KR20010030461A - 압전세라믹 및 이것을 이용한 표면파 장치 - Google Patents

압전세라믹 및 이것을 이용한 표면파 장치 Download PDF

Info

Publication number
KR20010030461A
KR20010030461A KR1020000055465A KR20000055465A KR20010030461A KR 20010030461 A KR20010030461 A KR 20010030461A KR 1020000055465 A KR1020000055465 A KR 1020000055465A KR 20000055465 A KR20000055465 A KR 20000055465A KR 20010030461 A KR20010030461 A KR 20010030461A
Authority
KR
South Korea
Prior art keywords
surface wave
wave device
piezoceramic
piezoelectric ceramic
sample
Prior art date
Application number
KR1020000055465A
Other languages
English (en)
Other versions
KR100515557B1 (ko
Inventor
호리카와가츠히로
마츠바라코지
Original Assignee
무라타 야스타카
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무라타 야스타카, 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 무라타 야스타카
Publication of KR20010030461A publication Critical patent/KR20010030461A/ko
Application granted granted Critical
Publication of KR100515557B1 publication Critical patent/KR100515557B1/ko

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 매우 낮은 손실 및 우수한 미세가공성을 갖는 압전세라믹을 제공한다. 상기 압전세라믹은 주성분으로서 적어도 Pb, Mn, Nb, Ti, Zr를 포함하고, 압전세라믹의 조성이 화학식 Pbx{(MnaNbb)yTizZr(1-y-z)}O3로 표현될 때, x, y, z, a, b는 단위가 몰이고, 0.95≤x≤0.995, 0.055≤y ≤0.10, 0.40≤z ≤0.55, 2.01≤b/a≤2.40, a + b = 1을 만족한다. 아울러, 소결된 압전세라믹의 평균 입자직경은 2㎛ 이하이다.

Description

압전세라믹 및 이것을 이용한 표면파 장치{Piezoelectric ceramic and surface wave device using the same}
본 발명은 압전세라믹 및 이것을 이용한 표면파 장치에 관한 것으로서, 구체적으로는 고주파수 필터와 발진기에 이용되는, 특히, 표면파 장치에 이용되는 저손실 압전세라믹 및 이것을 이용한 표면파 장치에 관한 것이다.
압전세라믹을 이용한 필터와 발진기는 통신장치와 시청각장치(audio-visual apparatus)와 같은 다양한 전기/전자제품에 사용되어 왔다. 최근에는, 압전세라믹을를 이용한 필터와 발진기가 고주파수 영역에서 사용되는데, 예를 들어, 벌크파(bulk wave)를 이용한 필터와 발진기가 전단진동 또는 제 3 고조전단진동 (harmonic sheer vibration)을 이용하여 약 수십 MHz의 영역에서 실제적으로 적용가능하다. 약 60MHz 이상의 영역에서는 벌크파를 이용한 필터와 발진기를 제작하기 어려우므로 표면파를 이용한 필터와 발진기가 사용되어 왔다.
표면파를 이용한 표면파 장치, 예를 들어, 필터와 발진기는 전극에 전기신호를 공급함으로써 표면파를 여진하고 전파하는 장치로서, 상기한 전극에는 각각 적어도 1개의 전극지(電極指)를 가지고 있고 서로 교차하도록 배열된 적어도 한 쌍 이상의 전극이 압전 기판에 배치되어 있다. 표면파 장치에 이용되는 표면파로서, 레일리파(Rayleigh wave)가 가장 일반적으로 이용되고, BGS파(Bleustein-Gulyaev-Shimizu wave 또는 압전표면전단파), 러브파(Love wave)와 같은 SH파(horizontally-polarized sheer wave)는 변위가 진행방향에 수직이고 성분은 기판의 표면에 평행한 전단파로도 또한 이용된다. 공진주파수 및 표면파 장치의 전기적ㆍ기계적 특성은 다른 압전 장치와 마찬가지로 압전 기판에 이용되는 재료의 특성에 크게 의존하며, 각각 적어도 1개의 전극지를 가지고 있고 서로 교차하도록 배열된 빗형상 전극(comb electrodes)의 구조에 의해서 거의 결정된다. 따라서 압전 기판의 특성을 개선하는 것은 표면파 장치의 특성을 개선하기 위한 효과적인 기술이다.
압전세라믹을 이용한 표면파 장치의 예로서, 표면파 장치에 사용되는 재료의 임계특성이 기술되어 있는, 예를 들어, 일본공개공보 제 5-145368 호, 제 5-145369 호, 제 5-145370 호 및 제 5-183376 호가 제안되고 있다. 아울러, 압전세라믹의 조성의 관점에서 표면파 장치의 특성을 개선하기 위한 다양한 제안들이 계속적으로, 예를 들어, 일본공개공보 제 5-275967 호, 제 5-327397 호, 제 8-310862 호, 제 9-93078 호에 제기되고 있다.
압전 기판과 같은 압전세라믹을 이용한 표면파 장치에는, 고주파수 영역에서 손실이 크다는 문제점이 있다. 따라서 약 80MHz 이상의 고주파수 영역에서 사용되는 표면파 장치에는 LiNbO3, LiTaO3, 석영과 같은 단결정 재료가 주로 사용된다. 압전세라믹의 손실은 단결정 재료의 손실보다 더 크며, 그 이유는, 기계적 품질계수(quality factor) Qm 이 작고, 미세가공시에 표면상태가 악화되며(미세가공성이 불량), 기공이 발생하는 등의 이유인 것으로 여겨진다. 아울러, SH파를 이용한 표면파 장치 중 일부는 에지면(edge surface)에서의 반사를 이용하는데, 이러한 장치에서는 표면파를 반사시키는 에지면의 상태가 상기한 손실에 영향을 끼친다. 따라서 압전세라믹을 이용한 장치가 큰 손실을 가지는 이유 중의 하나는 표면파를 반사시키는 에지면의 미세가공성이 나쁘기 때문인 것으로 여겨진다.
압전세라믹을 이용한 표면파 장치의 문제점을 해결하기 위한 방법으로서, 표면파 장치용 재료의 임계특성이 상술한 바와 같이 일본공개공보 제 5-145368 호, 제 5-145369 호, 제 145370 호, 제 5-183376 호에 기재되어 있다. 아울러, 일본공개공보 제 5-275967 호, 제 5-327397 호,제 8-310862 호, 제 9-93078 호 등에는, 압전세라믹의 손실 개선 및 열안정성 개선이 기재되어 있다. 그러나 80MHz 이상의 영역에서 사용되는 표면파 장치를 일본공개공보 제 5-145368 호, 제 5-145369 호, 제 5-145370 호, 제 5-183376 호, 제 5-275967 호, 제 5-327397 호에 의하여 형성할 때에는 표면파 장치의 반공진임피던스 Za와 공진임피던스 Zr의 비(Za/Zr)가 약 80MHz에서 급속하게 감소하고, 그 때문에 이렇게 형성된 장치는 실제로 사용하기가 어렵다. 일본공개공보 제 8-310862 호, 제 9-93078 호에 의한 협소한 대역범위에서 사용되는 필터에 있어서는, 전기기계 결합계수 kBGS가 매우 크고, 80MHz에서 Za/Zr값이 충분하지 못하기 때문에 실제로 사용하기에는 문제가 있다. 압전세라믹의 Za/Zr값이 감소하는 이유는 특히 소결된 압전세라믹의 밀도가 기공의 존재로 인하여 낮고, 고주파수 영역에서의 안정성과 미세가공성이 나쁘기 때문이라고 여겨진다.
따라서, 본 발명의 목적은 현저하게 낮은 손실과 우수한 미세가공성을 가진 압전세라믹 및 이것을 이용한 표면파 장치를 제공하는 것이다.
도 1은 본 발명의 실시예에 따른 샘플에 대한 제작공정 및 그에 대한 평가공정을 나타내는 도표이다.
도 2는 본 발명의 실시예에 따른 표면파 장치의 사시도이다.
도 3은 본 발명의 실시예에 따른 대표적인 표면파 장치의 공진주파수와 Za/Zr간의 관계를 나타낸 그래프이다.
도 4a ~ 도 4c는 본 발명의 실시예에 따른 대표적인 표면파 장치의 표면상태를 나타내는 도면으로서, 도4a는 샘플번호 22의 표면상태를 나타내는 도이고, 도4b는 샘플번호 19의 표면상태를 나타내는 도이며, 도4c는 샘플번호 28의 표면상태의 확대도이다.
본 발명에 따른 압전세라믹은 주성분으로서, 적어도 납(Pb), 망간(Mn), 니요븀(Nb), 티타늄(Ti), 지르코늄(Zr)을 포함하며, 이 때 주성분의 조성은 하기 화학식 1에 의하여 표현된다.
Pbx{(MnaNbb)yTizZr(1-y-z)}O3,
상기 식에서, x, y, z, a, b는 단위가 몰이고, 0.95≤x≤0.995, 0.055≤y≤0.10, 0.40≤z≤0.55, 2.01≤b/a≤2.40, a + b = 1을 만족하고 소결된 압전세라믹의 평균 입자직경은 2㎛ 이하이다.
본 발명에 따른 압전세라믹은 주성분에 함유된 SiO2를 0.05중량% 이하 포함하는 것이 바람직하다.
본 발명에 따른 압전세라믹에서, z는 0.47 ~ 0.55이고, 조성의 결정계는 정방정계인 것이 바람직하다.
아울러, 본 발명에 따른 압전세라믹에서, 5몰% 이하의 납이 스트론튬(Sr), 바륨(Ba) 및 칼슘(Ca) 중의 하나와 치환될 수 있다.
더욱이, 본 발명의 표면파 장치는 본 발명에 따른 압전세라믹으로부터 형성된다.
Pb{(Mn1/3Nb2/3)TiZr}O3계 재료는 "압전세라믹재료"(p128, 1973, published by Gakken-sha)에 기재되어 있는 바와 같이, PZT계 압전세라믹 중 가장 낮은 손실을 가지는 재료 중의 하나이다. 상술한 소결체의 평균 입자직경을 현저하게 감소시키기 위하여, 본 발명에서는, 종래의 조성에서의 공지된 Nb와 Mn의 비에 Nb를 첨가하는 조성에 의하여 고주파수 영역에서 매우 고운 입자와 낮은 손실을 가지는 고밀도 압전세라믹을 얻을 수 있음이 발견되었다. 아울러, Pb의 양이 화학양론적 조성(stoichiometric content)이하로 감소할 때, 파이로클로상(pyrochlore phase)인 Pb2Nb2O7와 같은 어떠한 이질적인 상도 소결체에 존재하지 않기 때문에, 낮은 손실을 가지는 압전세라믹을 얻을 수 있다. 압전세라믹의 결정계가 정방정계일 때, 강제 전기장(coercive electric field)이 더욱 향상되고 분극안정성이 증가하므로, 고주파수 영역에서 훨씬 낮은 손실을 달성할 수 있다. 아울러, 주성분에 함유된 SiO2의 양이 0.05중량% 이하일 때, 압전세라믹의 파괴모드가 입간파괴모드 (intergranular fracture mode) 또는 입간-입내파괴모드(intergranular-transgranular fracture mode)로 되기 때문에 가공시에 압전세라믹의 심각한 파손을 방지할 수 있다.
더욱이 본 발명의 압전세라믹이 표면파 장치에 사용될 때, 세립자 때문에 미세가공성이 우수하고, 특히 소결체의 평균 입자직경이 2㎛ 이하일 때에는 고주파수 영역에서의 손실은 현저하게 줄어든다.
본 발명의 상기한 목적, 그 외의 다른 목적, 특징, 이점들은 첨부도면을 참고하여, 하기의 실시예에 대한 상세한 설명으로부터 더욱 분명해질 것이다.
[실시예]
도 1은 본 발명의 실시예에 따른 샘플에 대한 제작공정 및 그에 대한 평가공정을 나타내는 도표이다. 이하, 이에 대하여 상세히 설명할 것이다.
하기 표 1에 나타난 조성을 제조하기 위하여, 초기재료로서 Pb3O4, ZrO2, TiO2, MnCO3, Nb2O5, SiO2를 볼밀(ball mill)을 사용하여 4 ~ 32시간동안 혼합하여 분쇄하였다. 상기한 혼합물을 탈수하고 건조한 후, 850 ~ 1000℃에서 2시간동안 베이킹(baking)하였다. 바인더(binder), 분산제, 소포제를 총 3 ~ 10중량%로 하여 상기에서 얻은 각 분말에 첨가한 후, 볼밀을 사용하여 8 ~ 16시간동안 혼합하여 분쇄함으로써 슬러리(slurry)를 얻었다. 상기한 슬러리를 주조에 의해 성형하고, 0.8 ~ 1.5mm×약 60mm의 성형체를 제작하였다. 상기한 성형체를 1100 ~ 1250℃에서 1 ~ 3시간동안 베이킹하여 소결체를 얻었다. 소결체의 밀도와 입자직경은 각각 아르키메데스법과 절편법(intercept method)으로 측정하였다. 그 후에 거울면을 만들기 위하여 #800 ~ #8000의 연마제를 사용하여 연마함으로써 약 0.6 ~ 0.8mm의 두께를 갖는 압전 장치용 기판을 얻었다.
표 1은 본 발명의 실시예에 사용된 압전세라믹의 조성을 나타내는 일반식 Pbx{(MnaNbb)yTizZr(1-y-z)}O3에서의 x, y, z, a, b 및 SiO2양, 샘플의 결정계를 나타내고 있다(상기에서 a + b = 1이다).
상기 표 1에서 별표(*)가 있는 샘플은 비교예이고, 본 발명의 범위를 벗어난다. 비고1)은 x대신에 치환되는 Sr, Ba, 또는 Ca의 양을 나타낸다. 이 경우에 x는 (x)로 표시되고, (x)는 Sr, Ba, 또는 Ca를 포함한 양이다.
줄무늬 형태로 Cu/Ag를 증착시켜 형성한 분극용 전극을 압전세라믹 기판의 양 주면에 형성하였고, 분극방향이 기판의 표면과 평행이 되도록 분극을 실시하였다. 분극조건으로, 오일에서 2.0 ~ 3.0kV/mm의 전기장을 60 ~ 120℃로 30 ~ 60분동안 인가하였다. 그 후에 증착법에 의해 형성된 Cu/Ag 전극을 에칭용액을 이용하여 제거함으로써 분극된 압전세라믹 기판을 얻었다.
각각 적어도 1개의 전극지를 가지고 있고 서로 교차하도록 배열된 빗형상 전극을 형성하기 위하여, Al전극막을 스퍼터링(sputtering)에 의해 압전세라믹 기판의 주면 중 어느 하나에 형성한 후, 석판술(photolithography)로 패턴화하였다. 패턴화된 Al전극이 제공된 압전세라믹 기판을 적당한 크기로 절단함으로써, 도 2에서 보는 바와 같은 표면파 장치를 얻었다.
표면파 장치를 납단자가 있는 장치에 고정시킨 후, 배선으로 납단자와 접속시켜 BGS파(SH파)를 이용한 표면파 장치를 얻었다. 상술한 과정에 따라서, 약 40MHz, 80MHz, 120MHz(일부는 160MHz를 포함한다)의 공진주파수를 갖는 표면파 장치를 표 1에 나타낸 각각의 재료로부터 형성하였고, 표면파 장치의 특성을 회로 분석기(network analyzer)로 평가하였다. 평가항목은 BGS파의 전기기계 결합계수 kBGS및 반공진임피던스 Za와 공진임피던스 Zr의 비(Za/Zr)이었다. 결과는 재료의 밀도 및 입자직경의 결과와 함께 표 2에 기재되어 있다. 아울러, 공진주파수와 대표적인 실시예의 Za/Zr간의 관계가 도 3에 도시되어 있으며, 표면파 장치의 표면상태가 도 4a ~ 4c에 도시되어 있다.
상기 표 2에서, 별표(*)가 있는 샘플은 비교예이고, 본 발명의 범위를 벗어난다. 참고2)는 비교용으로 벌크두께에서 전단진동(약 2MHz)의 Za/Zr를 나타낸다.
표 2는, 표 1에 기재된 압전세라믹의 소결밀도와 평균 입자직경 및 상술한 압전세라믹으로부터 형성된 표면파 장치의 특성을 나타내는 표이다.
표면파 필터 또는 발진기가 실제로 형성될 때, 그에 대한 설계는 표면파 장치의 형상, 빗형상 전극의 구조 및 본 실시예에 따른 표면파 장치와 같은 간단한 표면파 장치로부터 얻어진 특성에 근거한 빗형상 전극의 조합에 의하여 최적화된다. 본 실시예의 표면파 장치의 특성에 근거하여 필터를 설계하는 경우에, Za/Zr이 40dB 이상이 되면 필터를 실제로 사용할 수 있고, Za/Zr이 45dB 이상이 되면 우수한 필터특성을 얻을 수 있다. 아울러, 협소한 대역에서 kBGS는 35% 이하인 것이 바람직하다.
상술한 관점에서, 본 발명을 구체화한 이유는, 특히, 80MHz ~ 120MHz의 고주파수 영역에서의 표면파 장치의 특성에 의하여 설명될 것이다.
x를 0.95≤x≤0.995로 구체화한 이유는, x 〈 0.95, 또는 x 〉 0.995일 때에는 샘플번호 6과 1에서 보는 바와 같이, 120MHz에서 Za/Zr이 40dB 미만이 되기 때문에 바람직하지 못하기 때문이다. 상기한 손실감소의 이유는 샘플번호 6의 소결밀도가 감소하고, 파이로클로상인 Pb2Nb2O7와 같은 이질적인 상이 샘플번호 1의 소결체에 남아있기 때문이라고 여겨진다. 아울러, 우수한 필터특성을 얻기 위해서, Za/Zr가 80MHz에서 45dB인 샘플번호 2 ~ 4에서 보는 바와 같이 x를 0.965 ~ 0.995로 하는 것이 특히 바람직하다.
다음으로, y를 0.055≤y≤0.10로 구체화한 이유는, y 〈 0.055일 때에는, 샘플번호 7에서 보는 바와 같이 b/a가 2.01 이상이 되더라도 평균 입자직경이 크고, Za/Zr이 40dB 미만이 되므로 바람직하지 못하기 때문이다. 아울러, 샘플번호 12에서 보는 바와 같이 y 〉 0.10일 때에는, 120MHz에서 Za/Zr이 40dB 미만이 되기 때문에 바람직하지 못하다. 우수한 필터특성을 얻기 위해서, 샘플번호 9와 10에서는 80MHz에서 Za/Zr가 48dB에 이르기 때문에 y를 0.065 ~ 0.080으로 하는 것이 특히 바람직하다.
z를 0.40≤z≤0.55로 구체화한 이유는, z 〈 0.40, 또는 z 〉 0.55일 때에는, 샘플번호 13과 18에서 보는 바와 같이 Za/Zr이 40dB 미만이 되므로 바람직하지 못하기 때문이다. 아울러, 샘플번호 15 ~ 17에서 보는 바와 같이, Za/Zr이 80MHz에서 45dB 이상이 되므로 우수한 필터특성을 기대할 수 있다. 더욱이, 샘플번호 13 ~ 18과 비교하여 볼 때, 육면체정계(rhombohedral system)보다는 정방정계에서, 고주파수 영역에서의 낮은 kBGS와 높은 Za/Zr을 얻을 수 있음을 알 수 있다. 상기한 바와 같이, 고주파수 영역에서 우수한 필터특성을 얻기 위해서는, 0.47 ~ 0.55의 z를 갖는 정방 압전세라믹이 특히 바람직하다.
다음으로, b/a를 2.01≤b/a≤2.40로 구체화한 이유는, b/a 〈 2.01일 때에는, 샘플번호 19와 20에서 보는 바와 같이, Za/Zr이 평균 입자직경의 증가로 인하여 특히 120MHz에서 40dB 미만으로 감소하므로 바람직하지 못하기 때문이다. 아울러, b/a 〉 2.40일 때에는, 샘플번호 25에서 보는 바와 같이, Za/Zr이 120MHz에서 45dB 미만이 되고, 평균 입자직경이 작아지더라도 소결특성이 악화되기 때문에 바람직하지 못하다. 샘플번호 21 ~ 23, 2, 3, 15, 16에서 보는 바와 같이, b/a를 2.01 ~ 2.24의 범위로 구체적으로 설정하고, x, y, z를 각각 상기한 바와 같은 바람직한 범위로 설정할 때, 80MHz에서 47dB 이상의 Za/Zr를 갖는 상당히 우수한 특성을 얻을 수 있음을 알 수 있다. 샘플번호 19와 20에서 보는 바와 같이, 평균 입자직경이 2.0㎛ 이상일 때, 도 4b에 도시된 바와 같이 기공이 형성되고, 고주파수 영역에서 Za/Zr이 현저하게 감소하기 때문에 바람직하지 못하다.
이제까지는, 0.005중량% 이하의 SiO2가 주성분에 첨가되는 경우(SiO2가 의도적으로 첨가된 것이 아니고 단지 우연한 SiO2불순물로 존재하는 경우)를 설명하였고, 이제부터는 주성분에 첨가된 부성분으로서의 SiO2함량에 대한 한계치에 대하여 설명할 것이다.
표 1 및 표 2에 있는 샘플번호 3, 26 ~ 28에서 보는 바와 같이, Za/Zr은 SiO2함량이 증가함에 따라 점차로 감소한다. 샘플번호 28에서 보는 바와 같이, SiO2함량이 0.05중량%를 초과할 때에는, 120MHz에서 Za/Zr이 40dB 미만으로 되기 때문에 바람직하지 못하다. 이러한 이유는 상기한 바와 같이, 파괴모드가 입간파괴모드에서 입간-입내파괴모드를 통하여 입내파괴로 변화되어, 미세가공시 기판의 표면 또는 가장자리에 현저한 틈이 생기기 때문이다(도 4c 참고). 이것이 고주파수 영역에서의 Za/Zr의 감소에 대한 주된 이유라고 여겨진다.
상술한 압전세라믹에 있어서, 5몰% 이하의 Pb을 Sr, Ba 또는 Ca로 치환할 때 상술한 바와 동일한 결과를 얻을 수 있음을 표 2의 샘플번호 29 ~ 31에서 얻어진 결과로부터 알 수 있다. 그러나 5몰%를 초과하는 Pb을 Sr, Ba 또는 Ca로 치환할 때에는 샘플번호 32 ~ 34에서 보는 바와 같이, Za/Zr이 고주파수 영역에서 40dB 미만으로 되므로 바람직하지 못하다.
상술한 실시예에서, 적어도 1개의 전극지를 가지고 있고 서로 교차하도록 배열된 빗형상 전극을 도 2에서 보는 바와 같이 전기장이 분극방향에 수직방향으로 인가되도록 형성하는 경우를 설명하였다. 그러나 본 발명은 이에 한정되지 않는다. 즉, 본 발명은 분극방향과 빗형상 전극에 인가된 전기장 방향간의 관계로 한정되지 않고, 또한 BGS파(SH파)로 한정되지도 않는다. 예를 들어, BGS파 대신에 레일리파 등이 표면파로서 사용될 때, 또는 벌크파가 판상의 형태로 샘플에서 여진될 때, 상술한 바와 동일한 결과를 얻을 수 있다. 이것은, 기공의 수가 매우 적고 표면상태가 양호한, 도 4a에 도시된 실시예에 따른 샘플로부터 쉽게 알 수 있다. 아울러, 참고적으로 벌크파에 있어서의 Za/Zr이 표 2에 기재되어 있으며, 본 발명의 압전세라믹은 벌크파에 있어서도 우수한 Za/Zr을 갖는 저손실의 압전세라믹임을 비교예와의 비교에 의해서 알 수 있다.
본 발명에 의하여, 매우 작은 평균 입자직경과 현저하게 낮은 손실 및 우수한 미세가공성을 갖는 압전세라믹을 얻을 수 있다. 아울러, 본 발명의 압전세라믹이 표면파 장치에 사용될 때, 저손실을 갖는 표면파 장치를 얻을 수 있으며, 특히 고주파수 영역에서의 손실은 현저하게 감소될 수 있다. 따라서, 100MHz 이상의 고주파수 영역에서 실제로 사용가능한 저손실의 필터와 발진기를 형성할 수 있다.

Claims (8)

  1. 주성분으로 납, 망간, 니오븀, 티타늄, 지르코늄을 포함하는 압전세라믹으로서,
    조성식이 Pbx{(MnaNbb)yTizZr(1-y-z)}O3이고, x, y, z, a, b는 단위가 몰이고, 0.95≤x≤0.995, 0.055≤y≤0.10, 0.40≤z≤0.55, 2.01≤b/a≤2.40, a + b = 1을 만족하고,
    소결된 압전세라믹의 평균 입자직경은 2㎛ 이하임을 특징으로 하는 압전세라믹.
  2. 제 1항에 있어서, 주성분에 대한 부성분으로서 0.05중량%이하의 SiO2를 포함하는 것을 특징으로 하는 압전세라믹.
  3. 제 1항 또는 제 2항에 있어서, z가 0.47≤z≤0.55이고 조성의 결정계가 정방정계임을 특징으로 하는 압전세라믹.
  4. 제 1항에 있어서, 5몰% 이하의 납이 스트론튬, 바륨 및 칼슘 중의 하나와 치환되는 것을 특징으로 하는 압전세라믹.
  5. 제 1항에 있어서, 표면파 장치의 구성요소로서 사용되는 것을 특징으로 하는 압전세라믹.
  6. 제 5항에 있어서, 상기 표면파 장치가 SH파를 이용하는 표면파 장치임을 특징으로 하는 압전세라믹.
  7. 제1항에 기재된 압전세라믹을 포함하는 것을 특징으로 하는 표면파 장치.
  8. 제7항에 있어서, SH파를 이용하는 것을 특징으로 하는 표면파 장치.
KR10-2000-0055465A 1999-09-29 2000-09-21 압전세라믹 및 이것을 이용한 표면파 장치 KR100515557B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-275627 1999-09-29
JP27562799A JP3562402B2 (ja) 1999-09-29 1999-09-29 圧電磁器材料およびこれを用いた表面波装置

Publications (2)

Publication Number Publication Date
KR20010030461A true KR20010030461A (ko) 2001-04-16
KR100515557B1 KR100515557B1 (ko) 2005-09-20

Family

ID=17558099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0055465A KR100515557B1 (ko) 1999-09-29 2000-09-21 압전세라믹 및 이것을 이용한 표면파 장치

Country Status (6)

Country Link
US (1) US6383408B1 (ko)
JP (1) JP3562402B2 (ko)
KR (1) KR100515557B1 (ko)
CN (1) CN1203491C (ko)
DE (1) DE10048373C2 (ko)
FR (1) FR2798925B1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783534B2 (ja) * 2000-08-18 2006-06-07 株式会社村田製作所 圧電磁器焼結体および圧電磁器素子
JP4298232B2 (ja) * 2002-07-25 2009-07-15 株式会社村田製作所 圧電磁器組成物、及び圧電素子
JP3678234B2 (ja) * 2002-07-25 2005-08-03 株式会社村田製作所 積層型圧電部品の製造方法、及び積層型電子部品
DE10245130A1 (de) * 2002-09-27 2004-04-08 Epcos Ag Piezoelektrischer Transformator mit Cu-Innenelektroden
WO2005092817A1 (ja) * 2004-03-26 2005-10-06 Tdk Corporation 圧電磁器組成物
WO2005102957A1 (ja) * 2004-04-20 2005-11-03 Taiheiyo Cement Corporation 圧電磁器組成物およびこれを用いた圧電デバイス
JP4497301B2 (ja) * 2004-08-30 2010-07-07 Tdk株式会社 レゾネータ
JP2006090865A (ja) * 2004-09-24 2006-04-06 Ngk Spark Plug Co Ltd 非共振型ノッキングセンサ
JP4338091B2 (ja) 2005-04-08 2009-09-30 Tdk株式会社 レゾネータ
CN110024147B (zh) * 2017-02-16 2023-04-04 松下知识产权经营株式会社 压电元件、致动器及液滴排出头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528436B2 (ko) * 1973-11-24 1980-07-28
JPS61185893A (ja) * 1985-02-14 1986-08-19 三菱電機株式会社 調光装置
JPH0798663B2 (ja) * 1986-04-14 1995-10-25 住友金属鉱山株式会社 赤外線センサー用焦電体磁器の製法
JP2866986B2 (ja) * 1990-11-22 1999-03-08 京セラ株式会社 圧電磁器組成物
JP3163664B2 (ja) * 1991-07-15 2001-05-08 株式会社村田製作所 圧電磁器材料
JP3103165B2 (ja) * 1991-10-15 2000-10-23 太平洋セメント株式会社 圧電体の製造方法
JP3239399B2 (ja) 1991-11-15 2001-12-17 株式会社村田製作所 表面波装置
JPH05145368A (ja) 1991-11-19 1993-06-11 Murata Mfg Co Ltd 表面波装置
JPH05145369A (ja) 1991-11-19 1993-06-11 Murata Mfg Co Ltd 表面波装置
JPH05183376A (ja) 1991-12-27 1993-07-23 Murata Mfg Co Ltd 表面波装置
JP3198589B2 (ja) 1992-03-25 2001-08-13 株式会社村田製作所 表面波装置
JP3198613B2 (ja) 1992-05-21 2001-08-13 株式会社村田製作所 表面波装置
JP3384043B2 (ja) * 1993-07-19 2003-03-10 株式会社村田製作所 圧電磁器
JPH08310862A (ja) * 1995-05-12 1996-11-26 Murata Mfg Co Ltd 圧電磁器組成物
JPH0993078A (ja) 1995-09-26 1997-04-04 Murata Mfg Co Ltd 圧電装置
JP3570294B2 (ja) * 1999-05-20 2004-09-29 株式会社村田製作所 圧電磁器材料およびそれを用いて得られた圧電磁器焼結体

Also Published As

Publication number Publication date
US6383408B1 (en) 2002-05-07
DE10048373C2 (de) 2003-02-06
FR2798925B1 (fr) 2005-05-27
DE10048373A1 (de) 2001-10-11
CN1291774A (zh) 2001-04-18
FR2798925A1 (fr) 2001-03-30
JP2001097771A (ja) 2001-04-10
KR100515557B1 (ko) 2005-09-20
JP3562402B2 (ja) 2004-09-08
CN1203491C (zh) 2005-05-25

Similar Documents

Publication Publication Date Title
KR100282598B1 (ko) 압전 세라믹 조성물
CN109802646A (zh) 带有温度补偿层的谐振器、滤波器
EP1001531A2 (en) Surface acoustic wave device
KR100515557B1 (ko) 압전세라믹 및 이것을 이용한 표면파 장치
JPH0782024A (ja) 圧電磁器組成物
JPH09165262A (ja) 圧電体磁器組成物
EP0043032B1 (en) Piezoelectric resonator
JP3570294B2 (ja) 圧電磁器材料およびそれを用いて得られた圧電磁器焼結体
KR20020016592A (ko) 압전 세라믹 조성물 및 압전 소자
US4605876A (en) Piezoelectric ceramic energy trapping electronic device
KR100434421B1 (ko) 탄성표면파 장치용 압전 세라믹 조성물과 탄성표면파 장치
JP3198613B2 (ja) 表面波装置
EP1302454A1 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JPH11349380A (ja) 圧電磁器組成物及びこれを用いた圧電素子
EP0739866B1 (en) Piezoelectric ceramics
US6369488B1 (en) Piezoelectric device
JPH0993078A (ja) 圧電装置
JPH0745882A (ja) 圧電素子
JPH0151072B2 (ko)
CN1286476A (zh) 压电陶瓷组合物和使用它的压电器件
JPH0891927A (ja) 圧電磁器組成物
KR20030056244A (ko) 압전 세라믹 조성물과 그 압전 세라믹 조성물을 이용한압전소자
JPH07187775A (ja) 圧電磁器組成物
JPH09235159A (ja) 圧電磁器組成物
KR20030056242A (ko) 압전 세라믹 조성물과 그 압전 세라믹 조성물을 이용한압전소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20031124

Effective date: 20050728

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130819

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140826

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 15