KR20060124309A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20060124309A
KR20060124309A KR1020050046152A KR20050046152A KR20060124309A KR 20060124309 A KR20060124309 A KR 20060124309A KR 1020050046152 A KR1020050046152 A KR 1020050046152A KR 20050046152 A KR20050046152 A KR 20050046152A KR 20060124309 A KR20060124309 A KR 20060124309A
Authority
KR
South Korea
Prior art keywords
cmos
transistor
region
forming
oxide film
Prior art date
Application number
KR1020050046152A
Other languages
Korean (ko)
Other versions
KR101158393B1 (en
Inventor
손영란
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020050046152A priority Critical patent/KR101158393B1/en
Publication of KR20060124309A publication Critical patent/KR20060124309A/en
Application granted granted Critical
Publication of KR101158393B1 publication Critical patent/KR101158393B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A method for fabricating a semiconductor device is provided to stably fabricate a bipolar-CMOS-DMOS(double diffused MOS) device by embodying a CMOS transistor and a trench-type DMOS transistor in the same chip. A substrate(10) is prepared in which a first region for forming a trench-type DMOS transistor and a second region for forming a CMOS transistor are defined. A hard mask is deposited on the substrate, made of an HLD(high temperature low pressure dielectric) layer(19). An etch process using the hard mask is performed to form first and second trenches in the substrate in the first region. The hard mask is eliminated. A gate oxide layer of the DMOS transistor is formed on the inner wall of the first and the second trenches. A gate electrode(17a) of the DMOS transistor and a data bus(17b) are formed to fill the first and second trenches, connected to each other. A gate oxide layer(18b) of the CMOS transistor is formed in the CMOS region. A CMOS gate electrode(20) is formed on the gate oxide layer of the CMOS transistor.

Description

반도체 소자의 제조방법{METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}

도 1a 내지 도 1g는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위하여 도시한 단면도.1A to 1G are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention.

도 2는 본 발명의 바람직한 실시예에 따라 제조된 반도체 소자의 평면도이다. 2 is a plan view of a semiconductor device manufactured according to a preferred embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 반도체 기판10: semiconductor substrate

11 : 필드 산화막11: field oxide film

12 : 완충 산화막12: buffer oxide film

13 : HLD막13: HLD film

14 : 트렌치14: trench

15 : 희생 산화막15: sacrificial oxide film

16 : 트렌치 게이트 산화막16: trench gate oxide film

17a : DMOS 트랜지스터의 게이트 전극17a: gate electrode of DMOS transistor

17b : 데이터 버스17b: data bus

18a : 산화막18a: oxide film

18b : CMOS 트랜지스터의 게이트 산화막18b: gate oxide film of CMOS transistor

19 : HLD막19: HLD film

20 : CMOS 트랜지스터의 게이트 전극20: gate electrode of CMOS transistor

21 : LDD용 스페이서21: LDD spacer

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 최근 수요가 급증하는 자동 추진력(automotive power) IC(Integrated Circuit) 및 직류/직류 변환기(DC/DC converter) 등의 고주파 고내압 정보통신 시스템 구현을 위한 스마트 카드(smart card) IC용으로 사용되는 BCD(Bipolar-CMOS-DMOS) 소자의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, to implement a high frequency high voltage information communication system such as an automatic power integrated circuit (IC) and a DC / DC converter, which have recently been in great demand. The present invention relates to a method of manufacturing a BCD (Bipolar-CMOS-DMOS) device used for a smart card IC.

BCD 소자의 공정은 CMOS(Complementary Metal Oxide Semiconductor) 트랜지스터와 트렌치(trench)형 DMOS(Double Diffused MOS) 트랜지스터를 동시에 정의해야 하기 때문에 공정이 복잡하며, 사실상 널리 사용되지 못하고 있는 상황이다. 특히, 트렌치형 DMOS 트랜지스터를 제작 후 CMOS 트랜지스터를 제작하거나, CMOS 트랜지스터를 제작한 후 트렌치형 DMOS 트랜지스터를 제작하는 경우 각각의 공정에 의해 프로파일(profile)에 서로 영향을 미치므로 안정적으로 BCD 소자를 제조하는 데 많은 어려움이 있다. The process of a BCD device is complicated because it requires defining a complementary metal oxide semiconductor (CMOS) transistor and a trench type double diffused MOS (DMOS) transistor at the same time. In particular, when fabricating a CMOS transistor after fabricating a trench-type DMOS transistor, or fabricating a trench-type DMOS transistor after fabricating a CMOS transistor, the BFC device is stably manufactured because the profiles affect each other by the respective processes. There is a lot of difficulty.

따라서, 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, CMOS 트랜지스터와 트렌치형 DMOS 트랜지스터가 함께 동일 칩내에 구현된 BCD 소자를 안정적으로 제조할 수 있는 반도체 소자의 제조방법을 제공하는데 그 목적이 있다. Accordingly, the present invention has been made to solve the above problems of the prior art, and provides a method of manufacturing a semiconductor device capable of stably manufacturing a BCD device implemented in the same chip together with a CMOS transistor and a trench type DMOS transistor. The purpose is.

상기한 목적을 달성하기 위한 일측면에 따른 본 발명은, 트렌치형 DMOS 트랜지스터가 형성될 제1 영역과 CMOS 트랜지스터가 형성될 제2 영역을 정의하는 기판을 제공하는 단계와, 상기 기판 상에 하드 마스크를 증착하는 단계와, 상기 하드 마스크를 이용한 식각공정을 실시하여 상기 제1 영역의 상기 기판에 제1 및 제2 트렌치를 형성하는 단계와, 상기 하드 마스크를 제거하는 단계와, 상기 제1 및 제2 트렌치의 내측벽에 상기 DMOS 트랜지스터의 게이트 산화막을 형성하는 단계와, 상기 제1 및 제2 트렌치가 매립되도록 상기 DMOS 트랜지스터의 게이트 전극과 데이터 버스를 형성하는 단계와, 상기 CMOS 영역에 상기 CMOS 트랜지스터의 게이트 산화막을 형성하는 단계와, 상기 CMOS 트랜지스터의 상기 게이트 산화막 상에 CMOS 게이트 전극을 형성하는 단계를 포함하는 반도체 소자의 제조방법을 제공한다. According to an aspect of the present invention, there is provided a substrate including a substrate defining a first region in which a trench type DMOS transistor is to be formed and a second region in which a CMOS transistor is to be formed, and a hard mask on the substrate. Forming a first and second trenches in the substrate of the first region by performing an etch process using the hard mask, removing the hard mask, and removing the first and second trenches. Forming a gate oxide film of the DMOS transistor on an inner sidewall of the second trench, forming a gate bus and a data bus of the DMOS transistor so that the first and second trenches are embedded, and forming the CMOS transistor in the CMOS region Forming a gate oxide film of the CMOS transistor, and forming a CMOS gate electrode on the gate oxide film of the CMOS transistor; Provided are a method of manufacturing a semiconductor device.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 설명한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention.

실시예Example

도 1a 내지 도 1h는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위하여 도시한 BCD 소자의 제조 공정 단면도이다. 여기서, 도 1a 내지 도 1h에 도시된 동일한 도면부호는 동일한 기능을 수행하는 동일 구성요소이다. 1A to 1H are cross-sectional views illustrating a manufacturing process of a BCD device, which is illustrated to explain a method of manufacturing a semiconductor device according to a preferred embodiment of the present invention. Here, the same reference numerals shown in Figs. 1A to 1H are the same components to perform the same function.

먼저, 도 1a에 도시된 바와 같이, 트렌치형 DMOS 트랜지스터가 형성될 영역(이하, DMOS 영역이라 함)(DMOS)과 CMOS 트랜지스터가 형성될 영역(이하, CMOS 영역이라 함)(CMOS)으로 정의되는 반도체 기판(11)의 영역에 필드 산화막(11)을 형성한다. 이때, 필드 산화막(11)은 4000Å 내지 4060Å의 두께로 형성한다. 바람직하게는 4030Å 두께로 형성한다. First, as shown in FIG. 1A, a region in which a trench type DMOS transistor is to be formed (hereinafter referred to as a DMOS region) (DMOS) and a region in which a CMOS transistor is to be formed (hereinafter referred to as a CMOS region) (hereinafter referred to as CMOS) are defined. The field oxide film 11 is formed in the region of the semiconductor substrate 11. At this time, the field oxide film 11 is formed to a thickness of 4000 kPa to 4060 kPa. Preferably, the thickness is 4030 mm 3.

이어서, 필드 산화막(11)이 형성된 전체 구조 상부면에 버퍼 산화막(12)을 형성한다. Subsequently, the buffer oxide film 12 is formed on the upper surface of the entire structure in which the field oxide film 11 is formed.

이어서, 버퍼 산화막(12)을 포함하는 전체 구조 상부에 HLD(High Temperature Low Pressure Dielectric)막(13)을 증착한다. 이때, HLD막(13)은 후속 트렌치(trench)를 형성하기 위한 하드 마스크(hard mask)로 기능한다. 이러한 HLD막(13)은 4000Å 내지 5000Å의 두께로 형성한다. 바람직하게는 4500Å 두께로 형 성한다. Subsequently, a high temperature low pressure dielectric (HLD) film 13 is deposited on the entire structure including the buffer oxide film 12. At this time, the HLD film 13 functions as a hard mask for forming subsequent trenches. The HLD film 13 is formed to a thickness of 4000 kPa to 5000 kPa. It is preferably formed to a thickness of 4500Å.

이어서, 도 1b에 도시된 바와 같이, 포토리소그래피 공정을 실시하여 DMOS 영역(DMOS) 상에 증착된 HLD막(13)을 식각하여 DMOS 영역(DMOS)의 기판(10)의 일부를 노출시킨다. Subsequently, as shown in FIG. 1B, a photolithography process is performed to etch the HLD film 13 deposited on the DMOS region DMOS to expose a portion of the substrate 10 of the DMOS region DMOS.

이어서, 식각된 HLD막(13)을 식각 마스크로 이용한 식각공정을 실시하여 노출된 기판(10)을 식각한다. 이로써, DMOS 영역(DMOS)의 일부에는 트렌치(14)가 형성된다. 이때, 트렌치(14)의 깊이는 1.2㎛ 내지 1.7㎛로 하고, 폭은 0.43㎛ 내지 0.47㎛로 한다. 바람직하게, 깊이는 1.5㎛로 하고, 폭은 0.45㎛로 한다. 한편, 동도면에는 트렌치(14)가 서로 분리되어 독립적으로 형성되어 있으나, 이는 설명의 편의를 위한 것으로, 실제로는 서로 연결된 형태를 갖는다. 이에 대해서는 후술하기로 한다. Subsequently, an exposed substrate 10 is etched by performing an etching process using the etched HLD film 13 as an etching mask. As a result, a trench 14 is formed in a part of the DMOS region DMOS. At this time, the depth of the trench 14 is 1.2 micrometers-1.7 micrometers, and the width is 0.43 micrometers-0.47 micrometer. Preferably, the depth is 1.5 mu m and the width is 0.45 mu m. Meanwhile, although the trenches 14 are separated from each other and are formed independently in the same drawing, this is for convenience of description and actually has a form connected to each other. This will be described later.

이어서, 도 1c에 도시된 바와 같이, 산화공정을 실시하여 노출된 트렌치(14)의 내부면에 희생 산화막(15)을 형성한다. 이때, 산화공정은 건식산화공정으로 실시한다. 건식산화공정은 1000℃ 내지 1200℃의 온도(바람직하게는, 1100℃)로 유지되는 챔버 내부에 O2 가스를 주입한 후 그 챔버 내부에 N2 가스를 첨가시켜 희생 산화막(15)이 150Å 내지 250Å의 두께(바람직하게는, 200Å)로 형성될 때까지 진행된다. 여기서, 건식산화공정시 N2 가스를 첨가하는 이유는 산화공정시 산화율을 감소시켜 산화시간을 증가시킴으로써 밀도가 높은 희생 산화막(15)을 형성하기 위함이다. Subsequently, as illustrated in FIG. 1C, a sacrificial oxide film 15 is formed on the inner surface of the exposed trench 14 by performing an oxidation process. At this time, the oxidation process is carried out by a dry oxidation process. In the dry oxidation process, an O 2 gas is injected into a chamber maintained at a temperature of 1000 ° C. to 1200 ° C. (preferably 1100 ° C.), and then N 2 gas is added to the chamber to provide a sacrificial oxide film 15 of 150 Pa. It proceeds until it is formed to a thickness of 250 kPa (preferably 200 kPa). Here, the reason why the N 2 gas is added in the dry oxidation process is to form a sacrificial oxide film 15 having a high density by reducing the oxidation rate during the oxidation process to increase the oxidation time.

이어서, 도 1d에 도시된 바와 같이, 희생 산화막(15, 도 1c참조) 및 HLD막(13, 도 1c참조)을 제거한다. Subsequently, as shown in FIG. 1D, the sacrificial oxide film 15 (see FIG. 1C) and the HLD film 13 (see FIG. 1C) are removed.

이어서, 희생 산화막(15) 및 HLD막이 제거된 부위에 산화공정을 실시하여 트렌치 게이트 산화막(16)을 형성한다. 이때, 트렌치 게이트 산화막(16)은 트렌치(14) 내부면에 형성되는 부위와 기판(10) 상부면에 형성되는 부위에서 두께가 서로 다르게 형성된다. 예컨대, 기판(10) 상부면에서는 180Å 내지 220Å의 두께(바람직하게는, 200Å)로 형성되고, 트렌치(14) 내부면에서는 225Å 내지 275Å의 두께(바람직하게는, 250Å)로 형성된다. 한편, 산화공정은 건식산화공정으로 실시하며, 건식산화공정은 1000℃ 내지 1200℃의 온도(바람직하게는, 1100℃)로 유지되는 챔버 내부에 O2 가스를 주입한 후 그 챔버 내부에 N2 가스를 첨가시키는 과정으로 실시한다. Subsequently, the trench gate oxide film 16 is formed by performing an oxidation process on the portions where the sacrificial oxide film 15 and the HLD film are removed. In this case, the trench gate oxide layer 16 may be formed to have different thicknesses at portions formed on the inner surface of the trench 14 and portions formed on the upper surface of the substrate 10. For example, the upper surface of the substrate 10 is formed to have a thickness of 180 kPa to 220 kPa (preferably 200 kPa), and the trench 14 is formed to have a thickness of 225 kPa to 275 kPa (preferably 250 kPa). On the other hand, the oxidation process is carried out by a dry oxidation process, the dry oxidation process is injecting O 2 gas into the chamber maintained at a temperature of 1000 ℃ to 1200 ℃ (preferably 1100 ℃) N 2 inside the chamber This is done by adding gas.

이어서, 도 1e에 도시된 바와 같이, 트렌치(14, 도 1d참조)가 매립되도록 트렌치(14)를 포함하는 전체 구조 상부에 폴리 실리콘층을 증착한 후 포토리소그래피 공정을 실시하여 트렌치형 DMOS 트랜지스터의 게이트 전극(17a)과 데이터 버스(17b)를 정의한다. 게이트 전극(17a)과 데이터 버스(17b)는 도 2에 도시된 바와 같다. Subsequently, as shown in FIG. 1E, a polysilicon layer is deposited on the entire structure including the trench 14 so that the trench 14 (see FIG. 1D) is embedded, and then a photolithography process is performed to form a trench type DMOS transistor. The gate electrode 17a and the data bus 17b are defined. The gate electrode 17a and the data bus 17b are as shown in FIG.

도 1e에 도시된 DMOS 영역(DMOS)은 A-A' 및 B-B' 절취선을 따라 도시한 단면도로서, 도 1e는 설명의 편의를 위해 게이트 전극(17a)과 데이터 버스(17b)를 하나의 단면도로 도시하였다. 한편, 도 2에서 도시된 'Active'는 액티브 영역고, 'CT1 및 'CT2'는 컨택 플러그이다. The DMOS region DMOS shown in FIG. 1E is a cross-sectional view taken along the line AA ′ and BB ′, and FIG. 1E shows the gate electrode 17a and the data bus 17b in one cross-sectional view for convenience of description. . Meanwhile, 'Active' illustrated in FIG. 2 is an active region, and 'CT1' and 'CT2' are contact plugs.

이어서, 도 1f에 도시된 바와 같이, 도 1e에서 제거되지 않고 잔류된 트렌치 게이트 산화막(16)을 제거한다. Next, as shown in FIG. 1F, the trench gate oxide film 16 remaining in FIG. 1E but not removed is removed.

이어서, 산화공정을 건식방식으로 실시하여 CMOS 영역(CMOS)의 기판(10) 상에 게이트 산화막(18b)을 형성한다. 이때, 게이트 전극(17a)과 데이터 버스(17b) 상부면에도 산화막(18a)이 형성된다. 산화막(18a)은 후속 CMOS 영역(CMOS)에 형성될 게이트 전극 식각공정시 게이트 전극(17a)과 데이터 버스(17b)를 보호하는 기능을 수행한다. Subsequently, the oxidation process is performed in a dry manner to form a gate oxide film 18b on the substrate 10 in the CMOS region (CMOS). At this time, the oxide film 18a is also formed on the top surface of the gate electrode 17a and the data bus 17b. The oxide layer 18a protects the gate electrode 17a and the data bus 17b during a gate electrode etching process to be formed in a subsequent CMOS region (CMOS).

이어서, 폴리 실리콘층, 텅스텐 실리사이드층 및 HLD막을 순차적으로 증착한 후 포토리소그래피 공정을 실시하여 CMOS 영역(CMOS)에 CMOS 트랜지스터의 게이트 전극(20)을 형성한다. 여기서, 폴리 실리콘층은 1300Å 내지 1700Å, 바람직하게는 1500Å의 두께로 증착하고, 텅스텐 실리사이드층은 1000Å 내지 1400Å, 바람직하게는 1200Å로 증착한다. 한편, '19'는 HLD 막이다. Subsequently, the polysilicon layer, the tungsten silicide layer, and the HLD film are sequentially deposited, followed by a photolithography process to form the gate electrode 20 of the CMOS transistor in the CMOS region (CMOS). Here, the polysilicon layer is deposited at a thickness of 1300 kPa to 1700 kPa, preferably 1500 kPa, and the tungsten silicide layer is deposited at 1000 kPa to 1400 kPa, preferably 1200 kPa. Meanwhile, '19' is an HLD film.

이어서, 도 1g에 도시된 바와 같이, 게이트 전극(20)이 형성된 전체 구조 상부에 LDD(Lightly Doped Drain)용 HLD막을 증착한 후 전면 식각공정을 실시하여 게이트 전극(20)의 양측벽에 스페이서(21)를 형성한다.Subsequently, as illustrated in FIG. 1G, an LDD (Lightly Doped Drain) HLD film is deposited on the entire structure on which the gate electrode 20 is formed, and then a front etching process is performed on the spacers on both sidewalls of the gate electrode 20. 21).

이후, 소오스/드레인 이온주입공정을 실시하여 소오스/드레인 영역(미도시)을 형성한다. Thereafter, a source / drain ion implantation process is performed to form a source / drain region (not shown).

본 발명의 기술 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한 다. 또한, 본 발명은 이 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예들이 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention has been described in detail in the preferred embodiments, it should be noted that the above-described embodiments are for the purpose of description and not of limitation. In addition, it will be understood by those skilled in the art that various embodiments are possible within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에 의하면, CMOS 트랜지스터와 트렌치형 DMOS 트랜지스터가 함께 동일 칩내에 구현된 BCD 소자를 안정적으로 제조할 수 있다. As described above, according to the present invention, it is possible to stably manufacture a BCD device in which a CMOS transistor and a trench type DMOS transistor are implemented together in the same chip.

Claims (7)

트렌치형 DMOS 트랜지스터가 형성될 제1 영역과 CMOS 트랜지스터가 형성될 제2 영역을 정의하는 기판을 제공하는 단계; Providing a substrate defining a first region where a trench type DMOS transistor is to be formed and a second region where a CMOS transistor is to be formed; 상기 기판 상에 하드 마스크를 증착하는 단계;Depositing a hard mask on the substrate; 상기 하드 마스크를 이용한 식각공정을 실시하여 상기 제1 영역의 상기 기판에 제1 및 제2 트렌치를 형성하는 단계;Performing an etching process using the hard mask to form first and second trenches in the substrate of the first region; 상기 하드 마스크를 제거하는 단계;Removing the hard mask; 상기 제1 및 제2 트렌치의 내측벽에 상기 DMOS 트랜지스터의 게이트 산화막을 형성하는 단계;Forming a gate oxide film of the DMOS transistor on inner walls of the first and second trenches; 상기 제1 및 제2 트렌치가 매립되도록 상기 DMOS 트랜지스터의 게이트 전극과 데이터 버스를 형성하는 단계;Forming a data bus with a gate electrode of the DMOS transistor to fill the first and second trenches; 상기 CMOS 영역에 상기 CMOS 트랜지스터의 게이트 산화막을 형성하는 단계; 및Forming a gate oxide film of the CMOS transistor in the CMOS region; And 상기 CMOS 트랜지스터의 상기 게이트 산화막 상에 CMOS 게이트 전극을 형성하는 단계Forming a CMOS gate electrode on the gate oxide film of the CMOS transistor 를 포함하는 반도체 소자의 제조방법.Method of manufacturing a semiconductor device comprising a. 제 1 항에 있어서, The method of claim 1, 상기 DMOS 트랜지스터의 게이트 전극과 상기 데이터 버스는 서로 접속되도록 형성되는 반도체 소자의 제조방법.And a gate electrode and the data bus of the DMOS transistor are connected to each other. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 하드 마스크는 HLD막으로 형성하는 반도체 소자의 제조방법.The hard mask is a semiconductor device manufacturing method of forming a HLD film. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 제1 및 제2 트렌치를 형성한 후, 상기 제1 및 제2 트렌치의 내부면에 희생 산화막을 형성하는 단계를 더 포함하는 반도체 소자의 제조방법.And forming a sacrificial oxide film on inner surfaces of the first and second trenches after forming the first and second trenches. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 하드 마스크 제거공정시 상기 희생 산화막을 동시에 제거하는 반도체 소자의 제조방법.And removing the sacrificial oxide film at the same time during the hard mask removing process. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 CMOS 트랜지스터의 게이트 산화막 형성공정시 상기 DMOS 트랜지스터의 게이트 전극과 상기 데이터 버스 상부에 산화막이 형성되는 반도체 소자의 제조방법.And forming an oxide film on the gate electrode and the data bus of the DMOS transistor during the gate oxide film forming process of the CMOS transistor. 제 6 항에 있어서, The method of claim 6, 상기 산화막은 상기 CMOS 트랜지스터의 게이트 전극 식각공정시 상기 DMOS 트랜지스터의 게이트 전극과 상기 데이터 버스를 보호하는 기능을 수행하는 반도체 소자의 제조방법.And the oxide layer protects the gate electrode and the data bus of the DMOS transistor during an etching process of the gate electrode of the CMOS transistor.
KR1020050046152A 2005-05-31 2005-05-31 Method for manufacturing semiconductor device KR101158393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050046152A KR101158393B1 (en) 2005-05-31 2005-05-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050046152A KR101158393B1 (en) 2005-05-31 2005-05-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR20060124309A true KR20060124309A (en) 2006-12-05
KR101158393B1 KR101158393B1 (en) 2012-06-22

Family

ID=37729078

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050046152A KR101158393B1 (en) 2005-05-31 2005-05-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR101158393B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426828A (en) * 2013-07-12 2013-12-04 上海新储集成电路有限公司 Bipolar high-voltage CMOS (complementary metal oxide semiconductor) single-polysilicon filling deep-channel device isolating process based on silicon on insulator material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089048B1 (en) 2014-02-10 2020-03-13 한국전자통신연구원 Semiconductor device and method of fabricating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412539B1 (en) * 2001-07-24 2003-12-31 한국전자통신연구원 BCD device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426828A (en) * 2013-07-12 2013-12-04 上海新储集成电路有限公司 Bipolar high-voltage CMOS (complementary metal oxide semiconductor) single-polysilicon filling deep-channel device isolating process based on silicon on insulator material

Also Published As

Publication number Publication date
KR101158393B1 (en) 2012-06-22

Similar Documents

Publication Publication Date Title
KR20040064924A (en) MOSFET having recessed channel and fabricating method thereof
JP2006135304A (en) Manufacturing method for mosfet element in peripheral region
US20070004127A1 (en) Method of fabricating a transistor having the round corner recess channel structure
KR100631960B1 (en) Semiconductor device and method of manufacturing the same
KR101158393B1 (en) Method for manufacturing semiconductor device
KR20070002700A (en) Method for forming transistor of semiconductor device
KR100399911B1 (en) Semiconductor device and method of manufacturing the same
KR20010004237A (en) A method for forming semiconductor memory device including self-aligned contact process
CN104716042A (en) Semiconductor device manufacturing method
KR20070002661A (en) Method for forming transistor of semiconductor device
KR101119739B1 (en) Method for Forming Transistor of Semiconductor Device
KR100618705B1 (en) Method for forming gate of semiconductor device
KR20080029660A (en) Semiconductor device and manufacturing of method the same
KR100713937B1 (en) Method of manufacturing semiconductor device with recess gate
KR100713938B1 (en) Method of manufacturing semiconductor device with recess gate
KR100713929B1 (en) Method of manufacturing mosfet device
KR100311502B1 (en) Method for manufacturing semiconductor device the same
KR100348314B1 (en) Semiconductor device and method for fabricating the same
KR100433490B1 (en) Method of manufacturing semiconductor device
KR100911103B1 (en) Method of manufacturing a semiconductor device
KR101051956B1 (en) Method of manufacturing semiconductor device
US7300835B2 (en) Manufacturing method of semiconductor device
KR100929063B1 (en) Gate electrode formation method of semiconductor device
KR100800922B1 (en) Method of manufacturing transistor in semiconductor device
KR20080001926A (en) Method for fabricating recess gate in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190516

Year of fee payment: 8