 점 광원에 의해 조사되는 필드점들은 하류측에 배치된 핀홀 조리개 구조를 필요로 하지 않는다.
한편, 모아레 구조를 설계함에 있어서 필드점들과 그리드 치수 사이의 간격들은 다수의 보간점들을 이용하여 퓨필을 국부적으로 스캐닝할 수 있도록 가능한 한 크게 선택되어야 함을 유의해야 한다. 다른 한편, 모아레 왜곡 측정시의 높은 측정 정밀도를 보장하기 위해서 모아레 구조는 전체 동작 영역에 걸쳐서 가능한 한 크게 다수의 주기들, 즉, 가능한 한 작은 구조의 소자들을 가져야 한다. 모아레 중첩 패턴으로부터 왜곡된 고유 왜곡 정보를 추출하기 위해서 상기 패턴을 생성하는데에 사용된 모아레 구조들은 하나의 축을 따라서만 주기성을 가져야 한다. 그러나, 파면의 재구성은 적어도 2개의 축을 따라 가능한 한 많은 점들에서 왜곡에 대한 지식을 필요로 한다. 파면의 2차원 재구성은 이하 기술하는 모아레 구조들에 의해서 가능해진다.
도 5는 도 1의 장치에서 사용할 목적으로 주기 방향들이 서로 90°회전되어 있는 2개의 모아레 회절 격자 구조(40, 41)의 평면도를 도시한다. xyz 좌표 시스템의 y-방향의 파면 구배를 결정하기 위해서, 주기 방향이 y-방향을 가리키는 제1 모아레 회절 격자 구조를 갖는 소자는 도 1의 투사 렌즈(5)의 오브젝트 면에 위치되고, 영상화 스케일만큼 감소된 동일 모아레 구조를 갖는 소자는 동일 영상 면에 위치되며, 또한 적합한 수의 측정들이 예를 들어 y-방향에서 제1 모아레 회절 격가 구조(40)를 능동적으로 변위시킴에 의해 서로 상대적인 2개의 구조의 수평 변위를 갖도록 함으로써 수행되며, 이때 그 목적을 위해 적절한 변위 장치가 이용된다. 이후, x-방향에서 주기성을 갖는 제2 모아레 회절 격자 구조(41)의 한 쌍의 소자들은 투사 렌즈(5)의 영상측과 오브젝트측에 배치되며, 또한 파면 구배는 x 방향을 따라 대응해서 결정된다. 두 방향에서의 왜곡 측정에 따라, 상기 목적을 가진 공지의 알고리즘 중 하나를 이용하여 파면의 재구성이 수행된다.
각각 회절 격자 구조(40)와 도 5의 회절 격자 구조(41)를 갖는 한 쌍의 광학 소자를 사용하는 대신에 제1 및 제2 측정 사이에서 90°회전하는 회절 격자 구조를 갖는 하나만의 소자 쌍을 사용할 수도 있다.
도 6은 3개의 다르게 정향된 비 직교 주기 방향들(y, w, v)의 3개의 모아레 회절 격자 구조(42, 43, 44)에 대한 평면도이다. 전술한 바와 같이, 2차원 파면 측정이 이러한 구조들의 도움으로 3개의 연속 왜곡 측정을 이용해서 수행될 수 있는데, 이는 3개의 다른 주기 방향들을 이용하므로 정밀도가 증가될 수 있다.
도 7은 도 1의 장치에 사용될 수 있으며 또한 체스판 모아레 패턴(45)을 가지는 다른 모아레 구조의 평면도이다. 이 패턴에 있어서, 주기성 구조들은 상호 수직인 축(x, y)을 따라 합성된다. 왜곡에 대한 고유한 정보가 각 경우에 주기 방향들 중 하나를 따라 파면 구배를 연속적으로 결정함으로써 추출될 수 있다. 파면 구배가 현재 결정되는 방향에 수직인 위상을 편이시키는 한편 이렇게 생성된 모아레 중첩 패턴의 강도를 평균화함으로써, 주기성이 수직 방향을 따라 사라지게 된다. 또한, 대신에 또는 추가적으로 차례대로 여러 방향에서 위상 편이들을 수행할 수 있으며, 이렇게 여러 중첩 패턴들에서 생성된 강도는 각각의 위상 편이 방향에서 파면 구배들에 대한 관련 정보만을 포함하는 한편, 다른 각 방향의 영향이 사라지게 될 수 있다.
도 5, 6 및 7에 도시된 모아레 구조들이 서로 결합될 수 있음은 물론이다. 따라서, 예를 들어 도 5에 도시된 구조들 중 하나는 오브젝트측에 사용되며, 또한 도 7에 도시된 구조는 영상측에 사용될 수 있다.
도 8은 도 1의 장치에 사용을 위한 검출 유닛 소자(52) 및 주기적 모아레 구조(50)를 갖는 검출 유닛를 도시한다. 검출 유닛(52)는 병렬 모아레 중첩 패턴을 판독하기 위한 검출 유닛 표면(54)을 갖는 CCD 배열을 포함한다. 병렬로 동작하지 않고, 예를 들어 하류에 배치된 광 다이오드를 구비한 핀홀 조리개를 이용하여 영상 필드의 라스트 스캐닝에 대한 공간 해상도 정보를 제공하는 검출 유닛들을 이용할 수 있다. 이 예에 있어서, 주기적 구조(50)가 검출 유닛 표면(54)에 직접적으로 적용되며, 또한 도 1의 투사 렌즈(5)의 영상 면에 파면 측정을 목적으로 배치된다.
도 9는 CCD 검출 유닛 소자(52a)의 검출 유닛 표면(54a)의 전방에 수평 이동가능한 방식으로 배치된 캐리어 또는 수평 기판(51)상에 있는 주기적 구조(50a)를 구비한 다른 검출 유닛를 도시한다. 변위 장치(55)를 이용하여 기판(51)을 변위시킴으로써, 검출 유닛(52a)가 이동할 필요없이 영상 면에서 위상 편이가 이루어진다. 주기적 구조(50a)는 도 1의 투사 렌즈(5)의 영상 면에 파면 측정을 위해 위치된다.
도 10은 CCD 검출 유닛 소자(52b), 상기 검출 유닛 소자의 상류에 배치되는 한편 이 검출 유닛 소자(52b)의 검출 유닛 표면(54b) 상에서 영상화하는 검출 광학 장치(53), 및 투명 기판(51a)에 적용된 주기적 구조(50b)를 구비하는 다른 검출 유닛를 도시한다. 검출 유닛 표면(54b)은 검출 광학 장치(53)를 선형으로 확대시킴으로써 확대된 주기적 구조(50b)의 영상을 픽업하여, 그 결과 검출 유닛의 공간 해상도에 상기 주기적 구조를 갖는 소자의 크기를 용이하게 적응시킬 수 있게 된다.
도 8 내지 도 10에 도시된 검출 유닛들에 있어서, 입사하는 측정 방사선의 강도는 주기적 구조들의 주기 길이 이상인 CCD 배열의 보간점에 할당된 화소 영역에 걸쳐 각 보간점에서 각 중첩 패턴으로부터 위상 정보를 평가하도록 평균화된다. 따라서, 소정의 위상 정보가 추출될 수 있다. 강도 측정 평균화 영역의 크기에 따라 측정 정밀도가 증가하므로, 상기 평균화 영역은 가능한 한 크게 선택되어야 하며, 퓨필 면에는 적합한 수의 보간점들이 유지되게 할 필요가 있다.
파면 측정을 위한 전술한 장치 및 전술한 방법은 마이크로리소그래피용 투사 렌즈의 측정으로 제한되지 않으며, 임의 소정의 광 영상화 시스템들을 측정하는데 사용할 수 있다. 본 발명에 따른 파면 측정 동작은 파면들을 동시에 병렬로 측정하는 데에, 즉, 고려하는 모든 필드점들에서 파면을 측정하는데에 사용될 수 있는 파면 생성 유닛 및 검출 유닛를 이용하여 수행된다. 또한, 파면 생성 및/또는 파면 검출이 순차로 수행되는, 즉, 각 필드점들에 대해 연속적으로 수행되는 파면 측정 장치의 구현이 가능하다.
웨이퍼 스캐너 또는 웨이퍼 스테퍼에 위의 장치가 사용될 때, 변형, 편차 또는 정적 위치설정 오차가 측정 정밀도에 영향을 미치지 않을 정도로 장치가 안정하게 유지된다. 측정 방사선을 생성하는데 레이저가 사용될 때, 레이저 강도의 변동은 다수의 펄스들을 평균화함으로써 충분히 작게 유지될 수 있거나 강도 모니터링을 통해 교정될 수 있다. 레이저의 스펙트럼 동작은 시간적으로 충분히 일정하므로 측정 정밀도의 재현성에 조사가 영향을 미치지 않게 된다. 결론적으로, 측정 정밀도는 기본적으로 모아레 중첩 패턴들의 위상 교정 정밀도로 결정된다. 정밀도를 높이는 요인들은 위상 편이 중의 영상측 및/또는 오브젝트측 구조의 충분히 정확한 위치설정, 및 강도가 평균화되는 공간 주기들의 수이다. 여기서 설명한 장치의 재현가능한 측정 정밀도는 로우 제르니케 계수에서 대략 1nm가 될 수 있다. 모아레 구조를 대신에, 중첩 패턴들이 파면의 코스를 재구성하는데 사용될 수 있는 다른 주기적 구조를 본 발명에 따른 장치에 사용할 수 있다.

Claims (12)

  1. 광 영상화 시스템(5)의 파면 측정 시스템에 있어서,
    측정 대상 영상화 시스템의 오브젝트측에 배치되며, 또한 오브젝트측 주기적 구조(2)를 갖는 광학 소자(1)와 상기 오브젝트측 주기적 구조를 측정 방사선으로 조사하는 광원부(20, 21)를 구비하는 파면 생성 유닛, 및
    측정 대상 영상화 시스템의 영상측에 배치되며, 또한 영상측 주기적 구조(4)를 갖는 광학 소자(3)와 영상화된 오브젝트측 주기적 구조와 영상측 주기적 구조의 중첩 패턴을 검출하는 검출 유닛 소자(52, 52a, 52b)를 구비하는 검출 유닛를 포함하며,
    상기 파면 생성 유닛는 필드점(field point; 7)으로부터 방사되는 측정 방사선의 각스펙트럼(6)을 제한하도록 설계되되, 각각의 경우에 제1 및 제2 필드점으로부터 방사하는 측정 방사선은 적어도 광 영상화 시스템의 한 퓨필(pupil) 면(9)의 하나의 부영역(8)에만 조사되며, 또한 상기 제1 필드점에 속하는 상기 퓨필 부영역은 제2 필드점에 속하는 퓨필 부영역과 부분적으로 중첩되거나 중첩되지 않도록 설계되는 것을 특징으로 하는 파면 측정 장치.
  2. 제1항에 있어서,
    상기 오브젝트측 주기적 구조를 갖는 광학 소자 및/또는 상기 영상측 주기적 구조를 갖는 광학 소자는 하나 이상의 주기 방향들을 따라서 수평 변위를 위한 변 위 장치(55,55a)에 할당되는 것을 특징으로 하는 파면 측정 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 광원부는 할당된 필드점들을 적절하게 제한된 각스펙트럼으로 조사하도록 상기 오브젝트측 주기적 구조를 갖는 상기 광학 소자의 전방에 이격되어 위치되는 하나 이상의 광원들을 포함하는 것을 특징으로 하는 파면 측정 장치.
  4. 제3항에 있어서,
    상기 광원부는 관련 조사 각이 광 영상화 시스템의 입력측 개구수와 사실상 같도록 상기 오브젝트측 주기적 구조를 갖는 상기 광학 소자의 전방에 이격되어 위치하는 단일 점 광원(20)을 구비하는 것을 특징으로 하는 파면 측정 장치.
  5. 제1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 광원부는 상기 오브젝트측 주기적 구조를 갖는 광학 소자의 뒤에 위치한 하나 이상의 핀홀(pinhole)들 뿐만 아니라 상기 오브젝트측 주기적 구조를 갖는 광학 소자의 전방에 위치한 하나 이상의 연장된 광원(21)들을 갖는 핀홀 조리개 유닛(23)를 구비하는 파면 측정 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 영상측 주기적 구조는 검출 유닛 소자의 검출 유닛 표면(54) 또는 상기 검출 유닛 소자의 검출 유닛 표면(54a, 54b)측으로 수평이동할 수 있는 기판(51, 51a) 상에 위치하며, 그리고/또는 상기 영상측 주기적 구조의 하류에 상기 검출 유닛 소자의 검출 유닛 표면상에 중첩 패턴을 영상화하기 위한 검출 광학 장치(53)가 위치하는 것을 특징으로 하는 파면 측정 장치.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제1 및 제2 주기적 구조 각각은 하나 또는 둘의 주기 방향(one or two periodity directions)을 갖는 모아레(moire) 구조(40, 41, 42, 43, 44, 45)를 갖는 파면 측정 장치.
  8. 제1 항 내지 제7 항 중 어느 한 항에 청구된 장치를 구비한 광 영상화 시스템의 파면 측정을 위한 장치에 있어서,
    오브젝트 면에 오브젝트측 구조를 갖는 광학 소자를 배치하며 또한 광 영상화 시스템의 영상 면에 영상측 구조를 갖는 광학 소자를 배치하는 단계,
    영상화된 오브젝트측 주기적 구조와 영상측 주기적 구조의 중첩 패턴들을 생성하며 또한 이들 패턴들을 상기 검출 유닛 소자를 이용하여 검출하는 단계,
    상기 각각의 필드점으로부터 조사된 퓨필 부영역들에 대응하는 다른 보간점들에서 하나 이상의 중첩 패턴들로부터의 파면의 공간 도함수들을 계산하는 단계, 및
    상기 보간점들에서 파면 도함수들로부터 상기 파면의 코스를 재구성하는 단 계를 포함하는 것을 특징으로 하는 파면 측정 방법.
  9. 제8 항에 있어서,
    상기 오브젝트측 구조를 갖는 광학 소자 및/또는 상기 영상측 구조를 갖는 광학 소자는 다른 위상 오프셋을 갖는 중첩 패턴들을 생성하도록 주기 방향을 따라 수평으로 배치되는 것을 특징으로 하는 파면 측정 방법.
  10. 제8 항 또는 제9 항에 있어서,
    상기 파면 검출 단계는 파면 측정을 수행하기 전에 교정되는 것을 특징으로 하는 파면 측정 방법.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    하나의 보간점에서 각각의 중첩 패턴으로부터 위상 정보를 구하기 위해서, 입사하는 측정 방사선의 강도는 상기 보간점에 할당된 검출 유닛 표면 영역에 걸쳐 평균화되며, 또한 상기 주기적 구조들의 주기 길이(period length) 이상인 것을 특징으로 하는 파면 측정 방법.
  12. 투사 렌즈를 구비한 마이크로리소그래피(microlithography) 투사 노출기에 있어서,
    제1 항 내지 제7 항 중 어느 한 항에 청구된 투사 렌즈에 파면 측정을 위한 장치를 구비하는 것을 특징으로 하는 마이크로리소그래피 투사 노출기.
KR1020067013832A 2004-01-16 2004-01-16 광 영상화 시스템의 파면 측정 장치 및 방법 그리고마이크로리소그래피 투사 노출기 KR101244103B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/000291 WO2005069079A1 (de) 2004-01-16 2004-01-16 Vorrichtung und verfahren zur wellenfrontvermessung eines optischen abbildungssystems und mikrolithographie-projektionsbelichtungsanlage

Publications (2)

Publication Number Publication Date
KR20060132641A true KR20060132641A (ko) 2006-12-21
KR101244103B1 KR101244103B1 (ko) 2013-03-25

Family

ID=34778250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067013832A KR101244103B1 (ko) 2004-01-16 2004-01-16 광 영상화 시스템의 파면 측정 장치 및 방법 그리고마이크로리소그래피 투사 노출기

Country Status (4)

Country Link
US (1) US7268890B2 (ko)
JP (1) JP4545155B2 (ko)
KR (1) KR101244103B1 (ko)
WO (1) WO2005069079A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274032B1 (ko) * 2012-12-03 2013-06-12 국방과학연구소 전자광학 영상장비 자동초점 조절 장치 및 이를 이용한 자동초점 조절방법
WO2017150948A1 (ko) * 2016-03-04 2017-09-08 주식회사 고영테크놀러지 패턴광 조사 장치 및 방법
KR20180082445A (ko) * 2015-11-12 2018-07-18 프리스매틱 센서즈 에이비 시간 오프셋된 심도 구획부를 구비한 에지-온 검출기를 사용하는 고해상도 전산화 단층촬영(high-resolution computed tomography using edge-on detectors with temporally offset depth-segments)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301646B2 (en) * 2004-01-21 2007-11-27 Carl Zeiss Smt Ag Device and method for the determination of imaging errors and microlithography projection exposure system
DE102005041203A1 (de) * 2005-08-31 2007-03-01 Carl Zeiss Sms Gmbh Vorrichtung und Verfahren zur interferometrischen Messung von Phasenmasken
JP4724558B2 (ja) * 2005-12-27 2011-07-13 キヤノン株式会社 測定方法及び装置、露光装置
JP5110350B2 (ja) * 2006-09-29 2012-12-26 Nltテクノロジー株式会社 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
US8189172B2 (en) * 2007-06-14 2012-05-29 Asml Netherlands B.V. Lithographic apparatus and method
US8692974B2 (en) * 2007-06-14 2014-04-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using pupil filling by telecentricity control
JP5303886B2 (ja) * 2007-09-26 2013-10-02 株式会社ニコン 光学特性計測装置、光学特性計測方法、露光装置、露光方法及びデバイスの製造方法
NL1036313A1 (nl) * 2007-12-27 2009-06-30 Asml Netherlands Bv Device manufacturing method and lithographic apparatus.
JP2009250848A (ja) * 2008-04-08 2009-10-29 Canon Inc 光学系評価方法、加工計画作成方法、面形状評価方法、光学素子の製造方法およびコンピュータプログラム
DE102008029970A1 (de) 2008-06-26 2009-12-31 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Mikrolithographie sowie Verfahren zum Überwachen einer lateralen Abbildungsstabilität
WO2010134487A1 (ja) * 2009-05-18 2010-11-25 株式会社ニコン 波面計測方法及び装置、並びに露光方法及び装置
US9033497B2 (en) 2011-12-29 2015-05-19 Elwha Llc Optical device with interchangeable corrective elements
US9052502B2 (en) 2011-12-29 2015-06-09 Elwha Llc Corrective alignment optics for optical device
US8934166B2 (en) 2011-12-29 2015-01-13 Elwha Llc Customized user options for optical device
CN110261067B (zh) * 2012-05-30 2022-02-22 株式会社尼康 波前测量方法及装置、以及曝光方法及装置
KR102198852B1 (ko) * 2014-03-24 2021-01-05 삼성전자 주식회사 홍채 인식 장치 및 이를 포함하는 모바일 장치
DE102014226269A1 (de) * 2014-12-17 2016-06-23 Carl Zeiss Smt Gmbh Wellenfrontmesseinrichtung, Projektionsobjektiv mit einer solchen Messeinrichtung und mit einer solchen Messeinrichtung zusammenwirkender optischer Wellenfrontmanipulator
NL2016625A (en) * 2015-04-20 2016-10-24 Asml Netherlands Bv Lithographic Method and Apparatus.
US20170256465A1 (en) 2016-03-01 2017-09-07 Asml Netherlands B.V. Method and apparatus to determine a patterning process parameter
CN110441992B (zh) * 2019-07-23 2020-05-05 中国科学院上海光学精密机械研究所 投影物镜波像差检测装置及检测方法
CN111103769B (zh) * 2020-01-02 2021-09-07 中国科学院上海光学精密机械研究所 对光强波动不敏感的投影物镜波像差检测装置与检测方法
DE102020215540B4 (de) 2020-12-09 2022-07-07 Uwe Schellhorn Verfahren zum Bestimmen einer Abbildungsqualität eines Abbildungssystems, Vorrichtung sowie Projektionsbelichtungsanlage
KR102617147B1 (ko) * 2023-07-14 2023-12-27 (주)오로스 테크놀로지 오버레이 계측 장치 및 오버레이 계측 장치의 교정방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588297A (en) * 1982-06-14 1986-05-13 Nippon Steel Corporation Optical profile measuring method
NL8601278A (nl) * 1986-05-21 1987-12-16 Philips Nv Inrichting voor het detekteren van een vergrotingsfout in een optisch afbeeldingssysteem.
JPH0560518A (ja) * 1991-09-05 1993-03-09 Matsushita Electric Ind Co Ltd 三次元座標計測装置
JPH06186025A (ja) * 1992-12-16 1994-07-08 Yunisun:Kk 三次元測定装置
JPH07120232A (ja) * 1993-10-21 1995-05-12 Yunisun:Kk 非接触型三次元形状測定装置
US5828455A (en) * 1997-03-07 1998-10-27 Litel Instruments Apparatus, method of measurement, and method of data analysis for correction of optical system
US5978085A (en) * 1997-03-07 1999-11-02 Litel Instruments Apparatus method of measurement and method of data analysis for correction of optical system
US6312373B1 (en) * 1998-09-22 2001-11-06 Nikon Corporation Method of manufacturing an optical system
TW550377B (en) 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
JP4174660B2 (ja) * 2000-12-28 2008-11-05 株式会社ニコン 露光方法及び装置、プログラム及び情報記録媒体、並びにデバイス製造方法
EP1231517A1 (en) 2001-02-13 2002-08-14 ASML Netherlands B.V. Lithographic projection apparatus and method of measuring wave front aberrations
EP1231514A1 (en) * 2001-02-13 2002-08-14 Asm Lithography B.V. Measurement of wavefront aberrations in a lithographic projection apparatus
JP4147574B2 (ja) * 2001-05-10 2008-09-10 株式会社ニコン 波面収差計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
WO2003021352A1 (fr) * 2001-08-31 2003-03-13 Canon Kabushiki Kaisha Reticule et procede de mesure de caracteristiques optiques
JP2003156832A (ja) * 2001-11-22 2003-05-30 Mitsubishi Electric Corp 収差計測用フォトマスク、収差計測方法、収差計測用装置および装置の製造方法
JP2005522871A (ja) * 2002-04-15 2005-07-28 カール・ツァイス・エスエムティー・アーゲー 干渉計測装置および該計測装置からなる投影露光装置
JP4327412B2 (ja) * 2002-06-06 2009-09-09 株式会社日立製作所 波面収差測定装置及び露光装置
JP2004014865A (ja) * 2002-06-07 2004-01-15 Nikon Corp レチクル、波面収差測定機、及び半導体露光装置の製造方法
US7088458B1 (en) * 2002-12-23 2006-08-08 Carl Zeiss Smt Ag Apparatus and method for measuring an optical imaging system, and detector unit
DE10316123A1 (de) * 2003-04-04 2004-10-14 Carl Zeiss Smt Ag Vorrichtung und Verfahren zur Wellenfrontvermessung eines optischen Abbildungssystems durch phasenschiebende Interferometrie

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274032B1 (ko) * 2012-12-03 2013-06-12 국방과학연구소 전자광학 영상장비 자동초점 조절 장치 및 이를 이용한 자동초점 조절방법
KR20180082445A (ko) * 2015-11-12 2018-07-18 프리스매틱 센서즈 에이비 시간 오프셋된 심도 구획부를 구비한 에지-온 검출기를 사용하는 고해상도 전산화 단층촬영(high-resolution computed tomography using edge-on detectors with temporally offset depth-segments)
WO2017150948A1 (ko) * 2016-03-04 2017-09-08 주식회사 고영테크놀러지 패턴광 조사 장치 및 방법
US11002534B2 (en) 2016-03-04 2021-05-11 Koh Young Technology Inc. Patterned light projection apparatus and method

Also Published As

Publication number Publication date
KR101244103B1 (ko) 2013-03-25
WO2005069079A1 (de) 2005-07-28
US7268890B2 (en) 2007-09-11
JP4545155B2 (ja) 2010-09-15
JP2007518256A (ja) 2007-07-05
US20050200940A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
KR101244103B1 (ko) 광 영상화 시스템의 파면 측정 장치 및 방법 그리고마이크로리소그래피 투사 노출기
JP3567153B2 (ja) 平版投射装置、回折モジュール、センサモジュールおよび波面収差を測定する方法
EP1063570B1 (en) In situ projection optic metrology method and apparatus
US7755748B2 (en) Device and method for range-resolved determination of scattered light, and an illumination mask
US7301646B2 (en) Device and method for the determination of imaging errors and microlithography projection exposure system
US6982786B2 (en) Reticle and optical characteristic measuring method
KR100562190B1 (ko) 리소그래피장치의 투영시스템의 수차를 측정하는 방법,디바이스제조방법, 및 그 제조된 디바이스
US7911624B2 (en) Device and method for the interferometric measurement of phase masks
CN108431694B (zh) 波前分析的装置与方法
JP2006324311A (ja) 波面収差測定装置及びそれを有する露光装置
US11441970B2 (en) Measurement apparatus for measuring a wavefront aberration of an imaging optical system
US20130182264A1 (en) Projection Exposure Tool for Microlithography and Method for Microlithographic Exposure
US20170284893A1 (en) Optical device
CN114008534A (zh) 量测方法和相关联的量测术以及光刻设备
TW201807389A (zh) 決定波前像差的測量系統
CN112639623A (zh) 用于测量对准标记的位置的设备和方法
JP3870153B2 (ja) 光学特性の測定方法
US9261402B2 (en) Lithographic method and apparatus
KR20220065872A (ko) 계측 방법 및 리소그래피 장치
JPH06267824A (ja) 露光方法
CN111324006B (zh) 检测光刻掩模的区域部分上的结构的检测装置及设备
KR20230117145A (ko) 에칭된 트렌치를 측정하기 위한 계측 방법 및 연관된 계측 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180223

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee