KR20060080216A - 열처리 장치 - Google Patents

열처리 장치 Download PDF

Info

Publication number
KR20060080216A
KR20060080216A KR1020067005788A KR20067005788A KR20060080216A KR 20060080216 A KR20060080216 A KR 20060080216A KR 1020067005788 A KR1020067005788 A KR 1020067005788A KR 20067005788 A KR20067005788 A KR 20067005788A KR 20060080216 A KR20060080216 A KR 20060080216A
Authority
KR
South Korea
Prior art keywords
heat treatment
heat
heating
treatment device
lamp
Prior art date
Application number
KR1020067005788A
Other languages
English (en)
Other versions
KR100833386B1 (ko
Inventor
마사히로 시미즈
시게루 가사이
마사타케 요네다
Original Assignee
동경 엘렉트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동경 엘렉트론 주식회사 filed Critical 동경 엘렉트론 주식회사
Publication of KR20060080216A publication Critical patent/KR20060080216A/ko
Application granted granted Critical
Publication of KR100833386B1 publication Critical patent/KR100833386B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Abstract

실리콘 웨이퍼 등의 피처리체에 400℃이상의 온도에서 어닐 처리 등의 열처리를 실시하기 위한 열처리 장치이다. 이 장치는, 천정부에 투과창(8)을 갖는 처리 용기(4)를 구비하고 있다. 이 용기 내는, 투과창과 대향하도록 피처리체(W)를 탑재하는 탑재대(10)가 설치된다. 처리 용기의 윗쪽은, 투과창을 통해서 피처리체에 열선을 조사함으로써 피처리체를 가열하는 복수의 가열 램프(42A, 42B)가 설치된다. 탑재대에는, 피처리체를 적어도 냉각 가능한 열전 변환기(24)가 설치된다. 피처리체의 승온 시에는 주로 가열 램프로부터의 열선에 의해 가열하고, 온도 하강시에는 열전 변환기를 이용하여 강제적으로 냉각한다.

Description

열처리 장치{HEAT TREATMENT APPARATUS}
본 발명은, 반도체 웨이퍼 등의 피처리체에 대하여 어닐 처리나 성막 처리 등의 열처리를 실행하는 열처리 장치에 관한 것이다.
일반적으로, 반도체 디바이스를 제조하기 위해서는, 반도체 웨이퍼에 성막 처리, 패턴(pattern) 에칭 처리, 산화 확산 처리, 개질 처리, 어닐 처리 등의 각종의 열처리를 반복하여 행하여 원하는 디바이스를 제조하지만, 반도체 디바이스가 고밀도화, 다층화 및 고집적화 하는 것에 따라 그 사양이 해마다 엄격해지고 있어, 이들의 각종의 열처리의 웨이퍼면 내에 있어서의 균일성의 향상 및 막 품질의 향상이 특히 요망되고 있다. 예를 들면 반도체 디바이스인 트랜지스터의 채널 층의 처리를 예로 들어서 설명하면, 이 채널 층에 불순물 원자의 이온 주입 후에, 원자구조를 안정화시킬 목적으로 어닐 처리가 일반적으로 행하여진다.
이 경우, 상기 어닐 처리를 장시간 실행하면 원자구조는 안정화하지만, 불순물 원자가 막 두께 방향으로 내부 깊이까지 확산해서 아랫쪽으로 꿰뚫고 나가버리므로, 극히 단시간에서 실행할 필요가 있다. 즉, 채널층 등의 막 두께를 얇게 하 면서, 또한 꿰뚫고 나가는 것도 생기는 일 없이 원자구조를 안정화시키기 위해서는, 반도체 웨이퍼를 고온까지 고속으로 승온(昇溫)하고, 또한 어닐 처리 후에 있어서는 확산이 생기지 않도록 낮은 온도까지 고속으로 승온시키는 것이 필요하게 된다.
이러한 어닐 처리를 가능하게 하기 위해서, 종래의 열처리 장치에서는, 가열 램프를 수용한 램프 하우스(lamp house)에 복사열을 차단하는 셔터(shutter) 기구를 설치하고, 고온에서 어닐 처리한 후에 웨이퍼 온도를 승온시킬 때에 이 셔터 기구를 작동시켜서 가열 램프로부터의 복사열을 차단하고, 웨이퍼의 고속 승온을 실행하게 되어 있다.
또한, 다른 종래의 열처리 장치로서는, 예를 들면 일본 특허공개 2001-85408 호 공보에 도시하는 바와 같이, 웨이퍼 스테이지(stage)에 펠티에 소자(pelier element)를 설치하고, 100 ~250℃ 정도에서 웨이퍼를 에칭할 때에, 온도 상승 및 하강시에 상기 펠티에 소자를 사용하도록 한 열처리 장치가 있다.
그런데, 셔터(shutter) 기구를 설치한 상기 종래의 열처리 장치에 있어서는, 이 셔터기구 자체가 크기 때문에 장치가 대형화하고, 또 장치 자체도 복잡화한다 라고 하는 문제가 있었다. 또 펠티에 소자를 채용한 종래의 열처리 장치에 있어서는, 에칭을 실행하는 프로세스 온도가 100~250℃의 범위로서 그 정도 높지 않아, 예를 들면 고온에서 어닐 처리 등을 실행하기 위해서는 온도가 너무 낮아서 충분하지는 않다고 한 문제가 있었다.
발명의 요약
본 발명은, 이상과 같은 문제점에 착안하여, 이것을 유효하게 해결하도록 창안된 것이다. 본 발명의 목적은, 고온에서의 열처리를 실행할 때에, 피처리체의 고속 승온 및 고속 온도 하강을 실행하는 것이 가능한 열처리 장치를 제공하는 것이다. 또 본 발명의 다른 목적은, 피처리체의 가열 효율을 향상시키는 것이 가능한 열처리 장치를 제공하는 것이다.
상기 목적을 달성하기 위해서, 본 발명은, 피처리체에 400℃이상의 온도에서 열처리를 실시하기 위한 열처리 장치에 있어서, 천정부에 투과창을 갖는 처리 용기와, 이 처리 용기 내에 설치되고, 상기 투과창과 대향하도록 피처리체를 탑재하는 탑재대와, 상기 처리 용기의 윗쪽에 설치되고, 상기 투과창을 통해서 피처리체에 열선을 조사함으로써 피처리체를 가열하는 복수의 가열 램프와, 상기 탑재대에 설치되고, 피처리체를 적어도 냉각 가능한 열전 변환기를 구비한 것을 특징으로 하는 열처리 장치를 제공한다.
이 열처리 장치에 의하면, 피처리체에 400℃ 이상의 온도에서 열처리를 실행하는 것에 즈음하여, 피처리체의 승온시에는 주로 가열 램프로부터의 열선에 의해 가열하고, 온도 하강시에는 열전 변환기를 이용하여 강제적으로 냉각함으로써, 피처리체의 고속 승온 및 고속 온도 하강을 실행하는 것이 가능해진다.
이 열처리 장치에 있어서는, 상기 열전 변환기의 아래쪽에, 내부에 전열 매체체 유로의 형성된 전열 매체체 재킷을 설치하는 것이 바람직하다.
또한, 상기 열전 변환기는, 피처리체의 냉각시와는 역방향의 전류가 흘려지 는 것으로, 피처리체를 가열하도록 구성되어 있는 것이 바람직하다.
또, 상기 열전 변환기는, 상기 탑재대상의 복수의 존(zone)에 각각 대응해서 배치된 복수의 열전변환 소자를 포함하고, 해당 열처리 장치는, 상기 탑재대상의 각 존별로 열전변환 소자에 흘려지는 전류를 제어하는 변환 소자 제어기를 더 구비하는 것이 바람직하다.
이것에 의하면, 피처리체의 온도의 면내 균일성을 유지한 채 이것을 고속 강온시키는 것이 가능해진다.
그 경우, 상기 변환 소자제어기는, 상기 열전변환 소자에 간헐적으로 전류를 흘리도록 제어를 실행하는 동시에, 상기 열전 변환 소자에 전류가 흐르지 않고 있는 기간에 상기 열전변환 소자의 기전력에 근거해서 해당 열전변환 소자의 온도를 측정할 수 있다.
피처리체는 실리콘 웨이퍼일 경우에는, 상기 복수의 가열 램프는, 주로 자외선을 방사하는 자외선 방전 램프와, 주로 가시광선을 방사하는 할로겐 램프로 구성되는 것이 바람직하다.
이로써, 가열 램프로부터의 열선에 대한 피처리체의 흡수율이 높게 되고, 보다 고속으로 승온시킬 수 있다.
그 경우, 상기 자외선 방전 램프의 전력제어는, 듀티 제어에 의해 행하여지는 것이 바람직하다.
또한, 피처리체의 중앙부에 대하여는 주로 해서 상기 자외선 방전 램프로부터의 자외선이 조사되고, 피처리체의 주변부에 대해서는 주로 해서 상기 할로겐 램 프로부터의 가시광선이 조사되도록 구성되어 있는 것이 바람직하다.
또한, 본 발명은, 피처리체에 고온에서 열처리를 실시하기 위한 열처리 장치에 있어서, 천정부에 투과창을 갖는 처리 용기와, 이 처리 용기내에 설치되고, 상기 투과창과 대향하도록 피처리체를 얹어 놓는 탑재대와, 상기 처리 용기의 윗쪽에 설치되고, 상기 투과창을 통해서 피처리체에 열선을 조사함으로써 피처리체를 가열하는 복수의 가열 램프를 구비하고, 상기 탑재대는, 상기 가열 램프로부터 주로 해서 방사되는 열선의 종류에 따라, 그 열선을 주로 해서 흡수하는 흡수판을 포함하는 것을 특징으로 하는 열처리 장치를 제공한다.
이렇게, 가열 램프로부터 주로 해서 방사되는 열선의 종류에 따라, 그 열선을 주로 해서 흡수하는 흡수판에 의해, 탑재대상의 피처리체에 대한 가열 효율을 향상시키는 것이 가능해진다.
이 열처리 장치에 있어서는, 상기 탑재대는, 서로 다른 종류의 열선을 주로 해서 흡수하는 복수의 흡수판을 포함할 수 있다.
그 경우, 상기 흡수판끼리의 사이에, 피처리체측을 적어도 냉각 가능한 열전 변환기가 설치되는 것이 바람직하다.
도 1은 본 발명의 열처리 장치의 제1실시 형태를 도시하는 단면 구성도,
도 2는 가열 수단의 가열 램프의 배열의 일례를 게시하는 평면도,
도 3은 열전 변환기를 구성하는 펠티에 소자의 배열의 일례 게시하는 평면 도,
도 4는 열선의 파장에 대한 실리콘 웨이퍼의 흡수율을 도시하는 그래프,
도 5는 열선의 파장에 대한 게르마늄과 실리콘의 투과율을 도시하는 그래프,
도 6은 열선의 파장에 대한 석영과 질화 알루미늄(AlN)과 SiC의 흡수율을 도시하는 그래프,
도 7은 열선의 파장에 대한 CaF2(불화칼슘)과 LiF(불화 리듐)의 투과율을 도시하는 그래프,
도 8은 열선의 파장에 대한 용융 석영의 투과율을 도시하는 그래프,
도 9는 각종의 모재에 대하여 코팅(coating) 처리를 행했을 때의 적외선 영역의 투과율을 도시하는 그래프,
도 10은 본 발명의 열처리 장치의 제2실시 형태에 있어서의 탑재대의 구조를 도시하는 구성도,
도 11은 본 발명의 열처리 장치 제3실시 형태를 도시하는 단면 구성도,
도 12는 본 발명의 열처리 장치 제4실시 형태를 도시하는 단면 구성도.
이하에 본 발명에 따른 열처리 장치의 실시형태를 첨부 도면에 근거해서 상세히 설명한다.
< 제 1 실시 형태>
도 1에 도시하는 본 발명의 제1실시 형태에 따른 열처리 장치(2)는, 예를 들면 알루미늄에 의해 통체 형상으로 성형된 처리 용기(4)를 갖고 있다. 이 처리 용기(4)의 천정부는 개구되어 있고, 이 개구부에는, O링 등의 밀봉 부재(6)를 거쳐서 투명한 투과창(8)이 기밀하게 설치된다. 또 처리 용기(4)의 내부에는, 얇은 원판 형상으로 이루어진 탑재대(10)가 설치되어 있고, 이 탑재대(10)의 상면에, 피처리체로서의 반도체 웨이퍼(W)가 탑재되게 되어 있다. 여기서 탑재대(10)의 재료로서는, 사용하는 가열 램프로부터의 광선을 가장 흡수하기 쉬운 것과 같은 재료로 형성되어, 예컨대 주로 적외선 램프의 광선을 흡수하기 쉬운 SiO2 재, AlN 재, SiC 재, 주로 자외선 램프 및 할로겐 램프의 광선을 흡수하기 쉬운 Ge(게르마늄)재, Si재, 금속재 등을 사용할 수 있다.
또한, 이 처리 용기(4)의 측벽에는, 반도체 웨이퍼(W)를 반출입할 때에 개폐된 게이트 밸브(12)가 설치되는 동시에, 열처리시에 필요한 처리 가스를 내부에 도입하는 가스 노즐(14)이 설치된다. 또 처리 용기(4)의 바닥부의 주변부에는, 배기구(16)가 형성되어 있고, 이 배기구(16)에는 도시하지 않는 진공펌프가 개설된 배기계(18)가 접속되어서, 처리 용기(4)내의 분위기를 예를 들면 진공 배기 가능하게 하고 있다. 또한 이 처리 용기(4)의 바닥부의 주변부를 제외한 중심측에는 대구경의 개구가 형성되어 있고, 이 개구에 예를 들면 O링 등의 밀봉 부재(20)를 개재시켜서 예를 들면 알루미늄제의 두께가 두꺼운 바닥판(22)이 기밀하게 부착 고정되어 있다.
그리고, 상기 바닥판(22)의 상면측에, 열전 변환기(24)를 거쳐서 상기 판 형상의 탑재대(10)가 접합해서 설치된다. 이 열전 변환기(24)는, 복수의 열전 변환 소자로서 예를 들면 복수의 펠티에 소자(24A)를 갖고 있고, 이것들의 펠티에 소자(24A)는 이들로부터 바닥판(22)을 기밀하게 관통해서 외측에 배선되거나 리드선(26)을 거쳐서 펠티에 제어부(변환 소자 제어기)(28)에 접속되어 있고, 이 펠티에 제어부(28)에 의해 전류의 방향이나 크기를 제어할 수 있게 되어 있다. 여기서 열전 변환이란, 열 에너지를 전기 에너지로, 또 전기 에너지를 열 에너지로 변환하는 것을 말한다. 또한, 펠티에 소자(24A)로서는, 예를 들면 400℃ 이상의 고온하에서의 사용에 견딜 수 있는 Bi2Te3(비스무스 텔루르)소자, PbTe(납·텔루르)소자, SiGe(실리콘·게르마늄)소자 등을 사용할 수 있다.
또 상기 바닥판(22)의 상부에는, 열매체를 흘려보내기 위한 열매체 유로(30)가 그 평면방향의 전체에 걸쳐서 형성되어 있고, 이 열 매체체 유로(30)의 일단에는 열매체 도입로(32)가 접속되고, 타단에는 열매체 배출로(34)가 접속되어서, 이 바닥판(22)은 열매체 재킷(36)으로서 겸용되어 있다. 여기에서, 열매체로서는 적어도 냉매를 흘릴 수 있고, 상기 펠티에 소자(24A)의 하면으로부터 온열을 빼앗아서 이것을 냉각하게 되어 있다. 또한 필요에 따라서 온매를 흘려서 상기 펠티에 소자(24A)의 하면으로부터 냉열을 빼앗아서 이것을 가열할 수 있게 되어 있다. 이 열매체는, 예를 들면 순환기(38)에 의해 순환 사용된다. 또한, 이 바닥판(22)은, 웨이퍼(W)를 상기 탑재대(10)에 대하여 승강시키기 위해서 도시하지 않는 리프터 핀이 설정된다.
한편, 상기 투과창(8)의 윗쪽에는, 상기 웨이퍼(W)를 가열하기 위한 가열 수단(40)이 설정된다. 구체적으로는, 이 가열 수단(40)은, 복수의 가열 램프(42A, 42B)로 이루어지고, 이들의 가열 램프(42A, 42B)를, 투과창(8)의 윗쪽에 설치한 용기 형상의 램프 하우스(44)의 천장부의 하면에 그 전체에 걸쳐서 부착하고 있다. 또한 이 램프 하우스(44)의 천장부의 내면은 반사경(48)으로 되어 있고, 각 가열 램프(42A, 42B)로부터의 열선을 하방향으로 반사시키게 되어 있다. 또 각 가열 램프(42A, 42B)의 총 전력은 예를 들면 100∼200KW 정도이다. 이들의 각 가열 램프(42A, 42B)의 제어는 램프 제어부(46)에 의해 행하여지고, 이 램프 제어부(46)에는, 상기 펠티에 제어부(28)로부터 후술하는 것과 같이 예를 들면 온도정보가 입력되게 되어 있다.
여기서 도시 예에 있어서는, 램프 하우스(44)의 주변부 이외의 중앙부에 위치하는 가열 램프(42A)는 그 열선의 방사 방향을 바로 아래를 향하게 되어 있는 것에 대해서, 램프 하우스(44)의 주변부에 위치하는 가열 램프(42B)는, 하방향의 내측을 향해서 기울어져 설정되어 있어, 그 열선의 방사 방향을 웨이퍼(W)의 주변부에 집중시키게 되어 있다. 또한, 열선이란, 자외선, 가시광선 및 적외선(근적외선, 원적외선도 포함함)의 모두를 포함하는 것이라고 한다.
여기에서는 도 2에 도시하는 바와 같이, 상기 가열 램프(42A, 42B)가 설치된 램프 하우스(44)의 천장부는, 중앙측의 내측 존(50A)과 주변부의 외측 존(50B)으로 동심 원형상으로 나눌 수 있다. 내측 존(50A)에는 가열 램프(42A)군이 설정되고, 외측 존(50B)에는 가열 램프(42B)군이 설치된다. 가열 램프(42A, 42B)의 전력은, 각 존(50A, 50B) 마다 제어할 수 있게 되어 있다. 또한, 상기 내측 존(50A)에는 가열 램프(42A)군을 비교적 드문드문 배치하고, 이것에 대하여, 상기 외측 존(50B)에는 가열 램프(42B)군을 비교적 치밀하게 배치해서 웨이퍼의 면내부 온도도 균일한 가열을 도모하는 것이 바람직하다.
여기서 상기 가열 램프(42A, 42B)로서는, 자외선을 주로 해서 사출하는 자외선 방사 램프와, 가시광선을 주로 해서 방사하는 할로겐 램프와, 적외선을 주로 해서 방사하는 적외선 램프로 이루어지는 군의 내로부터 선택된 1종 또는 2종 이상의 램프를 사용할 수 있다. 도 1에서는 예를 들면 중앙측의 가열 램프(42A)로서는, 예를 들면 크기는 커서 대 출력이 가능한 자외선 방전 램프를 사용하고, 이것에 대하여, 주변부측의 가열 램프(42B)로서는 예를 들면 소형화된 할로겐 램프를 채용할 수 있다. 여기서 상기 투과창(8)은, 상기 가열 램프(42A, 42B)로부터 사출하는 광선에 대한 흡수율이 적어지도록 그 재질(모재), 코팅(coating) 재료가 결정되어 있다. 구체적으로는, 예를 들면 용융 석영 유리, 내열 유리, CaF2(불화칼슘)재, LiF(불화 리듐)재, Ge(게르마늄)재, 코팅이 실시된 Ge모재 등을 사용할 수 있다.
또, 도 3의 (A)에 도시하는 바와 같이, 바닥판(22)상에 배치된 펠티에 소자(24A)는, 탑재대(10)의 대략 전면에 걸쳐서 배치되어 있다. 그리고, 각 펠티에 소자(24A)는, 탑재대(10)상의 중앙부에 위치하는 내측 존(52A)과, 그 외측의 중간 주위에 위치하는 중측 존(52B)과, 그 외측의 가장 바깥 둘레에 위치하는 외측 존(52C)의 3개의 존으로 동심원형상으로 구분되어 있다. 또, 미묘한 온도 컨트롤이 필요한 외측 존(52C)은, 또 그 원주방향에 따라 펠티에 소자(24A)를 3개씩 포함하는 4개의 분할 존으로 구획되어 있고, 상기 각 존(52A, 52B, 52C)[외측 존(52C)에 대해서는 또 4개의 분할 존] 마다 독립해서 제어할 수 있게 되어 있다.
또한, 도의 3(A)에 도시한 펠티에 소자의 배열에 바꾸어, 도 3의 (B), 도3의 (C)와 같이 배열하는 것도 가능하다. 이들은 탑재대(10)의 대략 전면에 걸쳐 펠티에 소자(24A)가 죽 깔린 구조를 갖고, 펠티에 소자(24A) 사이에는 거의 빈틈이 없다. 이것에 의하면, 보다 정밀하게 균일한 온도 제어를 달성할 수 있다. 이들의 배열에 있어서는, 각 존(52A, 52B, 52C)이 정확한 동심형 형상이 안되지만, 각 존(52A, 52B, 52C)은 도시되는 것과 같이 적당히 결정하면 좋다. 여기서 도 3의 (A), 도 3의 (B)에서는 펠티에 소자(24A)의 형상은, 대략 4각형으로 형성되고, 도3의 (C)에 도시하는 경우에는 대략 6각형으로 형성되어 있다. 또 도 3의(B) 및 도 3의 (C)에서는 존 마다 펠티에 소자(24A)에 다른 모양을 붙여서 존 구분을 명확히 하고 있다. 또한 이들 도 3에 도시한 존의 분할 형식은, 단지 일예를 게시한 것에 지나지 않고, 이것에 한정되지 않는 것은 물론이다.
다음에, 상술한 바와 같이 구성된 열처리 장치(2)의 동작에 대해서 설명한다. 우선, 어닐 처리를 실행하기 위해서 개방된 게이트 밸브(12)를 거쳐서 미처리의 반도체 웨이퍼(W)는 처리 용기(4)내에 도입되어서 탑재대(10)상에 탑재되고, 처리 용기(4) 내를 밀폐한다. 그리고, 가스 노즐(14)로부터 처리 가스로서 예를 들면 N2 가스, 혹은 Ar 가스를 유량 제어하면서 도입하는 동시에, 처리 용기(4)내를 예를 들면 진공 배기해서 소정의 프로세스 압력, 예를 들면 1~100Pa(7.5mTorr∼750mTorr)를 유지한다. 이것과 동시에, 램프 제어부(46)에 의해 가열 수단(40)을 동작시켜서 각 가열 램프(42A, 42B)를 점등시킨다.
이로써, 각 가열 램프(42A, 42B)로부터 발생한 열선이 투과창(8)을 투과해서 반도체 웨이퍼(W)의 표면에 입사하고, 이것을 급속하게 가열해서 승온한다. 이 때의 승온 속도는 예를 들면 100∼200℃/sec 정도이다. 여기서 가열 램프로서 자외선 방전 램프를 사용한 경우에는, 이 자외선방전 램프에 대하여 듀티 제어를 행하여, 그 투입 전력을 제어한다. 이 점은, 이후에 설명하는 각 실시 형태에 있어서도 동일하다. 그리고, 웨이퍼(W)를 400℃이상, 예컨대 500∼1000℃의 프로세스 온도로, 소정의 시간만큼 유지해서 어닐 처리를 실행한다. 자외선 방전 램프에 대하여 듀티 제어를 실행하는 이유는, 다음과 같다. 즉, 자외선 방전 램프에 연속적으로 전력을 공급했을 경우에 있어서는, 이 전력을 서서히 높여가도, 어떤 값(역치) 이상이 안되면 방전이 일어나지 않고, 즉 투입 전력에 대하여, 비례적인 열선량이 얻어지지 않는 동시에, 열선량을 O∼100%까지 연속적으로 변화시킬 수 없다. 그래서, 방전을 일으키게 하는 것에 충분한 전력에 의해 듀티 제어를 실행하면, 이들의 문제를 일거에 해결 가능한 것으로 된다.
이렇게 하여, 어닐 처리가 종료하면, 웨이퍼(W)의 온도를 급속하게 냉각하는 고속 온도 하강을 실행한다. 그 때문에, 각 가열 램프(42A, 42B)를 소등하는 동시에, 탑재대(10)의 하면에 설치해 있는 열전 변환기(24)의 각 펠티에 소자(24A)에, 그 상면이 냉각되는 것과 같은 방향으로 전류를 흘려보낸다. 이로써, 처리 용기(4)내의 대류와 방사에 의한 냉각 효과 이외에 각 펠티에 소자(24A)의 상면에 냉열이 발생해서 냉각되므로, 이것과 접하고 있는 탑재대(10)가 냉각되어서 웨이퍼(W)를 급속하게 냉각할 수 있고, 웨이퍼(W)의 고속 온도 하강을 실행할 수 있다. 이 때, 각 펠티에 소자(24A)의 하면에는 온열이 발생해서 뜨거워지므로, 바닥판(22)에 형성한 열매체 재킷(36)의 열매체 유로(30)에 냉각용의 열매체를 흘리고, 상기 각 펠티에 소자(24A)의 하면에 발생한 온열을 상기 열매체에 의하여 계외로 옮겨 내서 각 펠티에 소자(24A)의 하면을 냉각하게 된다. 이 때의 냉각용의 열매체로서는 냉각수 등을 사용할 수 있다.
그런데, 이러한 동작에 있어서, 도 2에 도시하는 바와 같이 각 가열 램프(42A, 42B)는 복수의 존, 도시 예에서는 2개의 존으로 나누어져 있고, 특히 외측 존(50B)의 각 가열 램프(42B)는, 웨이퍼(W)를 승온시키기 어려운 웨이퍼 주변부를 향하고 있어, 이 주변부에 열선을 집중적으로 조사하게 되어 있으므로, 면 내부온도의 균일성을 유지한 채 웨이퍼(W)를 고속 승온 할 수 있다. 이 경우, 웨이퍼 온도, 혹은 탑재대(10)의 온도는, 각 펠티에 소자(24A)의 제벡 효과(See back effect)에 의한 기전력에 근거해서 펠티에 제어부(28)에 의해 (펠티에 소자(24A)자체의 온도로서)측정할 수 있다. 그 온도측정 결과를 램프 제어부(46)에 입력하고, 이 제어부(46)에서 측정 결과에 근거해서 상기 각 가열 램프(42A, 42B)를 존마다 제어함으로써, 면내부 온도의 균일성을 보다 높게 유지한 채 웨이퍼(W)를 고속 승온할 수 있다.
또, 웨이퍼(W)의 승온시에, 각 펠티에 소자(24A)에, 그 상면이 발열하는 것과 같은 방향으로 전류를 흘려보내는 것에 의해 (웨이퍼의 온도 하강시와는 전류의 방향은 반대로 됨), 웨이퍼(W)가 이 각 펠티에 소자(24A)에 의해 보조적으로 가열되게 된다. 이 때문에, 웨이퍼(W)의 승온 속도를 한층 크게 할 수 있다. 이 경우, 각 펠티에 소자(24A)에 가열용의 전류를 간헐적으로 흘리면서, 각 펠티에 소자(24A)에 전류가 흐르지 않고 있는 기간에 펠티에 소자(24A)의 기전력에 근거해서 그 온도를 측정한다. 그리고, 이 측정 온도에 근거해서 펠티에 소자(24A)에 흘리는 가열용의 전류를 존 마다 제어한다. 이로써, 승온시의 웨이퍼 온도의 면내 균일성을 한층 높게 유지 할 수 있다. 또한, 웨이퍼(W)의 승온시에는, 각 펠티에 소자(24A)의 하면에 냉열이 발생하므로, 열매체 재킷(36)의 열매체 유로(30)에는, 웨이퍼(W)의 온도 하강시와는 다르게 가열용의 열매체를 흘려보내고, 각 펠티에 소자(24A)의 하면에 생긴 냉열을 상기 가열용의 열매체에서 계외로 배출하도록 동작시킨다. 이 경우, 가열용의 열매체로서는, 예를 들면 고온의 온수를 사용할 수 있다.
또 웨이퍼(W)의 온도 하강시에도, 웨이퍼 냉각용의 전류를 간헐적으로 각 펠티에 소자(24A)에 흘려보내면서, 각 펠티에 소자(24A)에 전류가 흐르지 않고 있는 기간에 펠티에 소자(24A)의 기전력에 근거해서 그 온도를 측정한다. 그리고, 이 측정 온도에 근거해서 펠티에 소자(24A)에 흘리는 냉각용의 전류를 존 마다 제어한다. 이로써, 웨이퍼 온도의 면내 균일성을 높게 유지한 상태에서 웨이퍼 온도를 하강시킬 수 있다. 또 복수의 펠티에 소자(24A)를 분할하는 존 수를 더욱 많게 하거나, 혹은 각각의 펠티에 소자(24A) 마다 전류 제어를 할 수 있도록 하면, 웨이퍼 승온시 및 온도 하강 시의 면내부 온도의 균일성을 보다 한층 높게 유지 할 수 있다. 또한, 탑재대의 온도는, 이것에 매설된 열전쌍, 또는 광 화이버를 통해서 열복사량으로부터 꾀하는 방사 온도계에 의해 측정해도 좋은 것은 물론이다.
여기서 피처리체를 고속 승온시키기 위해서는, 가열 수단(40)의 각 가열 램프에의 투입 전력을 증가시키는 것만으로는 충분한 것이 아니라, 램프로부터의 열선에 대한 피처리체 자체의 흡수율을 크게 할 필요가 있다. 피처리체로서 예를 들면 실리콘 웨이퍼를 사용한 경우를 예로 들면, 열선에 대한 이 실리콘 웨이퍼의 흡수율은 도 4에 도시하는 그래프와 같이 된다. 도 4에 도시하는 바와 같이, 실리콘 웨이퍼의 열선의 흡수율은 열선의 파장 및 실리콘 웨이퍼의 온도에 의존한다. 여기서 열선이란, 상술한 바와 같이 자외선으로부터 원적외선까지 포함하는 넓은 개념으로 이용되고 있다.
도시하는 것과 같이, 파장이 1.17μm 정도까지는, 실리콘 웨이퍼의 온도에 관계없이, 05∼0.7 정도의 높은 흡수율을 도시하고 있지만, 파장이 1.17μm보다도 커지면, 흡수율은 실리콘 웨이퍼의 온도에 크게 의존하고, 온도가 낮은 정도, 흡수율이 작아진다(투과율은 커진다). 즉, 실리콘 웨이퍼의 온도가 270∼600℃의 범위에서 변화되면, 그것에 따라 흡수율은 0.1∼0.7 정도의 범위에서 변화되고 있다.
따라서, 피처리체를 고속 승온시키기 위해서는, 가열 램프로서는, 파장이 1.17μm 이하의 열선을 출력하는 램프, 즉 주로 자외선을 사출하는 자외선 방전 램프나 주로 가시광선을 사출하는 할로겐 램프를 사용하는 것이 바람직한 것으로 판명된다. 또 이 종류의 가열 램프를 채용하는 것에 의해 열선을 유효하게 이용할 수 있고, 가열 효율을 향상시킬 수 있다.
가열 효율을 향상시키기 위해서는, 실리콘 웨이퍼를 투과한 열선이 그 아래의 탑재대(10)에 의해 어느 정도 흡수될지가 큰 문제가 된다. 그래서, 다음에 탑재대(10)의 재질에 대해서 검토한다.
도 5는 열선의 파장에 대한 게르마늄과 실리콘의 투과율(≒1-흡수율)을 도시하는 그래프이고, 도 6은 열선의 파장에 대한 석영(SiO2)과 질화 알루미늄(AlN)과 탄화 실리콘(SiC)의 흡수율을 도시하는 그래프이다. 우선, 도 5에 도시하는 바와 같이 여기에서는 게르마늄은 두께를 2mm로에 설정하고, 실리콘은 두께를 2.5mm로 설정하고 있다. 도 5로부터 명확한 것과 같이, 열선의 파장이 0.77μm 이하인 가시광선의 영역 및 자외선의 영역에서는 투과율은 10%이하, 즉 흡수율은 90%이상으로 매우 크게 되어 있다. 따라서, 가열 램프로서 자외선방전 램프나 할로겐 램프를 사용한 경우, 혹은 본 실시형태와 같이 양쪽 램프를 혼재시켜서 설치했을 경우에는, 탑재대(10)의 재료로서 게르마늄 기판이나 실리콘 기판을 사용하는 것이 바람직한 것을 확인할 수 있었다. 이것에 의하면, 실리콘 웨이퍼를 투과한 열선을 탑재대(10)가 효율적으로 흡수할 수 있고, 이 결과, 이 탑재대(10)의 열로 실리콘 웨이퍼를 가열할 수 있다. 따라서, 그 만큼, 가열 효율을 향상시킬 수 있고, 또한, 승온 속도도 더욱 향상시킬 수 있다.
또 도 6에 도시하는 SiO2(도6의 (A)), AlN(도 6의(B)), SiC(도6의 (C))의 판두께는 1.3∼3.4mm로 설정되어 있다. 상기 각 재료는, 파장이 약 4μm이상의 적외선의 영역으로 하지 않으면 충분히 큰 흡수율을 보이지 않고, 자외선 및 가시광선의 영역에서는 흡수율이 매우 낮다. 따라서, 가열 램프로서 적외선 램프를 사용한 경우에는, 탑재대(10)의 재료로서 SiO2 판, AlN 판, SiC 판을 사용하는 것이 바람직한 것을 확인할 수 있었다. 이 경우, SiC 등의 이외에, 다른 산화물을 포함하는 세라믹재를 이용하여도 무방하다.
또한, 가열 효율을 향상시키기 위해서는 열선에 대한 투과창(8)의 투과율도 큰 문제가 된다. 그래서, 다음에 투과창(8)에 대해서 검토한다.
도 7은 열선의 파장에 대한 CaF2(불화칼슘)[두께:3mm]와 LiF(불화 리튬)[두께:2mm]의 투과율을 도시하는 그래프이고, 도 8은 열선의 파장에 대한 용융 석영(두께1mm)의 투과율을 도시하는 그래프, 도 9는 각종의 모재에 대하여 코팅 처리를 했을 때의 적외선 영역의 투과율을 도시하는 그래프이다.
우선, 도 7에 도시하는 바와 같이, CaF2 판(도 7의(A))은 0.2μm의 자외선으로부터 8μm의 적외선의 범위에서, 또 LiF 판(도7의 (B))은 0.12μm의 자외선으로부터 7μm의 적외선의 범위에서, 함께 90% 전후의 높은 투과율을 도시하고 있다. 따라서, 가열 램프의 종류를 막론하고, 자외선 방전 램프, 할로겐 램프, 적외선 램프의 모든 램프에 대하여 이 CaF2 판이나 LiF 판을 투과창(8)으로서 사용할 수 있는 것을 확인할 수 있었다. 특히, 이 CaF2 판이나 LiF 판은 자외선의 영역에서 높은 투과율을 도시하고 있어, 따라서, 가열 램프로서 자외선방전 램프를 사용하는 경우에 특히 유효한 것을 확인할 수 있었다.
또 도 8에 도시하는 바와 같이 용융 석영의 경우에는, 파장이 대략 0.2μm의 자외선의 영역에서 파장이 대략 4.0μm의 적외선의 영역에 걸쳐서 투과율은 80% 전후의 높은 값을 보이고 있다. 따라서, 도 7에 도시한 재료와 같이, 요융 석영도 자외선의 영역에서 적외선의 영역의 넓은 범위에 걸쳐서 투과창(8)의 재료로서 바람직한 것을 확인할 수 있었다. 특히, 가시광선의 영역(0.42∼0.77μm)의 영역에서는 흡수율이 90%이상으로 매우 높게 되어 있어, 특히 바람직한 것을 확인할 수 있었다. 이 경우에도, 먼저 설명한 와 같이 가열 효율을 향상할 수 있고, 또한, 승온 속도도 더욱 향상시킬 수 있다.
다음에, 도 9를 참조해서 적외선 영역의 광선에 대해서 검토한다. 도 9에 도시하는 바와 같이, ZnSe 판, Si 판, Ge 판이 각각 단독의 경우(코트 없음)에는, 투과율은 각각 70%, 50%, 45%이며 그 정도 높지 않다. 그러나, 이하에 설명하는 양면 코트를 각각 실시하면, 투과율은 모두 90∼100%의 범위 내에 대폭 상승하고, 높은 가열 효율을 발휘할 수 있는 것을 확인할 수 있었다. 즉, 가열 램프로서 적외선 램프를 채용했을 경우에는 상기 양면 코트의 ZnSe 판, Ge 판, Si 판을 채용하는 것이 바람직한 것을 확인할 수 있었다.
여기서, ZnSe 판의 경우, 열선 입사측의 상면에는 모재의 ZnSe보다도 낮은 굴절률의 ThF4 코팅재를 사용하고 열선 투과측의 하면에는 모재의 ZnSe보다도 높은 굴절률의 ZeSe 코팅을 채용했다. 또한, Si판의 경우, 상면에는 모재의 Si보다도 낮은 굴절율의 SiO 코팅 재를 채용하고, 하면에는 모재의 Si보다도 높은 굴절율의 Ge 코팅재를 사용했다. 또한, Ge 판의 경우, 상면에는 모재의 Ge보다도 낮은 굴절률의 SiO 코팅재를 채용하고, 하면에는 모재의 Ge보다도 높은 굴절률의 Ge 코팅재를 채용했다.
<제2실시 형태>
상기 제1실시 형태에 있어서는 탑재대(10)로서 1종류의 재료를 사용한 경우를 예로 들어서 설명했지만, 이것에 한정되지 않는다. 예를 들면 주된 흡수 파장대역이 서로 다른 특성을 갖는 복수의 흡수판을 적층함으로써 탑재대(10)를 형성하도록 해도 좋다.
도 10은, 그러한 본 발명의 제2실시 형태의 탑재대의 구조를 도시하는 구성 도이다. 또한, 탑재대(10)이외의 구성에 대해서는 도시 생략하고 있다. 이 탑재대(10)는, 구체적으로는, 자외선과 가시광선과를 주로 해서 흡수하는 가시광 흡수판(62)과, 적외선을 주로 해서 흡수하는 적외광 흡수판(64)을 적층해서 구성되어 있다.
여기서 각 흡수판(62, 64)을 구성하는 재료로서는, 도5 및 도6을 참조해서 먼저 설명한 바와 같이, 자외광·가시광 흡수판(62)으로서는 예를 들면 게르마늄,혹은 실리콘 판을 이용하고, 적외광 흡수판(64)으로서는 예를 들면 석영판, AlN 판, 혹은 SiC 판을 사용할 수 있다. 또한, 여기에서 적외광이란, 근적외선, 적외선 및 원적외선을 포함한다. 이 경우에는, 흡수판의 흡수 파장대역의 열선으로서 피처리체를 투과한 열선을 모두 탑재대(10)에서 흡수할 수 있다. 따라서, 그 만큼 가열 효율을 대폭 향상시킬 수 있고, 또 승온 속도를 더욱 높일 수 있다.
또한, 도 10의 (A)에 있어서, 각 흡수판(62, 64)의 적층의 순서는 특히 한정되지 않는다. 또한, 흡수율이 높은 주파수 영역이 다른 3종류의 흡수판을 적층할 수 있다.
또 도 10의 (A)에 도시하는 경우에는, 2장의 흡수판(62, 64)을 서로 중첩시켜서 적층해서 탑재대(10)를 형성하고, 이 하면측에 펠티에 소자(24A)를 접합하고 있다. 이것에 대하여, 도 10의(B)에 도시하는 바와 같이 각 흡수판(62, 64)끼리의 사이에 펠티에 소자(24A)를 각각 개재시키도록 해도 좋다. 이 경우, 어닐처리 후에 웨이퍼 온도를 고속 온도 하강시키기 위해서는, 각 펠티에 소자(24A)의 상면측을 흡열 상태로 하고(냉열을 발생), 하면측을 방열(발열)상태로 하도록 각 펠티에 소자(24A)에 전류를 흘리도록 한다. 이 때, 당연한 것으로서 전열매체 재킷(36)(도 1)에는 냉각용의 열매체, 예를 들면 냉각수를 흘려보낸다.
이것에 대하여, 웨이퍼의 고속 승온시에는, 각 펠티에 소자(24A)의 상면측을 방열(발열)상태로 하고 하면측을 흡열상태(냉열을 발생)로 하도록 각 펠티에 소자(24A)에 전류를 흘리도록 한다. 이 때, 당연한 것으로서 열매체 재킷(36)(도1)에 가열용의 열매체를 흘린다. 도 10의(B)에 도시하는 구성은, 흡수판이 3장인 경우에도 적용할 수 있다. 이렇게 구성함으로써, 열선의 흡수 파장대역이 다른 흡수판(62, 64) 사이의 열전도율을 향상시킬 수 있으므로, 결과적으로, 웨이퍼의 가열 효율 및 온도 하강 효율을 향상시킬 수 있다.
<제3실시 형태>
다음에 본 발명의 제3실시 형태에 대해서 설명한다. 도 l1은 본 발명의 제3실시 형태를 도시하는 단면 구성도이다. 또한, 도 1과 동일한 구성 부분에 대해서는 동일부호를 붙여서 그 설명을 생략한다. 여기에서는 도 11에 도시하는 바와 같이, 처리 용기(4)의 바닥판(22)을 하는 열매체 재킷(36)의 상면에, 예컨대 알루미늄 도금으로 이루어지는 반사판(70)을 전면에 걸쳐서 형성하고 있다. 그리고, 이 반사판(70) 위에 펠티에 소자(24A)를 거쳐서 탑재대(10)를 설치하도록 하고 있다.
이 실시형태에 의하면, 웨이퍼(W)나 탑재대(10)를 투과한 열선을 이 반사판(70)에서 상방으로 반사시켜서 다시 웨이퍼(W)의 가열에 기여할 수 있다. 따라서, 그 만큼, 가열 효율을 향상시킬 수 있으므로, 더욱 고속으로 승온을 실행할 수 있다. 또한, 이 실시 형태의 탑재대(10)에 대하여도, 도 10에 도시하는 제2실시 형태의 구성을 채용할 수 있는 것은 물론이며, 반사판(70)은 탑재대(10)와 펠티에 소자(24A)의 사이에 설치되어도 좋다. 또한, 가열 램프(42A)의 종류는, 여기에서도 막론하고, 자외선 방전 램프, 할로겐 램프, 적외선 램프의 내의 1종, 또는 2종 이상을 사용할 수 있다.
<제4실시 형태>
다음에 본 발명의 제4실시 형태에 대해서 설명한다. 도 12는 본 발명의 제4실시 형태를 도시하는 단면 구성도이다. 또한, 도 1과 동일구성 부분에 대해서는 동일부호를 붙여서 그 설명을 생략한다.
이 제4실시 형태에서는, 가열 램프(42A)로서 보다 적은 수의 램프, 도시 예에서는 하나의 대형이고 대전력의 자외선 방전 램프를 이용하여, 웨이퍼를 다량의 열선으로 거칠게 가열하게 되어 있다. 이 경우, 웨이퍼(W)의 승강시 및 온도 하강 시에는, 각 펠티에 소자(24A)의 전류를 존 마다, 혹은 개별적으로 미세하게 제어하는 것에 의해 웨이퍼 온도의 면내 균일성을 높게 유지한다. 또한 이 대형의 자외선방전 램프로 이루어지는 가열 램프(42A)의 전력은, 상술한 바와 같이 듀티 제어에 의해 컨트롤 된다.
또한, 여기에서는 바닥판(22)에 원통형의 각부(22A)를 설치하고, 전체의 높이를 높이고 있다. 그리고, 이 바닥판(22)의 상부의 외주측에 회전 유지대(74)를 설치하고, 필요시에 웨이퍼(W)를 들어 올린 상태에서 이것을 회전할 수 있게 되어 있다. 구체적으로는, 이 회전 유지대(74)는 예를 들면 알루미늄 등에 의해 원통체 형상으로 성형되어서, 탑재대(10) 및 바닥판(22)의 상부의 외주측에 소정의 간격을 두고 배치되어 있다. 그리고, 이 회전 유지대(74)의 상단부는, 내측에 대략 직각으로 절곡되어 있고, 그 선단부에 적당 수의 유지편(76)이 수평방향으로 연장되도록 해서 설치된다. 그들의 유지편(76)에 의해, 필요에 따라서 웨이퍼(W)의 주변부의 하면을 유지할 수 있게 되어 있다. 또한 이 회전 유지대(74)의 하단부의 내측에는, 그 원주방향에 따라 영구자석(78)이 다수 배열시켜서 설치된다. 또한, 상기 바닥판(22)의 각부(22A)에는, 상기 영구자석(78)에 대향시켜서 회전용의 전기 코일(80)이 그 원주방향에 따라 설치된다. 이 전기 코일(80)에 전류를 흘리는 것에 의해 회전 자회를 발생시키고, 이것에 자기 결합되는 상기 영구자석(78)측, 즉 회전 유지대(74)를 회전할 수 있게 되어 있다.
또 상기 회전용의 전기 코일(80)의 하부에는, 부상용의 전기 코일(82)이 그 원주방향에 따라 형성되어 있다. 필요에 따라서 이 부상용의 전기 코일(82)에 전류가 통하도록 하는 것에 의해 상기 영구자석(78)과의 사이에서 자기적으로 반발력을 발생시켜서, 상기 회전 유지대(74)을 위쪽으로 부상하게할 수 있게 되어 있다. 또한, 도시되어 있지 않지만, 이 회전 유지대(74)에는 엔코더(encoder) 등이 설치되고 있어, 그 회전수나 회전 위치를 검지하고, 또한 제어할 수 있게 되어 있다. 또한, 탑재대(10)의 주변부에는, 상기 유지편(76)의 상하 이동을 허용하는 도시하지 않는 노치 등이 설치된다.
이러한 열처리 장치에 있어서는, 웨이퍼(W)를 가열 승온하고, 어닐 처리를 실행하는 때에는, 부상용의 전기 코일(82)에 통전을 해서 영구자석(78)과의 사이에 반발력을 발생시켜서 유지편(76)에서 웨이퍼(W)를 지지한 회전 유지대(74)를 부상시킨다. 이로써, 웨이퍼(W)는 탑재대(10)의 상면으로부터 이격해서 부상한 상태가 된다. 또한, 이 경우, 탑재대(10)의 재료로서는, 상술의 각실시 형태에 있어서 기재된 것과는 다르고, 램프로부터의 열선을 반사해서 웨이퍼측에 복귀시키는 것과 같은 재료가 선택되는 것이 바람직하다. 이러한 재료로서, 예를 들면 자외광·가시광·적외광에 대하여는 Al 재료, 가시광·자외광에 대하여는 Ag/Au 재료, 또는 이들에 반사 증강 코팅을 가한 것 등을 들 수 있다. 그리고, 회전용의 전기 코일(80)에 통전함으로써 회전 자회가 생겨서 회전 유지대(74)가 회전한다. 이렇게, 웨이퍼(W)는 탑재대(10)의 상면보다 부상해서 회전된 상태에서 가열 승온되어서 어닐 처리되게 된다. 또한, 이 때, 펠티에 소자(24A)의 상면을 발열시켜서 온도제어를 실행하도록 해도 좋다. 이로써, 상대적으로 열용량이 작은 웨이퍼만을 가열 승온하면 양호한 것이 되고, 다른 고속 승온이 가능해진다.
또 어닐 처리가 종료하고, 웨이퍼(W)를 냉각할 경우에는, 가열 램프(42A)에의 통전을 차단하고, 각 전기 코일(80, 82)로의 통전을 각각 끊어서 회전 유지대(74)를 강하시켜, 웨이퍼(W)를 탑재대(10)의 상면에 접한 상태에서 이 냉각을 실행한다. 이 때, 상술한 바와 같이 펠티에 소자(24A)의 상면은, 냉열을 발생하도록 전류를 흘리고, 이로써 웨이퍼(W)를 고속 온도 하강시킬 수 있다.
또한 여기에서는 유지편(76)에서 웨이퍼(W)의 주변부를 유지해서 들어 올리도록 했지만, 이것에 한정되지 않는다. 예를 들면, 탑재대(10)를 펠티에 소자(24A)로부터 분리 가능하게 구성하고, 유지편(76)은 탑재대(10)의 주변부를 유지해서 들어 올리도록 해도 좋다.
이상의 각 실시형태에서는, 열처리로서 어닐처리를 예로 들어서 설명했지만, 이것에 한정되지 않고, 다른 열처리, 예를 들면 성막처리, 산화 확산 처리, 개질처리 등의 경우에도 본 발명을 적용할 수 있는 것은 물론이다.
또한, 피처리체로서 실리콘 웨이퍼를 예로 들어서 설명했지만, 화합물 반도체등의 다른 반도체 웨이퍼, LCD기판, 유리 기판등을 처리할 경우에도 본 발명을 적용할 수 있는 것은 물론이다.

Claims (11)

  1. 피처리체에 400℃ 이상의 온도에서 열처리를 실시하기 위한 열처리 장치에 있어서,
    천정부에 투과창을 갖는 처리 용기와,
    이 처리 용기 내에 설치되고, 상기 투과창과 대향하도록 피처리체를 탑재하는 탑재대와,
    상기 처리 용기의 윗쪽에 설치되고, 상기 투과창을 통해서 피처리체에 열선을 조사함으로써 피처리체를 가열하는 복수의 가열 램프와,
    상기 탑재대에 설치되고, 피처리체를 적어도 냉각 가능한 열전 변환기를 구비한 것을 특징으로 하는
    열처리 장치.
  2. 제 1 항에 있어서,
    상기 열전 변환기의 하측에, 내부에 열매체 유로가 형성된 열매체 재킷을 설치한 것을 특징으로 하는
    열처리 장치.
  3. 제 1 항에 있어서,
    상기 열전 변환기는, 피처리체의 냉각시와는 역방향의 전류가 흘려지는 것으 로, 피처리체를 가열하도록 구성되어 있는 것을 특징으로 하는
    열처리 장치.
  4. 제 1 항에 있어서,
    상기 열전 변환기는, 상기 탑재대상의 복수의 존(zone)에 각각 대응해서 배치된 복수의 열전변환 소자를 포함하고,
    해당 열처리 장치는, 상기 탑재대상의 각 존별로 열전변환 소자에 흘려지는 전류를 제어하는 변환 소자 제어기를 더 구비하는 것을 특징으로 하는
    열처리 장치.
  5. 제 4 항에 있어서,
    상기 변환 소자 제어기는, 상기 열전변환 소자에 간헐적으로 전류를 흘리도록 제어를 실행하는 동시에, 상기 열전변환 소자에 전류가 흐르지 않고 있는 기간에 상기 열전변환 소자의 기전력에 근거해서 해당 열전 변환 소자의 온도를 측정하는 것을 특징으로 하는
    열처리 장치.
  6. 제 1 항에 있어서,
    피처리체는 실리콘 웨이퍼이며,
    상기 복수의 가열 램프는, 주로 자외선을 방사하는 자외선 방전 램프와, 주 로 가시광선을 방사하는 할로겐 램프로 구성되는 것을 특징으로 하는
    열처리 장치.
  7. 제 6 항에 있어서,
    상기 자외선 방전 램프의 전력제어는, 듀티 제어에 의해 행하여지는 것을 특징으로 하는
    열처리 장치.
  8. 제 6 항에 있어서,
    피처리체의 중앙부에 대하여는 주로서 상기 자외선 방전 램프로부터의 자외선이 조사되고, 피처리체의 주변부에는 대해서는 주로서 상기 할로겐 램프로부터의 가시광선이 조사되도록 구성되어 있는 것을 특징으로 하는
    열처리 장치.
  9. 피처리체에 고온에서 열처리를 실시하기 위한 열처리 장치에 있어서,
    천정부에 투과창을 갖는 처리 용기와, 이 처리 용기내에 설치되고, 상기 투과창과 대향하도록 피처리체를 탑재하는 탑재대와,
    상기 처리 용기의 윗쪽에 설치되고, 상기 투과창을 통해서 피처리체에 열선을 조사함으로써 피처리체를 가열하는 복수의 가열 램프를 구비하고,
    상기 탑재대는, 상기 가열 램프로부터 주로서 방사되는 열선의 종류에 따라, 그 열선을 주로서 흡수하는 흡수판을 포함하는 것을 특징으로 하는
    열처리 장치.
  10. 제 9 항에 있어서,
    상기 탑재대는, 서로 다른 종류의 열선을 주로서 흡수하는 복수의 흡수판을 포함하는 것을 특징으로 하는
    열처리 장치.
  11. 제 10 항에 있어서,
    상기 흡수판끼리의 사이에, 피처리체측을 적어도 냉각 가능한 열전 변환기가 설치되는 것을 특징으로 하는
    열처리 장치.
KR1020067005788A 2003-09-24 2004-09-24 열처리 장치 KR100833386B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003332482A JP4442171B2 (ja) 2003-09-24 2003-09-24 熱処理装置
JPJP-P-2003-00332482 2003-09-24

Publications (2)

Publication Number Publication Date
KR20060080216A true KR20060080216A (ko) 2006-07-07
KR100833386B1 KR100833386B1 (ko) 2008-05-28

Family

ID=34373092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067005788A KR100833386B1 (ko) 2003-09-24 2004-09-24 열처리 장치

Country Status (5)

Country Link
US (1) US7978963B2 (ko)
JP (1) JP4442171B2 (ko)
KR (1) KR100833386B1 (ko)
CN (1) CN100547737C (ko)
WO (1) WO2005029561A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808425B2 (ja) * 2005-03-22 2011-11-02 光洋サーモシステム株式会社 熱処理装置
US20060242967A1 (en) * 2005-04-28 2006-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Termoelectric heating and cooling apparatus for semiconductor processing
JP2006332541A (ja) * 2005-05-30 2006-12-07 Ushio Inc 光加熱装置
JP5055756B2 (ja) * 2005-09-21 2012-10-24 東京エレクトロン株式会社 熱処理装置及び記憶媒体
CN100557773C (zh) * 2005-09-21 2009-11-04 东京毅力科创株式会社 热处理装置
JP4940635B2 (ja) 2005-11-14 2012-05-30 東京エレクトロン株式会社 加熱装置、熱処理装置及び記憶媒体
JP2007258286A (ja) * 2006-03-22 2007-10-04 Tokyo Electron Ltd 熱処理装置、熱処理方法及び記憶媒体
US7378618B1 (en) * 2006-12-14 2008-05-27 Applied Materials, Inc. Rapid conductive cooling using a secondary process plane
JP4890313B2 (ja) * 2007-03-29 2012-03-07 株式会社アルバック プラズマcvd装置
TW200913798A (en) * 2007-09-14 2009-03-16 Advanced Display Proc Eng Co Substrate processing apparatus having electrode member
WO2010150590A1 (ja) * 2009-06-24 2010-12-29 キヤノンアネルバ株式会社 真空加熱冷却装置および磁気抵抗素子の製造方法
JP5582819B2 (ja) * 2010-02-24 2014-09-03 東京エレクトロン株式会社 処理装置
CN101773917B (zh) * 2010-03-05 2015-01-07 上海集成电路研发中心有限公司 硅片清洗装置及方法
JP5437910B2 (ja) * 2010-05-18 2014-03-12 株式会社Kelk 温調装置
CN102375175B (zh) * 2010-08-06 2014-08-27 北京北方微电子基地设备工艺研究中心有限责任公司 一种均光板及应用该均光板的基片加工设备
US8461674B2 (en) * 2011-09-21 2013-06-11 Lam Research Corporation Thermal plate with planar thermal zones for semiconductor processing
US9324589B2 (en) 2012-02-28 2016-04-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
JP2014134423A (ja) * 2013-01-09 2014-07-24 Yamato Scale Co Ltd 組合せ秤
US9634175B2 (en) * 2013-01-09 2017-04-25 Ascent Solar Technologies, Inc. Systems and methods for thermally managing high-temperature processes on temperature sensitive substrates
US20140318455A1 (en) * 2013-04-26 2014-10-30 Varian Semiconductor Equipment Associates, Inc. Low emissivity electrostatic chuck
US20140356985A1 (en) 2013-06-03 2014-12-04 Lam Research Corporation Temperature controlled substrate support assembly
JP6405556B2 (ja) 2013-07-31 2018-10-17 リンテック株式会社 保護膜形成フィルム、保護膜形成用シートおよび検査方法
US20150163860A1 (en) * 2013-12-06 2015-06-11 Lam Research Corporation Apparatus and method for uniform irradiation using secondary irradiant energy from a single light source
JP5891255B2 (ja) * 2014-03-17 2016-03-22 株式会社Screenホールディングス 熱処理装置
KR101796626B1 (ko) * 2014-05-29 2017-11-13 에이피시스템 주식회사 기판 열처리 장치
TW201639063A (zh) * 2015-01-22 2016-11-01 應用材料股份有限公司 批量加熱和冷卻腔室或負載鎖定裝置
KR20160115398A (ko) * 2015-03-27 2016-10-06 에이피시스템 주식회사 히터 블록 및 기판 처리 장치
US20160379854A1 (en) * 2015-06-29 2016-12-29 Varian Semiconductor Equipment Associates, Inc. Vacuum Compatible LED Substrate Heater
JP6662742B2 (ja) * 2016-09-26 2020-03-11 株式会社フェローテックホールディングス 温調装置およびペルチェモジュール
CN108594883A (zh) * 2018-03-01 2018-09-28 常熟市虞华真空设备科技有限公司 高精度温控箱
CN108538763B (zh) * 2018-04-24 2020-05-15 京东方科技集团股份有限公司 一种加热组件、封装装置和封装方法
KR102322101B1 (ko) * 2021-06-24 2021-11-04 주식회사 자이시스 반도체 제조 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215816A (ja) 1985-07-12 1987-01-24 Matsushita Electric Ind Co Ltd 赤外線加熱装置
JPH0410410A (ja) 1990-02-02 1992-01-14 Sharp Corp 薄膜製造装置
JP3091804B2 (ja) 1993-03-16 2000-09-25 日本碍子株式会社 半導体ウエハー用サセプターおよび半導体ウエハーの温度測定方法
JP2875768B2 (ja) 1994-11-30 1999-03-31 新日本無線株式会社 半導体基板の熱処理方法
US5667622A (en) 1995-08-25 1997-09-16 Siemens Aktiengesellschaft In-situ wafer temperature control apparatus for single wafer tools
JP2001085408A (ja) 1999-09-13 2001-03-30 Hitachi Ltd 半導体集積回路装置の製造方法および製造装置
JP2001110793A (ja) * 1999-10-12 2001-04-20 Dainippon Screen Mfg Co Ltd 熱処理装置および基板処理装置
JP4820038B2 (ja) * 1999-12-13 2011-11-24 セメクイップ, インコーポレイテッド イオン注入イオン源、システム、および方法
JP4058231B2 (ja) 2000-11-13 2008-03-05 株式会社東芝 半導体装置の製造方法
JP2002151487A (ja) 2000-11-14 2002-05-24 Tokyo Electron Ltd 基板処理装置
JP2002299319A (ja) * 2001-03-29 2002-10-11 Hitachi Kokusai Electric Inc 基板処理装置
JP3715228B2 (ja) * 2001-10-29 2005-11-09 大日本スクリーン製造株式会社 熱処理装置
JP2003209054A (ja) 2001-11-12 2003-07-25 Dainippon Screen Mfg Co Ltd 基板の熱処理方法および熱処理装置
US7255899B2 (en) * 2001-11-12 2007-08-14 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus and heat treatment method of substrate
DE10328660B3 (de) * 2003-06-26 2004-12-02 Infineon Technologies Ag Verfahren zum Bestimmen der Temperatur eines Halbleiterwafers
JP4765328B2 (ja) * 2004-04-16 2011-09-07 東京エレクトロン株式会社 被処理体の処理装置
JP2007005347A (ja) * 2005-06-21 2007-01-11 Tokyo Electron Ltd 熱処理装置
JP4940635B2 (ja) * 2005-11-14 2012-05-30 東京エレクトロン株式会社 加熱装置、熱処理装置及び記憶媒体

Also Published As

Publication number Publication date
WO2005029561A1 (ja) 2005-03-31
JP2005101237A (ja) 2005-04-14
CN1856863A (zh) 2006-11-01
JP4442171B2 (ja) 2010-03-31
US20110002674A1 (en) 2011-01-06
CN100547737C (zh) 2009-10-07
KR100833386B1 (ko) 2008-05-28
US7978963B2 (en) 2011-07-12

Similar Documents

Publication Publication Date Title
KR100833386B1 (ko) 열처리 장치
KR100977886B1 (ko) 열처리 장치 및 기억 매체
KR101859344B1 (ko) 상부 기판 지지 어셈블리를 갖는 열 처리 챔버
KR101089929B1 (ko) 가열 장치, 열처리 장치, 컴퓨터 프로그램 및 기억 매체
TWI722722B (zh) 旋轉基板雷射退火
TWI489554B (zh) 在dsa類型系統中用於矽雷射退火的適合短波長光
JP2007258286A (ja) 熱処理装置、熱処理方法及び記憶媒体
CN108028213A (zh) 用于毫秒退火系统的预热方法
KR20110009187A (ko) 어닐링 장치
KR100970013B1 (ko) 열처리 장치
JP2012178576A (ja) 熱処理装置及び記憶媒体
JP2010034491A (ja) アニール装置
WO2005052988A2 (en) Focused photon energy heating chamber
JP2008243950A (ja) 熱処理装置
JP2000269155A (ja) 熱処理装置及びその方法
JPS6027115A (ja) 光照射炉による半導体ウエハ−の熱処理法
WO2001082349A1 (en) Thermal processing system and thermal processing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee