KR20060127129A - 송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기제어 - Google Patents

송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기제어 Download PDF

Info

Publication number
KR20060127129A
KR20060127129A KR1020067016108A KR20067016108A KR20060127129A KR 20060127129 A KR20060127129 A KR 20060127129A KR 1020067016108 A KR1020067016108 A KR 1020067016108A KR 20067016108 A KR20067016108 A KR 20067016108A KR 20060127129 A KR20060127129 A KR 20060127129A
Authority
KR
South Korea
Prior art keywords
signal
level
power
power amplifier
transmission
Prior art date
Application number
KR1020067016108A
Other languages
English (en)
Other versions
KR101158311B1 (ko
Inventor
필립페 길버톤
폴 크누트손
Original Assignee
톰슨 라이센싱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 톰슨 라이센싱 filed Critical 톰슨 라이센싱
Publication of KR20060127129A publication Critical patent/KR20060127129A/ko
Application granted granted Critical
Publication of KR101158311B1 publication Critical patent/KR101158311B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • H03F3/1935High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices with junction-FET devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/543A transmission line being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

수신기 장치(100)를 제어하는 기술은 전력 소비를 줄이기 위해 유용하며, 배터리 전원을 사용하는 모바일 송수신기에 특히 적용가능하다. 예시적인 실시 예에 따라, 송수신기 장치(100)는 전송 신호를 증폭하기 위한 전력 증폭기(56)를 포함한다. 제어기(30)는 전력 증폭기(56)와 연관된 제3차 상호변조 산물의 전력 레벨에 기초하여 전력 증폭기(56)를 제어한다.

Description

송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기 제어{CONTROL OF A POWER AMPLIFIER FOR REDUCING POWER CONSUMPTION IN A TRANSCEIVER}
본 발명은 일반적으로 송수신기 장치에 관련되며, 특히, 수신기 장치의 전력 소비를 제어하기 위한 기술에 관련된다. 본 발명은 배터리 전원을 이용하는 모바일 수신기에 특히 적용이 가능하다.
일정 통신 표준은 송수신기의 신호 전송 모드와 신호 수신 모드가 분리된 시간 간격 동안에 수행되는 것을 나타내는 시분할 이중(Time Division Duplex, TDD) 기능의 사용을 지원할 수 있다. 예컨대, 시간 분할 코드 분할 다중 접속(TDCDMA), 시간 분할 및 동기 코드 분할 다중 접속(TDSCDMA), Hiperlan2, IEEE 802.11a, 그리고/또는 다른 표준들이 TDD 함수를 사용할 수 있다. 그러한 통신 표준들은 또한 아래의 표 1에서의 예에 대해서 지시된 것처럼, 다른 주파수 영역들을 사용할 수 있다.
통신표준 주파수 영역
TDCDMA 1900-1920 MHz 또는 2010-2025 MHz
TDSCDMA 2010-2025 MHz
Hiperlan2 5.15-5.35 GHz 및 5.47-5.725 GHz
IEEE 802.11a 5.15-5.35 GHz 및5.725-5.825 GHz
Table 1
표 1에서 도시된 바와 같은 통신 표준은 입력 전력과 출력 전력 사이의 선형관계를 가지는 신호전송을 위한 전력 증폭기의 사용을 또한 요구할 수 있다. 이러한 선형요건을 만족시키기 위해서, 그러한 증폭기는 전형적으로 전송모드 동안 높은 바이어스 전류를 요구하며, 그러므로 비교적으로 큰 양의 전력을 소비할 수 있다. 예컨대, 20dB의 이득을 가지고 30dB의 피크 출력 전력 레벨을 전달하는 전형적인 전력 증폭기는 전송모드 동안 450mA의 DC 바이어스 전류를 요구할 수 있다. 전력증폭기를 위한 높은 바이어스 전류의 요구는 전송 모드 동안 장치의 전체 전력 소비를 현저하게 증가시킬 수 있다. 예컨대, 모바일 수신기와 같은 장치에서, 전력 증폭기에 의해서 소비되는 피크 전력은 전송 모드 동안 장치의 전체 전력 소비의 70% 이상을 구성한다. 따라서, 신호 전송을 위해 사용되는 전력 증폭기는 많은 양의 전력을 소비할 수 있는데, 이는 배터리 전원을 사용하는 모바일 수신기와 같은 휴대용 장치에 대해서는 특히 문제가 될 수 있다. 더구나, 전력 증폭기의 전력소비는 바람직하지 않은 방식으로 장치가 열을 발생하도록 할 수 있다.
따라서, 전술한 문제를 피함으로써, 전력 증폭기의 선형성 요구를 여전히 만족시키면서 전력 소비를 줄이는 송수신기 장치를 제어하기 위한 기술이 필요하다. 본 발명은 이러한 그리고/또는 다른 이슈들을 중점적으로 다룰 것이다.
본 발명의 하나의 양상에 따라, 하나의 송수신기 장치가 개시된다. 예시적인 실시예에 따라, 송수신기 장치는 전송 신호를 증폭하기 위한 전력 증폭 수단을 포함한다. 제어 수단은 전력 증폭 수단과 관련된 제3 차 상호변조 제품들의 전력 레벨에 기초하여 전력 증폭 수단을 제어하기 위해 제공된다.
본 발명의 또 다른 하나의 양상에 따라, 송수신기 장치를 제어하기 위한 방법이 개시된다. 하나의 실시 예에 따라, 상기 방법은 송수신기 장치의 전력 증폭기와 관련된 제3차 상호변조 제품들의 전력 레벨을 검출하고, 그 검출에 응답해하는 전력 증폭기를 제어하는 단계를 포함한다.
본 발명의 위에서 언급된 그리고 다른 특징 및 장점, 그리고 그것을 달성하는 방식이 보다 명백해질 것이며, 본 발명은 수반하는 첨부 도면과 연관된 본 발명의 실시 예에 대한 다음 설명을 참조하여 더 잘 이해될 것이다.
도 1은 본 발명의 예시적인 실시 예에 따른 송수신기 장치의 블록도.
도 2는 도 1의 디지털 필터와 전력 레벨 추정기에 대한 추가적인 예시적인 세부사항을 예시하는 도면.
도 3 내지 도 6은 도 1과 도 2의 디지털 필터와 전력 레벨 추정기와 연관된 예시적인 주파수 응답을 예시하는 그래프.
도 7은 도 1의 전력 증폭기의 추가적인 예시적인 세부사항을 예시하는 도면.
도 8은 예시적인 출력 전력 스펙트럼 마스크(spectrum mask)를 예시하는 그래프.
도 9는 본 발명의 예시적인 실시 예에 따른 단계를 예시하는 플로차트.
본 발명에서 개시된 예는 본 발명의 선호되는 실시 예를 예시하며, 그러한 예시들은 어떤 방식으로든 본 발명의 범위를 제한하는 것으로 해석되지 않는다.
이제 도면, 특히, 도 1를 참조하여, 본 발명의 예시적인 실시 예에 따른 송수신기 장치(100)가 도시된다. 도 1에서, 송수신기 장치(100)는 신호 전송 및 수신(10)과 같은 신호 전송 및 수신 수단, 스위치(12)와 같은 스위칭 수단, 감쇄기(14)와 같은 감쇄 수단, 낮은 노이즈 증폭기(low noise amplifier, LNA)(16)과 같은 낮은 노이즈 증폭 수단, 가변 이득 증폭기(variable gain amplifier, VGA)(18)과 같은 제1 가변 증폭기 수단, 복조기(20)와 같은 복조 수단, 저역 필터(low pass filter)(22, 24)와 같은 제1 저역 필터링 수단, 아날로그-디지털 변환기(ADC)(26,28)과 같은 아날로그-디지털 변환 수단, 제어기(30)과 같은 제어 수단, 디지털-아날로그 변환기(DAC)(38,40,42)와 같은 디지털-아날로그 변환 수단, LPF(44, 46)과 같은 제2 저역 필터링 수단, 위상 동기 루프(PLL)(50)와 같은 동기화 수단, LPF(52)와 같은 제3 저역 필터링 수단, VGA(54)와 같은 제2 가변 증폭 수단, 그리고 전력 증폭기(56)와 같은 전력 증폭 수단을 포함한다. 제어기(30)는 디지털 필터(32)와 같은 디지털 필터링 수단, 전력 레벨 추정기(34)와 같은 전력 레벨 추정 수단, 그리고 비교기(36)과 같은 비교 수단을 포함한다. 도 1의 전술된 요소들 중의 일부는, 예컨대, 하나 이상의 집적회로(ICs)를 사용하여 구현된다. 설명의 분명함을 위해서, 제어 신호, 전력 신호와 같은 수신기 장치(100)와 연관된 특정 통상적인 요소들 및/또는 기타 통상적인 요소들은 도 1에서 도시될 수 없다. 송수신기 장치(100)는 전화, 페이저, PDA, 그리고/또는 다른 디바이스와 같은 모바일 무선 송수신기로서 구현될 수 있다.
신호 전송과 수신(10)은 신호를 전송하고 수신하기 위해 작동하며 안테나, 입력/출력 단말기 그리고/또는 다른 요소와 같은 임의의 형태의 신호 전송과 수신 요소로서 포함될 수 있다. 예시적인 실시 예에 따라, 신호전송 및 수신(10)은 무선 방식으로 신호를 송신하고 수신하기 위해 작동한다.
스위치(12)는 송수신기 장치(100)의 전송모드와 수신 모드에 기반하여 신호를 전환하도록 동작한다. 하나의 실시 예에 따라, 스위치(12)는 전송 모드 동안 전력 증폭기(56)로부터 전송 신호를 신호 전송과 수신(10)에 전달하게 하고, 프로세서(도시되지 않음)로부터 제공되는 제어 신호(TX/RX)에 응답해서 수신 모드 동안 신호 전송 및 수신(10)으로부터 수신된 신호를 감쇄기(14)에 전달함으로써, 송수신기 장치(100)의 TTD 기능을 가능케 한다. 나중에 설명되듯이, 누설신호는 전송모드동안 송수신기 장치(100)의 신호 수신 요소에 스위치(12)를 통해 통과할 수 있다. 이러한 누설신호(leakage signals)는 전력 증폭기(56)의 비-선형 효과에 기인하는 제3차 상호변조 산물을 포함한다. 이러한 누설신호는 스위치(12)의 전송 및 수신 엑세스 사이에서 발견되는 기생 용량(parasitic capacitance)와 주로 연관된 기생효과(parasitic effect)이며 일정 주파수 영역에서 회피할 수 없다. 예시적인 실시 예에 따라, 스위치(12)는 그러한 누설 신호에 약 30dB의 감쇄를 인가한다.
감쇄기(14)는 스위치(12)로부터 제공되는 신호를 감쇄시키기 위해 동작함으로써, 감쇄된 신호를 발생시킨다. 예시적인 실시 예에 따라, 감쇄기(14)는 전송모드 동안 추가적인 30dB의 감쇄를 제공하기 위해 동작하고, TX/RX 제어신호에 반응 하여 수신 모드 동안 바이패스된다. 전송모드 동안 감쇄기(14)에 의해서 제공되는 감쇄는 LNA(16)의 입력에서 누설 신호의 레벨을 감소시켜서 임의의 포화효과(saturation effect)를 피할 수 있도록 도와준다.
LNA(16)은 전송모드 동안 감쇄기(14)로부터 제공되는 감쇄된 신호를 증폭하고, 수신 모드 동안 스위치(12)로부터 제공된 수신된 신호를 증폭하기 위해 동작된다. VGA(18)은 LNA(16)으로부터 제공되는 신호를 가변적으로 증폭하여, 증폭된 신호를 발생시키도록 동작한다.
복조기(20)는 VGA(18)로부터 제공되는 증폭된 신호를 복조함으로써 복조된 신호를 발생하기 위해 동작한다. 하나의 실시 예에 따라, 복조기(20)는 복조된 I와 Q신호를 발생하고, BPSK(bi-phase shift keyed) 변조, QPSK(quadrature phase shift keyed)변조, QAM(quadrature amplitude modulation) 그리고/또는 다른 형태의 변조와 같은 복수의 상이한 변조 유형을 가지는 신호를 복조하기 위해 동작한다.
저역 필터(22,24)는 복조기(20)에서 제공되는 복조 신호를 필터링하도록 동작해서 필터링된 신호를 발생시킨다. 예시적인 실시 예에 따라, 저역필터(22,24)는 반-엘리어싱(anti-aliasing) 필터로서 동작하며, 복조된 I와 Q신호를 각각 필터링한다. 또한 예시적인 실시예에 따라, 저역필터(22, 24)의 대역폭은 전력 증폭기(56)의 비-선형효과에 기인하는 제3 차 상호변조 산물을 나타내는 스위치(12)를 통해 누설신호가 통과하기에 충분하다.
아날로그-디지털 변환기(26,28)는 저역 필터(22, 24)로부터 제공되는 필터링 된 신호를 아날로그 형태에서 디지털 형태로 전환하도록 각각 동작한다. 하나의 실시 예에 따라, 아날로그-디지털 변환기(26, 28)에 제공되는 신호는 아날로그-디지털 변환기(26, 28)의 동작 범위를 확대하도록 VGA(18)에 의해서 스케일링 된다.
제어기(30)는 전력 증폭기(56)와 연관된 제3차 상호변조 제품의 전력 레벨 추정에 기초하여 제어 전력 증폭기(56)를 제어하도록 동작한다. 전에 나타난 바와 같이, 그러한 제3 차 상호변조 산물은 전송 모드 동안 스위치(12)를 통과하는 누설신호에 의해서 나타나고, 전력 증폭기(56)의 비-선형 효과에 기인한다. 예시적인 실시예에 따라, 제어기(30)는 전송모드 동안 누설신호를 처리하여 제3차 상호변조 제품의 전력 레벨을 검출한다. 제어기(30)는 검출된 전력 레벨과 미리결정된 참조 전력 신호에 의해서 나타나는 전력레벨을 비교하고, 이러한 비교에 기초하여 전송 모드 동안 전력 증폭기(56)와 연관된 바이어스 전류를 제어한다. 제어기(30)의 추가적인 세부사항은 본 명세서에서 나중에 제공될 것이다.
디지털-아날로그 변환기(38, 40, 42)는 신호를 디지털 형태에서 아날로그 형태로 변환하도록 동작한다. 하나의 실시 예에 따라, 디지털-아날로그 변환기(38)는 비교기(36)에서 제공되는 디지털 신호를 전력증폭기(56)와 연관된 바이어스 전류를 제어하기 위해서 사용되는 아날로그 신호로 변환하기 위해 동작한다. 또한 추가적인 예시적인 실시예에 따라서, 디지털-아날로그 변환기(40,42)는 디지털적으로 처리된 I와 Q 신호를 아날로그 신호로 변환하기 위해 각각 동작한다. 저역 필터(44, 46)는 디지털-아날로그 변환기(40, 42) 각각으로부터 아날로그 신호를 필터링해서 필터링된 신호를 발생하도록 동작한다.
변조기(48)는 저역 필터(44,46)에서 제공되는 필터링된 신호를 변조해서 변조된 신호를 발생하도록 동작한다. 예시적인 실시 예에 따라, 변조기(20)는 I와 Q 신호를 변조하도록 동작하며, BPSK 변조, QPSK 변조, QAM 그리고/또는 다른 타입의 변조와 같은 복수의 다른 형태의 변조를 수행하기 위해 동작할 수 있다. 위상 동기 루프(PLL)(50)는 복조기(20) 및 변조기(48)를 제어하는 동기화 신호를 발생하도록 동작한다.
저역 필터(52)는 변조기(48)에서 제공되는 변조된 신호를 필터링하여 필터된 신호를 발생하도록 동작한다. VGA(54)는 저역필터(52)에서 제공되는 필터링된 신호를 가변 증폭해서 증폭된 신호를 발생한다.
전력 증폭기(56)는 VGA(54)로부터 제공되는 신호의 전력을 증폭해서 증폭된 전송신호를 발생하도록 동작한다. 예시적인 실시 예에 따라, 전력 증폭기(56)는 복수의 계층화된 단계(cascaded stages)를 포함하며, 일반적으로 입력 전력과 출력 전력 사이에 선형성을 요구한다. 본 발명의 원리에 따라, 전력 증폭기(56)의 마지막 단계의 바이어스 전류는 전력 증폭기(56)의 비-선형 효과에 기인하는 제3차 상호변조 산물의 검출된 전력레벨에 기초하여 전송 모드 동안 적절히 제어될 수 있다. 전력 증폭기(56)의 바이어스 전류를 제어함으로써, 본 발명은 유익하게 전력소비를 줄이며, 적용가능한 출력 전력 스펙트럼 마스크에 따른 선형성 요구를 또한 만족시킨다. 전력 증폭기(56)의 추가적인 세부사항이 본 발명에서 나중에 제공될 것이다.
도 2를 참조하여, 도 1의 디지털 필터(32)와 전력 레벨 추정기(34)의 추가적 인 세부사항이 제공된다. 도 2에서, 디지털 필터(32)는 보간기(interpolator)(60)와 같은 보간 수단(interpolating means), 펄스 형성 필터(pulse shaping filter, PSF)(62)와 같은 펄스 형성 수단, 지연(64)과 같은 지연수단, 가산기(66)과 같은 가산 수단(adding means), 그리고 노치 필터(notch filter)(68)와 같은 노치 필터링 수단을 포함한다. 도 2에서 또한, 전력 레벨 추정기(34)는 절대값 발생기(absolute value generator)(70)와 같은 절대값 발생 수단, 가산기(72)와 같은 가산 수단, 누산기(accumulator)(74)와 같은 누산 수단을 포함한다. 도 2의 전술된 요소의 일부는 예컨대 하나 이상의 집적회로(ICs)를 사용하여 구현될 수 있다. 설명의 분명함을 위해서, 제어 신호, 전력 신호 같은 도 2의 요소들에 연관된 특정의 통상적인 요소, 그리고/또는 다른 통상적인 요소는 도 2에서 도시되지 않을 수 있다.
보간기(60)는 아날로그-디지털 변환기(26,28)로부터 제공되는 디지털 신호를 사용해서 심볼 시간 회복 동작(symbol time recovery operation)을 수행하기 위해 동작해서, 동기화 정보를 발생한다. 예시적인 실시 예에 따라, 보간기(60)는 아날로그-디지털 변환기(26, 28)로부터 제공되는 다른 디지털 신호와 함께 그러한 동기화 정보를 출력한다.
펄스 형성 필터(62)는 보간기(60)에서 제공되는 디지털 신호를 필터링해서 필터링된 신호를 발생하도록 동작한다. 예시적인 실시 예에 따라, 펄스 형성 필터(62)는 전송 모드 동안 고역 필터링 동작을 수행하고, TX/RX 제어 신호에 응답하여 수신 모드 동안 저역 필터링 동작을 수행하도록 동작한다. 이러한 예시적인 실 시 예에 따라, 펄스 형성 필터(62)의 고역 필터링 동작은 전력 증폭기(56)의 비-선형효과에 기인하는 제3차 상호변조 산물을 나타내는 누설 신호를 분리하기 위해서 0에서 2.5 MHz의 주파수 대역에서 50dB의 저지대(rejection)를 가진다. 특히, 이러한 누설신호(leakage signals)는 2.5에서 5MHz의 주파수 대역에서 현저한 에너지를 가질 수 있다. 수신 모드 동안, 펄스 형성 필터(62)로부터 필터링된 신호는 도 2에서 지시된 바와 같이, 추가적인 디지털 프로세싱을 위해 제공된다. 펄스 형성 필터(62)는 도 3의 그래프(300)에서 나타난 바와 같은 주파수 응답을 가지는 레이즈드 루트 코사인 필터(raised root cosine filter)를 사용해서 구성될 수 있다. 예시적인 실시예에 따르면, PSF(62)의 고역 필터링 동작은 레이즈드 루트 코사인 필터를 인버팅(inverting)함으로써 인에이블되어서 도 4의 그래프(400)에서 예로서 표현되는 바와 같이 주파수 응답을 생성한다.
지연(64)은 보간기(60)에서 제공되는 디지털 신호를 지연시켜, 지연된 신호를 발생하도록 동작한다. 예시적인 실시 예에 따라, 지연(64)에 의한 지연은 펄스 형성 필터(62)에 의해 형성되는 프로세싱 지연과 동일하다.
가산기(66)는 지연(64)으로부터 제공되는 지연된 신호에서 펄스 형성 필터(62)로부터 제공되는 필터링된 신호를 감산해서, 결과적인 출력신호를 발생하도록 동작한다. 노치 필터(68)는 가산기(66)로부터 제공되는 출력신호를 필터링해서, 필터링된 신호를 발생하도록 동작한다.
예시적인 실시 예에 따라, 노치 필터(68)는 계수[0.5, 0, 0.5]와 도 5의 그래프(500)에서 나타나는 바와 같이 정상 주파수 응답을 가지는 단순한 노치 필터를 사용하여 구성될 수 있다. 예시적인 실시 예에 따라, 펄스 형성 필터(62)의 고역 필터링 동작으로부터 발생되는 필터링된 신호는 노치 필터(68)가 도 6의 그래프(600)에서 나타나는 바와 같은 누적 주파수 응답을 산출하도록 할 수 있다.
절대값 발생기(70)은 노치 필터(68)로부터 제공되는 필터링된 신호로부터 절대값 신호를 발생하도록 동작한다. 가산기(72)는 절대값 발생기(70)에서 제공되는 절대값 신호를 누산기(74)에서의 출력 신호에 가산하여 결과적인 출력 신호를 발생하도록 동작한다.
누산기(74)는 리셋 신호에 따라 미리 결정된 시간 주기 동안 가산기(72)로부터 제공되는 출력신호의 크기를 누산해서 동작하여서 결과적인 출력 신호를 발생하도록 동작한다. 예시적인 실시 예에 따라, 누산기(72)는 전력 증폭기(56)의 비-선형 효과에 기인하는 제3차 상호변조 산물의 전력 레벨의 추정치인 각각의 리셋 기간의 끝에서 출력신호를 제공한다. 도 2에서 지시되는 바와 같이, 누산기(74)로부터의 출력신호는 미리결정된 기준 전력 신호와 출력 신호를 비교하는 비교기(36)(도 1 참조)에 제공된다. 이러한 방식으로, 전력 증폭기(56)와 연관된 바이어스 전류는 이러한 비교에 기초하여 제어될 수 있다.
이제 도 7을 참조하여, 도 1의 전력 증폭기(56)의 추가적인 예시적인 세부사항이 제공된다. 특히, 도 7은 본 발명의 예시적인 실시 예에 따라 전력 증폭기(56)의 복수의 계층적 단계(예컨대 3 단계)의 최종 단계를 도시한다. 도 7에서, 전력 증폭기(56)은 커패시터(C1 내지 C4), 트랜지스터(Q1 내지 Q2), 방사형 스터브(radial stub)(RS1 및 RS2), 레지스터(R1 내지 R5), 쿼터 파장 스터브(quarter wavelength stub)(S1 내지 S6), 그리고 전압 입력(V1 및 V2)을 포함한다. 도 7에 지시된 바와 같이, 전력 증폭기(56)는 DAC(38)와 VGA(54)로부터 입력을 수신하기 위한 입력 단말과 스위치(12)에 출력을 제공하기 위한 출력 단말을 포함한다. 예시적인 실시 예에 따라, 트랜지스터(Q2)는 갈륨비소(GaAs)를 사용하여 형성되는 전계 효과 트랜지스터(FET)이다. 전력 증폭기(56)의 요소에 대해서 선택된 특정 값은 설계 선택의 문제일 수 있다.
본 발명의 원리에 따라, 전력 증폭기(56)의 최종 단계의 바이어스 전류는 전력 증폭기(56)와 연관된 제3차 상호변조 산물의 전력 레벨에 기초하여 적절히 제어될 수 있다. 특히, DAC(38)로부터 제공되는 아날로그 신호는 비교기 (36)에 의해서 행해지는 비교에 기초하여 전력증폭기(56)의 최종단계의 바이어스 전류를 제어하여, 전력 증폭기(56)의 작동점을 정의한다. 이러한 방식으로, 전력 증폭기(56)의 동작지점은 전력소비가 감소 되고, 선형요구가 적용가능한 출력 전력 스펙트럼 마스크에 띠라 만족될 수 있도록 조정될 수 있다. 예로서, 도 8은 TDCDMA 표준의 출력 전력 스펙트럼 마스크를 예시하는 그래프(800)이다.
본 발명의 발명적인 개념에 대한 보다 나은 이해를 용이하게 하기 위해서, 또 하나의 예가 제공될 것이다. 이제, 도 9를 참조하여, 본 발명의 예시적인 실시예에 따른 단계를 예시하는 플로차트(900)가 도시된다. 예와 설명을 위해서, 도 9의 단계들은 도 1 및 도 2의 제어기(30)와 도 1 및 도 7의 전력 증폭기(56)를 참조하여 기술될 것이다. 도 9의 단계는 단지 예시적이고, 어떤 방식으로든 본 발명을 제한하도록 의도되지 않는다. 예시적인 실시예에 따라, 도 9의 단계들은 수신기 장 치(100)의 전송 모드 동안 수행된다. 도 9의 단계들을 실행할 때, 감쇄기(14)와 펄스 형성 필터(62)와 같은 도 1 및 도 2의 요소들은 TX/RX 제어 신호뿐만 아니라 그리고/또는 그 이외의 제어신호를 통해서 제어될 수 있다는 것이 당업자에게는 인식될 것이다.
도 9에서, 프로세스 흐름(process flow)이 시작되고, 송수신기 장치(100)의 전송 전력레벨이 미리 결정된 임계 레벨보다 크거나 또는 동일한지에 대한 결정이 이루어지는 단계 910에 까지 나아간다. 예시적인 실시 예에 따라, 단계(910)에서의 결정은 송수신기 장치(100)의 수신 모드 동안 제공되는 하나 이상의 데이터 프레임 내에 포함되는 데이터를 검출하고 프로세싱하는 프로세서(도 1에서 도시되지 않음)에 의해서 행해질 수 있다. 또한, 예시적인 실시 예에 따라서, 비록 다른 레벨이 본 발명에 따라 사용될 수 있을지라도, 단계 910에서 사용되는 미리 결정된 임계 전압은 27dBm이다.
만일 단계 910에서의 결정이 부정적이면, 프로세스 플로는 단계 920으로 나아가며, 여기서 전력 증폭기(56)에 연관된 바이어스 전류는 현재의 레벨에서 유지된다. 대안적으로, 만일 단계 910에서의 결정이 긍정적이면, 프로세스 프로는 단계 930으로 나아가며, 여기서 전력 레벨 추정기(34)의 누산기(74)는 리셋된다(도 2 참조). 단계 940에서, 누산기(74)는 미리 결정된 시간 주기 동안 크기 샘플(magnitude samples)을 누적하고, 이후 전력 증폭기(56)의 비-선형 효과에 기인하는 제3차 상호변조 산물의 전력 레벨의 추정인 출력신호를 제공한다.
단계 950에서, 누산기(74)로부터 추정된 전력 레벨이 미리 결정된 기준 전 력 레벨보다 크거나 동일한지에 대한 결정이 이루어진다. 예시적인 실시 예에 따라, 비교기(36)는 누산기(74)의 출력신호를 미리 결정된 기준 전력 신호와 비교함으로써 단계 950에서 결정을 내린다. 만일 단계 950에서의 결정이 부정적이면, 프로세스 프로는 단계 960으로 나아가며, 여기서 전력 증폭기(56)에 연관된 바이어스 전류가 감소된다. 대안적으로, 만일 단계 950에서 결정이 긍정적이면, 프로세스 흐름은 단계 970으로 나아가며, 여기서 전력 증폭기(56)에 연관된 바이어스 전류는 증가되어서 선형성이 증가 된다.
단계 960 및 970 후에, 프로세스 플로는 단계 930으로 되돌아가며(loop back), 여기서 전술된 단계들이 도 9에서 지시된 바와 같이 반복될 수 있다. 도 9의 단계들은 단계 910이 모든 미리 결정된 시간 주기마다 반복되도록 반복적인 방식으로 수행될 수 있다. 도 9의 단계들의 다른 변형이 또한 본 발명에 따라서 수행될 수 있다. 예컨대, 단계 930 내지 950 그리고 단계 960 또는 970은 매 전송모드 동안 수행될 수 있다. 이러한 변형은 전력 증폭기(56)의 바이어스 전류가 수신기 장치(100)의 전송 전력 레벨에 무관하게 조정되도록 하여 결정 단계 910을 생략할 수 있다. 그러나, 결정 단계 910의 포함이 바람직한데 이는 송수신기 장치(100)의 전송 전력 레벨이 주어진 레벨(예컨대, 27dBm)보다 클 때, 본 발명의 전력 감소의 장점이 더욱 커지기 때문이다. 예컨대, 도 9의 단계들은 두 인수(예컨대, 450mA 내지 225mA)에 의해서 전력 증폭기(56)의 최종 단계의 전류 유도(draw)를 감소시킬 수 있다. 그러나, 이 모든 경우에, 전력 감소의 장점은 전송모드/수신모드 시간 비율에 의해서 가늠 되어야 한다.
본 명세서에서 기술된 바와 같이, 본 발명은 유리하게 전력 소비를 감소시키는 송수신 장치를 제어하기 위한 기술을 제공한다. 따라서, 본 발명의 원리는 배터리 전원을 사용하는 모바일 송수신기와 같은 장치에 특히 적용될 수 있다. 전력 소비의 감소는 그러한 장치에 의해 바람직하지 않은 열의 발생을 감소시키는데 또한 도움을 줄 수 있다.
본 발명이 선호되는 설계를 갖는 것으로 기술되는 동안, 본 발명은 이러한 개시의 정신과 범위 내에서 추가로 변경될 수 있다. 그러므로, 본 출원은 본 발명의 일반적인 원리를 사용하는 본 발명의 임의의 변형, 사용, 그리고 개작을 포함하도록 의도된다. 예컨대, 본 발명의 원리는 본 발명에서 특히 언급된 예시적인 표준 이외의 통신 표준들을 지원하는 장치 또는 디바이스에 적용될 수 있다. 추가로, 본 출원은 본 발명이 속하는 그리고 첨부된 청구항의 범위에 있는 기술분야에서의 잘 알려지거나 관습적인 실행에 해당하는 현재의 개시로부터의 그러한 이탈을 포함하도록 의도된다. 또한, 본 발명은 첨부된 청구항의 조건에 의해서만 단지 제한되도록 의도된다.
본 발명은 일반적으로 수신기 장치, 특히 수신기 장치의 전력 소비를 제어하기 위한 기술에 관련되며, 배터리 전원을 이용하는 모바일 수신기에 이용가능하다.

Claims (19)

  1. 개별적인 시간 간격 동안 신호를 수신하고 신호를 전송하는 수신 체인(receiving chain)과 송신 체인(transmitting chain)을 포함하는 장치(100)로서,
    상기 장치는,
    전송 신호를 증폭하기 위한 전력 증폭 수단(56); 그리고
    상기 전력 증폭 수단(56)에 연관된 제3차 상호변조 산물(products)의 전력 레벨 추정에 기초하여 상기 전력 증폭 수단(56)을 제어하기 위한 제어 수단(30)으로서, 상기 상호변조 산물은 전송 모드 동안 스위치를 통해 신호 수신 요소로 가는 누설 신호(leakage signals)에 의해서 표시되는, 제어 수단을 추가로 포함하는 것을 특징으로 하는, 장치.
  2. 제1항에 있어서, 상기 제어 수단(30)은 상기 전력 증폭 수단(56)과 연관되는 바이어스 전류를 제어하는, 장치.
  3. 제1항에 있어서, 무선으로 상기 전송 신호를 전송하기 위한 신호 전송 수단(10)을 추가로 포함하는, 장치.
  4. 제3항에 있어서, 상기 전력 증폭 수단(56)으로부터 상기 신호 전송 수단(10)으로 상기 전송 신호의 통과를 제공하기 위한 스위칭 수단(12)을 추가로 포함하고; 그리고
    상기 스위칭 수단과 관련된 누설신호(12)는 상기 제3차 상호변조 산물을 포함하는, 장치.
  5. 제1항에 있어서, 상기 수신기 장치(100)는 전송 모드와 수신 모드를 포함하고;
    상기 제어 수단(30)은 상기 전송 모드와 상기 수신 모드 동안 디지털 필터링 동작을 수행하기 위한 디지털 필터링 수단(32)을 포함하는, 장치.
  6. 제5항에 있어서, 상기 디지털 필터링 수단(32)은 상기 전송 모드 동안 고역 디지털 필터링 동작을 수행하고, 상기 수신 모드 동안 저역 디지털 필터링을 수행하는, 장치.
  7. 제1항에 있어서, 상기 제어 수단(30)은 상기 송수신기 장치(100)의 전송전력 레벨이 미리 결정된 임계 레벨을 초과하는 경우에만 상기 전력 증폭 수단(56)을 제어하는, 장치.
  8. 제7항에 있어서, 바이어스 전류는, 상기 송수신 장치(100)의 상기 전송 전력 레벨이 상기 미리 결정된 임계레벨을 초과하지 않는 경우에만, 현재의 레벨에서 유지되는 것을 특징으로 하는, 장치.
  9. 송수신기 장치(100)를 제어하기 위한 방법(900)으로서,
    상기 송수신기 장치의 전력 증폭기(56)와 연관된 제3차 상호변조 산물의 전력 레벨을 검출하는 단계(950); 그리고
    상기 검출에 응답하여 상기 전력 증폭기를 제어하는 단계(960, 970)를 포함하는, 수신기 장치를 제어하기 위한 방법.
  10. 제9항에 있어서,
    상기 제어 단계는 상기 전력 증폭기(56)와 연관된 바이어스 전류를 제어하는 단계를 포함하는, 송수신기 장치를 제어하기 위한 방법.
  11. 제9항 또는 제10항 중 어느 한 항에 있어서, 상기 바이어스 전류는, 만일 누산기 레벨이 기준 레벨보다 낮으면 감소 되고, 상기 바이어스 전류는, 만일 상기 누산기 레벨이 상기 기준 레벨보다 높으면 증가되며, 상기 누산기 레벨은 제3차 상호변조 산물의 전력 레벨의 추정(estimate)인, 수신기 장치를 제어하기 위한 방법.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서, 상기 바이어스 전류는, 단지 상기 송수신기 장치(100)의 전송레벨이 미리 결정된 임계 레벨을 초과할 때만, 변경되는, 송수신기 장치를 제어하기 위한 방법.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서, 상기 바이어스 전류는, 상기 송수신기 장치(100)의 상기 전송 전력 레벨이 상기 미리 결정된 임계 레벨을 초과하지 않는 경우에만, 현재의 레벨에서 유지되는 것을 특징으로 하는, 송수신기 장치를 제어하기 위한 방법.
  14. 제9항 내지 제13항 중 어느 한 항에 있어서,
    전송 신호를 증폭하기 위해서 상기 전력 증폭기(56)를 사용하는 단계; 그리고
    상기 전력 증폭기로부터의 상기 전송 신호를 신호 전송 요소(10)로의 전달을 제공하기 위해 스위치(12)를 사용하는 단계를 추가로 포함하는, 송수신기 장치를 제어하기 위한 방법.
  15. 제9항 내지 제14항 중 어느 한 항에 있어서, 상기 전송 신호를 무선으로 전송하기 위해 상기 신호 전송 요소(10)를 사용하는 단계를 포함하는, 송수신기 장치를 제어하기 위한 방법.
  16. 제14항에 있어서, 상기 스위치(12)와 연관된 누설전류(leakage signal)는 상기 제3차 상호변조 산물을 포함하는, 송수신기 장치를 제어하기 위한 방법.
  17. 제9항에 있어서, 상기 검출 및 제어 단계(950-970)는, 만일 상기 송수신기 장치의 전송 전력 레벨이 미리 결정된 임계전압을 초과하면(910) 수행되는, 송수신기 장치를 제어하기 위한 방법.
  18. 제1항 내지 제7항에 있어서, 제어수단은 제어기와 같은 단일 구성요소를 사용하여 구성되는, 송수신기 장치를 제어하기 위한 방법.
  19. 제1항 내지 제7항에 있어서, 스위칭 수단은 스위치와 같은 단일 구성요소를 사용하여 구성되는, 송수신기 장치를 제어하기 위한 방법.
KR1020067016108A 2004-02-13 2005-02-09 송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기 제어 KR101158311B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04290406A EP1564897A1 (en) 2004-02-13 2004-02-13 Control of a power amplifier for reducing power consumption in a transceiver
EP04290406.0 2004-02-13
PCT/EP2005/050581 WO2005081414A1 (en) 2004-02-13 2005-02-09 Control of a power amplifier for reducing power consumption in a transceiver

Publications (2)

Publication Number Publication Date
KR20060127129A true KR20060127129A (ko) 2006-12-11
KR101158311B1 KR101158311B1 (ko) 2012-06-19

Family

ID=34684785

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067016108A KR101158311B1 (ko) 2004-02-13 2005-02-09 송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기 제어

Country Status (7)

Country Link
US (1) US7580722B2 (ko)
EP (2) EP1564897A1 (ko)
JP (1) JP4918366B2 (ko)
KR (1) KR101158311B1 (ko)
CN (1) CN1918797A (ko)
DE (1) DE602005016084D1 (ko)
WO (1) WO2005081414A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US8000274B2 (en) * 2005-04-05 2011-08-16 Samsung Electronics Co., Ltd. Versatile system for transceiver noise reduction in a time-division duplexing wireless network
KR100835163B1 (ko) * 2005-08-23 2008-06-04 삼성전자주식회사 시분할복신 무선통신시스템에서 수신회로 보호 장치
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US7519112B2 (en) * 2005-10-31 2009-04-14 Agilent Technologies, Inc. Testing device and method for providing receiver overload protection during transceiver testing
JP5135815B2 (ja) * 2006-02-14 2013-02-06 ミツミ電機株式会社 半導体集積回路装置
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7937106B2 (en) 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
ATE510355T1 (de) * 2006-12-27 2011-06-15 Ericsson Telefon Ab L M Bestimmung einer leistungsverringerungsstufe für einen sender
US20080279311A1 (en) * 2007-05-07 2008-11-13 Roger Lee Jungerman AD Converter Bandwidth Enhancement Using An IQ Demodulator And Low Frequency Cross-Over Network
WO2008144017A1 (en) 2007-05-18 2008-11-27 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
WO2008156800A1 (en) 2007-06-19 2008-12-24 Parkervision, Inc. Combiner-less multiple input single output (miso) amplification with blended control
WO2009005768A1 (en) 2007-06-28 2009-01-08 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
WO2009145887A1 (en) 2008-05-27 2009-12-03 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US8774874B2 (en) 2010-06-04 2014-07-08 Qualcomm Incorporated Reducing power consumption by in-circuit measurement of receive band attenuation and/or noise
WO2012139126A1 (en) 2011-04-08 2012-10-11 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
JP6174574B2 (ja) 2011-06-02 2017-08-02 パーカーヴィジョン インコーポレイテッド アンテナ制御
US9118408B2 (en) 2012-02-03 2015-08-25 Apple Inc. Methods and apparatus for improving performance based on filter characteristics
JP5512740B2 (ja) * 2012-05-11 2014-06-04 シャープ株式会社 高周波回路およびそれを備えた高周波モジュール
KR20160058855A (ko) 2013-09-17 2016-05-25 파커비전, 인크. 정보를 포함하는 시간의 함수를 렌더링하기 위한 방법, 장치 및 시스템
WO2016203742A1 (ja) * 2015-06-15 2016-12-22 日本電気株式会社 低雑音増幅装置、方法、および減衰量調整プログラム
CN107547145B (zh) * 2016-06-27 2021-10-12 中兴通讯股份有限公司 一种本振泄漏信号的检测方法及装置
US9894612B1 (en) * 2016-11-03 2018-02-13 Corning Optical Communications Wireless Ltd Reducing power consumption in a remote unit of a wireless distribution system (WDS) for intermodulation product suppression
EP3471140B1 (en) * 2017-10-11 2022-05-18 Nxp B.V. Integrated circuit including a plurality of components including a transformer
CN110504986B (zh) * 2019-09-18 2021-05-28 京信通信系统(中国)有限公司 收发隔离电路、tdd无线收发电路和基站

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546523B2 (ja) * 1993-12-07 1996-10-23 日本電気株式会社 高周波増幅回路の消費電力低減方式
JPH08163190A (ja) * 1994-11-30 1996-06-21 Sony Corp 送受信機
US5712593A (en) * 1996-02-05 1998-01-27 Motorola, Inc. Linear power amplifier with distortion detection
JPH1022844A (ja) * 1996-07-05 1998-01-23 Fujitsu Ltd 送信機の非線形歪み検出回路および非線形歪み補償回路
JPH1174806A (ja) * 1997-08-27 1999-03-16 Daihen Corp 送信増幅器の非線形歪補償回路
US6125266A (en) * 1997-12-31 2000-09-26 Nokia Mobile Phones Limited Dual band architectures for mobile stations having transmitter linearization feedback
JP3549182B2 (ja) * 1998-08-19 2004-08-04 株式会社エヌ・ティ・ティ・ドコモ 送信増幅器
US6404824B1 (en) * 1998-12-16 2002-06-11 Legerity, Inc. Apparatus and method to reduce power amplifier noise generation in a multiplexed communication system
EP1124337A3 (en) * 2000-02-11 2002-11-20 Nokia Inc. Switchless half-duplex transceiver front end
JP4413398B2 (ja) * 2000-08-30 2010-02-10 株式会社東芝 漏洩電力比検出回路および移動通信端末の制御回路
US20020146993A1 (en) * 2001-04-04 2002-10-10 Charles Persico Bias adjustment for power amplifier
US6657499B2 (en) * 2002-01-18 2003-12-02 Xicor, Inc. Method and circuit for controlling power amplifiers
GB2389006B (en) * 2002-05-24 2004-09-08 Motorola Inc Wireless communication unit and method for improving a radio receiver's intermodulation interference
CN1255938C (zh) * 2002-12-10 2006-05-10 株式会社Ntt都科摩 线性功率放大方法和线性功率放大器
JP2004254243A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd 干渉測定評価システム
US7289775B1 (en) * 2003-03-06 2007-10-30 Rf Micro Devices, Inc. Method for transmit power control
US7133644B2 (en) * 2003-06-06 2006-11-07 Interdigital Technology Corporation Digital baseband system and process for compensating for analog radio transmitter impairments
US7295813B2 (en) * 2003-07-30 2007-11-13 Motorola Inc. Current reduction by dynamic receiver adjustment in a communication device

Also Published As

Publication number Publication date
WO2005081414A1 (en) 2005-09-01
US20070184790A1 (en) 2007-08-09
KR101158311B1 (ko) 2012-06-19
EP1719251B1 (en) 2009-08-19
JP2007522747A (ja) 2007-08-09
DE602005016084D1 (de) 2009-10-01
JP4918366B2 (ja) 2012-04-18
CN1918797A (zh) 2007-02-21
US7580722B2 (en) 2009-08-25
EP1719251A1 (en) 2006-11-08
EP1564897A1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
KR101158311B1 (ko) 송수신기에서 전력 소비를 감소시키기 위한 전력 증폭기 제어
KR100359600B1 (ko) 진폭 엔벨로프를 생성하기 위한 부하 제어를 갖는 증폭기시스템
US6349216B1 (en) Load envelope following amplifier system
JP4212557B2 (ja) 送信回路およびそれを用いた送受信機
US6784740B1 (en) Power amplifier
JP3708232B2 (ja) 歪補償回路を有する送信装置
KR100749505B1 (ko) Dc 방전 및 이득 제어 회로를 갖는 디지털 베이스밴드 수신기
EP2169837A1 (en) Technique for suppressing noise in a transmitter device
US8610495B2 (en) Adaptive filtering of blocker signals in demodulators
US20050070325A1 (en) System and method for digital radio receiver
KR20080058437A (ko) 가변 이득 주파수 체배기
JP2005510931A (ja) 直接変換受信機
WO2002047249A2 (en) A polar loop amplifier arrangement
JP2004048581A (ja) 受信装置及び利得制御システム
US8023923B2 (en) Mixer circuit
KR100755255B1 (ko) If/rf 피드백 루프에서 엔벨로프 에러 추출 방법 및시스템
US8301105B2 (en) Receiver front end
US20090245418A1 (en) Transmitter using cartesian loop
KR100717964B1 (ko) 전류 혼합 방식을 이용한 i/q 변조기 및 이를 이용한직접 변환 방식 무선 통신 송신기
CA2770462C (en) Apparatus for receiving analog baseband signal
JP4455699B2 (ja) 利得可変増幅回路および通信機器
JP2004274453A (ja) 無線基地局受信装置
GB2374219A (en) Direct conversion receiver
KR100318405B1 (ko) 이동통신 기지국 시스템의 중간주파수 송신 제어장치
JP2007028420A (ja) 高周波電力増幅器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 7