JP4442171B2 - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
JP4442171B2
JP4442171B2 JP2003332482A JP2003332482A JP4442171B2 JP 4442171 B2 JP4442171 B2 JP 4442171B2 JP 2003332482 A JP2003332482 A JP 2003332482A JP 2003332482 A JP2003332482 A JP 2003332482A JP 4442171 B2 JP4442171 B2 JP 4442171B2
Authority
JP
Japan
Prior art keywords
heat treatment
heating
thermoelectric conversion
treatment apparatus
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003332482A
Other languages
English (en)
Other versions
JP2005101237A (ja
Inventor
正裕 清水
河西  繁
昌剛 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003332482A priority Critical patent/JP4442171B2/ja
Priority to PCT/JP2004/013922 priority patent/WO2005029561A1/ja
Priority to KR1020067005788A priority patent/KR100833386B1/ko
Priority to US10/573,048 priority patent/US7978963B2/en
Priority to CNB2004800277004A priority patent/CN100547737C/zh
Publication of JP2005101237A publication Critical patent/JP2005101237A/ja
Application granted granted Critical
Publication of JP4442171B2 publication Critical patent/JP4442171B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)

Description

本発明は、半導体ウエハ等に対してアニール処理や成膜処理等の各種の熱処理を行う枚葉式の熱処理装置に関する。
一般に、半導体デバイスを製造するには、半導体ウエハに成膜処理、パターンエッチング処理、酸化拡散処理、改質処理、アニール処理等の各種の熱処理を繰り返し行なって所望のデバイスを製造するが、半導体デバイスが高密度化、多層化及び高集積化するに伴ってその仕様が年々厳しくなっており、これらの各種の熱処理のウエハ面内における均一性の向上及び膜質の向上が特に望まれている。例えば半導体デバイスであるトランジスタのチャネル層の処理を例にとって説明すると、このチャネル層に不純物原子のイオン注入後に、原子構造を安定化させる目的でアニール処理が一般的に行われる。
この場合、上記アニール処理を長時間行うと原子構造は安定化するが、不純物原子が膜厚方向へ奥深くまで拡散して下方へ突き抜けてしまうので、極力短時間で行う必要がある。すなわち、チャネル層などの膜厚を薄くしつつ、且つ突き抜けも生ずることなく原子構造を安定化させるためには、半導体ウエハを高温まで高速で昇温し、且つアニール処理後にあっては拡散が生じないような低い温度まで高速で降温させることが必要となる。
このようなアニール処理を可能とするために、従来の熱処理装置では、加熱ランプを収容したランプハウスに輻射熱を遮断するシャッター機構を設け、高温でアニール処理した後にウエハ温度を降温させる際にこのシャッター機構を作動させて加熱ランプからの輻射熱を遮断し、ウエハの高速降温を行うようになっている。
また他の従来の熱処理装置としては、例えば特許文献1に示すように、ウエハステージにペルチェ素子を設け、100〜250℃程度でウエハをエッチングする際に、昇降温時に上記ペルチェ素子を用いるようにした熱処理装置がある。
特開2001−85408号公報
ところで、シャッター機構を設けた上記従来の熱処理装置にあっては、このシャッター機構自体が大きいために装置が大型化し、また装置自体も複雑化する、といった問題があった。
またペルチェ素子を用いた従来の熱処理装置にあっては、エッチングを行うプロセス温度が100〜250℃の範囲であってそれ程高くなく、例えば高温でアニール処理等を行うには温度が低過ぎて十分ではない、といった問題があった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、高いプロセス温度での熱処理を行う際に、被処理体の高速昇温及び高速降温を行うことが可能な熱処理装置を提供することにある。
また本発明の他の目的は、加熱効率を向上させることが可能な熱処理装置を提供することにある。
請求項1に係る発明は、天井部に透過窓が設けられて内部が排気可能になされた処理容器内に設けられた載置台上に被処理体を載置し、前記処理容器の上方に設けた複数の加熱ランプを有する加熱手段からの熱線を前記透過窓に透過させて前記被処理体を加熱昇温することにより前記被処理体に400℃以上の高温で所定の熱処理を施すようにした熱処理装置において、前記載置台に少なくとも高速降温を可能とするための熱電変換手段を設け、前記熱電変換手段の下面に、内部に熱媒体を流すための熱媒体ジャケットを設け、前記複数の加熱ランプは、紫外光線を主として射出する紫外線放電ランプを含み、前記紫外線放電ランプの電力制御は、デューティ制御により行われるように構成したことを特徴とする熱処理装置である。
このように、400℃以上での高温で被処理体に対して熱処理を行うに際して、載置台に熱電変換手段を設け、昇温時には主として加熱ランプからの熱により加熱し、降温時には熱電変換手段を用いて強制的に冷却するようにしたので、被処理体の高速昇温及び高速降温を行うことが可能となる。
この場合、例えば請求項2に規定するように、前記載置台は、紫外光線を主として吸収する紫外光吸収板を含むことを特徴とする。
また例えば請求項3に規定するように、前記載置台は、可視光線を主として吸収する可視光吸収板と、赤外光線を主として吸収する赤外光吸収板とよりなる群の内から選択された1種以上の吸収板を更に含むことを特徴とする。
また例えば請求項4に規定するように、前記吸収板を2種以上用いた場合には前記吸収板間に前記熱電変換手段が介在させて設けられる。
また例えば請求項5に規定するように、前記透過窓は、前記加熱ランプから射出する光線に対する吸収率が少なくなるように形成されている。
また例えば請求項6に規定するように、前記被処理体の昇温時には、前記熱電変換手段には、降温時とは逆方向に電流が流される。
また例えば請求項7に規定するように、前記熱電変換手段は、複数の熱電変換素子を含み、該熱電変換素子は複数のゾーンに区画されると共に、前記各ゾーン毎に温度制御が可能になされている。
これによれば、熱電変換手段をゾーン毎に制御できるので、被処理体の温度の面内均一性を維持したままこれを高速降温させることが可能となる。
また例えば請求項8に規定するように、前記熱電変換素子は、少なくとも前記被処理体の周辺部に対応する前記載置台の周辺部に設けられる。
また例えば請求項9に規定するように、前記熱電変換素子に電流を流さない時に、前記熱電変換素子の起電力により前記載置台の温度を測定するように構成している。
また例えば請求項10に規定するように、前記熱電変換素子はペルチェ素子よりなる。
また例えば請求項11に規定するように、前記複数の加熱ランプは、可視光線を主として射出するハロゲンランプと、赤外光線を主として射出する赤外線ランプとよりなる群の内から選択された1種以上のランプを更に含む。
また例えば請求項12に規定するように、前記複数の加熱ランプが紫外線放電ランプとハロゲンランプとよりなる場合には、前記被処理体の中央部に対しては主として前記紫外線放電ランプからの紫外光線を照射し、前記被処理体の周辺部には主として前記ハロゲンランプからの可視光線を照射する。
本発明の熱処理装置によれば、次のように優れた作用効果を発揮することができる。
請求項1〜5、7〜12に係る発明によれば、400℃以上での高温で被処理体に対して熱処理を行うに際して、載置台に熱電変換手段を設け、昇温時には主として加熱ランプからの熱により加熱し、降温時には熱電変換手段を用いて強制的に冷却するようにしたので、被処理体の高速昇温及び高速降温を行うことができる。
また請求項2、3及びこれらを引用する請求項に係る発明によれば、被処理体を載置する載置台を、加熱ランプから発する光線の種類に対応させて所定の吸収波長帯域の特性を有する1種、或いは主たる吸収波長帯域が互いに異なる特性を有する2種以上の吸収板により形成するようにしたので、加熱効率を向上させることができる。
求項7に係る発明によれば、熱電変換手段をゾーン毎に制御できるので被処理体の温度の面内均一性を維持したままこれを高速降温させることができる。
以下に本発明に係る熱処理装置の一実施例を添付図面に基づいて詳述する。
<第1実施例>
図1は本発明の熱処理装置の第1実施例を示す断面構成図、図2は加熱手段の加熱ランプの配列の一例を示す平面図、図3は熱電変換手段を構成するペルチェ素子の配列の一例を示す平面図、図4は熱線の波長に対するシリコンウエハの吸収率を示すグラフ、図5は熱線の波長に対するゲルマニウムとシリコンの透過率を示すグラフ、図6は熱線の波長に対する石英と窒化アルミニウム(AlN)とSiCとの吸収率を示すグラフである。
図1に示すように、この熱処理装置2は、例えばアルミニウムにより筒体状に成形された処理容器4を有している。この処理容器4の天井部は開口されており、この開口部には、Oリング等のシール部材6を介して透明な透過窓8が気密に設けられている。また処理容器4の内部には、薄い円板状になされた載置台10が設けられており、この載置台10の上面に熱処理が施される被処理体としての半導体ウエハWを載置するようになっている。ここで載置台10の材料としては、使用する加熱ランプからの光線を最も吸収し易いような材料で形成され、例えば主に赤外線ランプの光線を吸収し易いSiO 材、AlN材、SiC材、主に紫外線ランプ及びハロゲンランプの光線を吸収し易いGe(ゲルマニウム)材、Si材、金属材等を用いることができる。
また、この処理容器4の側壁には、半導体ウエハWを搬出入する際に開閉されたゲートバルブ12が設けられると共に、熱処理時に必要な処理ガスを内部へ導入するガスノズル14が設けられている。また処理容器4の底部の周辺部には、排気口16が形成されており、この排気口16には図示しない真空ポンプが介設された排気系18が接続されて、処理容器4内の雰囲気を例えば真空排気可能としている。またこの処理容器4の底部の周辺部を残した中心側には大口径の開口が形成されており、この開口に例えばOリング等のシール部材20を介在させて例えばアルミニウム製の肉厚な底板22が気密に取り付け固定されている。
そして、上記底板22の上面側に、熱電変換手段24を介して上記板状の載置台10が接合して設けられている。この熱電変換手段24は、複数の熱電変換素子として例えば複数のペルチェ素子24Aを有しており、これらのペルチェ素子24Aはこれらより底板22を気密に貫通して外側へ配線されたリード線26を介してペルチェ制御部28へ接続されており、このペルチェ制御部28により電流の方向や大きさを制御できるようになっている。ここで熱電変換とは、熱エネルギーを電気エネルギーに、また電気エネルギーを熱エネルギーに変換することを言う。また、ペルチェ素子24Aとしては、例えば400℃以上の高温下での使用に耐え得るBi Te (ビスマス・テルル)素子、PbTe(鉛・テルル)素子、SiGe(シリコン・ゲルマニウム)素子等を用いることができる。
また上記底板22の上部には、熱媒体を流すための熱媒体流路30がその平面方向の全体に亘って形成されており、この熱媒体流路30の一端には熱媒体導入路32が接続され、他端には熱媒体排出路34が接続されて、この底板22は熱媒体ジャケット36として兼用されている。ここで、熱媒体としては少なくとも冷媒を流すことができ、上記ペルチェ素子24Aの下面から温熱を奪ってこれを冷却するようになっている。また必要に応じて温媒を流して上記ペルチェ素子24Aの下面から冷熱を奪ってこれを加熱し得るようになっている。この熱媒体は、例えば循環器38により循環使用される。尚、この底板22は、ウエハWを上記載置台10に対して昇降させるために図示しないリフタピンが設けられる。
一方、上記透過窓8の上方には、上記ウエハWを加熱するための加熱手段40が設けられる。具体的には、この加熱手段40は、複数の加熱ランプ42A、42Bよりなり、これらの加熱ランプ42A、42Bを、透過窓8の上方に設けた容器状のランプハウス44の天井部の下面にその全体に亘って取り付けている。またこのランプハウス44の天井部の内面は反射鏡48となっており、各加熱ランプ42A、42Bからの熱線を下方向に反射させるようになっている。また各加熱ランプ42A、42Bの総電力は例えば100〜200キロワット程度である。これらの各加熱ランプ42A、42Bの制御はランプ制御部46によつて行われ、このランプ制御部46には、上記ペルチェ制御部28から後述するように例えば温度情報が入力されるようになっている。
ここで図示例においては、ランプハウス44の周辺部以外の中央部に位置する加熱ランプ42Aはその熱線の放射方向を真下に向けられているのに対して、ランプハウス44の周辺部に位置する加熱ランプ42Bは、下方向内側に向けて斜めに設けられており、その熱線の放射方向をウエハWの周辺部に集中させるようになっている。尚、熱線とは、紫外光線、可視光線及び赤外光線(近赤外、遠赤外も含む)の全てを含むものとする。
ここでは図2に示すように、上記加熱ランプ42A、42Bは、天井部の中央側に位置する加熱ランプ42A群よりなる内側ゾーン50Aと、周辺部に位置する加熱ランプ42B群よりなる外側ゾーン50Bとに同心円状に2つのゾーンに分かれており、上記加熱ランプ42A、42Bの電力は、上記各ゾーン50A、50B毎に制御できるようになっている。
尚、上記内側ゾーン50Aには加熱ランプ42A群を比較的疎に配置し、これに対して、上記外側ゾーン50Bには加熱ランプ42B群を比較的密に配置してウエハの面内温度均一な加熱を図ることが好ましい。
ここで上記加熱ランプ42A、42Bとしては、紫外光線を主として射出する紫外線放射ランプと、可視光線を主として射出するハロゲンランプと、赤外光線を主として射出する赤外線ランプとよりなる群の内から選択された1種または2種以上のランプを用いることができる。
図1では例えば中央側の加熱ランプ42Aとしては、例えば大きさは大きくて大出力が可能な紫外線放電ランプを用い、これに対して、周辺部側の加熱ランプ42Bとしては例えば小型化されたハロゲンランプが用いられる。ここで上記透過窓8は、上記加熱ランプ42A、42Bから射出する光線に対する吸収率が少なくなるようにその材質(母材)、コーティング材料が決定されている。具体的には、例えば熔融石英ガラス、耐熱ガラス、CaF (弗化カルシウム)材、LiF(弗化リチウム)材、Ge(ゲルマニウム)材、コーティングが施されたGe母材等が用いられる。
また図3(A)に示すように、底板22上に配置されたペルチェ素子24Aは、載置台10の略全面に亘って配置されている。そして、各ペルチェ素子24Aは、中央に位置する内側ゾーン52Aと、その外側の中周に位置する中側ゾーン52Bと、その外側の最外周に位置する外側ゾーン52Cとの3つのゾーンに同心円状に区分されている。更に、微妙な温度コントロールが必要な外側ゾーン52Cは、更にその周方向に沿ってペルチェ素子24Aが3個ずつになるように4つのゾーンに区画されており、上記各ゾーン52A、52B、52C(4分割ゾーン)毎に独立して制御できるようになっている。
尚、図3(A)に示したペルチェ素子の配列に変えて、図3(B)、図3(C)のように配列することも可能である。これらは載置台10の略全面にわたりペルチェ素子24Aが敷き詰められた構造を有し、ペルチェ素子24A間にはほとんど隙間がない。これによれば、より精密で均一な温度制御を達成することができる。これらにおいては、各ゾーン52A、52B、52Cが正確な同心円状にならないが、図示されるように適宜決定すればよい。ここで図3(A)、図3(B)ではペルチェ素子24Aの形状は、略四角形に形成され、図3(C)に示す場合には略六角形に形成されている。また図3(B)及び図3(C)ではゾーン毎にペルチェ素子24Aに異なる模様を付してゾーン区分を明確にしている。またこれら図3に示したゾーンの分割形式は、単に一例を示したに過ぎず、これに限定されないのは勿論である。
次に、上述のように構成された熱処理装置2の動作について説明する。まず、アニール処理を行うために開放されたゲートバルブ12を介して未処理の半導体ウエハWは処理容器4内へ導入されて載置台10上に載置され、処理容器4内を密閉する。そして、ガスノズル14より処理ガスとして例えばN ガス、或いはArガスを流量制御しつつ導入すると共に、処理容器4内を例えば真空排気して所定のプロセス圧力、例えば1〜100Pa(7.5mTorr〜750mTorr)を維持する。これと同時に、ランプ制御部46により加熱手段40を動作させて各加熱ランプ42A、42Bを点灯させる。

これにより、各加熱ランプ42A、42Bより発せられた熱線が透過窓8を透過して半導体ウエハWの表面に入射し、これを急速に加熱して昇温する。この時の昇温速度は例えば100〜200℃/sec程度である。ここで加熱ランプとして紫外線放電ランプを用いた場合には、この紫外線放電ランプに対してディーティ制御を行って、その投入電力を制御する。この点は、以降に説明する各実施例においても同様である。そして、400℃以上の高温となるプロセス温度、例えば500〜1000℃の所定の温度に、所定の時間だけ維持してアニール処理を行う。尚、ここで紫外線放電ランプに対してデューティ制御を行なう理由は、次の通りである。すなわち紫外線放電ランプに連続的に電力を供給した場合にあっては、この電力を徐々に上げていっても、ある値(閾値)以上にならないと放電が起こらず、つまり投入電力に対し、比例的な熱線量が得られないと共に、熱線量を0〜100%まで連続的に変化させる事ができない。これを放電を起こさせるに十分な電力によりデューティ制御を行えば、これらの問題を一挙に解決できることになる。
このようにして、アニール処理が終了したならば、ウエハWの温度を急速に冷却する高速降温を行うために、各加熱ランプ42A、42Bを消灯すると共に、載置台10の下面に設けてある熱電変換手段24の各ペルチェ素子24Aに、この上面が冷えるような方向で電流を流す。これにより、処理容器4内の対流と放射による冷却効果以外に各ペルチェ素子24Aの上面に冷熱が発生して冷却されるので、これと接している載置台10が冷却されてウエハWを急速に冷却することができ、ウエハWの高速降温を行うことができる。
この際、各ペルチェ素子24Aの下面には温熱が発生して熱くなるので、底板22に形成した熱媒体ジャケット36の熱媒体流路30に冷却用の熱媒体を流し、上記各ペルチェ素子24Aの下面に発生した温熱を上記熱媒体により系外へ運び出して各ペルチェ素子24Aの下面を冷却することになる。この時の冷却用の熱媒体としては冷却水等を用いることができる。
さて、このような動作において、図2に示すように各加熱ランプ42A、42Bは複数のゾーン、図示例では2つのゾーンに分けられており、特に外側ゾーン50Bの各加熱ランプ42Bは、ウエハWの温度の均熱性が取り難いウエハ周辺部に向けられており、この周辺部に熱線を集中的に照射するようになっているので、面内温度の均一性を維持したままウエハWを高速昇温することができる。この場合、ウエハ温度、或いは載置台10の温度は、各ペルチェ素子24Aのゼーベック効果による起電力をペルチェ制御部28により測定でき、その温度測定結果をランプ制御部46へ入力してこの測定結果に基づいて上記各加熱ランプ42A、42Bをゾーン毎に制御することにより、面内温度の均一性をより高く維持したままウエハWを高速昇温することができる。
更には、ウエハWの昇温時に、各ペルチェ素子24Aに、この上面が発熱するような方向で電流を流すことにより(ウエハの降温時とは電流の方向は逆になる)、ウエハWがこの各ペルチェ素子24Aにより補助的に加熱されることになるので、ウエハWの昇温速度を一層大きくすることができる。更に、この場合、加熱用の電流を間欠的に各ペルチェ素子24Aに流しながら加熱用の電流の間欠期間にペルチェ素子24Aの起電力を測定してその温度を求め、この測定温度に基づいてペルチェ素子24Aへ流す加熱用の電流をゾーン毎に制御するようにすれば、昇温時のウエハ温度の面内均一性を一層高く維持することができる。尚、ウエハWの昇温時には、各ペルチェ素子24Aの下面に冷熱が発生するので、熱媒体ジャケット36の熱媒体流路30には、ウエハWの降温時とは異なって加熱用の熱媒体を流し、各ペルチェ素子24Aの下面に生じた冷熱を上記加熱用の熱媒体で系外へ排出するように動作させる。この場合、加熱用の熱媒体としては、例えば高温の温水を用いることができる。
またウエハWの降温時には、ウエハ冷却用の電流を間欠的に各ペルチェ素子24Aに流しながら冷却用の電流の間欠期間にペルチェ素子24Aの起電力を測定してその温度を求め、この測定温度に基づいてペルチェ素子24Aへ流す冷却用の電流をゾーン毎に制御し、これにより、ウエハ温度の面内均一性を高く維持した状態でウエハ温度を降温させることができる。また複数のペルチェ素子24Aを分割するゾーン数を更に多くしたり、或いは個々のペルチェ素子24A毎に電流制御ができるようにすれば、ウエハ昇温時及び降温時の面内温度の均一性をより一層高く維持することができる。尚、載置台の温度は、これに埋設された熱電対、または光ファイバーを通じて熱輻射量から計る放射温度計により測定しても良いのは勿論である。
ここで被処理体を高速昇温させるためには、加熱手段40の各加熱ランプへの投入電力を増加させるだけでは十分ではなく、ランプからの熱線に対する被処理体自体の吸収率を大きくする必要がある。
被処理体として例えばシリコンウエハを用いた場合を例にとると、熱線に対するこのシリコンウエハの吸収率は図4に示すグラフのようになる。図4に示すように、シリコンウエハの熱線の吸収率は熱線の波長及びシリコンウエハの温度に依存する。ここで熱線とは、前述したように紫外光線から遠赤外光線まで含む広い概念で用いている。
図示するように、波長が1.17μm程度までは、シリコンウエハの温度に関係なく、0.5〜0.7程度の高い吸収率を示しているが、波長が1.17μmよりも大きくなると、吸収率はシリコンウエハの温度に大きく依存し、温度が低い程、吸収率も小さくなる(透過率は大きくなる)。すなわち、シリコンウエハが270〜600℃の範囲で変化すると、それに応じて吸収率は0.1〜0.7の範囲で変化している。
従って、被処理体を高速昇温させるには、加熱ランプとしては、波長が1.17μm以下の熱線を出力するランプ、すなわち主として紫外光線を射出する紫外線放電ランプや主として可視光線を射出するハロゲンランプを用いるのが好ましいことが判明する。またこの種の加熱ランプを用いることにより熱線を有効に利用でき、加熱効率を向上させることができる。
また加熱効率を向上させるためには、上述のようにしてシリコンウエハを透過した熱線がこの下部の載置台10によってどの程度吸収されるかが大きな問題となり、次にこの載置台10の材質について検討する。
図5は熱線の波長に対するゲルマニウムとシリコンの透過率(≒1−吸収率)を示すグラフ、図6は熱線の波長に対する石英(SiO )と窒化アルミニウム(AlN)と炭化シリコン(SiC)の吸収率を示すグラフである。まず、図5に示すようにここではゲルマニウムは厚さを2mmに設定し、シリコンは厚さを2.5mmに設定している。図5から明らかなように、熱線の波長が0.77μm以下である可視光線の領域及び紫外光線の領域では透過率は10%以下で非常に小さくなっており、すなわち吸収率は90%以上で非常に大きくなっている。従って、加熱ランプとして紫外線放電ランプやハロゲンランプを用いた場合、或いは本実施例のように両ランプを混在させて設けた場合には、載置台10の材料としてゲルマニウム基板やシリコン基板を用いるのが好ましいことが確認できた。これによれば、シリコンウエハを透過した熱線を載置台10が効率良く吸収でき、この結果、この載置台10の熱でシリコンウエハを加熱することができるので、その分、加熱効率を向上させることができ、また、昇温速度も更に向上させることができる。
また図6に示すSiO (図6(A))、AlN(図6(B))、SiC(図6(C))の板厚は1.3〜3.4mmに設定されており、上記各材料は、波長が0.77μm以上の赤外光線以上の領域でなければ十分に大きな吸収率を示しておらず、紫外光線及び可視光線の領域では吸収率が非常に低い。従って、加熱ランプとして赤外線ランプを用いた場合には、載置台10の材料としてSiO 板、AlN板、SiC板を用いるのが好ましいことが確認できた。この場合、SiC等の他に、他の酸化物を含むセラミック材を用いてもよい。
また、加熱効率を向上させるには熱線に対する透過窓8の透過率も大きな問題となり、次にこの透過窓8について検討する。図7は熱線の波長に対するCaF (弗化カルシウム)[厚さ:3mm]とLiF(弗化リチウム)[厚さ:2mm]の透過率を示すグラフ、図8は熱線の波長に対する熔融石英(厚さ:1mm)の透過率を示すグラフ、図9は各種の母材に対してコーティング処理を行った時の赤外光線領域の透過率を示すグラフである。
まず、図7に示すように、CaF 板(図7(A))は0.2μmの紫外光線から8μmの赤外光線の範囲で、またLiF板(図7(B))は0.12μmの紫外光線から7μmの赤外光線の範囲で、共に90%前後の高い透過率を示しており、従って、加熱ランプの種類を問わず、紫外線放電ランプ、ハロゲンランプ、赤外光線ランプの全てのランプに対してこのCaF 板やLiF板を透過窓8として用いることができることを確認できた。特に、このCaF 板やLiF板は紫外光線の領域で高い透過率を示しており、従って、加熱ランプとして紫外線放電ランプを用いる場合に特に有効であることが確認できた。
また図8に示すように熔融石英の場合には、波長が略0.2μmの紫外光線の領域から波長が略4.0μmの赤外光線の領域に亘って透過率は80%前後の高い値を示しており、図7に示した材料と同様に、熔融石英も紫外光線の領域から赤外光線の領域の広い範囲に亘って透過窓8の材料として好ましいことが確認できた。特に、可視光線の領域(0.42〜0.77μm)の領域では吸収率が90%以上と非常に高くなっており、特に好ましいことが確認できた。この場合にも、先に説明したと同様に加熱効率を向上でき、また、昇温速度も更に向上させることができる。
次に、図9を参照して赤外線領域の光線について検討する。図9に示すように、ZnSe板、Si板、Ge板がそれぞれ単独の場合(コートなし)には、透過率はそれぞれ70%、50%、45%であってそれ程高くないが、以下に述べる両面コートをそれぞれに施すと、透過率は全て90〜100%の範囲内に大幅に上昇し、高い加熱効率を発揮できることが確認できた。すなわち、加熱ランプとして赤外線ランプを用いた場合には上記両面コートのZnSe板、Ge板、Si板を用いるのが好ましいことが確認できた。
ここでZnSe板の場合、熱線入射側の上面には母材のZnSeよりも低い屈折率のThF コーティング材を用い、熱線透過側の下面には母材のZnSeよりも高い屈折率のZeSeコーティングを用いた。また、Si板の場合、上面には母材のSiよりも低い屈折率のSiO コーティング材を用い、下面には母材のSiよりも高い屈折率のGeコーティング材を用いた。
また、Ge板の場合、上面には母材のGeよりも低い屈折率のSiO コーティング材を用い、下面には母材のGeよりも高い屈折率のGeコーティング材を用いた。
<第2実施例>
次に、本発明の第2実施例について説明する。上記第1実施例においては載置台10として1種類の材料を用いた場合を例にとって説明したが、これに限定されず、例えば主たる吸収波長帯域が互いに異なる特性を有する複数の吸収板を積層することにより載置台10を形成するようにしてもよい。図10は本発明の第2実施例の載置台の構造を示す構成図である。尚、載置台10以外の構成については図示省略している。この載置台10は、具体的には、紫外光線と可視光線とを主として吸収する可視光吸収板62と、赤外光線を主として吸収する赤外光吸収板64とよりなる2種類の吸収板を積層して構成されている。
図10においては、2種類の吸収62、64を用いた場合を示している。ここで各吸収板62、64を構成する材料としては、先に説明した図5及び図6も参照して、紫外光・可視光吸収板62としては例えばゲルマニウム、或いはシリコン板を用い、赤外光吸収板64としては例えば石英板、AlN板、或いはSiC板を用いることができる。尚、ここで赤外光とは、近赤外光線、赤外光線及び遠赤外光線を含む。
この場合には、用いた吸収板に相当する吸収波長帯域の熱線であって被処理体を透過した熱線を全て載置台10で吸収することができるので、その分、加熱効率を大幅に向上させることができ、また昇温速度を更に上げることができる。
また、1枚の吸収板がそれぞれの領域において独立的に吸収率が高い場合、3種類の吸収板を積層することもできる。また図10(A)において、各吸収板62、64の積層の順序は特に限定されない。
また図10(A)に示す場合には、2枚の吸収板62、64を重ね合わせて積層して載置台10を形成し、この下面側にペルチェ素子24Aを接合しているが、これに限定されず、図10(B)に示すように各吸収板62、64の相互間にペルチェ素子24Aを分散状態で介在させるようにしてもよい。この場合、アニール処理後にウエハ温度を高速降温させるためには、各ペルチェ素子24Aの上面側を吸熱状態とし(冷熱を発生)、下面側を放熱(発熱)状態とするように各ペルチェ素子24Aに電流を流すようにする。この時、当然のこととして熱媒体ジャケット36には冷却用の熱媒体、例えば冷却水を流す。
これに対して、ウエハの高速昇温時には上記とは逆であり、各ペルチェ素子24Aの上面側を放熱(発熱)状態とし、下面側を吸熱状態(冷熱を発生)とするように各ペルチェ素子24Aに電流を流すようにする。この時、当然のこととして熱媒体ジャケット36に加熱用の熱媒体を流す。図10(B)に示す構成は、吸収板の使用枚数が3枚の場合にも適用することができる。
このように構成することにより、熱線の吸収波長帯域が異なる吸収板62、64間の熱伝導率を向上させることができるので、結果として、ウエハの加熱効率及び降温効率を向上させることができる。
<第3実施例>
次に本発明の第3実施例について説明する。
図11は本発明の第3実施例を示す断面構成図である。尚、図1中と同一構成部分については同一符号を付してその説明を省略する。ここでは図11に示すように、処理容器4の底板22、或いは熱媒体ジャケット36の上面に、例えばアルミニウムメッキよりなる反射板70を全面に亘って形成している。そして、この反射板70の上にペルチェ素子24Aを介して載置台10を設けるようにしている。
この実施例によれば、ウエハWや載置台10を透過した熱線をこの反射板70で上方に反射させて再度ウエハWの加熱に寄与できるので、その分、加熱効率を向上させることができ、従って、更に速度の大きい高速昇温を行うことができる。尚、この実施例の載置台10に対しても、図10に示す第2実施例を採用できるのは勿論であり、反射板70は載置台10とペルチェ素子24Aの間に設置されてもよい。また、加熱ランプ42Aの種類は、ここでも問わず、紫外線放電ランプ、ハロゲンランプ、赤外線ランプの内の1種、または2種以上を用いることができる。
<第4実施例>
次に本発明の第4実施例について説明する。
図12は本発明の第4実施例を示す断面構成図である。尚、図1中と同一構成部分については同一符号を付してその説明を省略する。
この第4実施例では、加熱ランプ42Aとして少ない数の、図示例では1つの大型の大電力の紫外線放電ランプを用いてウエハを多量の熱線で粗く加熱するようになっている。この場合、ウエハWの昇降時及び降温時には、各ペルチェ素子24Aの電流をゾーン毎に、或いは個別に微細に制御することによりウエハ温度の面内均一性を高く維持する。またこの大型の紫外線放電ランプよりなる加熱ランプ42Aの電力は、前述したようにデューティ制御によりコントロールされる。
また、ここでは底板22に円筒状の脚部22Aを設けて、この高さ全体を大きくしている。そして、この底板22の上部の外周側に被処理体回転保持台74を設けて、必要時にウエハWを持ち上げた状態でこれを回転し得るようになっている。具体的には、この被処理体回転保持台74は例えばアルミニウム等により円筒体状に成形されて、載置台10及び底板22の上部の外周側に所定の間隔を隔てて配置されている。そして、この被処理体回転保持台74の上端部は、内側へ略直角に折り曲げられており、その先端部に適当数の保持片76が水平方向に延びるようにして設けられ、必要に応じてここではウエハWの周辺部の下面を保持できるようになっている。またこの被処理体回転保持台74の下端部の内側には、その周方向に沿って永久磁石78が多数配列させて設けられている。また、上記底板22の脚部22Aには、上記永久磁石78に対向させて回転用の電気コイル80がその周方向に沿って設けられており、この電気コイル80に電流を流すことにより回転磁回を発生させて、これに磁気結合される上記永久磁石78側、すなわち被処理体回転保持台74を回転し得るようになっている。
また上記回転用の電気コイル80の下部には、浮上用の電気コイル82がその周方向に沿って形成されており、必要に応じてこの浮上用の電気コイル82に通電するようことにより上記永久磁石78との間で磁気的に反発力を生ぜしめて、上記被処理体回転保持台74を上方へ浮かせることができるようになっている。尚、図示されていないが、この被処理体回転保持台74にはエンコーダ等が設けられており、その回転数や回転位置を検知し、且つ制御できるようになっている。また、載置台10の周辺部には、上記保持片76の上下移動を許容する図示しない切り欠き等が設けられている。
さてこのような熱処理装置にあっては、ウエハWを加熱昇温し、アニール処理を行う時には、浮上用の電気コイル82に通電をして永久磁石78との間に反発力を生ぜしめて保持片76でウエハWを支持した状態で被処理体回転保持台74を浮上させる。これにより、ウエハWは載置台10の上面から離間して浮上した状態となる。尚、この場合、載置台10の材料としては、上述の各実施例において記載されたものとは異なり、ランプからの熱線を反射してウエハ側に戻すような材料が選ばれることが望ましい。このような材料として、例えば紫外光・可視光・赤外光に対するAl材料、可視光・紫外光に対するAg/Au材料、またはこれらに反射増強コーティングを加えたものなどが挙げられる。
そして、回転用の電気コイル80に通電することにより回転磁回が生じて被処理体回転保持台74が回転する。このように、ウエハWは載置台10の上面より浮上して回転された状態で加熱昇温されてアニール処理されることになる。尚、この際、ペルチェ素子24Aの上面を発熱させて温度制御を行うようにしてもよい。これにより、熱容量の小さいウエハのみを加熱昇温すれば良いことになり、さらなる高速昇温が可能となる。
またアニール処理が終了し、ウエハWを冷却する場合には、加熱ランプ42Aへの通電を断ち、上記浮上用の電気コイル82及び回転用の電気コイル80への通電をそれぞれ切って被処理体回転保持台74を降下させ、ウエハWを載置台10の上面に接した状態でこの冷却を行う。この時、前述したようにペルチェ素子24Aの上面は、冷却を発生するように電流を流し、これによりウエハWを高速降温させることができる。
またここでは保持片76は、ウエハWの周辺部を保持して持ち上げるようにしたが、これに限定されず、載置台10をペルチェ素子24Aの上面上に載置するだけの構造とし、保持片76は載置台10の周辺部を保持して持ち上げるようにしてもよい。
以上の各実施例では、熱処理としてアニール処理を例にとって説明したが、これに限定されず、他の熱処理、例えば成膜処理、酸化拡散処理、改質処理等の場合にも本発明を適用できるのは勿論である。
またここでは、被処理体としてシリコンウエハを例にとって説明したが、化合物半導体等の他の半導体ウエハ、LCD基板、ガラス基板等を処理する場合にも本発明を適用できるのは勿論である。
本発明の熱処理装置の第1実施例を示す断面構成図である。 加熱手段の加熱ランプの配列の一例を示す平面図である。 熱電変換手段を構成するペルチェ素子の配列の一例を示す平面図である。 熱線の波長に対するシリコンウエハの吸収率を示すグラフである。 熱線の波長に対するゲルマニウムとシリコンの透過率を示すグラフである。 熱線の波長に対する石英と窒化アルミニウム(AlN)とSiCとの吸収率を示すグラフである。 熱線の波長に対するCaF (弗化カルシウム)とLiF(弗化リチウム)の透過率を示すグラフである。 熱線の波長に対する熔融石英の透過率を示すグラフである。 各種の母材に対してコーティング処理を行った時の赤外光線領域の透過率を示すグラフである。 本発明の第2実施例の載置台の構造を示す構成図である。 本発明の第3実施例を示す断面構成図である。 本発明の第4実施例を示す断面構成図である。
符号の説明
2 熱処理装置
4 処理容器
8 透過窓
10 載置台
24 熱電変換手段
24A ペルチェ素子
28 ペルチェ制御部
36 熱媒体ジャケット
40 加熱手段
42A,42B 加熱ランプ
46 ランプ制御部
62 可視光吸収板
64 赤外光吸収板
W 半導体ウエハ(被処理体)

Claims (12)

  1. 天井部に透過窓が設けられて内部が排気可能になされた処理容器内に設けられた載置台上に被処理体を載置し、前記処理容器の上方に設けた複数の加熱ランプを有する加熱手段からの熱線を前記透過窓に透過させて前記被処理体を加熱昇温することにより前記被処理体に400℃以上の高温で所定の熱処理を施すようにした熱処理装置において、
    前記載置台に少なくとも高速降温を可能とするための熱電変換手段を設け、前記熱電変換手段の下面に、内部に熱媒体を流すための熱媒体ジャケットを設け、
    前記複数の加熱ランプは、紫外光線を主として射出する紫外線放電ランプを含み、前記紫外線放電ランプの電力制御は、デューティ制御により行われるように構成したことを特徴とする熱処理装置。
  2. 前記載置台は、紫外光線を主として吸収する紫外光吸収板を含むことを特徴とする請求項1記載の熱処理装置。
  3. 前記載置台は、可視光線を主として吸収する可視光吸収板と、赤外光線を主として吸収する赤外光吸収板とよりなる群の内から選択された1種以上の吸収板を更に含むことを特徴とする請求項2記載の熱処理装置。
  4. 前記吸収板を2種以上用いた場合には前記吸収板間に前記熱電変換手段が介在させて設けられることを特徴とする請求項3記載の熱処理装置。
  5. 前記透過窓は、前記加熱ランプから射出する光線に対する吸収率が少なくなるように形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の熱処理装置。
  6. 前記被処理体の昇温時には、前記熱電変換手段には、降温時とは逆方向に電流が流されることを特徴とする請求項1乃至5のいずれか一項に記載の熱処理装置。
  7. 前記熱電変換手段は、複数の熱電変換素子を含み、該熱電変換素子は複数のゾーンに区画されると共に、前記各ゾーン毎に温度制御が可能になされていることを特徴とする請求項1乃至6のいずれか一項に記載の熱処理装置。
  8. 前記熱電変換素子は、少なくとも前記被処理体の周辺部に対応する前記載置台の周辺部に設けられることを特徴とする請求項7記載の熱処理装置。
  9. 前記熱電変換素子に電流を流さない時に、前記熱電変換素子の起電力により前記載置台の温度を測定するように構成したことを特徴とする請求項7または8記載の熱処理装置。
  10. 前記熱電変換素子はペルチェ素子よりなることを特徴とする請求項7乃至9のいずれか一項に記載の熱処理装置。
  11. 前記複数の加熱ランプは、可視光線を主として射出するハロゲンランプと、赤外光線を主として射出する赤外線ランプとよりなる群の内から選択された1種以上のランプを更に含むことを特徴とする請求項1乃至10のいずれか一項に記載の熱処理装置。
  12. 前記複数の加熱ランプが紫外線放電ランプとハロゲンランプとよりなる場合には、前記被処理体の中央部に対しては主として前記紫外線放電ランプからの紫外光線を照射し、前記被処理体の周辺部には主として前記ハロゲンランプからの可視光線を照射することを特徴とする請求項11記載の熱処理装置。
JP2003332482A 2003-09-24 2003-09-24 熱処理装置 Expired - Fee Related JP4442171B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003332482A JP4442171B2 (ja) 2003-09-24 2003-09-24 熱処理装置
PCT/JP2004/013922 WO2005029561A1 (ja) 2003-09-24 2004-09-24 熱処理装置
KR1020067005788A KR100833386B1 (ko) 2003-09-24 2004-09-24 열처리 장치
US10/573,048 US7978963B2 (en) 2003-09-24 2004-09-24 Thermal processing apparatus
CNB2004800277004A CN100547737C (zh) 2003-09-24 2004-09-24 热处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332482A JP4442171B2 (ja) 2003-09-24 2003-09-24 熱処理装置

Publications (2)

Publication Number Publication Date
JP2005101237A JP2005101237A (ja) 2005-04-14
JP4442171B2 true JP4442171B2 (ja) 2010-03-31

Family

ID=34373092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332482A Expired - Fee Related JP4442171B2 (ja) 2003-09-24 2003-09-24 熱処理装置

Country Status (5)

Country Link
US (1) US7978963B2 (ja)
JP (1) JP4442171B2 (ja)
KR (1) KR100833386B1 (ja)
CN (1) CN100547737C (ja)
WO (1) WO2005029561A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808425B2 (ja) * 2005-03-22 2011-11-02 光洋サーモシステム株式会社 熱処理装置
US20060242967A1 (en) * 2005-04-28 2006-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Termoelectric heating and cooling apparatus for semiconductor processing
JP2006332541A (ja) * 2005-05-30 2006-12-07 Ushio Inc 光加熱装置
CN100557773C (zh) * 2005-09-21 2009-11-04 东京毅力科创株式会社 热处理装置
JP5055756B2 (ja) * 2005-09-21 2012-10-24 東京エレクトロン株式会社 熱処理装置及び記憶媒体
JP4940635B2 (ja) * 2005-11-14 2012-05-30 東京エレクトロン株式会社 加熱装置、熱処理装置及び記憶媒体
JP2007258286A (ja) * 2006-03-22 2007-10-04 Tokyo Electron Ltd 熱処理装置、熱処理方法及び記憶媒体
US7378618B1 (en) * 2006-12-14 2008-05-27 Applied Materials, Inc. Rapid conductive cooling using a secondary process plane
JP4890313B2 (ja) * 2007-03-29 2012-03-07 株式会社アルバック プラズマcvd装置
TW200913798A (en) * 2007-09-14 2009-03-16 Advanced Display Proc Eng Co Substrate processing apparatus having electrode member
WO2010150590A1 (ja) * 2009-06-24 2010-12-29 キヤノンアネルバ株式会社 真空加熱冷却装置および磁気抵抗素子の製造方法
JP5582819B2 (ja) * 2010-02-24 2014-09-03 東京エレクトロン株式会社 処理装置
CN101773917B (zh) * 2010-03-05 2015-01-07 上海集成电路研发中心有限公司 硅片清洗装置及方法
JP5437910B2 (ja) * 2010-05-18 2014-03-12 株式会社Kelk 温調装置
CN102375175B (zh) * 2010-08-06 2014-08-27 北京北方微电子基地设备工艺研究中心有限责任公司 一种均光板及应用该均光板的基片加工设备
US8461674B2 (en) 2011-09-21 2013-06-11 Lam Research Corporation Thermal plate with planar thermal zones for semiconductor processing
US9324589B2 (en) 2012-02-28 2016-04-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
US9634175B2 (en) * 2013-01-09 2017-04-25 Ascent Solar Technologies, Inc. Systems and methods for thermally managing high-temperature processes on temperature sensitive substrates
JP2014134423A (ja) * 2013-01-09 2014-07-24 Yamato Scale Co Ltd 組合せ秤
US20140318455A1 (en) * 2013-04-26 2014-10-30 Varian Semiconductor Equipment Associates, Inc. Low emissivity electrostatic chuck
US20140356985A1 (en) 2013-06-03 2014-12-04 Lam Research Corporation Temperature controlled substrate support assembly
JP6405556B2 (ja) 2013-07-31 2018-10-17 リンテック株式会社 保護膜形成フィルム、保護膜形成用シートおよび検査方法
US20150163860A1 (en) * 2013-12-06 2015-06-11 Lam Research Corporation Apparatus and method for uniform irradiation using secondary irradiant energy from a single light source
JP5891255B2 (ja) * 2014-03-17 2016-03-22 株式会社Screenホールディングス 熱処理装置
KR101796626B1 (ko) * 2014-05-29 2017-11-13 에이피시스템 주식회사 기판 열처리 장치
TW201639063A (zh) * 2015-01-22 2016-11-01 應用材料股份有限公司 批量加熱和冷卻腔室或負載鎖定裝置
KR20160115398A (ko) * 2015-03-27 2016-10-06 에이피시스템 주식회사 히터 블록 및 기판 처리 장치
US20160379854A1 (en) * 2015-06-29 2016-12-29 Varian Semiconductor Equipment Associates, Inc. Vacuum Compatible LED Substrate Heater
JP6662742B2 (ja) * 2016-09-26 2020-03-11 株式会社フェローテックホールディングス 温調装置およびペルチェモジュール
CN108594883A (zh) * 2018-03-01 2018-09-28 常熟市虞华真空设备科技有限公司 高精度温控箱
CN108538763B (zh) * 2018-04-24 2020-05-15 京东方科技集团股份有限公司 一种加热组件、封装装置和封装方法
KR102322101B1 (ko) * 2021-06-24 2021-11-04 주식회사 자이시스 반도체 제조 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215816A (ja) 1985-07-12 1987-01-24 Matsushita Electric Ind Co Ltd 赤外線加熱装置
JPH0410410A (ja) * 1990-02-02 1992-01-14 Sharp Corp 薄膜製造装置
JP3091804B2 (ja) 1993-03-16 2000-09-25 日本碍子株式会社 半導体ウエハー用サセプターおよび半導体ウエハーの温度測定方法
JP2875768B2 (ja) * 1994-11-30 1999-03-31 新日本無線株式会社 半導体基板の熱処理方法
US5667622A (en) 1995-08-25 1997-09-16 Siemens Aktiengesellschaft In-situ wafer temperature control apparatus for single wafer tools
JP2001085408A (ja) 1999-09-13 2001-03-30 Hitachi Ltd 半導体集積回路装置の製造方法および製造装置
JP2001110793A (ja) * 1999-10-12 2001-04-20 Dainippon Screen Mfg Co Ltd 熱処理装置および基板処理装置
JP4820038B2 (ja) * 1999-12-13 2011-11-24 セメクイップ, インコーポレイテッド イオン注入イオン源、システム、および方法
JP4058231B2 (ja) 2000-11-13 2008-03-05 株式会社東芝 半導体装置の製造方法
JP2002151487A (ja) * 2000-11-14 2002-05-24 Tokyo Electron Ltd 基板処理装置
JP2002299319A (ja) * 2001-03-29 2002-10-11 Hitachi Kokusai Electric Inc 基板処理装置
JP3715228B2 (ja) * 2001-10-29 2005-11-09 大日本スクリーン製造株式会社 熱処理装置
JP2003209054A (ja) 2001-11-12 2003-07-25 Dainippon Screen Mfg Co Ltd 基板の熱処理方法および熱処理装置
US7255899B2 (en) 2001-11-12 2007-08-14 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus and heat treatment method of substrate
DE10328660B3 (de) * 2003-06-26 2004-12-02 Infineon Technologies Ag Verfahren zum Bestimmen der Temperatur eines Halbleiterwafers
JP4765328B2 (ja) * 2004-04-16 2011-09-07 東京エレクトロン株式会社 被処理体の処理装置
JP2007005347A (ja) * 2005-06-21 2007-01-11 Tokyo Electron Ltd 熱処理装置
JP4940635B2 (ja) * 2005-11-14 2012-05-30 東京エレクトロン株式会社 加熱装置、熱処理装置及び記憶媒体

Also Published As

Publication number Publication date
KR100833386B1 (ko) 2008-05-28
WO2005029561A1 (ja) 2005-03-31
CN100547737C (zh) 2009-10-07
US20110002674A1 (en) 2011-01-06
US7978963B2 (en) 2011-07-12
JP2005101237A (ja) 2005-04-14
KR20060080216A (ko) 2006-07-07
CN1856863A (zh) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4442171B2 (ja) 熱処理装置
KR101859344B1 (ko) 상부 기판 지지 어셈블리를 갖는 열 처리 챔버
JP5055756B2 (ja) 熱処理装置及び記憶媒体
JP5615276B2 (ja) シャワーヘッドを備える急速熱処理チャンバ
JP4940635B2 (ja) 加熱装置、熱処理装置及び記憶媒体
TW303498B (ja)
US8548311B2 (en) Apparatus and method for improved control of heating and cooling of substrates
US6891131B2 (en) Thermal processing system
JP6239559B2 (ja) 放射加熱された基板のクールダウンを向上させるための装置および方法
KR20110004433A (ko) 고온계용 열 공급원 반사 필터를 포함하는 장치
JP2007258286A (ja) 熱処理装置、熱処理方法及び記憶媒体
US20110174790A1 (en) Annealing apparatus
TWI489554B (zh) 在dsa類型系統中用於矽雷射退火的適合短波長光
TW201730370A (zh) 用於減少快速熱處理的污染之影響的設備
WO2014204731A1 (en) Light pipe window structure for thermal chamber applications and processes
JP2010034491A (ja) アニール装置
JP2012178576A (ja) 熱処理装置及び記憶媒体
JP2002324764A (ja) 基板の熱処理装置
WO2005052988A2 (en) Focused photon energy heating chamber
WO2009157484A1 (ja) アニール装置
JP4409655B2 (ja) 熱処理装置
TW202418442A (zh) 用於基板處理之反射板
JP2005310761A (ja) 冷却装置、これを用いた画像表示パネルの製造装置および製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees