KR20020031597A - 세펨화합물의 제조방법 - Google Patents

세펨화합물의 제조방법 Download PDF

Info

Publication number
KR20020031597A
KR20020031597A KR1020027002717A KR20027002717A KR20020031597A KR 20020031597 A KR20020031597 A KR 20020031597A KR 1020027002717 A KR1020027002717 A KR 1020027002717A KR 20027002717 A KR20027002717 A KR 20027002717A KR 20020031597 A KR20020031597 A KR 20020031597A
Authority
KR
South Korea
Prior art keywords
group
compound
formula
alkenyl
substituent
Prior art date
Application number
KR1020027002717A
Other languages
English (en)
Other versions
KR100458232B1 (ko
Inventor
다나카히데오
가메야마유타카
Original Assignee
오쯔까 유우지로
오쯔까 가가꾸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오쯔까 유우지로, 오쯔까 가가꾸 가부시키가이샤 filed Critical 오쯔까 유우지로
Publication of KR20020031597A publication Critical patent/KR20020031597A/ko
Application granted granted Critical
Publication of KR100458232B1 publication Critical patent/KR100458232B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/227-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with radicals containing only hydrogen and carbon atoms, attached in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

식(1)로 나타내어지는 3-세펨화합물에 용매중에서 식(2)로 나타내어지는 알케닐할라이드, 니켈촉매, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속 및 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 작용시키는 것을 특징으로 하는 식(3)으로 나타내어지는 3-알케닐세펨화합물 또는 3-노르세펨화합물의 제조방법.
(식중, R1은 수소원자 등, R2는 수소원자 등, R3는 수소원자 또는 카르복실산보호기를 나타낸다. X는 할로겐원자 등을 나타낸다.)
(식중, R4는 치환기를 갖는 1-알케닐기, Y는 할로겐원자를 나타낸다.)
(식중, R1, R2및 R3는 상기와 동일. R5는 수소원자 또는 치환기를 갖는 1-알케닐기를 나타낸다.)

Description

세펨화합물의 제조방법{Process for the preparation of cephem compounds}
기술분야
본 발명은, 식(3)으로 나타내어지는 3-알케닐세펨화합물(3-alkenylcephem compound) 또는 3-노르세펨화합물(3-norcephem compound)을 제조하는 방법에 관한 것이다.
식(3)으로 나타내어지는 3-알케닐세펨화합물 또는 3-노르세펨화합물은, 비천연형 항생물질의 기본골격을 가지고, 일반적으로 널리 사용되고 있는 경구용 항생제 세픽심(cefixime)이나 세프티부텐(ceftibuten)(최신항생제요람 제9판, 사카이 가츠하루저, 제83페이지 및 제85페이지, 1994) 등의 광범위한 항균스펙트럼을 갖는 유용한 항균제의 중요한 합성중간체이다.
배경기술
3-알케닐세펨화합물의 제조방법으로서는, 3-할로겐화메틸세펨에 비티히반응(wittig reaction)을 행하는 방법(예를 들면 일본 특개소61-263990호 공보 등), 3-설포닐옥시세펨화합물에 금속촉매를 이용하여 비닐기를 도입하는 방법[Tetrahedron Letters,29, 6043 (1988),31, 3389 (1990),32, 4073 (1991), Journal of Organic Chemistry,55, 5833 (1990)], 알레닐 β-락탐화합물 또는 할로겐화 β-락탐화합물을 출발원료로 사용하는 방법[Tetrahedron Letters,33, 7029 (1992), Journal of Organic Chemistry,59, 4956 (1994), Synlett, 774 (1999)] 등이 알려져 있다.
그러나, 최초의 비티히반응에 관해서는, 그 반응기구상 반드시 등몰의 트리알킬 또는 트리아릴포스핀옥시드가 생성되기 때문에, 어쩔 수 없이 매우 대량의 인폐기물이 처리되고 있다. 또한, 3-설포닐옥시세펨화합물에 금속촉매를 이용하여 비닐기를 도입하는 방법에서는, 그 출발원료의 합성시, 고가이며 물에 민감한 시약을 사용하지 않으면 안될 뿐 아니라, 알케닐화를 위한 시약에 유해한 알케닐주석화합물이나 비닐큐프라이트화합물(vinyl cuprate compound)을 사용하지 않으면 안되기 때문에, 공업화의 커다란 단점으로 되어 있다.
알레닐 β-락탐화합물을 출발원료로 사용하는 방법에서는, 출발원료인 알레닐 β-락탐화합물이 불안정할 뿐 아니라, 반응시약에 염화동/비닐트리부틸주석이나 비닐트리부틸주석으로부터 조제된 비닐큐프라이트를 사용하고 있어, 공업화의 실용은 어렵다.
할로겐화 β-락탐화합물을 출발원료로 사용하는 방법에서는, 그 출발원료의 조제에 다단계 반응공정을 필요로 하는 등의 문제가 있는데다가, 반응에 사용하는 알케닐화 시약에 유기주석화합물을 사용하지 않으면 안되기 때문에, 아직 현실성 있는 방법이라고는 하기 어렵다.
상기 종래기술은, 3-비닐세펨화합물의 제조 뿐 아니라, 3-알케닐세펨화합물의 제조에도 적용되고 있지만, 본질적인 문제는 아직 해결되어 있지 않다.
한편, 3-노르세펨화합물의 합성법으로서는, 예를 들면 3-할로세펨화합물 또는 3-설포닐옥시세펨화합물을 출발원료로 하여, 아연을 작용시키는 방법이 보고되어 있다[일본 특개소52-59186호 공보 및 Recent Advances in the Chemistry of β-Lactam Antibiotics, 170 (1977) 및 Pure & Appl. Chem.,59, 1041 (1987)]. 그러나, 이 방법에서는 다량의 초산, 포름산 또는 트리플루오로초산을 사용하지 않으면 안되기 때문에, 실용화는 어렵다.
3-히드록시세펨화합물을 출발원료로 하여, 일단 접촉수소첨가를 행하고, 3-히드록시세펨화합물을 얻은 후, 할로포름산에스테르/염기를 사용하여 1,2-이탈(1,2-elimination reaction)을 행하여, 3-노르세펨화합물로 하는 방법이 보고되어 있지만[일본 특개소58-213785호, 58-34714호 공보, 또는 Pure & Appl. Chem.,59, 1041 (1987)], 본 방법에서는 접촉수소첨가, 1,2-이탈의 두 공정을 거쳐 합성할 필요가 있어, 실용적인 방법이라고는 할 수 없다.
또한, 3-포르밀세펨을 출발원료로 하는 방법이나 비티히반응을 사용하는 방법이 보고되어 있지만(Chemistry and Biology of β-Lactam Antibiotics Penicilins and Cephalosporins, Vol. 1, 170), 양방법 모두 출발물질의 입수가 매우 곤란한 화합물일 뿐 아니라, 전자에서는 고가의 로듐착체를 사용하지 않으면 안되고, 또한 후자에서는 비티히반응을 이용하기 위해 대량의 인폐기물이 부생한다고 하는 문제점을 안고 있다.
본 발명의 목적은, 식(1)로 나타내어지는 3-세펨화합물을 출발물질로 하여, 3-알케닐세펨화합물 또는 3-노르세펨화합물의 공업적으로 실시 가능한 제조방법을제공하는 것에 있다.
더욱 상세하게는, 3-세펨화합물에 식(2)로 나타내어지는 알케닐할라이드 (alkenyl halide), 니켈촉매, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속 및 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 작용시킴으로써 3-알케닐세펨화합물 또는 3-노르세펨화합물을 용이하게 제조할 수 있는 방법으로서, 3-알케닐세펨화합물 또는 3-노르세펨화합물을 제조시에 사용하는 용매를 변경하는 것 만으로 어느 한쪽을 선택적으로 제조할 수 있는 신규한 기술을 제공하는 것에 있다.
발명의 개시
본 발명은, 식(1)로 나타내어지는 3-세펨화합물을 출발물질로 하여, 3-알케닐세펨화합물 또는 3-노르세펨화합물의 선택적인 제조방법에 관한 것이다.
본 발명은, 식(1)로 나타내어지는 3-세펨화합물에 용매중에서 식(2)로 나타내어지는 알케닐할라이드, 니켈촉매, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속 및 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 작용시키는 것을 특징으로 하는 식(3)으로 나타내어지는 3-알케닐세펨화합물 또는 3-노르세펨화합물의 제조방법에 관한 것이다.
(식중, R1은 수소원자, 할로겐원자, 아미노기, 또는 보호된 아미노기를 나타낸다. R2는 수소원자, 할로겐원자, 저급알콕시기, 저급아실기, 수산기, 또는 보호된 수산기, 수산기 또는 보호된 수산기를 치환기로서 갖는 저급알킬기를 나타낸다. R3는 수소원자 또는 카르복실산보호기를 나타낸다. X는 할로겐원자, 치환기를 갖는 저급알킬설포닐옥시기 또는 치환기를 갖는 아릴설포닐옥시기를 나타낸다.)
(식중, R4는 치환기를 갖는 1-알케닐기를 나타낸다. Y는 할로겐원자를 나타낸다.)
(식중, R1, R2및 R3는 상기와 동일. R5는 수소원자 또는 치환기를 갖는 1-알케닐기를 나타낸다.)
본 발명에 의하면, 안정성이 높고, 입수하기 쉬운 식(1)로 나타내어지는 3-세펨화합물을 사용하여, 인체에 대해 비교적 안전하고 또한 범용성이 높은 알케닐화시약을 작용시킴으로써, 3-알케닐세펨화합물을 고순도, 고수율로 선택적으로 제조할 수 있다. 또한, 반응조건을 변경함으로써, 3-노르세펨화합물을 고순도, 고수율로 선택적으로 제조할 수 있다. 즉, 2종류의 비천연형 세펨골격을 용이하게 선택적으로 만들 수 있다.
본 발명에 있어서 나타내어지는 각 기는, 구체적으로는 아래와 같다. 또한, 본 명세서에 있어서 특별한 말이 없는 한, 할로겐원자란, 불소, 염소, 브롬, 요오드이고, 저급알킬기란, 예를 들면 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기 등의 직쇄 또는 분지상의 탄소수 1~4의 알킬기를 의미한다.
또한, 아릴기란, 예를 들면, 페닐기, 나프틸기 등을 의미한다.
R1로 나타내어지는 보호된 아미노기로서는, Protective Groups in Organic Synthesis, Theodora W. Greene저, 1981년(이하 간단하게 「문헌」이라고 한다)의 제7장(제218~287페이지)에 기재되어 있는 각종 기 외에, 페녹시아세트아미드, p-메틸페녹시아세트아미드, p-메톡시페녹시아세트아미드, p-클로로페녹시아세트아미드, p-브로모페녹시아세트아미드, 페닐아세트아미드, p-메틸페닐아세트아미드, p-메톡시페닐아세트아미드, p-클로로페닐아세트아미드, p-브로모페닐아세트아미드, 페닐모노클로로아세트아미드, 페닐디클로로아세트아미드, 페닐히드록시아세트아미드, 티에닐아세트아미드, 페닐아세톡시아세트아미드, α-옥소페닐아세트아미드, 벤즈아미드, p-메틸벤즈아미드, p-메톡시벤즈아미드, p-클로로벤즈아미드, p-브로모벤즈아미드, 페닐글리실아미드나 아미노기가 보호된 페닐글리실아미드, p-히드록시페닐글리실아미드나 아미노기 및 수산기의 한쪽 또는 양쪽이 보호된 p-히드록시페닐글리실아미드 등의 아미드류, 프탈이미드, 니트로프탈이미드 등의 이미드류를 예시할 수 있다. 페닐글리실아미드 및 p-히드록시페닐글리실아미드의 아미노기의 보호기로서는, 상기 문헌의 제7장(제218~287페이지)에 기재되어 있는 각종 기를 예시할 수 있다. 또한, p-히드록시페닐글리실아미드의 수산기의 보호기로서는, 상기 문헌의 제2장(제10~72페이지)에 기재되어 있는 각종 기를 예시할 수 있다.
R2로 나타내어지는 저급알콕시기로서는, 예를 들면, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, sec-부톡시, tert-부톡시 등의 직쇄 또는 분지상의 탄소수 1~4의 알콕시기를 예시할 수 있다.
R2로 나타내어지는 저급아실기로서는, 예를 들면, 포르밀, 아세틸, 프로피오닐, 부티릴, 이소부티릴 등의 직쇄 또는 분지상의 탄소수 1~4의 아실기를 예시할 수 있다.
R2로 나타내어지는 수산기 또는 보호된 수산기를 치환기로서 갖는 저급알킬기의 보호된 수산기 및 R2로 나타내어지는 보호된 수산기의 보호기로서는, 상기 문헌의 제2장(제10~72페이지)에 기재되어 있는 기를 예시할 수 있다. R2로 나타내어지는 상기 치환 저급알킬기는, 수산기 또는 상기에서 나타내어지는 보호된 수산기 중에서 선택되는 동일 또는 다른 종류의 치환기로, 동일 또는 다른 탄소상에 하나 이상 치환되어 있더라도 좋다.
R3로 나타내어지는 카르복실산의 보호기로서는, 상기 문헌의 제5장(제 152~192페이지)에 나타내어져 있는 각종 기 외에, 알릴기, 벤질기, p-메톡시벤질기, p-니트로벤질기, 디페닐메틸기, 트리클로로메틸기, 트리클로로에틸기, tert-부틸기 등을 예시할 수 있다.
R4및 R5에 있어서의 치환기를 갖는 1-알케닐기의 치환기의 종류로서는, 할로겐원자, 수산기, 니트로기, 시아노기, 아릴기, 저급알킬기, 아미노기, 모노저급알킬아미노기, 디저급알킬아미노기, 메르캅토기, 기R6S-(R6은 저급알킬기 또는 아릴기)로 나타내어지는 알킬티오기 또는 아릴티오기, 포르밀옥시기, 기R6COO-(R6은 상기와 동일)로 나타내어지는 아실옥시기, 포르밀기, 기R6CO-(R6은 상기와 동일)로 나타내어지는 아실기, 기R6O-(R6은 상기와 동일)로 나타내어지는 알콕시기 또는 아릴옥시기, 카르복실기, 기R6OCO-(R6은 상기와 동일)로 나타내어지는 알콕시카르보닐기 또는 아릴옥시카르보닐기 등을 예시할 수 있고, R4및 R5에 있어서의 1-알케닐기는,상기 치환기로부터 선택되는 동일 또는 다른 종류의 치환기로, 동일 또는 다른 탄소상에 하나 이상 치환되어 있더라도 좋다.
X에 있어서의 치환기를 갖는 저급알킬설포닐옥시기로서는, 예를 들면 메탄설포닐옥시기, 트리플루오로메탄설포닐옥시기, 트리클로로메탄설포닐옥시기 등을 예시할 수 있다. 치환기를 갖는 아릴설포닐옥시기로서는, 벤젠설포닐옥시기, 톨루엔설포닐옥시기 등을 들 예시할 수 있다.
본 발명에 있어서, 출발원료로서 사용되는 식(1)로 나타내어지는 3-세펨화합물은, X의 종류에 따라 예를 들면 아래의 문헌에 기재된 방법에 따라 제조된다.
즉, X가 할로겐원자인 경우, 3-히드록시세펨화합물(Ⅰ)을 출발원료로 하여, 디메틸포름아미드 중, 반응성 클로로화합물(삼염화인, 옥시염화인 등)을 반응시키는 방법에 의해 제조할 수 있다(일본 특개소49-116095호 공보).
(식중, R1, R2및 R3는 상기와 동일)
X가 치환기를 갖더라도 좋은 저급알킬설포닐옥시기 또는 치환기를 갖더라도 좋은 아릴설포닐옥시기의 경우, 식(1)의 3-히드록시세펨화합물을 치환기를 갖더라도 좋은 저급알킬설폰산무수물 또는 치환기를 갖더라도 좋은 아릴설폰산무수물과 반응시킴으로써 제조할 수 있다[Journal of Organic Chemistry,54, 4962 (1989)].
본 발명에서는, 상기 방법으로 합성되는 식(1)로 나타내어지는 3-세펨화합물에, 유기용매중에서 식(2)로 나타내어지는 알케닐할라이드, 니켈촉매, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속 및 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 작용시킴으로써, 식(3)으로 나타내어지는 3-알케닐세펨화합물[이하, 식(3a)]을 용이하게 제조할 수 있다.
또한, 동일 조건하에서 용매를 물 함유(water containing) 유기용매로 변경함으로써, 3-노르세펨화합물[아래, 식(3b)]을 얻는 것도 가능하다.
(식중, R1, R2, R3및 R4는 상기와 동일)
용매로서 물 함유 용매를 사용한 경우에, 식(3b)의 3-노르세펨화합물이 얻어지는 것은 환원에 의해 생긴 화합물(1)의 3번 위치의 음이온이 화합물(2)와 커플링반응을 행하기 전에 수소이온의 부가가 일어나기 때문인 것으로 생각된다.
본 발명에 있어서 사용되는 식(2)로 나타내어지는 1-알케닐할라이드화합물로서는, 구체적으로는 요오드화비닐, 염화비닐, 브롬화비닐, 1-cis-브롬화프로페닐, 1-브롬화부테닐, 2-메틸-1-브롬화프로페닐, 1-메틸-1-브롬화프로페닐, 1,2-디메틸-1-브롬화프로페닐, 3-페닐-1-브롬화프로페닐 등을 들 수 있고, 식(1)의 화합물에대해 통상 1~10배몰, 바람직하게는 1~4배몰량 사용하는 것이 좋다.
니켈촉매로서는, 예를 들면, 플루오르화니켈, 염화니켈, 브롬화니켈, 요오드화니켈, 질산니켈, 황산니켈, 과염소산니켈, 초산니켈 등의 지방산니켈, 테트라클로로니켈(Ⅱ)산테트라에틸암모늄, 테트라브로모니켈(Ⅱ)산테트라에틸암모늄, 염화헥사암민니켈(Ⅱ), 브롬화헥사암민니켈(Ⅱ), 디니트로테트라암민니켈(Ⅱ), 염화트리스(에틸렌디아민)니켈(Ⅱ), 황산트리스(에틸렌디아민)니켈(Ⅱ), 디니트로비스(에틸렌디아민)니켈(Ⅱ)과염소산비스(N,N-디메틸에틸렌디아민)니켈(Ⅱ)디클로로(비피리딜)니켈(Ⅱ), 디브로모(비피리딜)니켈(Ⅱ)클로로(시클로펜타디에닐)(트리페닐포스핀)니켈(Ⅱ), 디클로로(트리페닐포스핀)니켈(Ⅱ), 디브로모(트리페닐포스핀)니켈 (Ⅱ) 등의 니켈(Ⅱ)착체, 테트라키스(트리페닐포스핀)니켈(0), 트리스(트리페닐포스핀)니켈(0), 니켈(0)아세틸아세토네이트, 니켈(0)헥사플루오로아세틸아세토네이트 등의 니켈(0)착체 등) 등을 예시할 수 있다. 이들 금속화합물은, 1종류 또는 2종류 이상 혼합하여 사용하더라도 좋다.
사용량은, 식(1)의 화합물에 대해 통상 0.01~10배몰, 바람직하게는 0.1~1배몰량으로 하는 것이 좋다.
표준산화 환원전위가 -0.3(V/SCE) 이하의 금속으로서는 마그네슘, 알루미늄, 망간, 아연, 철, 주석, 납 등을 예시할 수 있지만, 알루미늄이 바람직하다. 이들의 형상으로서는 특별히 제한은 없고, 분말상, 판상, 박상, 덩어리상, 침상 등의 광범위한 형태를 적절히 사용할 수 있지만, 보다 바람직하게는 분말상 금속 또는 박상 금속을 사용하는 것이 좋다. 분말상 금속의 입자경은, 광범위에서 적절히 결정할수 있지만, 10~300메쉬정도의 것을 사용하는 것이 바람직하다. 이들 금속의 사용량으로서는, 식(1)의 화합물에 대해 통상 1~50배몰, 바람직하게는 1~10배몰량 사용하는 것이 좋다.
사용량이 식(1)의 화합물에 대해 등몰 보다도 적은 경우, 미반응인 식(1)의 화합물이 잔존하기 때문에, 수율, 순도의 저하가 일어나 바람직하지 않다.
상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물로서는, 납화합물(예를 들면 플루오르화납, 염화납, 브롬화납, 요오드화납, 질산납, 황산납, 과염소산납, 붕산납, 탄산납, 인산납 등의 무기염납, 초산납, 옥살산납, 스테아린산납 등의 지방산납, 산화납, 수산화납 등), 동화합물(예를 들면 플루오르화동, 염화동, 브롬화동, 요오드화동, 질산동, 황산동, 과염소산동, 탄산동 등의 무기염동, 초산동, 옥살산동 등의 지방산동, 산화동, 수산화동 등), 티탄화합물(예를 들면 플루오르화티탄, 염화티탄, 브롬화티탄, 요오드화티탄, 질산티탄, 황산티탄 등), 비스무트화합물(예를 들면 플루오르화비스무트, 염화비스무트, 브롬화비스무트, 요오드화비스무트, 질산비스무트, 황산비스무트, 산화비스무트 등), 안티몬화합물(예를 들면, 플루오르화안티몬, 염화안티몬, 브롬화안티몬, 요오드화안티몬 등) 등을 예시할 수 있지만, 납화합물을 사용하는 것이 바람직하다.
이들 금속화합물은, 1종의 금속화합물이 식(1)의 화합물에 대해 통상 0.001~10배몰량, 바람직하게는 0.01~3배몰량이 되도록 사용하는 것이 좋다.
따라서, 예를 들면 상기 금속화합물을 2종류 이상 병용하는 경우에는, 2종류 이상의 금속화합물을 각각 상기의 사용량으로 사용하는 것이 좋다.
표준산화 환원전위가 -0.3(V/SCE) 이하의 금속과 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물과의 조합의 구체예로서는, 예를 들면, 알루미늄/납화합물, 알루미늄/비스무트화합물, 망간/알루미늄화합물, 망간/납화합물, 아연/납화합물, 마그네슘/비스무트화합물, 마그네슘/동화합물, 주석/티탄화합물, 주석/비스무트화합물 등의 조합을 들 수 있다. 알루미늄/납화합물의 조합이 환원이 원활하게 진행되기 때문에, 보다 바람직하다.
용매로서는, 예를 들면, 디메틸아세트아미드(DMA), 디메틸포름아미드, 1-메틸-2-피롤리디논(1-methyl-2-pyrrolidinone;NMP), 헥사메틸포스포릭트리아미드 (hexamethylphosphoric triamide) 등의 아미드류, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 이소부티로니트릴, 바레로니트릴 등의 니트릴류, 디메틸이미다졸 (DMI), 디메틸설폭시드 등, 테트라히드로푸란(THF), 디옥산 등을 예시할 수 있고, 단독 또는 2종 이상 혼합하여 사용하더라도 좋다.
또한 상기 용매를 주로 하여, 이것에 다른 통상의 용매, 예를 들면 포름산메틸, 포름산에틸, 포름산프로필, 포름산부틸, 초산메틸, 초산에틸, 초산프로필, 초산부틸, 프로피온산메틸, 프로피온산에틸 등의 저급알킬카르복실산의 저급알킬에스테르류, 디에틸에테르, 에틸프로필에테르, 에틸부틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 메틸셀로솔브(methyl cellosolve), 디메톡시에탄 등의 에테르류, 테트라히드로푸란, 디옥산 등의 고리상 에테르류, 벤젠, 톨루엔, 크실렌, 클로로벤젠, 아니솔(anisole) 등의 치환 또는 무치환의 방향족 탄화수소류, 펜탄, 헥산, 헵탄, 옥탄 등의 탄화수소류, 시클로펜탄, 시클로헥산, 시클로헵탄, 시클로옥탄 등의 시클로알칸류, 디클로로메탄, 클로로포름, 디클로로에탄, 트리클로로에탄, 디브로모에탄, 프로필렌디클로라이드, 사염화탄소, 프레온 등의 할로겐화탄화수소류를 병용한 혼합용매로서 사용하는 것도 가능하다.
특히 바람직한 용매로서는, 디메틸포름아미드, 1-메틸-2-피롤리디논, 디메틸설폭시드를 주용매로 하는 혼합용매를 들 수 있다.
3-노르세펨화합물의 제조시의 물 함유 유기용매에 있어서의 물 함유율로서는, 통상 0.2~75%, 바람직하게는 1~40%로 하는 것이 좋다.
이들 용매의 사용량은, 식(1)의 화합물 1 kg당 0.5~200 L 정도, 바람직하게는 1~50 L 정도로 하는 것이 좋다.
반응은 통상 -10~80℃, 바람직하게는 0~50℃의 범위에서 행해져, 실온부근의 반응온도에서도 본 발명의 반응은 적절히 진행된다.
본 발명에 의해 얻어지는 식(3)의 화합물은, 반응종료후, 통상의 추출조작 또는 결정석출조작을 행함으로써 거의 순품으로서 얻을 수 있지만, 그 밖의 방법으로도 물론 정제할 수 있다.
본 발명에 의해 제조되는 식(3)의 화합물을, 예를 들면 식(3)의 화합물에서 R1이 보호된 아미노기, R2가 수소원자인 경우 [화합물(3-1)], Recent Advances in the Chemistry of β-Lactam Antibiotics, 109 (1980) 등에 기재의 아미노기 보호기의 이탈반응에 의해, 7-아미노-3-세펨화합물(3-2)로 유도할 수 있다. 물론, R1이 아미노기, R2가 수소원자인 식(1)의 화합물로부터 본 발명의 방법으로 직접 7-아미노-3-세펨화합물(3-2)로 유도하는 것도 가능하다.
(식중, R3및 R5는 상기와 동일. R은 아미노기의 보호기를 나타낸다.)
얻어진 7-아미노-3-세펨화합물(3-2)는, 광범위한 항균스펙트럼을 갖는 유용한 항균제의 중요한 합성중간체로서 사용되고 있다.
예를 들면, R5가 비닐기인 화합물(3-2)를, 일본 특공소63-20435호 공보에 기재된 방법에 의해, 경구용 항생제 세픽심으로 유도할 수 있고, 세프디니르 (cefdinir)(최신항생제요람 제9판, 사카이 가츠하루저, 86페이지, 1994)로 유도하는 것도 가능하다.
또한, R5가 수소원자인 화합물(3-2)를, Pure & Appl. Chem.,59, 1041 (1987)에 기재된 방법에 의해, 경구용 항생제 세프티부텐으로 유도할 수 있다.
본 발명에 의하면, 식(1)의 화합물의 R1, R2및 R3의 치환기는 반응에 관여하지 않아, 그 종류에 상관 없이 반응이 진행되기 때문에, 유용한 비천연형 항균제의 중간체로서 이용할 수 있는 식(3)의 화합물을 얻을 수 있다.
발명을 실시하기 위한 최선의 형태
이하에 실시예 및 참고예를 들어, 본 발명을 상세하게 설명하지만, 본 발명은 이들 실시예에 조금도 한정되는 것은 아니다.
실시예 1
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기, X=-OSO2CF3)(1a) 200 mg, 브롬화납 11 mg, 디브로모(비피리딜)니켈착체 35 mg 및 알루미늄 65 mg을 달아, 디메틸포름아미드(DMF) 4 mL 및 브롬화비닐 180 mg을 가하여, 22℃~25℃에서 1시간 교반했다. 이 반응액을 초산에틸 및 5% 염산을 사용하여 추출하고, 얻어진 유기층을 황산마그네슘상에서 건조한 후, 컬럼크로마토그래피(초산에틸/톨루엔=1/5)로 정제하여, 식(3a)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기, R4=비닐기)(3a-1) 145 mg을 얻었다.
수율:91%
1H NMR(300MHz, DMSO-d6) δ3.49(d, J=14Hz, 1H), 3.57(d, J=14Hz, 1H), 3.58(d, J=18Hz, 1H), 3.91(d, J=18Hz, 1H), 5.18(d, J=5.1Hz, 1H), 5.28(d, J=11Hz, 1H), 5.63(d, J=17Hz, 1H), 5.75(dd, J=5.1, 8.1Hz, 1H), 6.70(dd, J=11, 17Hz, 1H), 6.939(s, 1H), 9.17(d, J=8.1Hz, 1H), 7.19-7.46(m, 15H).
실시예 2
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, X=-OSO2CF3)(1b) 200 mg, 브롬화납 12 mg, 디브로모(비피리딜)니켈착체 38 mg 및 알루미늄 70 mg을 달아, DMF 4 mL 및 브롬화비닐 190 mg을 가하고, 실시예 1과 동일하게 처리하여, 식(3a)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, R4=비닐기)(3a-2) 153 mg을 얻었다.
수율:89%
1H NMR(300MHz, CDCl3) δ3.44(d, J=18Hz, 1H), 3.60(d, J=16Hz, 1H), 3.61(d, J=18Hz, 1H), 3.67(d, J=16Hz, 1H), 3.79(s, 3H), 4.92(d, J=4.4Hz, 1H), 5.16(d, J=14Hz, 1H), 5.21(d, J=14Hz, 1H), 5.31(d, J=11Hz, 1H), 5.43(d, J=17Hz, 1H), 5.81(dd, J=4.4, 9Hz, 1H), 6.26(d, J=9Hz, 1H), 7.08(dd, J=44, 17Hz, 1H), 6.85~7.40(m, 9H).
실시예 3
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기, X=-OSO2CH3)(1c) 200 mg, 브롬화납 12 mg, 디브로모(비피리딜)니켈착체 38 mg 및 알루미늄 71 mg을 달아, DMF 4 mL 및 브롬화비닐 190 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-1) 157 mg을 얻었다. 수율:90%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
실시예 4
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, X=-OSO2CH3)(1d) 200 mg, 브롬화납 13 mg, 디브로모(비피리딜)니켈착체 42 mg 및 알루미늄 77 mg을 달아, DMF 4 mL 및 브롬화비닐 200 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-2) 165 mg을 얻었다. 수율:87%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 2에서 얻어진 화합물과 일치했다.
실시예 5
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기, X=-OSO2C6H4-CH3-p)(1e) 200 mg, 브롬화납 11 mg, 디브로모(비피리딜)니켈착체 34 mg 및 알루미늄 63 mg을 달아, DMF 4 mL 및 브롬화비닐 180 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-1) 136 mg을 얻었다. 수율:88%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
실시예 6
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, X=-OSO2C6H4-CH3-p)(1f) 200 mg, 브롬화납 11 mg, 디브로모(비피리딜)니켈착체 36 mg 및 알루미늄 67 mg을 달아, DMF 4 mL 및 브롬화비닐 190 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-2) 149 mg을 얻었다. 수율:90%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 2에서 얻어진 화합물과 일치했다.
실시예 7
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기, X=Cl)(1g) 200 mg, 브롬화납 13 mg, 디브로모(비피리딜)니켈착체 43 mg 및 알루미늄 79 mg을 달아, DMF 4 mL 및 브롬화비닐 220 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-1) 167 mg을 얻었다. 수율:86%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
실시예 8
식(1)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, X=Cl)(1h)200 mg, 브롬화납 15 mg, 디브로모(비피리딜)니켈착체 47mg 및 알루미늄 87 mg을 달아, DMF 4 mL 및 브롬화비닐 240 mg을 가하고, 실시예 1과 동일하게 처리하여, 화합물(3a-2) 175 mg을 얻었다. 수율:82%
얻어진 화합물의 1H NMR 스펙트럼은, 실시예 2에서 얻어진 화합물과 일치했다.
실시예 9
화합물(1b) 200 mg, 브롬화납 14 mg, 디브로모(비피리딜)니켈착체 43 mg 및 알루미늄 80 mg을 달아, DMF 4 mL 및 1-cis-브롬화프로페닐 230 mg을 가하고, 실시예 1과 동일하게 처리하여, 식(3a)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기, R4=cis-1-프로페닐기)(3a-3) 167 mg을 얻었다.
수율:85%
1H NMR(300MHz, CDCl3) δ1.53(dd, J=1.7, 7.1Hz, 3H), 3.24(d, J=17.8Hz, 1H), 3.45(d, J=17.8Hz, 1H), 3.60(d, J=15.6Hz, 1H), 3.69(d, J=15.6Hz, 1H), 3.80(s, 3H), 4.97(d, J=4.8Hz, 1H), 5.14(s, 2H), 5.64(dq, J=7.1, 11.5Hz, 1H), 5.79(dd, J=4.8, 9.1Hz, 1H), 6.07(dd, J=1.7, 11.5Hz, 1H), 6.13(d, J=9.1Hz, 1H), 6.82~6.92, 7.20~7.43(m, 9H).
실시예 10
반응계중에 물 200 mg을 첨가한 것 이외에는 실시예 1과 동일한 반응을 행한 결과, 식(3b)의 화합물(R1=페닐아세트아미드기, R2=H, R3=디페닐메틸기)(3b-1) 144 mg을 얻었다. 수율:94%
1H NMR(300MHz, CDCl3) δ3.46(dd, J=6.2, 19.0Hz, 1H), 3.67(dd, J=2.2, 19.0Hz, 1H), 3.71, 3.79(ABq, J=15.8Hz, 2H), 5.04(d, J=4.3Hz, 1H), 6.00(dd, J=4.3, 9.0Hz, 1H), 6.19(d, J=9.0Hz, 1H), 6.71(dd, J=2.2, 6.2Hz, 1H), 7.03(s, 1H), 7.35~7.58((m, 15H).
실시예 11
반응계중에 물 200 mg을 첨가한 것 이외에는 실시예 2와 동일한 반응을 행한 결과, 식(3b)의 화합물(R1=페닐아세트아미드기, R2=H, R3=p-메톡시벤질기)(3b-2) 138 mg을 얻었다.
수율:92%
1H NMR(300MHz, CDCl3) δ3.33(dd, J=6.3, 19.2Hz, 1H), 3.53(dd, J=2.7, 19.2Hz, 1H), 3.59, 3.71(ABq, J=16.1Hz, 2H), 3.80(s, 3H), 4.90(d, J=5.1Hz, 1H), 5.15, 5.22(ABq, J=11.8Hz, 2H), 5.86(dd, J=5.1, 9.2Hz, 1H), 6.15(d, J=9.2Hz, 1H), 6.50(dd, J=2.7, 6.3Hz, 1H), 6.86~7.35(m, 9H).
실시예 12~16
반응용매를 아래의 용매로 변경하고 실시예 1과 동일한 반응을 행하여, 화합물(3a-1)을 얻었다. 결과를 표1에 나타냈다.
실시예 용매 수율(%)
12 NMP 87
13 DMA 85
14 DMI 85
15 THF 82
16 디옥산 80
각 실시예에서 얻어진 화합물(3a-1)의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
실시예 17~21
브롬화납을 아래의 금속염으로 변경하고 실시예 1과 동일한 반응을 행하여, 화합물(3a-1)을 얻었다. 결과를 표2에 나타냈다.
실시예 금속염 수율(%)
17 염화비스무트(Ⅲ) 84
18 염화티탄(Ⅳ) 82
19 염화납(Ⅱ) 80
20 염화안티몬(Ⅲ) 76
21 염화동(Ⅱ) 71
각 실시예에서 얻어진 화합물(3a-1)의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
실시예 22~25
알루미늄을 아래의 금속으로 변경하고 실시예 1과 동일한 반응을 행하여, 화합물(3a-1)을 얻었다. 결과를 표3에 나타냈다.
실시예 금속 수율(%)
22 아연 89
23 주석 85
24 마그네슘 79
25 망간 72
각 실시예에서 얻어진 화합물(3a-1)의 1H NMR 스펙트럼은, 실시예 1에서 얻어진 화합물과 일치했다.
참고예 1
실시예 1 또는 실시예 2에서 얻어진 3-비닐세펨화합물(3a-1, 3a-2)를 아래의 순서에 따라 세픽심으로 유도할 수 있다.
화합물(3a-1) 또는 (3a-2)를 염화메틸렌용매하에 오염화인/피리딘시약과 반응시킨 후, 반응액을 -35℃로 냉각하고, 메탄올로 처리하여 7-아미노-3-비닐세펨염산염(4)을 생성시킨다. 화합물(4)에 페놀을 가하고, 45℃에서 1시간 반응시켜, 7-아미노-3-비닐세펨-4-카르복실산(5)를 얻는다. 화합물(5)를 일본 특공소63-20435호 공보에 기재된 방법에 의해, 7번 위치 측쇄와의 반응, 최종 탈보호반응을 거쳐 세픽심으로 유도할 수 있다.
참고예 2
실시예 10에서 얻어진 3-노르세펨화합물(3b-1)을, 참고예 1과 동일하게 처리하여 7-아미노-3-노르세펨염산염(6)으로 하고, Pure & Appl. Chem.,59, 1041(1987)에 기재된 방법에 따라, 세프티부텐으로 유도할 수 있다.
산업상이용가능성
본 발명에서는, 광범위한 항균 스펙트럼을 갖는 유용한 비천연형 항균제의 중간체인 3-알케닐세펨화합물 및 3-노르세펨화합물 등의 제조방법이 제공된다.

Claims (5)

  1. 식(1)로 나타내어지는 3-세펨화합물에 용매중에서 식(2)로 나타내어지는 알케닐할라이드, 니켈촉매, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속 및 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 작용시키는 것을 특징으로 하는 식(3)으로 나타내어지는 3-알케닐세펨화합물 또는 3-노르세펨화합물의 제조방법.
    (식중, R1은 수소원자, 할로겐원자, 아미노기, 또는 보호된 아미노기를 나타낸다. R2는 수소원자, 할로겐원자, 저급알콕시기, 저급아실기, 수산기, 또는 보호된 수산기, 수산기 또는 보호된 수산기를 치환기로서 갖는 저급알킬기를 나타낸다. R3는 수소원자 또는 카르복실산보호기를 나타낸다. X는 할로겐원자, 치환기를 갖는 저급알킬설포닐옥시기 또는 치환기를 갖는 아릴설포닐옥시기를 나타낸다.)
    (식중, R4는 치환기를 갖는 1-알케닐기를 나타낸다. Y는 할로겐원자를 나타낸다.)
    (식중, R1, R2및 R3는 상기와 동일. R5는 수소원자 또는 치환기를 갖는 1-알케닐기를 나타낸다.)
  2. 제1항에 있어서, 식(1)로 나타내어지는 3-세펨화합물에 대해, 표준산화 환원전위가 -0.3(V/SCE) 이하의 금속을 적어도 등몰, 상기 금속 보다도 높은 표준산화 환원전위를 갖는 금속의 화합물을 0.001~10배몰 사용하는 3-알케닐세펨화합물 또는 3-노르세펨화합물의 제조방법.
  3. 제1항에 있어서, 용매로서 유기용매를 사용하여 식(3a)로 나타내어지는 3-알케닐세펨화합물의 제조방법.
    (식중, R1~R4는 상기와 동일)
  4. 제1항에 있어서, 용매로서 물 함유 유기용매를 사용하여 식(3b)로 나타내어지는 3-노르세펨화합물의 제조방법.
    (식중, R1~R3는 상기와 동일)
  5. 식(3-1) 화합물의 아미노기의 보호기를 이탈하여 식(3-2)의 7-아미노-3-세펨화합물을 얻는 것을 특징으로 하는 식(3-2)의 화합물의 제조방법.
    (식중, R3및 R5는 상기와 동일. R은 아미노기의 보호기를 나타낸다.)
KR10-2002-7002717A 1999-09-01 2000-08-30 세펨화합물의 제조방법 KR100458232B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24727299A JP4510957B2 (ja) 1999-09-01 1999-09-01 セフェム化合物の製造方法
JPJP-P-1999-00247272 1999-09-01

Publications (2)

Publication Number Publication Date
KR20020031597A true KR20020031597A (ko) 2002-05-02
KR100458232B1 KR100458232B1 (ko) 2004-11-26

Family

ID=17161009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-7002717A KR100458232B1 (ko) 1999-09-01 2000-08-30 세펨화합물의 제조방법

Country Status (9)

Country Link
US (1) US6576761B1 (ko)
EP (1) EP1209160B1 (ko)
JP (1) JP4510957B2 (ko)
KR (1) KR100458232B1 (ko)
CN (1) CN1136221C (ko)
AT (1) ATE261422T1 (ko)
ES (1) ES2216943T3 (ko)
HK (1) HK1048320B (ko)
WO (1) WO2001016140A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401224B2 (en) 2002-05-15 2008-07-15 Qualcomm Incorporated System and method for managing sonic token verifiers
CA2702257C (en) * 2007-10-09 2016-07-12 Sopharmia, Inc. Broad spectrum beta-lactamase inhibitors
CN101538273B (zh) * 2009-04-29 2012-05-09 四川抗菌素工业研究所有限公司 制备(6r,7r)-7-氨基-8-氧代-5-硫杂-1-氮杂双环[4.2.0]辛-2-烯-3-h-2-羧酸的方法
DK2968352T3 (da) 2013-03-12 2019-01-02 Gladius Pharmaceuticals Corp Derivatiserede 3-styryl-cephalosporiner
CN104910185B (zh) * 2015-03-10 2018-02-16 国药集团致君(苏州)制药有限公司 一种头孢洛林酯中间体母核的制备方法
CN106397455B (zh) * 2016-08-30 2018-08-31 山东罗欣药业集团恒欣药业有限公司 一种抗感染药物头孢布烯晶体化合物及其组合物
CN109096303A (zh) * 2018-09-11 2018-12-28 南通康鑫药业有限公司 一种头孢布烯的合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1391437A (en) * 1971-04-07 1975-04-23 Glaxo Lab Ltd Preparation of antibiotic compounds
JPS543087A (en) * 1977-06-03 1979-01-11 Fujisawa Pharmaceut Co Ltd Preparation of cephalosporin compound
JPH01224331A (ja) * 1988-03-03 1989-09-07 Kanto Denka Kogyo Co Ltd ビニルハライド及びその誘導体の環元二量化法
US5245027A (en) * 1989-11-21 1993-09-14 Bristol-Myers Squibb Company 3-fluorosulfonyloxyceph-3-em compounds

Also Published As

Publication number Publication date
EP1209160A1 (en) 2002-05-29
HK1048320A1 (en) 2003-03-28
EP1209160A4 (en) 2002-10-30
EP1209160B1 (en) 2004-03-10
JP4510957B2 (ja) 2010-07-28
US6576761B1 (en) 2003-06-10
CN1136221C (zh) 2004-01-28
ATE261422T1 (de) 2004-03-15
KR100458232B1 (ko) 2004-11-26
CN1371380A (zh) 2002-09-25
HK1048320B (zh) 2004-10-21
ES2216943T3 (es) 2004-11-01
JP2001072686A (ja) 2001-03-21
WO2001016140A1 (fr) 2001-03-08

Similar Documents

Publication Publication Date Title
EP0592677B1 (en) Beta-LACTAM COMPOUND AND CEPHEM COMPOUND, AND PRODUCTION THEREOF
KR100458232B1 (ko) 세펨화합물의 제조방법
JP4535530B2 (ja) 3−スルホニルオキシ−3−セフェム化合物の製造方法
JP4157177B2 (ja) 3−アルケニルセフェム化合物の製造法
EP0503603B1 (en) Process for preparing 2-exo-methylenepenam derivatives
EP0678520B1 (en) Process for producing 3-substituted cephem compound
EP0503604B1 (en) Allenyl beta-lactam compounds and process for preparing same
EP0999213B1 (en) Process for producing exo-methylenepenam compounds
EP0844247B1 (en) Process for producing 3-norcephem compounds
KR100241197B1 (ko) β-락탐 화합물의 제조법
KR100228189B1 (ko) 씨-3 위치가 치환된 세펨 유도체의 제조방법 ii
JPH11236386A (ja) 3−セフェム化合物の製造法
WO1996028453A1 (fr) Procedes de production de derives de 2-isocepheme
WO1997017353A1 (fr) Procede de preparation de derives 3-halogenocephemes
JPH11236387A (ja) 3−セフェム化合物の製造方法
JPH08245630A (ja) 3−セフェム化合物の製造法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130808

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee