KR20060048452A - 조명광학계, 노광장치 및 디바이스의 제조방법 - Google Patents

조명광학계, 노광장치 및 디바이스의 제조방법 Download PDF

Info

Publication number
KR20060048452A
KR20060048452A KR1020050053329A KR20050053329A KR20060048452A KR 20060048452 A KR20060048452 A KR 20060048452A KR 1020050053329 A KR1020050053329 A KR 1020050053329A KR 20050053329 A KR20050053329 A KR 20050053329A KR 20060048452 A KR20060048452 A KR 20060048452A
Authority
KR
South Korea
Prior art keywords
illumination
unit
light
optical system
optical element
Prior art date
Application number
KR1020050053329A
Other languages
English (en)
Other versions
KR100681852B1 (ko
Inventor
토시히코 츠지
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20060048452A publication Critical patent/KR20060048452A/ko
Application granted granted Critical
Publication of KR100681852B1 publication Critical patent/KR100681852B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서,
상기 피조명면을 소정의 편광상태에서 변형조명생성하기 위한 변형조명 생성부를 포함하고, 상기 변형조명생성부는, 원형편광을 소정방향의 직선편광으로 변환하는 λ/4위상판을 포함하는 λ/4위상판유닛과; 상기 피조명면과 실질적으로 공역의 관계에 배치되고, 상기 λ/4위상판에 대응해서 사용되고, 상기 직선편광이 입사되면, 소정의 조도분포를 생성하는 회절광학소자를 포함한 회절광학소자유닛을 포함하는 것을 특징으로 하는 조명광학계이다.

Description

조명광학계, 노광장치 및 디바이스의 제조방법{ILLUMINATION OPTICAL SYSTEM, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD}
도 1은 본 발명의 제1 실시예에 의한 노광장치의 개략 블럭도
도 2는 도 1에 도시된 노광장치의 변형조명생성수단과 변형조명생성수단이 생성하는 조도분포의 개략사시도
도 3은 도 2에 도시된 변형조명생성수단의 λ/4위상판의 작용을 설명하기 위한 개략사시도
도 4a 내지 도 4c는 도 2에 도시된 변형조명생성수단의 회절광학소자의 정면도 및 조도분포도
도 5a 및 도 5b는 도 2에 도시된 회절광학소자에 입사하는 다광속 스폿을 도시한 개략 평면도
도 6a 및 도 6b는 도 1에 도시된 사출각도보존 광학소자의 발산각도를 변경함으로써 변형조명생성수단에 있어서의 조명영역의 크기를 변경하는 모습을 설명하기 위한 개략단면도 및 평면도
도 7a, 도 7b 및 도 7c는 도 1에 도시된 사출각도보존 광학소자의 발산각도를 변경함으로써 변형조명생성수단에 있어서의 조명영역의 크기를 변경하는 모습을 설명하기 위한 개략단면도 및 평면도.
도 8a, 도 8b 및 도 8c는 도 1에 도시된 사출각도보존 광학소자의 발산각도를 변경함으로써하 변형조명생성수단에 있어서의 조명영역의 크기를 변경하는 모습을 설명하기 위한 개략단면도 및 평면도
도 9는 본 발명의 제2 실시예에 의한 노광장치의 개략 블럭도
도 10은 도 9에 도시된 변형조명생성수단이 윤대조명을 형성하는 모습을 설명하기 위한 개략평면도
도 11은 도 9에 도시된 변형조명생성수단이 이중극 조명을 형성하는 모습을 설명하기 위한 개략 평면도
도 12는 도 9에 도시된 변형조명생성수단이 이중극 조명을 형성하는 모습을 설명하기 위한 개략 평면도
도 13은 도 9에 도시된 변형조명생성수단이 사중극 조명을 형성하는 모습을 설명하기 위한 개략 평면도
도 14는 도 9에 도시된 변형조명생성수단이 사중극 조명을 형성하는 모습을 설명하기 위한 개략 평면도
도 15는 도 9에 도시된 변형조명생성수단이 사중극 조명을 형성하는 모습을 설명하기 위한 개략 평면도
도 16은 도 13에 도시된 사중극 조명의 조도분포를 다르게 형성하는 모습을 설명하기 위한 개략 평면도
도 17은 도 13에 도시된 사중극 조명의 조도분포를 다르게 형성하는 다른 모습을 설명하기 위한 개략 평면도
도 18은 디바이스(예를 들면, IC나 LSI 등의 반도체칩, LCD, CCD 등)의 제조를 설명하기 위한 플로차트
도 19는 도 18에 있어서의 스텝 4의 웨이퍼 프로세스의 상세한 플로차트.
<도면의 주요부분에 대한 부호의 설명>
1, 1a: 노광장치 100, 100a: 조명장치
104: 편향광학계 106:빔정형광학계
108: 편광제어수단 110: 위상제어수단
120: 사출각도보존광학소자 126: 릴레이광학계
128: 다광속발생수단 130: 변형조명생성수단
131: λ/4위상판유닛 132: 회절광학소자유닛
160: 릴레이광학계 162: 애퍼쳐
166: 줌 광학계 170: 다광속발생수단
172: 개구조리개 174: 조사수단
200: 레티클 300: 투영광학계
400: 플레이트
본 발명은, 일반적으로 조명광학계에 관한 것으로, 특히, 반도체 웨이퍼용 단결정 기판, 액정 디스플레이용 유리기판 등의 피처리체를 노광하는 조명광학계, 노광장치 및 디바이스의 제조방법에 관한 것이다.
근년의 전자기기의 소형화 및 박형화의 요청으로부터, 이들 전자기기에 탑재되는 반도체소자 등의 디바이스의 미세화에의 요구는 더욱 더 높아지고 있다. 투영노광장치는, 이들 디바이스의 제작에 일반적으로 사용되는 포토리소그래피의 공정에 필수의 장치이고, 레지스트가 도포되어 있는 실리콘 웨이퍼나 유리판 등의 기판 상에 마스크(레티클)의 패턴을 노광한다. 투영노광장치의 해상도(R)는, 다음식으로 주어진다.
R = k1 × λ / NA (1)
여기서, λ는 노광광원의 파장, NA는 투영광학계의 개구수, k1 은 현상공정의 공정정수이다.
식 (1)은, 파장을 짧게 하면 할수록, NA를 올리면 올릴수록, 해상도는 향상되는 것을 나타낸다. 그러나, 단파장화 될수록 유리재료의 투과율이 저하하고, NA에 반비례하여 초점심도("DOF")가 작아지며, NA가 클수록 렌즈의 설계 및 제조를 곤란하게 하는 등의 문제가 있다.
따라서, 공정정수(k1)의 값을 작게함으로써, 미세화를 도모하는 해상도강화기술("RET" Resolution Enhanced Technology)이 근년 제안되고 있다. RET의 하나는, 경사입사 조명법 또는 축외 조명법으로도 일컬어지는, 변형 조명법이다. 상기 변형 조명법은, 광학계의 광축상에 차광판이 있는 개구 조리개를, 균일한 면광원을 형성하는 광적분기(optical integrator)의 사출면 근방에 배치하고, 레티클에 노 광광을 경사지게 입사시킨다. 변형 조명법은, 개구조리개의 형상에 따라, 윤대 조명법, 사중극 조명법 등이 포함된다.
상 콘트라스트를 향상시키기 위해서 변형조명을 소망의 방향으로 직선편광만으로 구성하는 것이 종래에 제안되어오고 있다. 예를 들면, 일본국 특개평7-183201호 공보 및 일본국 특개평 6-053120호 공보를 참조한다. 일본국 특개평7-183201호 공보에서는, 소망의 편광방향과는 다른 광을 필터로 제거하고 있다. 일본국 특개평 6-053120호 공보는,직선편광화한 광을 생성하기 위해 미리 직선편광자를 이용하는 방법 및 소망한 방향으로 직선편광을 생성하기 위해 λ/2위상판을 배치하는 방법을 개시하고 있다.
기타 종래 기술로서는, 일본국 공개특허 2001-284212호 공보, 일본국 공개특허 2001-284237호 공보, 일본국 특개평 6-275493호 공보, 일본국 특개평 11-176721호 공보, 일본국 특허 제 3246615호 공보가 있다.
그러나, 일본국 특개평 7-183201호 공보는, 소망한 편광방향 이외의 광을 제거해서, 조명효율이 악화되고, 처리량(throughput)을 저하시킨다. 일본국 특개평 6-053120호 공보는, 조명광학계를 구성하는 광학소자에 의해 발생하는 위상 오프셋이 있으면, λ/2위상판을 통과한 광은 직선편광이 되는 대신에 타원편광이 되어, 상 콘트라스트가 저하한다고 하는 문제가 발생한다.
본 발명은, 조명효율을 급격하게 저하시키지 않고, 임의의 변형조명을 소망한 방향으로 직선편광으로 형성하는 조명광학계, 조명광학계를 가진 노광장치 및 상기 노광장치를 이용한 디바이스의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 측면에 의한 조명광학계는, 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서, 상기 피조명면을 소정의 편광상태에서 변형 조명하기 위한 변형조명 생성부를 포함하고, 상기 변형조명생성부는, 원형편광을 소정방향의 직선편광으로 변환하는 λ/4위상판을 포함하는 λ/4위상판유닛과, 상기 피조명면과 실질적으로 공역의 관계에 배치되고, 상기 λ/4위상판에 대응해서 사용되고, 상기 직선편광이 입사되면, 소정의 조도분포를 생성하는 회절광학소자를 포함한 회절광학소자유닛을 포함하는 것을 특징으로 하는 조명광학계이다.
본 발명의 다른 측면에 의한 조명광학계는, 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서, 상기 피조명면에 대해서 실질적으로 푸리에 변환의 관계를 가지는 소정면에, 상기 광을 회절하여 소정의 조도분포를 형성하는 회절광학소자유닛과, 상기 회절광학소자를 조명하기 위한 광학유닛과, 상기 광학유닛에 의해 상기 회절광학소자상의 조명영역을 변경하는 조명영역변경유닛을 가지는 것을 특징으로 하는 조명광학계이다.
본 발명의 또 다른 측면에 의한 조명광학계는, 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서, 상기 피조명면에 대해서 실질적으로 푸리에 변환의 관계를 가진 소정면에, 상기 광을 회절하여 소정의 조도분포를 생성하는 회절광학소자유닛과, 상기 광원으로부터의 광을 이용하여 상기 회절광학소자유닛을 조명하기 위한 광학유닛과, 상기 회절광학소자유닛의 근방에 배치된 편광유닛을 포 함하고, 상기 회절광학소자유닛은, 상기 조도분포가 다른 영역을 각각 형성하기 위한 복수의 회절광학소자를 포함하고, 상기 편광유닛은, 상기 복수의 회절광학소자의 각각에 대응하는 복수의 편광 부재를 포함하고, 상기 복수의 편광부재는, 각각에 입사한 광을 서로 다른 방향으로 직선편광된 광으로 변환하는 것을 특징으로 하는 조명광학계이다.
본 발명의 다른 측면에 의한 노광장치는, 패턴을 가진 레티클을 조명하는 상기 조명광학계와, 상기 조명광학계에 의해 조명된 상기 레티클의 상기 패턴을 피노광체에 투영 하는 투영광학계를 포함하는 것을 특징으로 하는 노광장치이다.
본 발명의 다른 측면에 의한 디바이스의 제조방법은, 상기 노광장치를 이용하여 피처리체를 노광하는 스텝과, 상기 피처리체를 현상하는 스텝을 포함하는 것을 특징으로 하는 디바이스의 제조방법이다. 상기 노광장치의 작용과 마찬가지의 작용을 실행하는 디바이스의 제조방법을 위한 청구항은, 중간 및 최종 결과물인 디바이스에도 그 효력이 미친다. 이러한 디바이스는, LSI나 VLSI 등의 반도체칩, CCD, LCD, 자기센서, 박막자기헤드 등을 포함한다.
본 발명의 기타 목적 및 부가적인 특징은, 이하 첨부 도면을 참조하면서 설명되는 바람직한 실시예에 의해 자명해질 것이다.
<바람직한 실시 예의 상세한 설명>
<제1 실시예>
이하, 본 발명의 제1 실시예에 의한 조명장치(100)를 구비한 노광장치(1)에 대해, 첨부도면을 참조하면서 설명한다. 도 1은, 노광장치(1)의 개략 블럭도이다. 노광장치(1)는, 레티클(200)의 회로패턴을 소정의 방식으로 피노광체(플레이트) (400)에 노광하는 스텝·앤드·스캔 투영노광장치("스캐너")이다. 물론, 본 발명은, 스텝·앤드·리피트 투영노광장치("스텝퍼")에도 적용할 수 있다. 노광장치(1)는, 서브 미크론이나 쿼터 미크론의 리소그래피 공정에 적합하다. 여기서, "스텝·앤드·스캔 방식"이란 레티클에 대해서 웨이퍼를 연속적으로 스캔하고, 1 쇼트의 노광 종료후, 웨이퍼를 스텝이동하여, 쇼트될 다음의 노광영역으로 이동함으로써 레티클 패턴을 웨이퍼에 노광하는 노광방법이다. "스텝·앤드·리피트 방식"이란 웨이퍼상의 일괄노광마다, 웨이퍼를 스텝 이동하여 다음 쇼트의 노광영역으로 이동하는 노광방법의 또 하나의 모드이다.
노광장치(1)는, 조명장치(100), 레티클(200), 투영광학계(300) 및 플레이트 (400)를 포함한다.
조명장치(100)는, 전사될 회로패턴이 형성된 레티클(200)을 조명하고, 광원(102), 조명광학계(104 내지 174) 및 연산처리장치를 가지는 드라이버(150)를 포함한다.
광원(102)은, 예를 들면, 파장 약 193 nm의 ArF 엑시머 레이져, 파장 약 248 nm의 KrF 엑시머 레이져 등을 사용할 수 있다. 레이저의 종류는 엑시머 레이져로 한정되지 않고, 레이저유닛의 개수도 한정되지 않는다. 광원(102)에 적용가능한 광원은 레이저로 한정되는 것은 아니고, 1개 또는 복수의 수은램프나 크세논램프 등의 램프도 사용 가능하다.
조명광학계는, 소정의 조도를 확보하면서 소정의 편광상태로 레티클(200)에 변형조명을 형성하는 광학계이며, 상기 조명광학계는, 편향광학계(104), 빔정형광학계(106), 편광제어수단(108), 위상제어수단(110), 사출각도보존광학소자(120), 릴레이광학계(126), 다광속발생수단(128), 변형조명생성수단(130), 릴레이광학계 (160), 애퍼쳐(162), 줌 광학계(166), 다광속발생수단(170), 개구조리개(172) 및 조사수단(174)을 포함한다.
편향광학계(104)는, 광원(102)로부터의 광을 빔정형 광학계(106)에 도광한다. 빔정형광학계(106)는, 예를 들면, 복수의 원통형렌즈를 구비한 빔액스팬더 등을 사용할 수 있고 레이저광원으로부터의 평행광의 단면형상의 치수의 종횡비를 소망한 값으로 변환하고(예를 들면, 단면형상을 직사각형으로부터 정사각형으로 하는 등), 이에 의해 빔형상을 소망한 것으로 성형한다. 빔정형광학계(106)는, 다광속 발생수단(128)을 조명하는데 필요한 크기와 발산각을 가지는 광속을 형성한다.
편광제어수단(108)은, 직선편광자 등을 포함하고, 불필요한 편광성분을 제거하는 기능을 한다. ArF 엑시머 레이져 등의 레이저를 광원(102)이 사용하는 경우, 사출되는 광속은 거의 직선편광이 된다. 편향광학계(104)에 의해 편광면이 혼란되는 경우에도, 직선편광이 광을 지배하면서 편광제어수단(108)에 입사한다. 편광제어수단(108)은, 투과 가능한 직선편광 방향과 입사광의 지배적인 편광방향을 일치시키도록, 입사광의 불필요한 편광성분을 제거하는 기능을 한진다. 편광제어수단(108)에서 차광되는 편광을 최소화함으로써, 효율적으로 소망한 직선편광을 도출할 수 있다.
위상제어수단(110)은, 편광제어수단(108)에 의해 직선편광된 광에 λ/4의 위 상차이를 주어 직선편광된 광을 원형편광으로 변환한다. 위상제어수단(110)은,직선편광을 완전한 원형편광 또는 거의 원형편광으로 변환하는 위상판으로서 기능하고, λ/4위상판을 포함한다. 도 1에서는, 광이 편광제어수단(108)을 통과하면, 편광제어수단(108)의 우측의 지면에 평행한 편광성분만이 위상제어수단(110)에 입사하여, 위상제어수단(110)의 우측에서 원형편광이 된다. 그러나, 이것은 하나의 실시예일 뿐이며, 위상제어수단(110)의 좌측에서 편광방향이 지면에 평행인 것은 필수는 아니다. 위상제어수단(110)은, 광학계에 의해 발생한 위상차이에 의한 영향에 의해 소망한 편광상태의 유효광원분포를 얻을 수 없는 경우에, 그 위상 편차량을 상쇄하도록 위상을 조정한다.
사출각도보존광학소자(120)는, 광을 일정한 발산각도로 사출하고, 예를 들면, 복수의 마이크로렌즈를 포함한 파리 눈렌즈나 섬유다발 등의 광적분기를 포함한다. 도 6 내지 도 8을 참조하면, 본 실시예의 사출각도보존광학소자(120)는, 사출 각도가 서로 다른 복수의 소자(122a 내지 122c)를 가진다. 본 실시예에서는, 이들 복수의 소자(122a 내지 122c)의 각각은 마이크로렌즈를 포함하는 파리 눈렌즈이고, 마이크로렌즈는 구형(矩形) 형상을 가진다. 소자(122a 내지 122c)는 터릿(123)상에 배치되어 있다. 터릿(123)은 구동기구(124)에 의해 구동되어 광로에 배치되어야 할 소자(122a 내지 122c)를 절환한다. 구동기구(124)는 드라이버(150)으로부터의 신호에 의해 제어된다. 터릿(123)이 소자(122a 내지 122c)를 절환하므로, 후술하는 변형 조명생성수단(130)상의 조명영역의 크기나 형상을 제어한다.
릴레이광학계(126)는, 사출각도보존광학소자(120)의 사출광을 다광속발생수 단(128)에 집광한다. 사출각도보존광학소자(120)의 사출면과 다광속발생수단(128)의 입사면은, 릴레이광학계(126)에 의해 푸리에 변환의 관계(물체면과 동공면 또는 동공면과 상면의 관계)를 유지한다. 사출각도(121)는 마이크로렌즈의 사출 NA로 고정되어서, 입사광속의 광축이 변동한 경우에도, 다광속발생수단(128)의 입사면에 입사하는 광의 분포(127)은 면내의 위치가 항상 고정되어 쾰러(Koehler) 조명조건하에서 중첩된 다광속에 의해 균일한 조도분포를 형성한다. 균일한 조명영역(127)의 형상은, 사출각도보존광학소자(120)에서의 마이크로렌즈의 외형형상과 마찬가지이다. 본 실시예에서는, 사출각도보존광학소자(120)는 마이크로 렌즈 어레이이며, 조명영역(127)은 대략 정방형 형상을 하고 있다.
다광속발생수단(128)은, 복수의 마이크로렌즈를 포함하는 파리 눈렌즈나 섬유다발 등의 변형조명생성수단(130)을 균일하게 조명하기 위한 광적분기이며, 그 사출면은 복수의 점광원에 의해 광원면을 형성한다. 각 미세 렌즈는 회절광학소자("DOE")로 형성되고 있어도 되고, 기판상에 에칭 가공으로 형성된 마이크로 렌즈 어레이로 형성되어도 된다. 본 실시예에서의 다광속발생수단은, 복수의 광학축을 가지고, 또한 각각의 광학축을 중심으로서 유한한 면적의 영역을 형성하고, 각각의 영역에 있어 각각 1개의 광속을 특정하는 광학소자이다. 다광속발생수단(128)으로부터의 원형편광된 광은 렌즈소자의 사출 NA가 고정되어서 일정한 사출각도를 가진다. 각 렌즈소자로부터 소망한 사출각도로 사출된 광은, 원형편광으로서 변형조명생성수단(130)에 도입된다.
변형조명생성수단(130)은, 소정의 직선편광 상태의 변형조명을 제공하고, 식 (1)의 프로세스 정수(k1)의 값을 감소시킴으로써 해상도(R)를 향상시킨다. 변형조명생성수단(130)은, λ/4위상판유닛(편광유닛)(131) 및 회절광학소자유닛(132)를 포함한다. 도 2에, 변형조명생성수단(130)에 원형편광을 입사했을 경우에 생성되는 조도분포를 모식적으로 나타낸다. 도 2는, λ/4위상판유닛(131)과 회절광학소자유닛 (132)사이의 간격을 넓게 유지하지만, 실제의 장치는 양자를 서로 밀착하여 배치하고 있다.
도 2에 도시된 바와 같이, 본 실시예에의 λ/4위상판유닛(131)은, 4개 정방형 형상의 λ/4위상판(편광부재)을 평행하게 배치한 것이다. 환언하면, λ/4위상판유닛(131)은, 광축방향이 다른 4개의 영역 또는λ/4위상판(131a 내지 131d)를 가진다.
도 3에, λ/4위상판유닛(131)의 하나의 영역(131b)의 작용을 모식적으로 나타낸다. λ/4위상판(131b)은, 예를 들면, 수정과 같은 복굴절성 결정으로 구성된다. 광축이 z방향으로 정렬된 때에, y방향으로 원형편광(140)이 입사하면, z방향으로 진동하는 성분(이상광선)과 x방향으로 진동하는 성분(정상광선)의 사이에 λ/4파장(π/2)의 위상차가 생기도록 두께가 조정되고 있다. 이것에 의해, xz평면내에서 x축에 대해 방위각 45˚의 방향(141)으로 진동하는 직선편광(142)를 형성한다.
영역(131a 내지 131d)는, 원형편광이 입사했을 때에 사출하는 광속의 편광 방향이 다르도록 설정되어 있다. 도 3과 마찬가지의 좌표계를 설정하면, 영역(131 a)는 xz평면내에서 x축에 대해 방위각 -45˚의 방향으로 진동하는 직선편광을 형성 하고, 영역(131b)는 xz평면내에서 x축방향으로 진동하는 직선편광을 형성하고, 영역(131c)는 xz평면내에서 z축방향으로 진동하는 직선편광을 형성한다. 도 2는, 이들 직선편광의 방향을 파선으로 나타낸다. 그 결과, 영역(131a 내지 131d)에 의해 사출되는 직선편광 방향은, 수직 방향, 수평 방향과±45˚방향이 된다.
회절광학소자유닛(132)은, 본 실시예에서는, 입사광이 입사되었을 때에 릴레이광학계(160)를 개재하여 애퍼쳐(162)의 위치에, 소망한 조도분포를 재생화상(164)으로서 발생시키도록 미리 설계된 각각의 컴퓨터생성홀로그램(Computer Generated Ho1ogram: CGH)로서 복수의 회절광학소자를 포함한다. 물론, 회절광학소자유닛(132)은, 진폭형 홀로그램, 위상형 홀로그램 및 키노폼을 이용할 수 있다.
본 실시예에서는, 회절광학소자유닛(132)은 영역(132a 내지 132d)와 같이 정방형 형상의 4개의 CGH를 배치한다. CGH(132a)와 λ/4위상판(131a), CGH(132b)와λ/4위상판(131b), CGH(132c)와 λ/4위상판(131c), CGH(132d)와 λ/4위상판(131d)는 각각 한 조를 형성한다. CGH(132a 내지 132d)의 위치를 변경하는 경우에, λ/4위상판(131a 내지 131d)의 위치를 변경해야 한다. λ/4위상판유닛(131)은, λ/4위상판(131a 내지 131d) 중에서 변경가능한 구성이 되어도 된다. 마찬가지로 회절광학소자유닛(132)은, CGH(132a 내지 132d)중에서 변경가능한 구성이 되어도 된다.
회절광학소자유닛(132)은, 본 실시예에서는, 회절광학소자로서 기능하는 위상형 컴퓨터생성홀로그램(CGH)이며, 기판 표면상에 계단형상의 릴리프형상을 가진다. CGH는, 물체광과 참조광의 간섭에 의한 간섭무늬 패턴을 계산하여 묘화장치로부터 직접 출력함으로써 생성되는 홀로그램이다. 재생광의 소망한 조도분포를 형성 하는 간섭무늬 형상은 컴퓨터를 이용한 반복계산에 의해 용이하게 산출할 수 있다.
도 4a는 이와같이 해서 작성된 위상형 CGH의 정면도, 도 4b는, 도 4a의 화살표 위치에 있어서의 개략단면도이다. 도 4a는, 기판상의 요철에 의해 형성되는 위상 분포를 계조분포(143)로서 표현하고 있다. 반도체소자의 제조기술은 단면(144)과 같은 계단형상 단면의 제작에 적용가능하다. 미세한 피치도 비교적 용이하게 실현될 수가 있다. 이 위상형 CGH의 재생상으로서 얻을 수 있는 조도분포는, 도 4c에 도시된 바와 같이 이중극 분포이며, 이 예에서는 수평방향의 이중극 분포를 나타내고 있다.
도 2의 위상형 CGH(132a 내지 132d)는, 그들의 재생상이 이중극 조도분포를 형성하고, 그 분포의 방향이 서로 다르도록 설계되어 있다. 구체적으로는, CGH(132a)의 재생상은 수평방향의 이중극 분포, CGH(132b)의 재생상은 수직방향의 이중극 분포, CGH(132c 및 132d)의 재생상은 각각 ±45°방향의 이중극 분포가 되고 있다. CGH(132a 내지 132d) 모두에 광이 입사했을 경우, 이중극 분포의 재생상 (164)은 상면에서 합성되어, 외주부에 4조의 이중극 분포 (164a 내지 164d)를 가지는 윤대분포를 형성한다. 4조의 이중극 분포(164a 내지 164d)는, 각각 CGH(132a 내지 132d)가 재생되는 이중극 분포에 대응하고 있다. 영역(132a 내지 132d)에 입사하는 광은, λ/4위상판유닛(131)에 의해 도 2에 나타내는 화살표의 편광방향을 가진다. 재생상(164)의 편광방향은 입사광의 편광방향과 일치하므로, 본 실시예의 재생상(164)은, 접선편광의 방향(윤대의 접선방향)을 가지는 직선편광이 된다.
변형조명생성수단(130)의 재생상(164)으로서의 조도분포는, 윤대분포로 한정 되지 않고, 사중극 분포나 이중극 분포 등, 피조명 패턴에 매우 적합한 임의의 분포를 포함한다. 편광방향은 광축을 중심으로 하는 원의 접선방향에 한정되지 않고, 반경방향 등의 임의의 방향이어도 된다.
변형조명생성수단(130)은, 광의 수렴점(129)의 위치로부터 조금 떨어진 위치에 배치되어 발산각을 가지는 입사광에 의해 조명된다. 도 5a 및 도 5b는, 조명광이 다르게 입사하는 변형조명생성수단(130)을 나타내는 평면도이다. 도 5a 및 도 5b에서, (133)은 석영 등의 기판의 표면에 미세한 계단 형상이 형성되어 있는 회절광학소자면이다. (134) 및 (135)는 1개의 광스폿이며, 다광속발생수단(128)의 하나의 렌즈소자로부터의 광을 나타내고 있다. 즉 변형조명생성수단(130)에 입사하는 광이 다수의 광스폿(134 및 135)의 한조가 된다.
광스폿(134 및 135)의 크기는, 집광점(129)과 회절광학소자유닛(132) 사이의 거리에 따라서 변동한다. 이 거리를 크게하는 것에 의해, 즉, 도 5b에 도시된 바와 같이, 광스폿(135)의 사이즈를 크게 하는 것에 의해, 회절광학소자면(133)상에서 각각의 스폿이 서로 겹쳐도 된다. 변형조명생성수단(130)과 집광점(129) 사이의 거리를 적절하게 설정함으로써, 회절광학소자면(133)상에서의 에너지 집중에 의한 구성요소의 파손을 막을 수가 있다. 즉, 도 5a에 도시된 상태보다 도 5b에 도시된 상태가 바람직하다. 스폿(135)이 다수 모여있는 영역의 형상이 구형(矩形)인 이유는, 조명영역(127)의 구형 형상을 반영하기 때문이다.
터릿(123)을 구동기구(124)에 의해 구동하여 사출각도보존광학소자(120)를 절환함으로써 변형조명생성수단(130)에 대한 입사광의 조사영역의 크기나 형상을 변경할 수가 있다. 또는, 변형조명생성수단(130)을 구동기구(139)를 이용하여 이동함으로써 변형조명생성수단(130)에 대한 조사위치를 변경하고, 조도분포(164)를 소망한 형상으로 변경할 수도 있다.
도 6a 및 도 6b는, 사출각도(θa)가 큰 소자(122a)를 사용하여 접선방향의 편광의 생성을 도시한다. 도 6a에서, 사출각도(θa)에서 사출된 광속은 릴레이광학계(126)에 의해 푸리에 변환되어 다광속발생수단(128)의 입사면에 균일한 조사영역 (Ta)를 형성한다. 피조사영역(Ta)은, 다광속발생수단(128)을 개재하여 도 6b에 도시된 바와같이 회절광학소자유닛(132)의 거의 전체면을 조명하도록 하는 치수로 되어 있다. 이것은 사출각도(θa)와 릴레이광학계(126)의 초점거리를 제어함으로써 실현된다. 회절광학소자유닛(132)이 개구조리개(162)의 위치에 생성하는 재생상(164)은, 도 6b에 도시된 바와같이 윤대분포가 되고, 그 편광방향은, 도 2를 참조하면서 기술한 바와 같이, 접선방향이 된다.
도 7a 내지 도 7c는, 사출각도(θb)가 작은 소자(122b)가 접선방향의 편광만을 포함하는 이중극 분포를 생성하는 것을 도시하고 있다. 도 7a에서는, 사출각도(θb)는 (θa)의 약 1/2이며, 다광속발생수단(128)의 입사면에 형성되는 균일한 피조사영역(Tb)의 크기는 피조사영역(Ta)의 약 1/4의 크기가 된다. 이에 의해, CGH (132a 내지 132d)중의 어느 한개 만을 선택적으로 조사하는 것이 가능하여, 변형조명생성수단(130)은 구동기구(139)에 의해 수평 및 수직 방향으로 이동가능하다.
도 7b 및 도 7c는, 각각, 피조사영역(Tb)이 CGH(132a) 및 영역(132b)내에 들어가도록, 변형조명생성수단(130)을 구동기구(139)를 이용하여 이동한 것을 나타내 고, 십자선의 교점은 도 7a에 나타낸 광축(OA)의 위치를 나타내고 있다. 도시는 하고 있지 않지만, 마찬가지로 피조사영역(Tb)가 회절광학소자유닛(132)의 영역(132c) 및 영역(132d)내에 들어가도록 설정함으로써 ±45°방향의 이중극 분포를 얻을 수 있다.
도 8a 내지 도 8c는, 수평방향의 사출각도(θcx)와 수직방향의 사출각도(θcy)가 접선방향의 편광을 가지는 사중극 분포를 생성하는 소자(122c)를 나타내고 있다. 도 8a는 수평방향과 수직방향의 사출각도를 동시에 나타내서, 간략화를 위해서 소자(122c)의 중심으로부터 광만을 도시하고 있다. 도 8a에서, 사출각도(θcx)는 사출각도(θb)와 동일하고, 사출각도(θcy)는 사출각도(θa)와 동일하다. 따라서, 다광속발생수단(128)의 입사면에 형성되는 균일한 피조사영역(Tc)에서, x방향에서의 수평방향의 변의 길이(Tcx)는 피조사 영역(Tb)의 길이와 동일하고, y방향에서의 수직방향의 변의 길이(Tcy)는 피조사면(Ta)의 길이와 동일하다.
도 8b 및 도 8c에 도시된 피조사영역(Tc)는, 피조사영역(Tb)를 2배로 한 직사각형이 되어 있는 것은 분명하다. 피조사영역(Tc)를 CGH(132a 및 132b)내에 들어가도록 변형조명생성수단(130)을 구동기구(139)를 이용하여 이동하면, 도 8b에 도시된 접선방향의 편광성분을 가진 사중극분포를 얻는다. 마찬가지로, 피조사영역(Tc)를 영역(132c 및 132d)내에 들어가도록 변형조명생성수단(130)을 구동기구(139)를 이용하여 이동하면, 도 8 c에 도시된 사중극분포를 얻는다.
상기 설명한바와 같이, 소망한 조도분포로 절환하기 위해서, 사출각도보존 광학소자(120)를 터릿(123)에 의해 절환하고, 변형조명생성수단(130)을 이동시키도 록, 드라이버(150)가 구동기구(124 및 139)를 각각 제어한다. 이 구성에 의해 접선방향의 편광을 가진 각종 변형조명을 제공하여, 회로패턴의 상의 콘트라스트를 향상하고, 보다 고해상도인 노광을 형성한다.
변형조명생성수단(130)의 재생상(164)으로서 얻을 수 있는 소망의 조도분포는, 레티클면에 대해서 실질적으로 푸리에 변환의 관계를 가진 면에서의 조도분포 (유효광원분포)와 동일하거나 유사하다. 유효광원분포로서는, 윤대분포, 사중극분포, 이중극분포 등, 노광하고자 하는 패턴에 대해서 매우 적합한 분포를 포함하지만, 그 패턴의 형상에 한정되는 것은 아니다.
복수 종류의 유효광원분포를 형성하는 변형조명생성수단(130)을 터릿과 같은 절환수단에 의해 절환함으로써, 조명조건을 용이하게 변경하는 것이 가능하다. 본 실시예의 노광장치는 편광제어할 필요가 없는 경우는, 위상판유닛(131)을 광로 외부에 배치해도 된다. 변형조명 대신에 통상조명인 경우에는, 소정의 직경을 가진 원형의 조도분포를 형성하는 회절광학소자를, 변형조명생성수단(130) 대신에, 광로중에 삽입한다.
릴레이광학계(160)는, 변형조명생성수단(130)에서, 계산된 진폭변조 또는 위상변조를 받아 회절한 광을 이용하여 애퍼쳐(162)에 강도가 거의 균일한 유효광원분포 또는 재생상(164)을 형성한다. 회절광학소자유닛(132)과 애퍼쳐(162)는, 서로 푸리에 변환의 관계가 되도록 배치된다. 이 관계에 의해, 회절광학소자유닛(132)의 임의의 한 점으로부터 발산한 광은 유효한 조도분포(164) 전체에 기여한다. 즉, 도 5a 및 도 5b에서, 광스폿(134 및 135)을 형성하는 임의의 광에 의해, 스폿조사위치 에 관계없이 변형조명에 매우 적합한 유효광원분포(164)가 애퍼쳐(162)에 형성된다.
집광점(129)로부터의 스폿된 광이 다광속발생수단(128)에 의존하는 확대각으로 발산하기 때문에, 회절광학소자유닛(132)이 생성하는 조도분포(164)에는, 그 퍼짐각에 따라서 경미한 얼룩이 생성된다. 그렇지만, 그 얼룩량은 퍼짐각에 의해 형성되어서, 소망한 조도분포에 의해 그 얼룩량을 예측할 수 있도록, 회절광학소자유닛 (132)을 설계한다.
줌광학계(166)는, 재생상(164)을 소망한 배율로 변배하여 다광속발생수단 (170) 의 입사면에 균일광원상(168)으로서 투영한다.
다광속발생수단(170)의 입사면에 소망한 균일광원상(168)이 투영되면, 그 유효광원분포는 그대로 사출면에 전사된다. 다광속발생수단(170)은,복수의 마이크로 렌즈로 구성되는 파리 눈렌즈나 섬유다발 등의 광적분기로 되고, 그 사출면은 복수의 점광원으로 광원면을 형성하고 있다. 각 미세렌즈는 회절광학소자로 형성되어도 되고, 기판상에 에칭 가공으로 형성된 마이크로렌즈 어레이로 형성되어도 된다.
개구조리개(172)는, 다광속발생수단(170)의 사출측에 배치되어 예를 들면, 윤대형상 등의 소망한 형상의 광원상에 대응한 형상을 가진다. 개구조리개(172)는, 2차 광원분포만이 그 개구부를 통과할 수 있고, 직선편광 성분은 접선방향으로 분포하고 있다. 동시에 개구조리개(172)에 의해 불필요한 광을 차광한다.
다광속발생수단(170)을 구성하는 각각의 마이크로렌즈 소자로부터의 사출광을, 조사수단(174)에 의해 피조사면(본 실시예에서는 레티클(200)면) 상에 중첩하 여, 피조사면을 전체적으로 균일한 조도분포가 되도록 조명한다. 조사수단(174)는, 콘덴서 렌즈 등을 포함한다. 접선방향의 편광조명이란, 피조사면을 조명하는 입사면에 대해서 직교한 방향의 직선편광을 형성하는 조명광으로 피조사면을 조명하는 것이다.
본 실시예는, 피조사면을 전체적으로 균일한 조도분포로 조명하고 있지만, 본 발명은 이 실시예로 한정되는 것은 아니다. 예를 들면, 다광속발생수단(170)의 사출면의 각각의 미세 영역으로부터의 사출광속의 사출각도를 2 개의 직교방향으로 다른 각도로서 피조사면(200)상을 슬릿조명형상을 이용하여 조명하고, 이 슬릿형상의 노광영역을 주사함으로써 플레이트(400)를 노광하여도 된다.
레티클(200)은, 예를 들면, 석영으로 형성되고, 전사 되어야할 회로패턴(또는 상)을 가지고 도시하지 않는 레티클 스테이지에 의해 지지 및 구동된다. 레티를로부터의 회절광은, 투영광학계(300)를 개재하여 플레이트(400)상에 투영된다. 레티클(200)과 플레이트(400)는, 광학적으로 공역의 관계에 있다. 본 실시예의 노광 장치(1)는 스캐너이기 때문에, 레티클(200)과 플레이트(400)를 축소배율비의 속도비로 스캔한다. 이와 같이, 레티클(200)의 패턴을 플레이트(400)상에 전사한다. 노광장치(1)가 스텝퍼인 경우에는, 레티클(200)과 플레이트(400)는 레티클 패턴 노광시에 정지상태로 남아있다.
투영광학계(300)는, 복수의 렌즈 소자만으로 구성되는 디옵트릭 광학계, 복수의 렌즈 소자와 적어도 하나의 오목거울을 포함한 카타디옵트릭 광학계, 복수의 렌즈소자와 적어도 하나의 키노폼 등의 회절광학소자를 가지는 광학계, 전체미러형 의 카톱트릭 광학계 등을 사용할 수가 있다. 색수차의 보정이 필요한 경우에는, 서로 분산치 (압베치)가 다른 유리재로부터 형성되는 복수의 렌즈소자를 이용하거나 또는 회절광학소자를 렌즈소자와 반대방향의 분산이 생기도록 구성한다. 투영광학계는, 해상도를 한층 더 향상시키기 위해, 플레이트(400)와 투영계의 상측 광학렌즈 최종면 사이에 액체를 채워서 NA를 1이상으로 하여 노광하는 이른바 액침노광 방법에 적용할 수 있다.
플레이트(400)는, 웨이퍼나 LCD 등의 피처리체이다. 포토레지스트가 상기 플레이트(400)에 도포되어 있다. 플레이트(400)은 도시하지 않는 척을 개재하여 도시하지 않는 스테이지에 지지된다. 레티클(200)과 플레이트(400)는, 예를 들면, 동기주사 된다. 도시하지 않는 스테이지와 레티클 스테이지의 위치는, 예를 들면, 간섭계를 이용하여 감시되어 양자는 일정한 속도 비율로 구동된다.
<제2 실시예>
이하, 도 9 내지 도 17을 참조하면서, 본 발명의 제2의 실시예의 조명장치 (100A)를 구비한 노광장치(1A)에 대해서 상세하게 설명한다. 여기서, 도 9는, 노광장치(1A)의 개략 블럭도이다. 도 9에서, 도 1과 동일한 부재에는 동일한 부호를 부여하여 중복 설명을 생략한다. 노광장치(1)는, 사출각도보존광학소자(120)로부터 사출되는 발산각을 절환하여 회절광학소자유닛(132)의 피조사영역의 크기나 형상을 변경하고 있었지만, 노광장치(1A)는 사출되는 발산각을 고정하여 다수의 광스폿에 의한 피조사영역의 위치를 조정하고 있다.
노광장치(1A)는, 반투명경(173)과 집광광학계(175)와 광량모니터부(광량 검 출기)(176)를 포함한다. 다광속발생수단(170)으로부터의 사출광속은, 반투명경(173)에 의해 그 일부가 반사하여, 집광광학계(175)를 개재하여 광량모니터부(176)내의 2차원 센서면에 집광된다. 집광광학계(175)는, 다광속발생수단(170)의 사출면인 물체측과, 광량모니터부(176)내의 2차원 센서면인 상측을 이용하여 결상하고 있으므로, 센서면에 있어서의 조도분포는, 유효광원분포이며 상기 조도분포(168)와 유사하다.
센서면에서 측정된 조도분포 데이터는 드라이버(150A)에 전송된다. 이 신호에 의거하여 구동기구(139)에 의해 변형조명생성수단(130)은 수평 및 수직방향으로 미세하게 이동한다. 변형조명생성수단(130)은, 다수의 광스폿과 피조사영역간의 상대위치를 조정하여, 조도분포에 있어서의 조도 불균일을 보정한다.
다음에, 변형조명생성수단(130)을 광로내에서 이동하고 피조사위치를 변경함으로써 조도분포(164)를 소망한 형상으로 변경하는 방법에 대해서 설명한다. 도 9에서, 사출각도(121)로 사출된 광속은 릴레이광학계(126)에 의해 푸리에 변환되어 다광속발생수단(128)의 입사면에 균일한 피조사영역(127)을 형성한다. 피조사영역 (127)은, 다광속발생수단(128)을 개재하여, 도 10에 도시된 바와 같이, 회절광학소자유닛(132)의 4개의 각 영역과 동일한 크기의 피조사영역(Ua)이 되도록 설정되어 있다. 이것은 사출각도(121)와 릴레이광학계(126)의 초점거리를 적절하게 설정함으로써 실현된다.
도 10에 도시된 바와같이, 피조사영역(Ua)의 중심과 회절광학소자유닛(132)의 중심이 일치하도록 구동기구(139)에 의해 변형조명생성수단(130)은 수평 및 수 직 방향으로 구동된다. 이에 의해, 피조사영역(Ua)은 회절광학소자유닛(132)의 영역(132a 내지 132d)에 대해서 등분되도록 입사된다. 그 결과, 재생상(164)은, 영역 (132a 내지 132d)로부터의 이중극 분포상이 각각 합성되고, 이 때, 도 10에 도시된 바와 같이 윤대분포가 되어, 그 편광성분은 접선방향이 된다.
도 11 및 도 12는, 각각, 피조사영역(Ua)이 회절광학소자유닛(132)의 영역 (132a) 또는 영역(132b)내에 들어가도록, 변형조명생성수단(130)을 구동기구(139)에 의해 수평 및 수직방향으로 구동한 상태를 나타내고 있다. 이와같은 방법으로, 접선방향의 편광을 가진 이중극 분포를 얻는다. 도시는 하고 있지 않지만, 피조사 영역(Ua)이 회절광학소자유닛(132)의 영역(132c) 또는 영역(132d)내에 들어가도록 설정하여, ±45° 방향의 이중극 분포를 얻을 수 있다.
도 13 및 도 14는, 각각, 피조사영역(Ua)가 회절광학소자유닛(132)의 영역 (132a 및 132b), 영역(132c 및 132d)에 전체적으로 확장되도록, 변형조명생성수단 (130)을 구동기구(139)에 의해 수평 및 수직 방향으로 구동한 상태를 나타내고 있다. 이와같은 방법으로, 접선방향의 편광을 가진 사중극 분포를 얻는다. 물론, 회절광학소자유닛(132)을 광로내에 남긴 채로, 위상판유닛(131)만을 교환하는 구성이어도 된다.
컨택트홀을 노광하는 경우, 사중극 분포는, 도 15에 도시된 바와같이, 접선방향 대신에 반경 방향으로 직선편광성분을 가지는 조명이 필요한 경우가 있다. 이 경우에는, 입사한 원형편광이 영역(131a)에서는 수평편광방향을 가지고, 영역(131b)에서는 수직편광방향을 가지도록, λ/4위상판(131a 및 131b)를 서로 교체한 다. 구동기구(139)를 이용하여 변형조명생성수단(130)을 변경함으로써, 도 13에 도시된 접선 사중극 분포로부터 도 15에 도시된 방사 사중극 분포를 용이하게 변경 할 수가 있다.
노광된 회로패턴은 수평방향의 라인의 선폭("CD")과 수직방향의 라인의 선폭에 차가 있고, 이것을 "HV 차"라고 한다. HV 차는 조명광학계 및 투영광학계가 어떠한 에러를 가져서, σ균일성이 무너질 때에 발생한다. "σ균일성이 무너진다"란, 예를 들면, 도 10에 도시된 윤대분포가 완전한 원과는 다른 타원이 되는 것을 의미한다.
이러한 HV 차를 보정하기 위해서 의도적으로 조도분포에 얼룩을 형성하는 방법을, 도 16 및 도 17을 참조하면서 설명한다.
도 16은, 도 13에 나타낸 접선 사중극 분포를 형성하는 경우에, 피조사영역 (Ua)의 중심과 영역(132a 및 132b)의 중심이 γ만큼 오프셋된 것을 나타내고 있다. 영역(132a)에 입사하는 광의 비율은 영역(132b)에 입사하는 광의 비율 보다 커지기 때문에, 영역(132a)가 형성하는 수평방향의 이중극 분포의 강도는 상대적으로 강해진다. 이 강도는 상기 광량 모니터부(176)에 의해 모니터 되어 드라이버(150A)에 피드백된다. 이에 의해, 구동기구(139)는, HV 차를 보정하는데 필요한 강도차를 형성하는데 최적인 γ 만큼 변형조명생성수단(130)을 미세하게 구동한다. 이 조정에 의해, 조도분포의 형상은 유지하지만, 강도차에 의해 모멘트가 변화하여, 실효적인 σ는 수평방향이 약간 커진다. 그 결과, 수직 방향의 라인에 대한 수평방향의 콘트라스트를 증강하는 것이 가능해져, HV 차를 보정할 수 있다.
마찬가지로, 도 17에 도시된 바와 같이, 피조사영역(Ua)를 오프셋에 의해, 수직방향의 이중극 분포의 강도를 상대적으로 강하게 하여, 수평방향의 라인의 콘트라스트를 증가시켜서 HV차를 보정할 수 있다.
본 실시예의 노광장치도, 편광제어할 필요가 없는 경우는, 위상판유닛(131)을 광로로부터 제외하면 된다. 변형조명 대신에, 통상조명을 실시하는 경우에는, 소정의 외경의 원형의 조도분포를 형성하는 회절광학소자를, 변형조명생성 수단(130)대신에, 광로중에 삽입한다. 물론, 상기 HV차의 보정은, 편광조명을 사용하지 않는 경우에도 실행할 수가 있다.
이하, 노광장치(1 및 1A)의 동작에 대해 설명한다. 광원부(102)로부터 방출된 직선편광은 편향광학계(104)에 의해 편향되고, 빔정형광학계(106)에 입사한다. 빔정형광학계(106)에 입사한 광은, 소정의 형상으로 정형되어, 편광제어수단(108)에 의해 불필요한 직선편광이 제거된다. 다음에, 위상제어수단(110)에 의해 직선편광은 원형편광으로 변환되고, 사출각도보존광학소자(120)에 의해 복수의 점광원으로 분할된다. 다음에, 사출각도보존광학소자(120)으로부터의 광은, 릴레이광학계 (124)를 개재하여 원형편광으로서 다광속발생수단(128)에 입사한다.
다광속발생수단(128)으로부터 원형편광으로 사출되는 광은 사출 NA를 유지한 채로 원형편광으로서 변형조명생성수단(130)에 입사하고, 소망한 변형조명으로 변환된다. 변형조명생성수단(130)은, 불필요한 편광성분을 제거하지 않고 입사광 전체를 사용하여 편광방향을 변환하고 있으므로, 광이용 효율이 매우 높다. 변형조명생성수단(130)의 거의 전체면에 다수의 스폿광으로서 입사된 광은 원형편광이고, λ/4위상판유닛(131)에 의해 분할된 각각의 영역마다 편광방향이 다른 직선편광이 된다. 그 결과물의 광은, 회절광학소자유닛(132)에 의해 계산된 진폭변조 또는 위상변조를 받은 후 회절되고, 변형조명생성수단(130)에 의해 진폭변조 또는 위상변조된 회절광이 된다. 상기 회절광은 릴레이광학계(160)을 개재하여 애퍼쳐(162)에 재생상(유효광원분포)(164)를 형성한다. 재생상(164)은 광강도가 거의 균일하고, 소망한 방향으로 편광성분을 가지는 소망의 조도분포를 형성한다. 그 다음에, 유효광원분포(164)는, 줌 광학계(166)에 의해 변배되어 다광속발생수단(170)에 입사한다.
다광속발생수단(170)에서의 각각의 미세렌즈 소자로부터 방출된 사출광이, 조사수단(177)에 의해 피조사면인 레티클(200)에 중첩되고, 피조사면을 전체적으로 균일한 조도분포가 되도록, 예를 들면, 쾰러조명 한다. 레티클(200)은 레티클스테이지에 배치되어 스캐너에서 노광시 구동된다. 레티클(200)을 통과하여 레티클패턴을 반영하는 광은, 투영광학계(300)에 의해 투영배율(예를 들면, 1/4 및 1/5)로 도시하지 않는 웨이퍼척을 개재하여 스테이지에 고정된 플레이트(400)에 결상된다. 웨이퍼척은 웨이퍼스테이지상에 설치되고, 플레이트(400)은 노광시 구동된다. 투영광학계(300)의 수차가 보정되어 있어서, 고품위인 노광처리(즉, 소망한 해상도)를 플레이트(400)상에서 얻을 수 있다.
광원(102)로부터의 광이 외란에 의해 미세하게 변동하여도, 도 2에 도시된바와 같이, 사출각도보존광학소자(120)로부터의 광의 사출각도(122)는 유지하고, 다광속발생수단(128)에 입사광의 위치는 변화하지 않는다. 즉, 조도분포(126)의 위치 는 고정된다. 또한, 다광속발생수단(128)으로부터의 광에 의해, 사출각도(134)를 고정시키고, 실질적으로 변형조명생성수단(130)에 입사하는 광에는 변동이 없다. 따라서, 레티클(200)의 피조사면의 조도분포에 영향도 무시할 수 있는 정도로 작아진다. 그 결과, 조명장치(100 및 100A)는, 광원으로부터의 광의 변동에 대해서 매우 안정된 계가 되고 있다.
이와 같이, 조명장치(100 및 100A)에 의해, 광원으로부터의 광의 변동이 있어도 조명영역에 영향을 주지않고, 또, CGH에 의해 임의의 변형조명을 위한 조도 분포를 형성한다. 또, 조명장치(100)는, 임의의 변형조명조건에 대해서 조명효율을 떨어뜨리는 일 없이 소망한 방향(접선방향이나 방사방향)으로 직선편광을 형성할 수 있다.
다음에, 도 18 및 도 19를 참조한면서, 노광장치(1 및 1A)를 이용한 디바이스의 제조방법의 실시예를 설명한다. 도 18은, 반도체 디바이스(예를 들면, IC나 LSI 등의 반도체칩, LCD, CCD 등)의 제조를 설명하기 위한 플로차트이다. 여기서는 반도체 칩의 제조를 일예로서 설명한다. 스텝 1(회로설계)에서는, 반도체디바이스의 회로설계를 실시한다. 스텝 2(레티클제작)에서는, 설계한 회로패턴을 형성한 레티클을 제작한다. 스텝 3(웨이퍼제조)에서는, 실리콘 등의 재료를 이용하여 웨이퍼를 제조한다. 스텝 4(웨이퍼프로세스)는, 전공정으로 칭하며 상기 준비한 레티클과 웨이퍼를 이용하여, 리소그래피 기술에 의해 웨이퍼상에 실제의 회로를 형성한다. 스텝 5(조립)는 후속 공정으로 칭하며 스텝 4에서 제작된 웨이퍼를 이용하여 반도체 칩화하는 공정이며, 어셈블리공정(다이싱, 본딩), 패키징공정(칩 봉입) 등의 공 정을 포함한다. 스텝 6(검사)에서는, 스텝 5에서 제작된 반도체 디바이스의 동작확인 테스트, 내구성 테스트 등의 검사를 실시한다. 이들 공정을 거쳐 반도체 디바이스를 완성하여, 출하된다(스텝 7).
도 19는, 도 18의 스텝 4의 웨이퍼 프로세스의 상세한 플로차트이다. 스텝 11(산화)에서는, 웨이퍼의 표면을 산화시킨다. 스텝 12(CVD)에서는, 웨이퍼표면에 절연막을 형성한다. 스텝 13(전극형성)에서는, 웨이퍼상에 전극을 증착 등에 의해 형성한다. 스텝 14(이온 주입)에서는 웨이퍼에 이온을 주입한다. 스텝 15(레지스트 처리)에서는 웨이퍼에 감광재를 도포한다. 스텝 16(노광)에서는, 노광장치(1 및 1A)에 의해 레티클패턴을 웨이퍼에 노광한다. 스텝 17(현상)에서는 노광한 웨이퍼를 현상한다. 스텝 18(에칭)에서는, 현상한 레지스트상 이외의 부분을 에칭한다. 스텝 19(레지스트 박리)에서는, 에칭이 끝나 불필요해진 레지스트를 없앤다. 이들 스텝을 반복해 실시하는 것에 의해, 웨이퍼상에 다층에 회로 패턴이 형성된다. 본 실시예에 의해, 종래는 제조가 어려웠던 고해상도의 디바이스(반도체소자, LCD소자, 촬상소자(CCD 등), 박막자기헤드 등)를 경제성 및 생산성이 양호하게 제조할 수가 있다. 이와 같이, 노광장치(1및 1A)를 사용하는 디바이스의 제조방법 및 그 결과물(중간, 최종 생성물)로서의 디바이스도 본 발명의 1측면을 구성한다.
본 출원은 2004년 6월 21일에 출원된 일본국 특허출원 번호 2004-183019호에 의거한 우선권의 권리를 청구하며, 본 명세서에 자세히 설명된 바와 같이 본 발명의 우선권을 전체적으로 인용함으로써 구체화된다.
본 발명에 의하면, 조명효율을 급격하게 저하시키지 않고, 임의의 변형조명을 소망한 방향으로 직선편광으로 형성하는 조명광학계, 조명광학계를 가진 노광장치 및 상기 노광장치를 이용한 디바이스의 제조방법을 제공할 수 있다.

Claims (16)

  1. 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서,
    상기 피조명면을 소정의 편광상태에서 변형조명하기 위한 변형조명생성부를 포함하고,
    상기 변형조명생성부는,
    원형편광을 소정방향의 직선편광으로 변환하는 λ/4위상판을 포함하는 λ/4위상판유닛과;
    상기 피조명면과 실질적으로 공역의 관계에 배치되고, 상기 λ/4위상판에 대응해서 사용되고, 상기 직선편광이 입사되면, 소정의 조도분포를 생성하는 회절광학소자를 포함한 회절광학소자유닛
    을 포함하는 것을 특징으로 하는 조명광학계.
  2. 제 1항에 있어서,
    상기 λ/4위상판유닛은, 원형편광을 다른방향의 직선편광으로 변환하는 복수의 λ/4위상판을 포함하고,
    상기 회절광학소자유닛은, 상기 복수의 λ/4위상판에 대응하여 각각 사용되고, 다른 방향으로 상기 직선편광이 입사되면, 조도분포를 다르게 생성하는 복수의 회절광학소자를 포함하는 것을 특징으로 하는 조명광학계.
  3. 제 2항에 있어서,
    상기 복수의 λ/4위상판의 배치는 변경가능한 것을 특징으로 하는 조명광학계.
  4. 제 2항에 있어서,
    상기 복수의 회절광학소자의 배치는 변경가능한 것을 특징으로 하는 조명광학계.
  5. 제 1항에 있어서,
    상기 조명광학계는,
    광원으로부터의 광속을 소정의 발산각도로 사출하고, 상기 변형조명생성부를 조명하기 위한 사출각도보존부와;
    상기 사출각도보존부의 상기 발산각도를 변경하여, 상기 변형조명생성부에 대한 조명영역을 변경하는 유닛
    을 부가하여 포함하는 것을 특징으로 하는 조명광학계.
  6. 제 5항에 있어서,
    상기 사출각도보존부에 의해 상기 변형조명생성부에 대한 조명영역을 변경하는 유닛을 부가하여 포함하는 것을 특징으로 하는 조명광학계.
  7. 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서,
    상기 피조명면에 대해서 실질적으로 푸리에 변환의 관계를 가지는 소정면에, 상기 광을 회절하여 소정의 조도분포를 형성하는 회절광학소자유닛과;
    상기 회절광학소자를 조명하기 위한 광학유닛과;
    상기 광학유닛에 의해 상기 회절광학소자상의 조명영역을 변경하는 조명영역 변경유닛을 가지는 것을 특징으로 하는 조명광학계.
  8. 제 7항에 있어서,
    상기 회절광학소자유닛은, 조도분포가 다른 영역을 형성하기 위한 복수의 회절광학소자를 가지는 것을 특징으로 하는 조명광학계.
  9. 제 7항에 있어서,
    상기 조명영역변경유닛은, 상기 회절광학소자유닛을 광축에 수직인 방향으로 구동하는 유닛을 포함하는 것을 특징으로 조명광학계.
  10. 제 7항에 있어서,
    상기 광학유닛은, 상기 회절광학소자를 조명하기 위한, 사출각이 다른 복수의 광적분기를 포함하고;,
    상기 조명영역변경수단은, 광로위의 상기 복수의 광적분기를 절환하는 유닛 포함하는 것을 특징으로 조명광학계.
  11. 제 7항에 있어서,
    상기 회절광학소자유닛의 근방에 배치되어 입사한 광을 소정방향의 직선편광으로 변환하는 편광유닛을 부가하여 포함하는 것을 특징으로 하는 조명광학계.
  12. 제 8항에 있어서,
    상기 회절광학소자유닛의 근방에 배치된 복수의 편광유닛을 부가하여 포함하고,
    상기 편광유닛은, 상기 복수의 회절광학소자의 각각에 대응하는 복수의 편광 부재를 포함하고, 상기 복수의 편광부재는, 각각에 입사한 광을 서로 다른 방향의 직선편광된 광으로 변환하는 것을 특징으로 하는 조명광학계.
  13. 제 7항에 있어서,
    상기 조도분포를 검출하는 광량검출부를 부가하여 포함하고,
    상기 조명영역변경유닛은, 상기 광량검출부의 검출결과에 응해, 상기 조명 영역을 변경하는 것을 특징으로 하는 조명광학계.
  14. 광원으로부터의 광을 이용하여 피조명면을 조명하는 조명광학계로서,
    상기 피조명면에 대해서 실질적으로 푸리에 변환의 관계를 가진 소정면에, 상기 광을 회절하여 소정의 조도분포를 생성하는 회절광학소자유닛과;
    상기 광원으로부터의 광을 이용하여 상기 회절광학소자유닛을 조명하기 위한 광학유닛과;
    상기 회절광학소자유닛의 근방에 배치된 편광유닛
    을 포함하고,
    상기 회절광학소자유닛은, 상기 조도분포가 다른 영역을 각각 형성하기 위한 복수의 회절광학소자를 포함하고,
    상기 편광유닛은, 상기 복수의 회절광학소자의 각각에 대응하는 복수의 편광 부재를 포함하고, 상기 복수의 편광부재는, 각각에 입사한 광을 서로 다른 방향으로 직선편광된 광으로 변환하는 것을 특징으로 하는 조명광학계.
  15. 패턴을 가진 레티클을 조명하는 제 1항에 기재된 조명광학계와;
    상기 조명광학계에 의해 조명된 상기 레티클의 상기 패턴을 피노광체에 투영 하는 투영광학계
    를 포함하는 것을 특징으로 하는 노광장치.
  16. 제 15항에 기재된 노광장치를 이용하여 피처리체를 노광하는 스텝과;
    상기 피처리체를 현상하는 스텝
    을 포함하는 것을 특징으로 하는 디바이스의 제조방법.
KR1020050053329A 2004-06-21 2005-06-21 조명광학계, 노광장치 및 디바이스의 제조방법 KR100681852B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004183019A JP2006005319A (ja) 2004-06-21 2004-06-21 照明光学系及び方法、露光装置及びデバイス製造方法
JPJP-P-2004-00183019 2004-06-21

Publications (2)

Publication Number Publication Date
KR20060048452A true KR20060048452A (ko) 2006-05-18
KR100681852B1 KR100681852B1 (ko) 2007-02-15

Family

ID=34978995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050053329A KR100681852B1 (ko) 2004-06-21 2005-06-21 조명광학계, 노광장치 및 디바이스의 제조방법

Country Status (5)

Country Link
US (1) US7265816B2 (ko)
EP (1) EP1610181A2 (ko)
JP (1) JP2006005319A (ko)
KR (1) KR100681852B1 (ko)
TW (1) TW200613926A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
KR101247312B1 (ko) * 2012-10-10 2013-03-25 마명철 자산관리시스템

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201834020A (zh) * 2003-10-28 2018-09-16 日商尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8279524B2 (en) * 2004-01-16 2012-10-02 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
JP5159027B2 (ja) 2004-06-04 2013-03-06 キヤノン株式会社 照明光学系及び露光装置
US20070058151A1 (en) * 2005-09-13 2007-03-15 Asml Netherlands B.V. Optical element for use in lithography apparatus and method of conditioning radiation beam
DE102006001435B4 (de) * 2006-01-10 2009-10-08 Vistec Semiconductor Systems Gmbh Vorrichtung zur Beleuchtung und zur Inspektion einer Oberfläche
DE102006005860A1 (de) * 2006-02-09 2007-08-30 Bayer Innovation Gmbh Verfahren und Vorrichtung zur Herstellung von Polarisationshologrammen
US7525642B2 (en) * 2006-02-23 2009-04-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006032878A1 (de) * 2006-07-15 2008-01-17 Carl Zeiss Smt Ag Beleuchtungssystem einer mikrolithographischen Projektionsbelichtungsanlage
JP2008047673A (ja) * 2006-08-14 2008-02-28 Canon Inc 露光装置及びデバイス製造方法
DE102006038643B4 (de) * 2006-08-17 2009-06-10 Carl Zeiss Smt Ag Mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
JP2008091881A (ja) * 2006-09-07 2008-04-17 Canon Inc 回折光学素子、露光装置およびデバイス製造方法
US7952685B2 (en) * 2007-03-15 2011-05-31 Carl Zeiss Smt Ag Illuminator for a lithographic apparatus and method
US20080285000A1 (en) * 2007-05-17 2008-11-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5173309B2 (ja) 2007-07-31 2013-04-03 キヤノン株式会社 ホログラム、露光装置及びデバイス製造方法
US8077388B2 (en) * 2007-09-13 2011-12-13 University Of Utah Research Foundation Light polarization converter for converting linearly polarized light into radially polarized light and related methods
DE102007043958B4 (de) 2007-09-14 2011-08-25 Carl Zeiss SMT GmbH, 73447 Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage
JP4971932B2 (ja) * 2007-10-01 2012-07-11 キヤノン株式会社 照明光学系、露光装置、デバイス製造方法および偏光制御ユニット
JP5339721B2 (ja) * 2007-12-28 2013-11-13 キヤノン株式会社 計算機ホログラム及び露光装置
JP5032972B2 (ja) * 2007-12-28 2012-09-26 キヤノン株式会社 計算機ホログラム、生成方法及び露光装置
DE102008009601A1 (de) * 2008-02-15 2009-08-20 Carl Zeiss Smt Ag Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
JP5078765B2 (ja) * 2008-06-10 2012-11-21 キヤノン株式会社 計算機ホログラム、露光装置及びデバイスの製造方法
JP5078764B2 (ja) * 2008-06-10 2012-11-21 キヤノン株式会社 計算機ホログラム、露光装置及びデバイスの製造方法
JP5300354B2 (ja) 2008-07-11 2013-09-25 キヤノン株式会社 生成方法、原版作成方法、露光方法、デバイス製造方法及びプログラム
DE102008041179B4 (de) * 2008-08-12 2010-11-04 Carl Zeiss Smt Ag Beleuchtungsoptik für eine Mikrolithografie-Projektionsbelichtungsanlage
NL1036877A (en) * 2008-08-18 2010-03-09 Asml Netherlands Bv Diffractive optical element, lithographic apparatus and semiconductor device manufacturing method.
JP5167032B2 (ja) 2008-08-27 2013-03-21 キヤノン株式会社 計算機ホログラム、露光装置及びデバイスの製造方法
EP2202580B1 (en) * 2008-12-23 2011-06-22 Carl Zeiss SMT GmbH Illumination system of a microlithographic projection exposure apparatus
US8531747B2 (en) 2009-06-24 2013-09-10 Canon Kabushiki Kaisha Hologram, hologram data generation method, and exposure apparatus
JP5842808B2 (ja) 2010-02-20 2016-01-13 株式会社ニコン 瞳強度分布を調整する方法
US9116303B2 (en) * 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP2012073416A (ja) * 2010-09-29 2012-04-12 Kyocera Kinseki Corp 偏光変換素子及び偏光変換素子の製造方法
KR102170875B1 (ko) * 2011-10-24 2020-10-28 가부시키가이샤 니콘 조명 광학계, 노광 장치, 및 디바이스 제조 방법
WO2015042093A1 (en) * 2013-09-17 2015-03-26 The Johns Hopkins University Device and methods for color corrected oct imaging endoscope/catheter to achieve high-resolution
JP6131204B2 (ja) 2014-02-28 2017-05-17 富士フイルム株式会社 観察装置
JP6797592B2 (ja) * 2016-08-03 2020-12-09 キヤノン株式会社 照明装置
JP2018049127A (ja) * 2016-09-21 2018-03-29 ルネサスエレクトロニクス株式会社 露光装置、露光方法、およびデバイス製造方法
CN110430816A (zh) * 2017-01-27 2019-11-08 约翰霍普金斯大学 对内窥镜/导管/胶囊色彩校正oct成像以实现高分辨率的设备和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275493A (ja) 1993-03-19 1994-09-30 Fujitsu Ltd 投影露光
US5465220A (en) * 1992-06-02 1995-11-07 Fujitsu Limited Optical exposure method
JP3246615B2 (ja) 1992-07-27 2002-01-15 株式会社ニコン 照明光学装置、露光装置、及び露光方法
JPH07183201A (ja) 1993-12-21 1995-07-21 Nec Corp 露光装置および露光方法
JP3392034B2 (ja) 1997-12-10 2003-03-31 キヤノン株式会社 照明装置及びそれを用いた投影露光装置
WO2000070660A1 (fr) * 1999-05-18 2000-11-23 Nikon Corporation Procede et dispositif d'exposition, et dispositif d'eclairage
EP1139521A4 (en) * 1999-09-10 2006-03-22 Nikon Corp LIGHT SOURCE AND WAVELENGTH STABILIZATION CONTROL METHOD, EXPOSURE APPARATUS AND METHOD, METHOD FOR PRODUCING EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD, AND DEVICE THEREOF
JP3919419B2 (ja) 2000-03-30 2007-05-23 キヤノン株式会社 照明装置及びそれを有する露光装置
JP2001284237A (ja) 2000-03-31 2001-10-12 Canon Inc 照明装置及びそれを用いた露光装置
JP4323903B2 (ja) 2003-09-12 2009-09-02 キヤノン株式会社 照明光学系及びそれを用いた露光装置
JP2006005319A (ja) 2004-06-21 2006-01-05 Canon Inc 照明光学系及び方法、露光装置及びデバイス製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
KR101247312B1 (ko) * 2012-10-10 2013-03-25 마명철 자산관리시스템

Also Published As

Publication number Publication date
JP2006005319A (ja) 2006-01-05
EP1610181A2 (en) 2005-12-28
US20050280794A1 (en) 2005-12-22
TW200613926A (en) 2006-05-01
KR100681852B1 (ko) 2007-02-15
US7265816B2 (en) 2007-09-04

Similar Documents

Publication Publication Date Title
KR100681852B1 (ko) 조명광학계, 노광장치 및 디바이스의 제조방법
KR100674045B1 (ko) 조명장치, 노광장치 및 디바이스 제조방법
JP5159027B2 (ja) 照明光学系及び露光装置
KR100871505B1 (ko) 노광장치 및 방법
EP1429190A2 (en) Exposure apparatus and method
US7547502B2 (en) Exposure method
US7417712B2 (en) Exposure apparatus having interferometer and device manufacturing method
US20050280796A1 (en) Illumination optical system and method, and exposure apparatus
JP2004063988A (ja) 照明光学系、当該照明光学系を有する露光装置及びデバイス製造方法
JP4750525B2 (ja) 露光方法及びデバイス製造方法
US8085384B2 (en) Exposure apparatus
KR100823405B1 (ko) 노광장치 및 디바이스 제조 방법
US7359033B2 (en) Exposure method and apparatus
US6738129B2 (en) Illumination apparatus, exposure apparatus, and device fabricating method using the same
JP3997199B2 (ja) 露光方法及び装置
JP2008172102A (ja) 測定方法及び露光装置
JP5225433B2 (ja) 照明光学系及び露光装置
JP2006135346A (ja) 露光方法及び装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130123

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150127

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee