KR102576901B1 - 물담배 장치 - Google Patents

물담배 장치 Download PDF

Info

Publication number
KR102576901B1
KR102576901B1 KR1020227031909A KR20227031909A KR102576901B1 KR 102576901 B1 KR102576901 B1 KR 102576901B1 KR 1020227031909 A KR1020227031909 A KR 1020227031909A KR 20227031909 A KR20227031909 A KR 20227031909A KR 102576901 B1 KR102576901 B1 KR 102576901B1
Authority
KR
South Korea
Prior art keywords
signal
mist
hookah
ultrasonic transducer
frequency
Prior art date
Application number
KR1020227031909A
Other languages
English (en)
Other versions
KR20220138405A (ko
Inventor
모하메드 알샤이바 샬르 가남 알마즈루이
사지드 바티
제프 마초벡
클레멘트 라무르
Original Assignee
샤힌 이노베이션즈 홀딩 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2019/060808 external-priority patent/WO2021123867A1/en
Priority claimed from PCT/IB2019/060812 external-priority patent/WO2021123871A1/en
Priority claimed from PCT/IB2019/060811 external-priority patent/WO2021123870A1/en
Priority claimed from PCT/IB2019/060810 external-priority patent/WO2021123869A1/en
Priority claimed from EP20168938.7A external-priority patent/EP3834636A1/en
Priority claimed from US17/220,189 external-priority patent/US20210307376A1/en
Priority claimed from GB2104872.3A external-priority patent/GB2592144B/en
Priority to KR1020237030275A priority Critical patent/KR20230132625A/ko
Application filed by 샤힌 이노베이션즈 홀딩 리미티드 filed Critical 샤힌 이노베이션즈 홀딩 리미티드
Priority to KR1020237030279A priority patent/KR20230132626A/ko
Priority claimed from PCT/GB2021/053316 external-priority patent/WO2022129911A1/en
Publication of KR20220138405A publication Critical patent/KR20220138405A/ko
Publication of KR102576901B1 publication Critical patent/KR102576901B1/ko
Application granted granted Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F1/00Tobacco pipes
    • A24F1/30Hookahs
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/05Devices without heating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/65Devices with integrated communication means, e.g. Wi-Fi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • B05B17/063Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0661Transducer materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • B05B17/0684Wicks or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/20Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of a vibrating fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0066Inhalators with dosage or measuring devices with means for varying the dose size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/008Electronic counters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/0081Locking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/0083Timers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0024Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • A61M2205/0294Piezoelectric materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/27General characteristics of the apparatus preventing use
    • A61M2205/276General characteristics of the apparatus preventing use preventing unwanted use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6018General characteristics of the apparatus with identification means providing set-up signals for the apparatus configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6027Electric-conductive bridges closing detection circuits, with or without identifying elements, e.g. resistances, zener-diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • A61M2205/8212Internal energy supply devices battery-operated with means or measures taken for minimising energy consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8237Charging means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/77Atomizers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Special Spraying Apparatus (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Nozzles (AREA)

Abstract

물담배(246)에 부착되는 물담배 장치(202). 상기 물담배 장치(202)는 사용자에 의한 흡입을 위한 미스트를 생성할 수 있는 복수의 초음파 미스트 발생장치(201)를 구비한다. 상기 물담배 장치(202)는 상기 미스트 발생장치(201)를 제어하여 상기 미스트 발생장치(201)에 의한 미스트 생성의 효율성을 최대화하고, 상기 물담배 장치(202)로부터의 미스트 출력을 최적화하는 드라이버 장치(202)를 포함한다.

Description

물담배 장치
본 출원서는 다음 특허에 대한 우선권을 주장하고 각각의 특허 전체는 본원에 참조로 통합된다. 2020년 12월 5일에 출원된 미국 특허 출원 번호 17/122025, 2021년 4월 1일에 출원된 미국 특허 출원 번호 17/220189, 및 2021년 4월 6일에 출원된 영국 특허 출원 번호 2104872.3.
본 발명은 물담배 장치에 관한 것이다. 더 구체적으로는, 본 발명은 초음파 진동을 사용하여 미스트를 생성하는 물담배 장치에 관한 것이다.
종래의 물담배는 파쇄된 다음 차콜(charcoal)을 사용하여 가연되도록 특별히 준비된 엽연초를 태우는 흡연 기기이다. 차콜의 열기에 의하여 분쇄된 엽연초를 태워 연기를 생성한 후 유리 챔버 내 물을 통과하여 인출되고 사용자가 흡입할 수 있다. 물을 사용하여 뜨거운 연기를 식혀 쉽게 흡입하도록 한다.
물담배 사용은 고대 페르시아 및 인도에서 수 세기 전에 시작되었다. 현재, 물담배 카페는 영국, 프랑스, 러시아, 중동 및 미국을 포함하여 전 세계적으로 유명해지고 있다.
통상적인 현대 물담배에는 헤드(바닥에 구멍 구비), 금속 바디, 워터볼 및 마우스피스가 달린 신축성 호스가 구비되어 있다. 스팀 스톤 및 물담배 펜을 포함하여 새로운 형태의 전자식 물담배 제품이 소개되었다. 이러한 제품에는 배터리 또는 주전원에 의해 전력이 공급되고 니코틴, 향미료 및 기타 화학물질을 함유하는 액체를 가열하여 흡입 가능한 연기를 생성한다.
비록 많은 사용자들이 연기 담배에 비하여 덜 해로운 것으로 간주하지만 물담배 연기에서도 담배 연기와 같은 정도로 건강에 위험한 많은 물질이 함유되어 있다.
이에 따라, 본원에 개시된 바와 같이 적어도 일부 문제를 해결할 수 있는 개선된 물담배 장치에 대한 기술적 필요성이 존재한다.
본 발명은 개선된 물담배 장치를 제공하고자 한다.
US 20160324212 A1
본 발명은 청구항 제1항에 청구된 물담배 장치 및 제19항에 청구된 물담배를 제공한다. 본 발명은 또한 종속 청구항에 청구된 바와 같이 바람직한 실시예를 제공한다.
하기에 설명된 본 개시의 다양한 실시예는 종래의 물담배 장치 및 물담배에 비하여 다수의 편익과 장점이 있다. 이러한 편익과 장점은 하기 설명에 명시되어 있다.
본 개시의 실시예에 명시된 물담배 장치는 물담배 장치가 연기를 방출하지 않으며 차콜(charcoal)을 태울 필요가 없기 때문에 환경적 편익을 제공한다.
일부 실시예에서, 물담배 장치로서, 상기 물담배 장치는 각각의 미스트 방출 포트와 함께 각각 제공된 복수의 초음파 미스트 발생장치; 각각의 상기 미스트 발생장치에 전기적으로 연결되고, 상기 미스트 발생장치를 활성화하도록 구성된 드라이버 장치; 및 상기 물담배 장치를 물담배에 부착하도록 구성된 물담배 부착 장치를 포함하고, 상기 물담배 부착 장치는 상기 미스트 발생장치의 상기 미스트 방출 포트로부터 상기 물담배 장치 밖으로 향하는 유체 유동 경로를 제공하고, 이에 따라 상기 미스트 발생장치 중 적어도 하나가 상기 드라이버 장치에 의해 활성화되면, 각각의 활성화된 미스트 발생장치에 의해 생성된 미스트가 상기 유체 유동 경로를 따라 상기 물담배 장치 밖을 향해 상기 물담배로 흐르도록 하는 물담배 방출 포트를 구비하는, 물담배 장치를 제공한다.
일부 실시예에서, 상기 드라이버 장치는 데이터 버스(data bus)에 의해 각각의 상기 미스트 발생장치에 전기적으로 연결되고 상기 드라이버 장치는 상기 미스트 발생장치에 대한 각각의 고유 식별자를 사용하여 각각의 미스트 발생장치를 식별 및 제어하도록 구성된다.
일부 실시예에서, 각각의 미스트 발생장치는 식별 장치를 포함하고, 상기 식별 장치는 상기 미스트 발생장치를 위한 고유 식별자를 저장하는 메모리를 구비하는 집적회로; 및 상기 집적회로와 통신하기 위한 전자 인터페이스를 제공하는 전기 연결부를 포함한다.
일부 실시예에서, 상기 드라이버 장치는 각각의 미스트 발생장치를 제어하여 다른 미스트 발생장치를 독립적으로 활성화하도록 구성된다.
일부 실시예에서, 상기 드라이버 장치는 상기 미스트 발생장치를 제어하여 사전결정된 시퀀스에 따라 활성화되도록 구성된다.
일부 실시예에서, 각각의 미스트 발생장치는 상기 미스트 발생장치의 상기 미스트 방출 포트와 유체 연통하는 매니폴드 파이프를 구비하는 매니폴드를 포함하고, 상기 미스트 방출 포트로부터의 미스트 출력은 상기 매니폴드 파이프에서 결합되고, 상기 매니폴드 파이프를 통해 상기 물담배 장치 밖을 향해 흐른다.
일부 실시예에서, 상기 물담배 장치는 서로에 대해 90º로 상기 매니폴드와 느슨하게 결합된 4개의 미스트 발생장치를 구비한다.
일부 실시예에서, 각각의 미스트 발생장치는 상기 드라이버 장치와 느슨하게 부착되어 각 미스트 발생장치는 상기 드라이버 장치에서 탈착 가능하다.
일부 실시예에서, 각각의 미스트 발생장치는 장형(elongate)이면서 공기 흡기 포트 및 상기 미스트 방출 포트를 구비하는 미스트 발생장치 하우징; 상기 미스트 발생장치 하우징 내에 제공되고, 분무되는 액체를 저장하는 액체 챔버; 상기 미스트 발생장치 하우징 내에 제공되는 초음파 처리 챔버; 상기 액체 챔버 및 상기 초음파 처리 챔버 사이에서 연장되는 모세관 요소로서, 상기 모세관 요소의 제1 부분은 상기 액체 챔버 내에 있고 상기 모세관 요소의 제2 부분은 상기 초음파 처리 챔버 내에 있도록 하는 모세관 요소; 상기 초음파 처리 챔버 내에 제공된 거의 평탄한 분무화 표면을 구비한 초음파 트랜스듀서로서, 상기 초음파 트랜스듀서는 상기 분무화 표면의 평면이 상기 미스트 발생장치 하우징의 종방향 길이와 실질적으로 평행하도록 상기 미스트 발생장치 하우징 내에 장착되고, 상기 모세관 요소의 제2 부분의 일부는 상기 분무화 표면의 일부와 중첩되고, 상기 초음파 트랜스듀서는 상기 분무화 표면을 진동시켜 상기 모세관 요소의 제2 부분이 운반하는 액체를 분무함으로써 상기 초음파 처리 챔버 내에서 상기 분무된 액체 및 공기를 포함하는 미스트를 생성하도록 구성되는 초음파 트랜스듀서; 및 상기 공기 흡기 포트, 상기 초음파 처리 챔버 및 상기 공기 방출 포트 사이에 공기 유동 경로를 제공하는 공기 유동 장치를 포함한다.
일부 실시예에서, 각각의 미스트 발생장치는 상기 미스트 발생장치 하우징 내에 고정되는 트랜스듀서 홀더로서, 상기 트랜스듀서 요소가 상기 초음파 트랜스듀서를 고정하고, 상기 분무화 표면의 일부와 중첩된 상기 모세관 요소의 제2 부분을 유지하는 트랜스듀서 홀더; 및 상기 액체 챔버 및 상기 초음파 처리 챔버 사이에서 장벽을 제공하는 분주기 부분을 더 포함하고, 상기 분주기 부분은 상기 모세관 요소의 제1 부분의 일부가 연장되는 모세관을 구비한다.
일부 실시예에서, 상기 모세관 요소는 100% 대나무 섬유이다.
일부 실시예에서, 상기 공기 유동 장치는 상기 공기 유동 경로를 따라서 공기 유동의 방향을 변경하고, 이에 따라 상기 공기 유동이 상기 초음파 처리 챔버를 통과할 때 상기 공기 유동이 상기 초음파 트랜스듀서의 분무화 표면과 실질적으로 수직이 되도록 구성된다.
일부 실시예에서, 상기 액체 챔버는 1.05 Pa·s와 1.412 Pa·s 사이의 동점성(kinematic viscosity), 및 1.1 g/ml와 1.3 g/ml 사이의 액체 밀도를 갖는 액체를 저장한다.
일부 실시예에서, 상기 액체 챔버는 레불린산 대 니코틴이 약 2:1 몰비로 구성된 액체를 저장한다.
일부 실시예에서, 상기 드라이버 장치는, 사전결정된 주파수에서 AC 구동 신호를 발생시켜 각각의 미스트 발생장치 내 각각의 초음파 트랜스듀서를 구동시키도록 구성된 AC 드라이버; 상기 초음파 트랜스듀서가 상기 AC 구동 신호에 의해 구동될 때 상기 초음파 트랜스듀서에 의해 사용된 능동 전력을 모니터링하도록 구성된 능동 전력 모니터링 장치로서, 상기 능동 전력 모니터링 장치는 상기 초음파 트랜스듀서에 의해 사용된 능동 전력을 나타내는 모니터링 신호를 제공하도록 구성된 능동 전력 모니터링 장치; 상기 AC 드라이버를 제어하고 상기 능동 전력 모니터링 장치로부터의 모니터링 신호 드라이브를 수용하도록 구성된 프로세서; 및 명령을 저장하는 메모리를 포함하고, 상기 프로세서에 의해 실행될 때, 상기 명령은 상기 프로세서로 하여금,
A. 상기 AC 드라이버를 제어하여 사전결정된 스위프 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력하고;
B. 상기 모니터링 신호에 기초하여 상기 초음파 트랜스듀서에 의해 사용되는 상기 능동 전력을 계산하고;
C. 상기 AC 드라이버를 제어하여 상기 AC 구동 신호를 변조함으로써 상기 초음파 트랜스듀서에 의해 사용되는 상기 능동 전력을 최대화하고;
D. 상기 초음파 트랜스듀서에 의해 사용된 최대 능동 전력 및 상기 AC 구동 신호의 스위프 주파수를 상기 메모리에 기록으로 보관하고;
E. 사전결정된 반복 횟수만큼 단계 A~D를 반복하되, 각 반복에 대하여 상기 스위프 주파수를 증가시키고, 이에 따라 사전결정된 횟수만큼 반복된 후, 상기 스위프 주파수가 시작 스위프 주파수에서 종료 스위프 주파수까지 증가하고;
F. 상기 초음파 트랜스듀서에 의해 최대 능동 전력이 사용되는 상기 AC 구동 신호의 스위프 주파수인, 상기 AC 구동 신호를 위한 최적 주파수를 상기 메모리에 보관된 기록으로부터 식별하고; 그리고
G. 상기 AC 드라이버를 제어하여 상기 최적 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력함으로써 상기 초음파 트랜스듀서를 구동하여 액체를 분무하도록 하는 단계들을 실행하도록 한다.
일부 실시예에서, 상기 능동 전력 모니터링 장치는 상기 초음파 트랜스듀서를 구동하는 상기 AC 구동 신호의 구동 전류를 센싱하도록 구성되는 전류 센싱 장치를 포함하고, 상기 능동 전력 모니터링 장치는 센싱된 구동 전류를 나타내는 모니터링 신호를 제공하도록 구성된다.
일부 실시예에서, 상기 메모리는 명령을 저장하고, 상기 프로세서에 의해 실행될 때, 상기 명령은 프로세서로 하여금, 시작 스위프 주파수 2900kHz에서 종료 스위프 주파수 2960kHz까지 증가되는 스위프 주파수로 단계 A~D를 반복하도록 한다.
일부 실시예에서, 상기 메모리는 명령을 저장하고, 상기 프로세서에 의해 실행될 때, 상기 명령은 프로세서로 하여금, 시작 스위프 주파수 2900kHz에서 종료 스위프 주파수 3100kHz까지 증가되는 스위프 주파수로 단계 A~D를 반복하도록 한다.
일부 실시예에서, 상기 AC 드라이버는 펄스 폭 변조를 통해 상기 AC 구동 신호를 변조하여 상기 초음파 트랜스듀서에 의해 사용되는 상기 능동 전력을 최대화하도록 구성된다.
일부 실시예에서, 물담배를 제공하고, 상기 물담배는 용수 챔버; 상기 용수 챔버에 부착된 제1 단부를 구비하는 장형 스템; 및 본원에 개시된 제1항 내지 제19 항 중 어느 한 항의 물담배 장치를 포함하고, 상기 스템은 상기 스템의 제2 단부에서 상기 스템을 통과하여 상기 제1 단부로 연장되는 미스트 유동 경로를 포함하고, 상기 물담배 장치의 상기 물담배 부착 장치는 상기 스템의 제2 단부에서 상기 물담배의 상기 스템에 부착된다.
본 발명의 상기 및 다른 이점과 특징들을 더 명확하게 하기 위해, 첨부된 도면들에 예시되는 본 발명의 특정 실시예를 참조함으로써 본 발명의 더 구체적인 설명이 이루어질 것이다.
도 1은 초음파 미스트 흡입장치 부품의 분해도를 나타내고,
도 2는 흡입장치 액체 리저버 구조물 부품의 분해도를 나타내고,
도 3은 흡입장치 액체 리저버 구조물 부품의 단면도를 나타내고,
도 4A는 도 2 및 3의 흡입장치 액체 리저버 구조물에 대한 공기 유동 부재의 등척도를 나타내고,
도 4B는 도 4A에 도시된 공기 유동 부재의 단면도를 나타내고,
도 5는 RLC 회로로 모델링된 압전 트랜스듀서를 도시하는 개략도를 나타내고,
도 6은 RLC 회로의 주파수 대비 로그 임피던스의 그래프를 나타내고,
도 7은 압전 트랜스듀서의 작동 중 유도 및 축전 영역을 도시하는 주파수 대비 로그 임피던스의 그래프를 나타내고,
도 8은 주파수 컨트롤러의 작동을 도시하는 계통도를 나타내고,
도 9는 본 개시의 미스트 발생장치의 투시도를 나타내고,
도 10은 본 개시의 미스트 발생장치의 투시도를 나타내고,
도 11은 본 개시의 미스트 발생장치의 분해도를 나타내고,
도 12는 본 개시의 트랜스듀서 홀더의 투시도를 나타내고,
도 13은 본 개시의 트랜스듀서 홀더의 투시도를 나타내고,
도 14는 본 개시의 모세관 요소의 투시도를 나타내고,
도 15는 본 개시의 모세관 요소의 투시도를 나타내고,
도 16은 본 개시의 트랜스듀서 홀더의 투시도를 나타내고,
도 17은 본 개시의 트랜스듀서 홀더의 투시도를 나타내고,
도 18은 본 개시의 하우징 부품의 투시도를 나타내고,
도 19는 본 개시의 흡수 부재의 투시도를 나타내고,
도 20은 본 개시의 하우징 부품의 투시도를 나타내고,
도 21는 본 개시의 하우징 부품의 투시도를 나타내고,
도 22는 본 개시의 흡수 부재의 투시도를 나타내고,
도 23은 본 개시의 하우징 부품의 투시도를 나타내고,
도 24는 본 개시의 하우징 부품의 투시도를 나타내고,
도 25는 본 개시의 하우징 부품의 투시도를 나타내고,
도 26은 본 개시의 회로판의 투시도를 나타내고,
도 27은 본 개시의 회로판의 투시도를 나타내고,
도 28은 본 개시의 미스트 발생장치의 분해도를 나타내고,
도 29은 본 개시의 미스트 발생장치의 분해도를 나타내고,
도 30은 본 개시의 집적회로 장치의 개략도를 나타내고,
도 31는 본 개시의 집적회로의 개략도를 나타내고,
도 32는 본 개시의 펄스 폭 변조 발생기의 개략도를 나타내고,
도 33은 본 개시의 일 실시예의 타이밍 도식을 나타내고,
도 34은 본 개시의 일 실시예의 타이밍 도식을 나타내고,
도 35은 본 개시의 일 실시예의 포트 기능을 표시하는 표를 나타내고,
도 36는 본 개시의 집적회로의 개략도를 나타내고,
도 37은 본 개시의 일 실시예의 H-브리지의 회로도를 나타내고,
도 38은 본 개시의 일 실시예의 전류 센싱 장치 회로도를 나타내고,
도 39는 본 개시의 일 실시예의 H-브리지의 회로도를 나타내고,
도 40은 도 37의 H-브리지의 작동 위상 중 전압을 표시하는 그래프를 나타내고,
도 41는 도 37의 H-브리지의 작동 단계 중 전압을 표시하는 그래프를 나타내고,
도 42는 초음파 트랜스듀서가 도 37의 H-브리지에 의해 구동될 때 초음파 트랜스듀서의 터미널에 발생하는 전압과 전류를 표시하는 그래프를 나타내고,
도 43는 본 개시의 집적회로 간의 연결을 표시하는 개략도를 나타내고,
도 44는 본 개시의 집적회로의 개략도를 나타내고,
도 45은 본 개시의 일 실시예의 H-브리지의 회로도 단계를 표시하는 도식을 나타내고,
도 46은 본 개시의 미스트 발생장치의 단면도를 나타내고,
도 47은 본 개시의 미스트 발생장치의 단면도를 나타내고,
도 48은 본 개시의 미스트 발생장치의 단면도를 나타내고,
도 49은 본 개시의 물담배 장치의 투시도를 나타내고,
도 50는 물담배 기구의 물담배 바디 및 워터볼에 부착된 본 개시의 물담배 장치의 투시도를 나타내고,
도 51는 본 개시의 물담배 장치의 분해도를 나타내고,
도 52은 본 개시의 물담배 장치 구성품의 투시도를 나타내고,
도 53은 본 개시의 물담배 장치 구성품의 투시도를 나타내고,
도 54은 본 개시의 물담배 장치 구성품의 투시도를 나타내고,
도 55는 본 개시의 물담배 장치 구성품의 투시도를 나타내고,
도 56은 본 개시의 물담배 장치 구성품 및 4개의 미스트 발생장치의 투시도를 나타내고,
도 57은 본 개시의 물담배 장치 구성품의 투시도를 나타내고,
도 58는 본 개시의 물담배 장치의 단면도를 나타내고,
도 59은 물담배 기구의 물담배 바디 및 워터볼에 부착된 본 개시의 물담배 장치의 투시도를 나타낸다.
본 발명의 양태들은 첨부된 도면을 참조하면서 다음 상세한 설명을 통해 가장 잘 이해될 것이다. 업계의 표준 관행에 따라 다양한 기능들의 세부적인 수치는 도시되지 않았음에 유의하여야 한다. 다양한 기능들의 치수는 논의의 명확성을 위해 임의적으로 증가 또는 감소할 수 있다.
다음 개시는 명시된 주제의 다양한 기능을 구현하기 위하여 다수 개의 다양한 실시예 또는 예시를 제공한다. 구성 요소, 농도, 응용 분야 및 장치의 특정 예시는 본 발명을 단순화하기 위하여 하기에 설명되어 있다. 이들은 단순한 예시이며 이에 국한되지 않는다. 예를 들어, 다음에 설명되는 제1 기능 및 제2 기능의 부착은 상기 제1 기능과 상기 제2 기능이 직접 접촉하도록 부착되는 실시예를 포함할 수 있으며, 또한 상기 제1 기능 및 상기 제2 기능이 직접 접촉하지 않도록 상기 제1 기능 및 상기 제2 기능 사이에 추가 기능이 배치되는 실시예를 포함할 수 있다. 더구나, 본 개시는 다양한 실시예의 참조 번호 및/또는 문자가 반복될 수 있다. 이러한 반복은 단순화 및 명료화를 위함이고 논의되는 다양한 실시예 및/또는 구성 사이의 관계를 지시하는 것은 아니다.
다음 개시는 대표적인 장치 또는 예시를 설명한다. 각각의 장치 또는 예시는 실시예로 간주될 수 있으며 “장치” 또는 “예시”에 대한 참조는 본 개시의 “실시예”로 대체될 수 있다.
일부 실시예에서 물담배 장치는 초음파 에어로졸화 기술을 포함한다. 일부 실시예에서 물담배 장치는 종래의 물담배 헤드(차콜 가열식 또는 전자 가열식)를 대체하도록 구성된다. 일부 실시예에서 물담배 장치는 담배 및 차콜(또는 전자식 가열 부재)을 수용하는 종래의 물담배 헤드를 대신하여 기존 스템 또는 금속 바디 및 용수 챔버/그릇에 느슨하게 결합된다.
다른 실시예에서, 물담배 장치는 완전한 하나의 물담배 기구로서 스템/바디 및 용수 챔버/그릇과 함께 제공된다.
물담배 워터볼은 다양한 형태와 크기로 제공되고, 개인 취향에 따라 전통적이거나 미래적인 데코레이션으로 장식된다. 일부 실시예에서 전통을 염두에 두고 초음파 분무 물담배 장치를 설계 및 개발하여 기존의 물담배에 적합한 교체 가능한 헤드를 제작한다.
다음 개시에서는 초음파 미스트 발생장치의 구성품과 기능을 설명한다. 그 이후에 본 개시는 복수의 초음파 미스트 발생장치를 통합하는 일부 실시예의 물담배 장치를 설명한다.
종래의 전자 증기 흡입장치는 흡입장치 내 액체를 가열하도록 구성된 금속 부품에서 고온을 유도함으로써 액체를 증발시켜 호흡 가능하도록 만드는 특성에 의존하는 경향이 있다. 액체는 일반적으로 고온에서 가열된 부재를 통해 기화되는 프로필렌 글리콜(PG) 및 식물성 글리세린(VG)에 혼합된 니코틴과 향미료를 포함한다. 종래의 흡입장치에는 금속의 연소 가능성이 존재하여 연소된 액체와 함께 금속을 호흡하게 되는 문제가 있다. 더구나 일부 사람들은 가열된 액체가 유발하는 연소 냄새나 맛을 싫어한다.
도 1 내지 도 4는 초음파 처리 챔버를 포함하는 초음파 미스트 흡입장치를 도시한다. 다음 개시에서 사용되는 표현 "미스트"란 액체가 선행 기술에서 알려진 종래의 흡입장치와 같이 통상적으로 가열되지 않는다는 점에 유의해야 한다. 실제로, 종래의 흡입장치는 가열 부재를 사용하여 비등점 이상의 액체를 가열함으로써 증기를 생성하고, 이는 미스트와 다르다.
액체에 고강도의 초음파를 가하면, 액체 매체로 전파되는 음파는 주파수에 따라 다른 속도로 고압(압축) 및 저압(희박화) 사이클을 교대로 만든다. 저압 사이클 중 고강도 초음파는 액체 내에 작은 진공 버블이나 보이드(void)를 만든다. 이러한 현상을 캐비테이션(cavitation)이라고 한다. 버블이 더 이상 에너지를 흡수할 수 없는 부피에 도달하면, 고압 사이클 중 격렬하게 붕괴된다. 응폭(implosion) 과정 중 매우 높은 압력이 국부적으로 미친다. 캐비테이션 현상 중 파괴된 미세파가 생성되고, 초소형 방울이 액체의 표면 장력을 파괴하고 공기 중에 빠르게 분출되면서 미스트 형상을 만든다.
다음에 상기 캐비테이션 현상을 더 정밀하게 기술할 것이다.
초음파 진동에 의해 액체가 분무화되면, 액체 중 마이크로 버블수(water bubble)가 생성된다.
버블 생성은 초음파 진동 수단에 의해 생성된 고강도 초음파가 만드는 음압에 의해 생성되는 캐비티(cavity)가 형성되는 과정이다.
고강도 초음파는 캐비티를 빠르게 성장시키고 양압 사이클 중 캐비티 크기의 감소는 상대적으로 낮거나 무시할 수 있다.
모든 음파와 마찬가지로, 초음파는 압축과 팽창의 사이클로 구성된다. 액체와 접촉 시 압축 사이클은 액체에 양압을 가하여 분자가 뭉쳐지도록 밀어낸다. 팽창 사이클은 음압을 가하여 분자가 서로 멀어지도록 당긴다.
고강도 초음파는 양압과 음압 영역을 만든다. 캐비티는 음압 에피소드 중 형성 및 성장할 수 있다. 캐비티가 임계 크기에 도달하면, 캐비티는 폭발한다.
필요한 음압의 양은 액체의 유형 및 순도에 따라 달라진다. 매우 순수한 액체의 경우, 인장 강도가 매우 높아 초음파 발생장치가 캐비티를 형성할 정도로 충분한 음압을 만들 수 없다. 예를 들어, 순수(pure water)의 경우, 1,000대기압 이상의 음압이 필요하지만 가장 강력한 초음파 발생장치는 약 50대기압의 음압만을 만들 수 있다. 액체의 인장 강도는 액체 입자 사이의 틈 내에 갇힌 가스에 의해 줄어든다. 이 현상은 고체 물질의 균열을 발생시키는 강도가 낮아지는 것과 유사하다. 가스가 충전된 틈(crevice)이 음파의 음압 사이클에 노출되면 감소된 압력으로 인해 작은 버블이 용액에 방출될 때까지 틈 내 가스가 팽창한다.
하지만, 초음파가 조사되는 버블은 음파의 교호하는 압축 및 팽창 사이클로부터 에너지를 지속적으로 흡수한다. 이에 따라 버블이 성장 및 수축하고 버블 내 보이드와 외부의 액체 사이의 동적 균형이 파괴된다. 일부 사례에서, 초음파는 일정 크기의 단순히 진동하는 버블을 유지한다. 다른 사례에서, 상기 버블의 평균 크기가 증가한다.
캐비티 성장은 음파 강도에 따라 달라진다. 고강도 초음파는 음압 사이클 중 캐비티를 매우 빠르게 확장시켜 캐비티는 양압 사이클 중 축소되지 않는다. 이 과정에서 캐비티는 단일 음파 사이클 중 빠르게 성장할 수 있다.
저강도 초음파의 경우, 캐비티 크기가 팽창 및 압축 사이클에 따라 진동한다. 저강도 초음파가 만드는 캐비티 표면은 압축 사이클에 비해 팽창 사이클 중 약간 큰 크기를 갖는다. 캐비티의 안이나 밖으로 확산되는 가스량은 표면적에 따라 달라지므로 팽창 사이클 중 캐비티로의 확산은 압축 사이클 중 확산에 비해 다소 크다. 각 음파의 사이클에서 캐비티는 압축에 비해 팽창 과정이 조금 더 진행된다. 다수 개의 사이클을 거치면서 캐비티는 천천히 성장한다.
성장하는 캐비티는 결국 초음파로부터 가장 효율적인 에너지를 흡수하는 임계 크기에 도달하는 것으로 알려져 있다. 임계 크기는 초음파의 주파수에 따라 달라진다. 캐비티가 고강도 초음파에 의한 매우 빠른 성장을 경험할 경우, 초음파로부터 에너지를 더 이상 흡수하지 못하게 된다. 이러한 에너지 입력이 없다면 캐비티는 더 이상 유지되지 않는다. 액체가 급격하게 침투하고 캐비티는 비선형 반응으로 인해 폭발한다.
폭발로 인해 방출되는 에너지는 액체를 미세 입자로 단편화시키고 미스트로서 공기 중으로 분산된다.
상기 비선형 반응 현상의 설명을 위한 방정식은 “레일리-플레셋(Rayleigh-Plesset)” 방정식으로 기술될 수 있다. 이 방정식은 유체역학에서 사용되는 “나비어-스톡스(Navier-Stokes)” 방정식에서 유도될 수 있다.
발명자의 접근법은 "레일리-플레셋" 방정식을 다시 작성하여 버블 부피 V를 동적 파라미터로 사용하는 것이며 소산을 설명하는 물리학은 반경이 동적 파라미터인 더 전통적인 형식의 것과 동일하다.
유도 후 사용된 방정식은 다음과 같다.
여기서:
는 버블 부피
는 평형 버블 부피
는 액체 밀도(상수로 가정)
는 표면 장력
는 증기 압력
버블 벽 바로 외부 액체의 정압
는 기체의 폴리트로프(polytropic) 지수
는 시간
는 버블 반경
는 인가된 압력
는 액체의 음속
는 잠재 속도
는 고주파 장의 파장이다.
상기 초음파 미스트 흡입장치에 있어서, 상기 액체는 1.05Pa.sec 및 1.412Pa.sec. 사이의 동점성을 가진다.
올바른 점도, 밀도 파라미터로 상기 방정식을 풀고 원하는 표적 버블 부피의 액체를 공기 중에 분무함으로써 액체 점도 범위 1.05Pa.s 내지 1.412Pa.s에서 2.8MHz 내지 3.2MHz 주파수 범위가 약 0.25 내지 0.5미크론의 버블 부피를 만든다는 것이 밝혀졌다.
초음파 캐비테이션 프로세스는 생성된 미스트 내 니코틴 농도에 유의한 영향을 미친다.
가열 요소가 포함되지 않아 부재를 태우지 않으며 부차적인 연기 발생 효과가 줄어든다.
일부 실시예에서, 상기 액체는 57~70%(w/w) 식물성 글리세린 및 30~43%(w/w) 프로필렌 글리콜을 포함하고 상기 프로필렌 글리콜에는 니코틴과 선택한 향미료가 포함된다.
상기 초음파 미스트 흡입장치에 있어서, 모세관 요소는 상기 초음파 처리 챔버 및 상기 액체 챔버 사이에서 연장될 수 있다.
초음파 미스트 흡입장치에 있어서, 모세관 요소는 적어도 부분적으로 대나무 섬유 소재이다.
상기 모세관 요소는 고흡수력, 높은 흡수 속도, 높은 유체 유지 비율을 허용한다.
모세관에 사용하도록 제시된 소재의 고유 특성은 상기 초음파 미스트 흡수장치의 효과적인 기능에 유의한 영향을 미치는 것으로 밝혀졌다.
더욱이, 제시된 소재의 고유 특성에는 우수한 투과도를 유지하면서 우수한 흡습성이 포함된다. 이렇게 하면 인입된 액체가 모세관을 효과적으로 투과하면서 관찰된 높은 흡수량을 통해 상당한 양의 액체를 보유하므로 상기 초음파 미스트 흡입장치는 시판 중인 다른 제품에 비해 더 오랜 시간 동안 지속된다.
대나무 섬유를 사용할 때의 또 다른 유의한 이점으로는 대나무 섬유 내에 고유하게 존재하는 "쿤(Kun)"이라는 향균성 생물제제가 자연적으로 발생하므로 향균성, 항진균성, 냄새 내성을 띄게 되고, 의료용으로 적합하게 된다.
상기 고유한 특성은 초음파 처리를 위한 대나무 섬유의 이점과 관련된 다수의 분석을 통해 검증되었다.
모세관 요소로 사용하기 위한 대나무 섬유 소재 및 면, 종이, 또는 기타 섬유 종류를 사용하여 다음 방정식을 테스트하였으며 대나무 섬유가 초음파 처리용으로 더 좋은 특성을 지녔음이 입증되었다.
여기서:
는 모세관 요소의 건조 중량으로 나누어진 흡수된 액체의 중량당 부피,
는 모세관 요소의 총 표면적
는 모세관 요소의 두께,
는 건조 모세관 요소의 중량,
는 건조 모세관 요소의 밀도,
는 모세관 요소 내 확산된 액체 부피의 웨팅에 따른 모세관 요소의 부피 증가 비율,
모세관 요소 내 확산된 액체의 양,
는 단위 시간당 흡수된 액체의 양,
는 모세관 요소 내 포어(pore)의 반경,
는 액체의 표면 장력,
는 섬유의 접촉 각도,
는 유체의 점도이다.
도 1은 일회용 초음파 미스트 흡입장치(100)를 묘사한다. 도 1에 도시된 바와 같이, 상기 초음파 미스트 흡입장치(100)는 직경에 비해 상대적으로 긴 원통형 본체를 갖는다. 형상 및 외관의 측면에서, 초음파 미스트 흡입장치(100)는 통상적인 담배 모양을 모방하도록 설계된다. 이를테면, 흡입장치는 담배의 담배대를 주로 시뮬레이팅하는 제1 부분(101) 및 필터를 주로 시뮬레이팅하는 제2 부분(102)을 구비하는 것을 특징으로 한다. 일회용 장치에서 제1 부분 및 제2 부분은 일회용 분리형 장치의 영역이다. 제1 부분(101) 및 제2 부분(102)은 각 부분에 주로 포함된 구성 요소를 편리하게 차별화하는 데 사용된다.
도 1에 표시된 바와 같이, 상기 초음파 미스트 흡입장치는 마우스피스(1), 액체 리저버 구조물(2) 및 케이싱(3)을 포함한다. 제1 부분(101)은 케이싱(3)을 포함하고 제2 부분(102)은 마우스피스(1) 및 리저버 구조물(2)을 포함한다.
제1 부분(101)은 전원공급 에너지를 포함한다.
전기 저장 장치(30)는 초음파 미스트 흡입장치(100)에 전력을 공급한다. 전기 저장 장치(30)는 리튬-이온, 알칼라인, 아연-탄소, 니켈-수소 합금 또는 니켈-카드뮴 배터리; 슈퍼 커패시터; 또는 그의 조합을 포함하되, 이에 국한되지 않는 배터리가 될 수 있다. 일회용 장치에서 전기 저장 장치(30)는 충전 가능하지 않지만 재사용 가능 장치에서 전기 저장 장치(30)는 충전 가능하도록 선택된다. 일회용 장치에서 전기 저장 장치(30)가 기본적으로 선택되어 흡입장치(100) 수명 동안 일정한 전압을 전달한다. 하지만, 흡입장치의 성능은 시간이 지나면서 저하된다. 장치의 수명 동안 일정한 전압을 제공할 수 있는 바람직한 전기 저장 장치는 리튬-이온 및 리튬 폴리머 배터리이다.
전기 저장 장치(30)는 통상적으로 양극 터미널에 해당하는 제1 단부(30a)와 통상적으로 음극 터미널에 해당하는 제2 단부(30b)를 가지고 있다. 음극 터미널은 제1 단부(30a)로 연장된다.
전기 저장 장치(30)는 제1 부분(101)에 위치하고 액체 리저버 구조물(2)은 제2 부분(102)에 위치하므로 이러한 구성 성분 간 전기 통신을 제공하기 위한 조인트가 필요하다. 전기 통신은 제1 부분(101)이 제2 부분(102)에 고정될 때 함께 압축되는 적어도 하나의 전극 또는 프로브를 이용하여 이루어진다.
장치를 재사용 가능하도록 만들기 위하여 전기 저장 장치(30)는 충전 가능하다. 케이싱(3)은 충전 포트(32)를 구비한다.
집적회로(4)에는 근위 단부(4a) 및 원위 단부(4b)가 포함된다. 전기 저장 장치(30)의 제1 단부(30a) 양극 터미널은 플렉시블 집적회로(4)의 양극 리드와 전기적으로 통신한다. 전기 저장 장치(30)의 제2 단부(30b) 음극 터미널은 집적회로(4)의 음극 리드와 전기적으로 통신한다. 집적회로(4)의 원위 단부(4b)에는 마이크로프로세서가 구비되어 있다. 마이크로프로세서는 센서로부터의 데이터를 처리하고, 라이트를 제어하고, 제2 부분(102)의 초음파 진동 수단(5)에 전류 흐름을 명령하고, 사전 프로그램된 시간 이후 전류 흐름을 종료시키도록 구성되었다.
센서는 초음파 미스트 흡입장치(100)를 사용하고 마이크로프로세서를 활성화할 때(사용자가 흡입장치를 인출할 때) 이를 센싱한다. 센서는 압력, 공기 유동 또는 진동을 검출하도록 선택될 수 있다. 일례에서, 센서는 압력 센서이다. 디지털 장치에서, 센서는 연속적으로 판독하고 이를 위해 디지털 센서는 전류를 연속적으로 인출해야 하지만 전류량이 소량이고 전반적인 배터리 수명에 미미한 영향을 미친다.
일부 실시예에서, 집적회로(4)는 H 브리지를 구비하고, H 브리지는 4개의 MOSFET으로 형성되어 직류를 고주파 교류로 변환한다.
도 2 및 도 3에서는 한 실시예에 따른 액체 리저버 구조물(2)의 그림이 도시되어 있다. 액체 리저버 구조물(2)은 분무화된 액체를 수용하도록 조절된 액체 챔버(21) 및 액체 챔버(21)와 유체 연통하는 초음파 처리 챔버(22)를 구비한다.
도시된 실시예에서 액체 리저버 구조물(2)은 초음파 처리 챔버(22)에서 주변부로 향하는 공기 통로를 제공하는 흡입 채널(20)을 포함한다.
센서 위치의 일례로 센서는 초음파 처리 챔버(22)에 배치될 수 있다.
흡입 채널(20)은 원추대형 요소(frustoconical element)(20a) 및 내부 컨테이너(20b)를 가진다.
도 4A 및 4B에 도시된 바와 같이, 흡입 채널(20)은 주변부에서 초음파 처리 챔버(22)를 향해 공기 유동을 제공할 수 있는 공기 유동 부재(27)를 더 구비한다.
공기 유동 부재(27)는 단일 피스로 만들어진 공기 유동 브리지(27a) 및 공기 유동 덕트(27b)를 구비하고, 공기 유동 브리지(27a)는 흡입 채널(20)의 일부를 형성하는 2개의 기도 개구(airway opening)(27a')를 구비하고, 공기 유동 덕트(27b)는 공기 유동 브리지(27a)로부터 초음파 처리 챔버(22)로 연장되어 주변부에서 초음파 처리 챔버를 향해 공기 유동을 제공할 수 있다.
공기 유동 브리지(27a)는 제2 직경(20a2)에서 원추대형 요소(20a)와 연동한다.
공기 유동 브리지(27a)에는 공기 유동 덕트(27b)로 공기 유동을 제공하는 서로 마주보는 2개의 주변 개구(27a")가 구비된다.
공기 유동 브리지(27a) 및 원추대형 요소(20a)가 연동하여 마주보는 2개의 주변 개구(27a")가 원추대형 요소(20a) 내 상보적인 개구(20a")와 연동하도록 한다.
마우스피스(1) 및 원추대형 요소(20a)는 방사상 공간을 구비하고 공기 유동 챔버(28)는 그 사이에 놓인다.
도 1 및 도 2에 도시된 바와 같이, 마우스피스(1)에는 마주보는 2개의 주변 개구(1")가 있다.
공기 유동 브리지(27a)의 주변 개구(27a", 20a", 1"), 원추대형 요소(20a) 및 마우스피스(1)는 초음파 처리 챔버(22)에 최대의 공기 유동을 직접 공급한다.
원추대형 요소(20a)는 흡입 채널(20)과 같은 방향으로 정렬되고, 제2 지름(20a2)보다 작은 제1 지름(20a1)을 구비하는 내부 통로를 포함함으로써 내부 통로는 원추대형 요소(20a)에 대한 지름이 줄어든다.
원추대형 요소(20a)는 초음파 진동 수단(5) 및 모세관 요소(7)와 일치하도록 배치되고, 제1 지름(20a1)은 마우스피스(1)와 결합되고, 제2 지름(20a2)은 내부 컨테이너(20b)와 결합된다.
내부 컨테이너(20b)는 초음파 처리 챔버(22) 및 액체 챔버(21)의 한계를 결정하는 내부 벽을 구비한다.
액체 리저버 구조물(2)에는 액체 챔버(21)의 외부 벽의 한계를 결정하는 외부 컨테이너(20c)를 구비한다.
내부 컨테이너(20b) 및 외부 컨테이너(20c)는 각각 액체 챔버(21)의 내부 벽과 외부 벽이 된다.
액체 리저버 구조물(2)은 마우스피스(1) 및 케이싱(3) 사이에 배치되고 마우스피스(1) 및 케이싱(3)으로부터 분리 가능하다.
액체 리저버 구조물(2) 및 마우스피스(1) 또는 케이싱(3)은 서로 체결되는 상보적 장치를 포함하고; 상기 상보적 장치는 배요넷(bayonet) 타입 장치; 스레드 체결(threaded engaged) 타입 장치; 자석 장치; 또는 마찰 피팅 장치 중 하나를 더 포함할 수 있으며; 액체 리저버 구조물(2)은 상기 장치의 일부를 포함하고, 마우스피스(1) 또는 케이싱(3)은 상기 장치의 상보적 부분을 포함한다.
재사용 가능한 장치에서, 구성 요소는 실질적으로 동일하다. 일회용 장치와 비교되는 재사용 가능한 장치의 차이점은 액체 리저버 구조물(2)을 교체하도록 만들어진 수용 장치가 있다는 것이다.
도 3에 도시된 바와 같이, 액체 챔버(21)에는 액체 챔버(21)의 내부 컨테이너(20b) 및 외부 컨테이너(20c)를 폐쇄하는 상단 벽(23) 및 하단 벽(25)이 구비되어 있다.
모세관 요소(7)는 내부 컨테이너(20b)의 제1 섹션(20b1) 및 제2 섹션(20b2) 사이에 배치된다.
모세관 요소(7)는 초음파 처리 챔버에서 액체 챔버까지 연장되는 평판 형상을 지닌다.
도 2 또는 3에 도시된 바와 같이, 모세관 요소(7)는 U형 중앙 부분(7a) 및 L형 주변 부분(7b)을 포함한다.
L형 부분(7b)은 내부 컨테이너(20b)에서 액체 챔버(21)까지 바닥 벽(25)을 따라 연장된다.
U형 부분(7a)은 초음파 처리 챔버(22) 내에 담긴다. U형 부분(7a)은 내부 컨테이너(20b)에 있고 바닥 벽(25)과 나란히 배치된다.
초음파 미스트 흡입장치에서, U형 부분(7a)에는 내부 부분(7a1) 및 외부 부분(7a2)이 있으며, 내부 부분(7a1)은 초음파 진동 수단(5)의 분무화 표면(50)과 접촉하고 외부 부분(7a2)은 초음파 진동 수단(5)의 분무화 표면과 접촉하지 않는다.
액체 챔버(21)의 바닥 벽(25)은 액체 챔버(21) 및 초음파 처리 챔버(22)를 폐쇄하는 바닥판(25)이다. 바닥판(25)은 밀폐되었고, 이에 따라 초음파 처리 챔버(22)에서 케이싱(3)으로 액체가 누출되는 것을 방지한다.
바닥판(25)에는 탄성 부재(8)가 삽입되는 리세스(25b)를 구비하는 상단 표면(25a)이 있다. 초음파 진동 수단(5)은 탄성 부재(8)에 의해 지탱된다. 탄성 부재(8)는 내부 개구(8')를 구비하는 환상 판형 고무로 형성되고, 초음파 진동 수단(5)을 유지하도록 그루브(groove)가 설계되었다.
액체 챔버(21)의 상단 벽(23)은 액체 챔버(21)를 폐쇄하는 캡(23)이다.
상단 벽(23)에는 액체 챔버(21)가 수용할 수 있는 액체의 최대 레벨을 의미하는 상단 표면(23)과 액체 챔버(21) 내 최저 레벨의 액체를 의미하는 하단 표면(25)이 있다.
상단 벽(23)이 밀폐되었으므로 액체 챔버(21)에서 마우스피스(1)로 액체가 누출되는 것을 방지한다.
상단 벽(23) 및 하단 벽(25)은 나사, 접착제 또는 마찰과 같은 고정 수단에 의해 액체 리저버 구조물(2)에 고정된다.
도 3에 도시된 바와 같이, 탄성 부재는 초음파 진동 수단(5)과 나란히 접촉하고 초음파 진동 수단(5) 및 흡입장치 벽 사이의 접촉을 방지하고, 액체 리저버 구조물의 진동 차단을 보다 효율적으로 방지한다. 따라서, 분무화 부재에 의해 분무화되는 액체의 미립자는 더 멀리 살포된다.
도 3에 도시된 바와 같이, 내부 컨테이너(20b)에는 제1 섹션(20b1) 및 제2 섹션(20b2) 사이에 개구(20b')가 있으며 여기에서 모세관 요소(7)가 초음파 처리 챔버(22)로부터 연장된다. 모세관 요소(7)는 애퍼처(20b')를 통해 액체 챔버(21)로부터 액체를 흡수한다. 모세관 요소(7)는 심지(wick)이다. 모세관 요소(7)는 모세관 작용에 의해 액체를 초음파 처리 챔버(22)로 이동한다. 일부 실시예에서, 모세관 요소(7)는 대나무 섬유로 제조된다. 일부 실시예어서, 모세관 요소(7)는 0.27mm 내지 0.32mm 사이의 두께를 가지고 38 g/m2 내지 48 g/m2 사이의 밀도를 가진다.
도 3에서 볼 수 있듯이, 초음파 진동 수단(5)은 모세관 요소(7) 바로 아래에 배치된다.
초음파 진동 수단(5)은 초음파 트랜스듀서가 될 수 있다. 예를 들어, 초음파 진동 수단(5)은 압전 트랜스듀서가 될 수 있고 원판형으로 설계될 수 있다. 압전 트랜스듀서의 소재는 세라믹이 될 수 있다.
또한, 다양한 트랜스듀서 소재를 초음파 진동 수단(5)으로 사용할 수 있다.
공기 유동 덕트 단부(27b1)는 초음파 진동 수단(5)과 맞닿는다. 초음파 진동 수단(5)은 전기 컨택터(101a, 101b)와 전기적으로 통신한다. 참고로 집적회로(4)의 원위 단부(4b)에는 내부 전극 및 외부 전극이 있다. 내부 전극은 스프링 컨택트 프로브(probe)인 제1 전기 컨택트(101a)와 접촉하고 외부 전극은 사이드 핀인 제2 전기 컨택트(101b)와 접촉한다. 집적회로(4)를 통해 제1 전기 컨택트(101a)는 마이크로프로세서를 사용하여 전기 저장 장치(30)의 양극 터미널과 전기적으로 통신하고, 제1 전극 컨택트(101b)는 전기 저장 장치(30)의 음극 터미널과 전기적으로 통신한다.
전기 컨택트(101a, 101b)는 바닥판(25)을 가로 지른다. 바닥판(25)은 액체 리저버 구조물(2)의 주위 벽(26) 내부에 안착되도록 설계한다. 바닥판(25)은 상보적 리지(ridge)에 안착되므로 액체 챔버(21) 및 초음파 처리 챔버(22)를 생성한다.
내부 컨테이너(20b)는 기계식 스프링이 인가되는 원형 내부 슬롯(20d)을 포함한다.
초음파 진동 수단(5) 위로 중앙 부분(7a1)을 누르면 기계식 스프링(9)은 이들 사이에서 표면 접촉을 보장한다.
액체 리저버 구조물(2) 및 바닥판(25)은 다양한 열가소성 소재로 제작할 수 있다.
사용자가 초음파 미스트 흡입장치(100)를 당기면 공기 유동이 주변 개구(1”)로부터 흡입되고, 공기 유동 챔버(28)를 통과하고, 공기 유동 브리지(27a) 및 원추대형 요소(20a)의 주변 개구(27a”)를 통과한 다음, 모세관 요소(7) 바로 위의 공기 유동 덕트(27b)를 통해 초음파 처리 챔버(22)로 흘러 내려간다. 동시에 액체는 다수의 애퍼처(aperture)(20b')를 통해 모세관 현상에 의하여 리저버 챔버(21)로부터 모세관 요소(7)로 인출된다. 모세관 요소(7)는 액체를 흡입장치(100)의 초음파 진동 수단(5)에 접촉시킨다. 사용자가 당기는 동작은 또한 압력 센서로 하여금 집적회로(4)를 활성화하도록 하고, 전류를 초음파 진동 수단(5)으로 유도한다. 그러므로 사용자가 흡입장치(100)의 마우스피스(1)를 당기면 두 가지 동작이 동시에 발생한다. 첫 번째로, 센서는 집적회로(4)를 활성화하고 초음파 진동 수단(5)을 트리거하여 진동을 시작한다. 두 번째로, 인출 동작으로 리저버 챔버(21) 외부의 압력이 줄어들어 애퍼처(20b')를 통한 액체 유동이 시작되고 모세관 요소(7)를 포화시킨다. 모세관 요소(7)는 초음파 진동 수단(5)으로 액체를 이동시키고, 초음파 진동 수단(5)에 의해 모세관 채널에 버블을 형성하여 액체를 분무화시킨다. 그런 다음, 미스트 액체가 사용자의 의해 인출된다.
일부 실시예에서, 집적회로(4)는 초음파 진동 수단(5)이 작동하는 주파수를 제어하도록 구성된 주파수 컨트롤러를 구비한다. 주파수 컨트롤러는 프로세서 및 메모리를 포함하고, 메모리에는 실행 가능한 명령이 저장되어 프로세서에 의해 실행될 때 프로세서는 주파수 컨트롤러의 적어도 하나의 기능을 수행한다.
상기에 설명된 바와 같이, 일부 실시예에서, 초음파 미스트 흡입장치(100)는 2.8MHz 내지 3.2MHz를 가지는 신호로 초음파 진동 수단(5)을 구동함으로써 액체 점도 1.05Pa.s 내지 1.412Pa.s를 가지는 액체를 기화시킨 다음 약 0.25 내지 0.5 미크론의 버블 볼륨을 생성한다. 하지만 다른 점도를 가지는 액체 및 다른 응용 분야에서 초음파 진동 수단(5)은 다른 주파수에 의해 구동될 수 있다.
미스트 발생 시스템의 각각 다른 응용 분야에 있어서, 미스트 발생을 최적화하기 위하여 초음파 진동 수단(5)을 구동할 수 있는 최적 주파수 또는 주파수 범위가 존재한다. 초음파 진동 수단(5)이 압전 트랜스듀서인 실시예에서, 최적 주파수 또는 주파수 범위는 적어도 다음 4개의 파라미터에 의존한다.
1. 트랜스듀서 제조 공정
일부 실시예에서, 초음파 진동 수단(5)은 압전 세라믹을 포함한다. 압전 세라믹은 화합물을 혼합하여 세라믹 도우(dough)를 만든 다음 제조되고 이러한 혼합 공정은 생산 과정 중 일관되지 않을 수 있다. 이러한 비일관성으로 인해 경화된 압전 세라믹의 공명 주파수가 다르게 만들어질 수 있다.
압전 세라믹의 공명 주파수가 장치의 작동에 필요한 주파수에 해당하지 않는다면 장치 작동 중 미스트가 생성되지 않는다. 니코틴 미스트 흡입장치의 경우, 압전 세라믹 공명 주파수의 사소한 오프셋으로도 미스트 생성에 충분히 영향을 미칠 수 있어 장치가 사용자에게 적절한 수준의 니코틴을 전달하지 못한다.
2. 트랜스듀서의 부하
작동 중 압전 트랜스듀서의 부하가 변하면 압전 트랜스듀서 진동의 전반적인 변위를 방해한다. 압전 트랜스듀서 진동의 최적의 변위를 얻기 위해 드라이브 주파수는 회로가 최적의 변위에 해당하는 적절한 전력을 제공하도록 조절되어야 한다.
오실레이터의 효율성에 영향을 미치는 부하의 유형에는 트랜스듀서에 대한 유량(위킹 소재의 습윤) 및 트랜스듀서와 영구적인 접촉을 유지할 수 있도록 위킹 소재에 가해지는 스프링의 힘이 포함된다. 또한, 전기 연결 수단도 포함된다.
3. 온도
압전 트랜스듀서의 초음파 진동부는 장치 어셈블리에 의해 부분적으로 적셔진다. 여기에는 실리콘/고무 링에 배치되는 트랜스듀서, 및 트랜스듀서 위의 위킹 소재에 압력을 가하는 스프링이 포함될 수 있다. 이러한 진동부 습윤으로 트랜스듀서 부위 및 주변에서 국소 온도가 높아질 수 있다.
온도가 올라가면 트랜스듀서의 분자 거동이 변하기 때문에 진동에 영향을 미친다. 온도가 올라갈 때 세라믹 분자에는 더 많은 에너지가 존재하고 결정 구조에 일시적으로 영향을 미친다. 온도가 내려가면 이러한 효과가 반전되지만 공급된 주파수의 변조는 최적의 진동을 유지해야 한다. 이러한 주파수 변조는 종래의 고정형 주파수 장치에서 달성할 수 없다.
또한, 온도가 올라가면 용액(e-리퀴드)의 점성이 줄어들어 기화되므로 캐비테이션을 유도하고 연속적인 미스트 생성을 유지하려면 드라이브 주파수를 변경해야 한다. 종래의 고정형 주파수 장치의 경우, 장치 주파수의 변경 없이 액체의 점성이 낮아지면 미스트 생성이 감소하거나 완전히 정지하여 장치의 작동을 불가하게 만든다.
4. 전원까지의 거리
전자 회로의 진동 주파수는 트랜스듀서 및 오실레이터-드라이버 사이의 전선 길이에 따라 변할 수 있다. 전자 회로의 주파수는 트랜스듀서 및 나머지 회로 사이의 거리에 반비례한다.
거리 파라미터는 장치에서 주로 고정되지만, 장치의 제조 공정 중 변하여 장치의 전반적인 효율성을 낮출 수 있다. 따라서, 장치의 구동 주파수를 변경하여 변화량에 대해 보상하고 장치의 효율성을 최적화해야 한다.
압전 트랜스듀서는 도 5의 그림과 같이 전기 회로의 RLC 회로로 모델링할 수 있다. 상기에 설명된 4개의 파라미터는 전반적인 인덕턴스, 캐패시턴스 및/또는 저항을 변경하여 트랜스듀서에 공급되는 공명 주파수 범위를 변경하도록 모델링할 수 있다. 회로 주파수가 트랜스듀서의 공명 포인트 근방으로 증가하면서 전체 회로의 로그 임피던스가 최소값으로 강하한 다음 중앙값 범위로 결정되기 전에 최대값으로 상승한다.
도 6은 RLC 회로 내 주파수가 증가할 때 전체 임피던스 변화를 설명하는 포괄적인 그래프를 도시한다. 도 7은 제1 사전 결정된 주파수 fs 이하의 주파수에서 제1 축전 영역 및 제2 사전 결정된 주파수 fp 이상의 주파수에서 제2 축전 영역 내 캐패시터가 작동하는 방법을 도시한다. 압전 트랜스듀서는 제1 및 제2 사전 결정된 주파수 fs, fp 사이의 주파수에서 유도 영역 내 인덕터로 작동한다. 최적의 트랜스듀서 진동을 유지함으로써 최적의 효율성을 만들기 위해, 트랜스듀서를 통해 흐르는 전류는 유도 영역 내 주파수를 유지해야 한다.
일부 실시예에서 장치의 주파수 컨트롤러는 장치의 효율성을 최대화하기 위하여 유도 영역 내에서 압전 트랜스듀서(초음파 진동 수단(5))의 진동 주파수를 유지하도록 구성된다.
주파수 컨트롤러는 주파수 컨트롤러가 사전결정된 스위프 주파수 범위에 걸쳐 점진적으로 추적하는 주파수에서 트랜스듀서를 구동하는 스위프 작동을 수행하도록 구성된다. 주파수 컨트롤러가 스위프를 수행하면서 주파수 컨트롤러는 트랜스듀서와 결합된 아날로그 디지털 컨버터의 ADC(Analog-to-Digital Conversion) 값을 모니터링한다. 일부 실시예에서, ADC 값은 트랜스듀서에 걸친 전압에 비례하는 ADC 파라미터이다. 다른 실시예에서, ADC 값은 트랜스듀서를 통해 흐르는 전류에 비례하는 ADC 파라미터이다.
하기에 더 상세하게 설명된 바와 같이, 일부 실시예의 주파수 컨트롤러는 트랜스듀서를 통해 흐르는 전류를 모니터링하여 초음파 트랜스듀서에 의해 사용되는 능동 전력을 결정한다.
스위프 작동 중, 주파수 컨트롤러는 트랜스듀서에 대한 주파수 유도 영역을 찾는다. 주파수 컨트롤러가 유도 영역을 식별하면 주파수 컨트롤러는 ADC 값을 기록하고 유도 영역 내 주파수(즉, 제1 및 제2 사전결정된 주파수 fs, fp 사이)로 트랜스듀서의 구동 주파수를 고정하여 트랜스듀서에 의한 초음파 캐비테이션을 최적화한다. 구동 주파수가 유도 영역 내에 고정되면 트랜스듀서의 전자-기계 결합 인자가 최대화되므로 장치의 효율성이 최대화된다.
일부 실시예에서, 주파수 컨트롤러는 스위프 동작을 수행하여 진동이 시작되거나 재시작될 때마다 유도 영역을 검색하도록 구성된다. 이를테면, 주파수 컨트롤러는 진동이 시작될 때마다 유도 영역 내 새로운 주파수로 구동 주파수를 고정함으로써 장치의 효율성에 영향을 미치는 파라미터의 변화량을 보정하도록 구성된다.
일부 실시예에서, 주파수 컨트롤러는 최적의 미스트 생성을 보장하고 사용자에 대한 약물 전달의 효율성을 최대화한다. 일부 실시예에서, 주파수 컨트롤러는 장치를 최적화하고 효율성을 높이며 사용자에 대한 니코틴 전달을 최대화한다.
다른 실시예에서, 주파수 컨트롤러는 장치를 최적화하고 초음파를 사용하는 다른 장치의 효율성을 높인다. 일부 실시예에서, 주파수 컨트롤러는 초음파 반응형 약물 전달 시스템에서 약물 방출을 개선하기 위하여 치료용 초음파 기술을 사용하도록 구성된다. 작동 중 정밀하고 최적화된 주파수를 사용하면 마이크로버블, 나노버블, 나노 방울, 리포솜, 에멀션, 미셀(micelle) 또는 기타 전달 시스템을 매우 효율적으로 만들 수 있다.
일부 실시예에서, 상기에 설명된 바와 같이, 최적의 미스트 발생 및 최적의 화합물 전달을 보장하기 위해 주파수 컨트롤러는 회귀 모드로 작동하도록 구성된다. 주파수 컨트롤러가 회귀 모드에서 작동할 경우, 주파수 컨트롤러는 장치의 작동 중 주기적으로 주파수 스위프를 실행하고 ADC 값을 모니터링하여 ADC 값이 트랜스듀서의 최적의 진동을 나타내는 사전결정된 임계값 이상인지 결정한다.
일부 실시예에서, 주파수 컨트롤러가 스위프 작동을 실행하면서 주파수 컨트롤러가 트랜스듀서에 대한 더 좋은 주파수를 식별할 수 있는 경우 장치는 액체를 에어졸화하는 과정에 놓인다. 주파수 컨트롤러가 더 좋은 주파수를 식별하면 주파수 컨트롤러는 최적의 장치 작동을 유지하기 위해 새롭게 식별된 더 좋은 주파수로 구동 주파수를 고정시킨다.
일부 실시예에서, 주파수 컨트롤러는 장치 작동 중 주기적으로 사전결정된 시간 동안 주파수 스위프를 실행한다. 상기에 설명된 예시의 장치에서, 스위프의 사전결정된 시간 및 스위프 사이의 시간은 장치의 기능을 최적화하도록 선택된다. 초음파 미스트 흡입장치에서 구현되는 경우, 이는 사용자의 흡입 동작 중 사용자에게 최적의 전달을 보장한다.
도 8은 일부 주파수 컨트롤러 예시의 작동에 대한 계통도를 도시한다.
다음 개시에서는 상기에 설명된 예시와 부재를 다수 포함하는 미스트 발생장치의 예시를 더 많이 공개한다. 상기에 설명된 예시의 부재는 본 개시의 나머지 부분에서 설명되는 예시의 부재들과 상호 교환될 수 있다.
하기에 설명되는 미스트 발생장치는 하기에 또한 설명되는 물담배 장치(202)와 함께 사용되거나 함께 사용할 수 있다. 다른 실시예에서, 물담배 장치(202)는 본원에 개시된 미스트 발생장치(201) 대신에 복수의 다른 미스트 발생장치를 구비한다.
적절한 에어로졸 생성을 보장하기 위해, 일부 실시예의 미스트 발생장치(201)는 정확히 또는 실질적으로 16mm 직경을 지닌 초음파/압전 트랜스듀서를 포함한다. 이 트랜스듀서는 특정한 캐패시턴스 및 임피던스 값으로 제조되어 원하는 에어로졸 볼륨 생성에 필요한 주파수 및 전력을 제어한다.
수평적으로 배치된 디스크형 16mm 직경의 초음파 트랜스듀서는 대형 미스트 발생장치를 만들게 된다. 크기를 최소화하기 위해, 본 예시의 초음파 트랜스듀서는 초음파 처리 챔버 내에 수직적으로 고정되었다(초음파 트랜스듀서의 평면은 통상적으로 에어로졸 미스트 흐름과 평행하고/하거나 통상적으로 미스트 발생장치의 종방향과 평행하다). 달리 말해 초음파 트랜스듀서는 미스트 발생장치의 베이스에 대해 수직이다.
첨부된 도 9 내지 도 11을 참조하면, 미스트 발생장치(201)는 서로 부착된 두 개의 하우징 부분(205, 206)에서 장형이고 선택적으로 형성된 미스트 발생장치 하우징(204)을 구비한다. 미스트 발생장치 하우징(204)은 공기 흡기 포트(207) 및 미스트 방출 포트(208)를 포함한다.
본 실시예에서, 미스트 발생장치 하우징(204)은 사출 성형 플라스틱이며, 구체적으로는 의료용으로 일반적으로 사용되는 폴리프로필렌이다. 일부 실시예에서, 미스트 발생장치 하우징(204)은 헤테로상 공중합체이다. 더 특이적으로는 BF970MO 헤테로상 공중합체이며, 매우 높은 강성과 충격 강도를 최적으로 결합하고 있다. 이 소재로 성형된 미스트 발생장치 하우징 파트는 우량한 정전기 방지 성능을 보인다.
폴리프로필렌과 같은 헤테로상 공중합체는 이 소재가 에어로졸이 미스트 방출 포트(208)를 통해 초음파 처리 챔버(219)로부터 흐르면서 에어로졸의 응결을 유발하지 않으므로 미스트 발생장치 하우징(204)으로 특히 적합하다. 이러한 플라스틱 소재는 또한 업계의 파쇄 및 세척 과정을 통해 직접적으로 쉽게 재활용될 수 있다.
도 10에서 미스트 방출 포트(208)는 클로저 부재(209)에 의한 폐쇄된다. 하지만 미스트 흡입장치(200)를 사용할 때, 도 9에 도시된 바와 같이 클로저 부재(209)는 미스트 방출 포트(208)에서 제거될 수 있다.
도 12 및 13을 참조하면, 미스트 발생장치(201)는 미스트 발생장치 하우징(204) 내에 고정되는 트랜스듀서 홀더(210)를 포함한다. 이 실시예에서 트랜스듀서 홀더(210)는 원형 상단 및 하단 개구(212, 213)를 포함하여 원통형이거나 통상적으로 원통형인 바디 부분(211)을 구비한다. 트랜스듀서 홀더(210)는 도 13에 도시된 바와 같이 초음파 트랜스듀서(215)의 에지를 수용할 수 있는 내부 채널(214)을 포함하여 제공된다.
트랜스듀서 홀더(210)는 절취부(216)를 구비하고 하기에 더 상세하게 설명된 바와 같이, 이 절취부를 통해 전극(217)이 초음파 트랜스듀서(215)로부터 연장되고, 이에 따라 전극(217)이 물담배 장치(202)의 AC 드라이버에 전기적으로 연결된다.
도 11을 참조하면, 미스트 발생장치(201)는 미스트 발생장치 하우징(204) 내에 제공되는 액체 챔버(218)를 포함한다. 액체 챔버(218)는 분무화되는 액체를 담는 데 사용된다. 일부 실시예에서, 액체는 액체 챔버(218) 내에 담긴다. 다른 실시예에서, 액체 챔버(218)는 처음에는 비었다가 차후에 액체 챔버에 액체가 채워진다.
초음파 미스트 발생장치(201)에 사용하기에 적합한 액체 조성물(이하 본원에서 e-리퀴드라고 함)은 니코틴 레블린산염을 구비한 니코틴 염을 포함하고,
상기 조성물 내 식물성 글리세린의 상대적 함량은 55 내지 80%(w/w), 또는 60 내지 80%(w/w), 또는 65 내지 75%(w/w), 또는 70%(w/w); 및/또는
상기 조성물 내 프로필렌 글리콜의 상대적 함량은 5 내지 30%(w/w), 또는 10 내지 30%(w/w), 또는 15 내지 25%(w/w), 또는 20%(w/w); 및/또는
상기 조성물 내 물의 상대적 함량은 5 내지 15%(w/w), 또는 7 내지 12%(w/w), 또는 10%(w/w); 및/또는
상기 조성물 내 니코틴 및/또는 니코틴 염의 함량은 0.1 내지 80mg/ml, 또는 0.1 내지 50mg/ml, 또는 1 내지 25mg/ml, 또는 10 내지 20mg/ml, 또는 17mg/ml이다.
일부 실시예에서, 미스트 발생장치(201)에는 1.05Pa·s 내지 1.412Pa·s 사이의 동점성을 지닌 e-리퀴드가 포함된다.
일부 실시예에서, 액체 챔버(218)는 니코틴 레불린산염 1:1 몰비로 구성된 액체를 함유한다.
일부 실시예에서, 액체 챔버(218)는 니코틴, 프로필렌 글리콜, 식물성 글리세린, 물 및 향미료로 구성된 e-리퀴드를 함유한다. 일부 실시예에서, e-리퀴드의 각 성분의 농도 %는 하기의 표 1, 표 2, 표 3 또는 표 4에 표시되어 있다.
표 1: e-리퀴드의 각 성분의 농도 %(e-리퀴드 1).
성분 % (w/w)
프로필렌 글리콜 15.1
식물성 글리세린 70
10
니코틴 1.7
레불린산 0.2
향미료 3
표 2: e-리퀴드의 각 성분의 농도 %(e-리퀴드 2). (대략적인 레불린산과 니코틴 비율 2:1 몰비)
성분 % (w/w)
프로필렌 글리콜 12.87
식물성 글리세린 70
10
니코틴 1.7
레불린산 2.43
향미료 3
표 3: e-리퀴드의 각 성분의 농도 %(e-리퀴드 3). (대략적인 레불린산과 니코틴 비율 1:1 몰비)
성분 % (w/w)
프로필렌 글리콜 14.08
식물성 글리세린 70
10
니코틴 1.7
레불린산 1.22
향미료 3
표 4: e-리퀴드의 각 성분의 농도 %(e-리퀴드 4). (대략적인 레불린산과 니코틴 비율 3:1 몰비)
성분 % (w/w)
프로필렌 글리콜 11.64
식물성 글리세린 70
10
니코틴 1.7
레불린산 3.66
향미료 3
비제한적 예시에서, 용액 내 니코틴은 전부 또는 일부가 니코틴 레불린산의 형태이다.니코틴 레불린산염은 용액 내에서 니코틴과 레불린산이 결합하여 형성된다. 그 결과 니코틴 레불린산염이 형성되고 레불린산 음이온 및 니코틴 양이온을 포함한다.
표 1, 표 2, 표 3 및 표 4에 도시된 e-리퀴드의 니코틴 농도 %는 대략적으로 17mg/ml와 동일하다.
일부 실시예에서, 액체 챔버(218)는 1.05Pa·s 및 1.412Pa·s 사이의 동점성을 갖는 액체, 및 1.1g/ml 내지1.3g/ml 사이의 밀도를 갖는 액체를 함유한다.
일부 실시예에서, 액체 챔버(218) 내의 액체에는 사용자가 물담배 장치가 생성하는 미스트를 흡입할 때 사용자가 맛을 느끼는 향미료(예: 과일향)가 포함된다.
올바른 점도, 밀도 파라미터를 구비한 e-리퀴드를 사용하고 액체 분무로 원하는 목표 버블 불륨을 만들 때, 액체 점도 범위 1.05Pa·s 내지 1.412Pa·s, 약 1.1~1.3g/mL의 밀도(헤르츠에서 밀도 범위를 획득)에 대해 2.8MHz 내지 3.2MHz 주파수 범위에서 90%의 방울이 1미크론 이하이고 50%가 0.5미크론 이하인 방울 볼륨을 생성하는 것으로 밝혀졌다.
미스트 발생장치(201)는 미스트 발생장치 하우징(204) 내에 제공되는 초음파 처리 챔버(219)를 포함한다.
이제 도 12 및 13를 참조하면, 트랜스듀서 홀더(210)는 액체 챔버(218) 및 초음파 처리 챔버(219) 사이에서 장벽을 제공하는 분주기 부분(220)을 포함한다. 분주기 부분(220)이 제공하는 장벽은 초음파 처리 챔버(219)가 액체 챔버(218)의 액체로 침수되거나, 초음파 트랜스듀서(215) 위의 모세관 요소가 과포화되는 위험을 최소화하고, 침수 또는 과포화 상태가 되면 초음파 트랜스듀서(215)는 과부하를 받고 효율성이 감소된다. 더구나, 초음파 처리 챔버(219)가 침수되거나 모세관 요소가 과포화되면 사용자가 흡입 중 빨아들이는 액체로 인해 불쾌한 경험을 겪을 수 있다. 이러한 위험을 경감하기 위해 트랜스듀서 홀더(210)의 분주기 부분(220)은 초음파 처리 챔버(219) 및 액체 챔버(218) 사이의 벽에 안착된다.
분주기 부분(220)은 액체가 모세관 요소를 통해 액체 챔버(218)에서 초음파 처리 챔버(219)로 흐를 수 있는 수단으로서만 모세관 애퍼처(221)를 구비한다. 본 실시예에서, 모세관 애퍼처(221)는 0.2mm 내지 0.4mm의 너비를 갖는 장형 슬롯이다. 모세관 애퍼처(221)의 치수는 모세관 애퍼처(221)의 에지가 초음파 처리 챔버(219)로 흐르는 액체 유동의 추가적인 제어를 위해 모세관 애퍼처(221)를 통해 연장되도록 모세관 요소에 작동함으로써 바이어싱 힘을 제공하도록 구성된다.
본 실시예에서, 트랜스듀서 홀더(210)는 액상 실리콘 고무(LSR)이다. 본 실시예에서, 액상 실리콘 고무에는 쇼어 A 60 경도가 구비되어 있다. 이 LSR 재료는 초음파 트랜스듀서(215)가 트랜스듀서 홀더(210)의 진동 감쇠를 경험하지 않으면서 진동하도록 보장한다. 본 실시예에서, 초음파 트랜스듀서(215)의 진동 변위는 2~5나노미터이고 감쇠 영향은 초음파 트랜스듀서(215)의 효율을 감소시킬 수 있다. 따라서, 이 LSR 소재 및 경도는 최소한의 손상으로 최적의 성능을 갖도록 선택된다.
이제 도 14 및 15를 참조하면, 미스트 발생장치(201)는 액체(약제 또는 기타 물질을 함유한)를 액체 챔버(218)에서 초음파 처리 챔버(219)로 전달할 수 있는 모세관 또는 모세관 요소(222)를 포함한다. 모세관 요소(222)는 제1 부분(223) 및 제2 부분(224)과 평행하거나 대략적으로 평행하다. 본 실시예에서, 제1 부분(223)은 직사각형이거나 대략적으로 직사각형이고 제2 부분(224)은 부분적으로 원형이다.
본 실시예에서, 모세관 요소(222)는 제3 부분(225) 및 제4 부분(226)을 구비하고, 각각은 제1 및 제2 부분(223, 224)과 형상이 동일하다. 본 실시예의 모세관 요소(222)는 도 15의 그림과 같이, 제1 및 제2 부분(223, 224) 그리고 제3 및 제 4 부분(225, 226)이 서로 중첩되도록 폴드 라인(227)에 대해 접힌다.
본 실시예에서, 모세관 요소는 대략적으로 0.28mm의 두께를 가진다. 도 15과 같이 모세관 요소(222)가 접혀서 두 겹으로 되면, 모세관 요소의 전체 두께는 대략적으로 0.56mm가 된다. 이러한 이중층으로 인해 초음파 트랜스듀서(215)에 충분한 액체가 존재하여 최적의 에어로졸을 생성할 수 있다.
본 실시예에서, 모세관 요소(222)가 접히면, 제1 및 제3 부분(223, 225)의 하단부는 장형 하단부(228)를 정의하고, 모세관 요소(222) 부분 내 모세관 요소(222)의 표면적을 증가시키고, 액체 챔버(218) 내 액체에 안착되어 모세관 요소(222)가 액체를 흡수하는 속도를 최적화한다.
본 실시예에서, 상기 모세관 요소(222)는 100% 대나무 섬유이다. 다른 실시예에서, 모세관 요소는 적어도 75%의 대나무 섬유이다. 모세관 요소로서 대나무 섬유를 사용할 때의 편익은 상기에 설명된 바와 같다.
이제 도 16 및 17을 참조하면, 모세관 요소(222)는 트랜스듀서 홀더(210)에 포함되고, 이에 따라 트랜스듀서 홀더(210)는 초음파 트랜스듀서(215)의 분무화 표면의 일부에서 중첩된 모세관 요소(222)의 제2 부분(224)을 포함한다. 본 실시예에서, 원형 제2 부분(224)은 트랜스듀서 홀더(210)의 내부 리세스(214) 내에 안착된다.
모세관 요소(222)의 제1 부분(223)은 트랜스듀서 홀더(210)의 모세관 애퍼처(221)를 통해 연장된다.
이제 도 18 내지 도 20을 참조하면, 미스트 발생장치 하우징(204)의 제2 부분(206)은 트랜스듀서 홀더(210)를 수용하고 초음파 처리 챔버(219)의 벽 일부를 형성하는 대략적으로 원형인 벽(229)을 구비한다.
컨택트 애퍼처(230 및 231)는 제2 부분(206)의 측벽에 제공되어 전기 컨택트(232 및 233)를 수용하고 초음파 트랜스듀서(215)의 전극과 전기적 연결부를 형성한다.
본 실시예에서, 흡수 팁 또는 흡수 부재(234)는 미스트 방출 포트(208)에 인접하게 제공되어 미스트 방출 포트(208)에서 액체를 흡수한다. 본 실시예에서, 흡수 부재(234)는 대나무 섬유이다.
이제 도 21 내지 23을 참조하면, 미스트 발생장치 하우징(204)의 제1 부분(205)은 제2 부분(206)과 유사한 형상을 구비하고, 초음파 처리 챔버(219)의 추가 벽 부분을 형성하고 트랜스듀서 홀더(210)를 고정하는 통상적으로 원형인 벽 부분(235)을 더 포함한다.
본 실시예에서, 추가 흡수 부재(236)는 미스트 방출 포트(208)에 인접하게 제공되어 미스트 방출 포트(208)에서 액체를 흡수한다.
본 실시예에서, 미스트 발생장치 하우징(204)의 제1 부분(205)은 도 24의 그림과 같이 리테이너 스프링(238)의 하단부를 지탱하는 스프링 지지 장치(237)를 구비한다.
리테이너 스프링(238)의 상단부는 리테이너 스프링(238)이 초음파 트랜스듀서(215)의 분무화 표면에 대해 모세관 요소(222)를 편향시키는 편향력을 제공하도록 모세관 요소(222)의 제2 부분(224)과 접촉한다.
도 25를 참조하면, 도시되는 트랜스듀서 홀더(210)는 미스트 발생장치 하우징(204)의 제2 부분(206)에 의해 고정되고, 미스트 발생장치 하우징(204)의 서로 결합된 두 부분(205, 206) 이전에 위치한다.
도 26 내지 29를 참조하면, 본 실시예에서, 미스트 발생장치(201)는 식별 장치(239)를 구비한다. 식별 장치(239)는 일 측면에 제공된 전기 컨택트(241)를 구비하는 인쇄 회로 기판(240), 및 다른 측면에 제공된 집적회로(242) 및 다른 선택 가능한 구성품(243)을 포함한다.
집적회로(242)에는 미스트 발생장치(201)에 대한 고유 식별자를 저장하는 메모리가 포함된다. 전기 컨택트(241)는 집적회로(242)와 통신할 수 있는 전자 인터페이스를 제공한다.
본 실시예에서, 인쇄 회로 기판(240)은 미스트 발생장치 하우징(204)의 일 측면에 있는 리세스(244) 내에 장착된다. 집적회로(242) 및 선택 가능한 다른 전자 부품(243)은 인쇄 회로 기판(240)이 미스트 발생장치 하우징(204)의 측면에 통상적으로 평행하도록 추가 리세스(245) 내에 안착된다.
본 실시예에서, 집적회로(242)는 장치에 제조업체가 공급하는 순정 미스트 발생장치만을 사용하도록 위조 방지 기능을 제공하는 OTP(one-time-programmable) 장치이다. 본 위조 방지 기능은 미스트 발생장치(201)에 결합된(인쇄 회로 기판(240) 포함) 특정 맞춤형 집적회로(IC)로서 미스트 발생장치(201)에 구현된다. IC로서의 OTP에는 수명 기간 동안의 미스트 발생장치(201)(및 그의 컨텐츠)를 완전히 추적 가능하고, 사용자의 소비량을 정밀하게 모니터링하는 고유한 정보가 포함된다. OTP IC를 통해 미스트 발생장치(201)는 승인된 미스트만을 발생시키도록 작동할 수 있다.
기능으로서의 OTP는 특정 미스트 발생장치(201)의 승인 상태를 명시한다. 실제로는, 카르보닐기의 배출을 방지하고 에어로졸을 안전한 기준으로 유지하기 위해, 실험에 따르면 대략 1,000초의 에어로졸화를 거친 후 미스트 발생장치(201)는 액체 챔버(218) 내 액체가 빈 것으로 간주된다는 사실이 입증되었다. 이런 방식으로 순정품 또는 비어있지 않은 미스트 발생장치(201)는 이러한 사전결정된 사용 기간 후 활성화되지 않는다.
기능으로서의 OTP는 디지털 매장, 동반하는 모바일 애플리케이션, 및 미스트 발생장치(201)와 결합하여 전체 체인의 일부를 구성할 수 있다. 신뢰할 수 있는 회사가 제조하고 디지털 매장에서 판매된 순정 미스트 발생장치(201)만을 물담배 장치(202)에 사용할 수 있다. OTP IC는 미스트 발생장치(201)를 인식하는 물담배 장치(202)에 의해 판독된다.
일부 실시예에서, OTP IC는 미스트 발생장치(201)와 마찬가지로 일회용이다. 미스트 발생장치(201)가 빈 것으로 간주될 때, 물담배 장치(202)에 삽입해도 작동하지 않는다. 유사하게도, 위조된 미스트 발생장치(201)는 물담배 장치(202)에서 작동하지 않는다.
이제 첨부된 도 30을 참조하면, 물담배 장치(202)는 복수의 초음파 트랜스듀서 드라이버 마이크로칩을 포함하고, 본 개시에서 각각은 전력 관리 집적회로 또는 PMIC(300)으로 지칭된다. 각각의 PMIC(300)는 미스트 발생장치(201) 중 하나에서 각 초음파 트랜스듀서(215)를 구동할 수 있는 마이크로칩이다. 본 개시의 실시예에서 물담배 장치(202)의 PMIC 개수는 물담배 장치(202)와 사용되는 미스트 발생장치(201)의 개수에 해당한다. 하기에 설명된 실시예에서는 4개의 미스트 발생장치(201)가 있고 물담배 장치(202)는 4개의 해당 PMIC(300)를 포함한다. 다른 실시예에서, 물담배 장치(202)는 물담배 장치(202)와 결합되는 2개 내지 8개의 미스트 발생장치(201)를 구동하도록 구성되는 2개 내지 8개의 PMIC(300)을 구비한다.
본 개시에서 칩, 마이크로칩 및 집적회로를 교환하여 사용할 수 있다. 마이크로칩 또는 집적회로는 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템으로 구성된 단일 유닛이다. 에를 들어, 마이크로칩은 적어도 부분적으로 실리콘과 같은 반도체이고, 반도체 제조 기술을 사용하여 제조된다.
물담배 장치(202)는 또한 복수의 제2 마이크로칩을 구비하고, 본원에서 각각은 브리지 집적회로 또는 브리지 IC(301)로 지칭된다. 각 브리지 IC(301)는 PMIC(300) 중 각각 하나와 전기적으로 연결된다. 각각의 브리지 IC(301)는 미스트 발생장치(201) 중 하나에서 각 초음파 트랜스듀서(215)를 구동할 수 있는 마이크로칩이다. 본 개시의 실시예에서 물담배 장치(202)의 브리지 IC(301) 개수는 물담배 장치(202)와 사용되는 미스트 발생장치(201)의 개수에 해당한다. 각각의 브리지 IC(301)는 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템으로 구성된 단일 유닛이다. 하기에 설명된 실시예에서는 4개의 브리지 IC(301)가 있고 물담배 장치(202)는 4개의 해당 PMIC(300)를 포함한다.
본 실시예에서, 각각의 PMIC(300)와 각각 연결된 브리지 IC(301)는 물담배 장치(202)와 동일한 PCM에 장착되어 있다. 하기에 설명된 바와 같이, 각각의 브리지 IC(301)는 통신 버스가 아닌(예: 하기에 설명된 I2C 버스), PCB의 연결부를 통해 각각의 PMIC(300)와 연결되어 있다. 본 실시예에서, PMIC(300)의 물리적 치수는 폭 1~3mm, 길이 1~3mm이며 브리지 IC(301)의 물리적 치수는 폭 1~3mm, 길이 1~3mm이다.
간편성을 위하여 도 43은 한 개의 PMIC(300) 및 한 개의 브리지 IC(301)만을 도시하고 다음 설명은 한 개의 PMIC(300) 및 한 개의 브리지 IC(301)만을 참조한다. 하지만, 물담배 장치(202)는 도 43에 도시된 것과 같은 구성으로 연결된 복수의 PMIC(300) 및 복수의 각각의 브리지 IC(301)를 포함하는 것으로 간주된다. 하기 설명과 같이, 각각의 PMIC(300)는 통신(I2C) 버스(302)에 연결되고, 이에 따라 각각의 PMIC(300)은 마이크로컨트롤러(303)가 통신 버스(302)를 통해 전송한 신호에 의해 독립적으로 제어될 수 있다.
상기 설명과 같이, 미스트 발생장치(201)는 프로그램 가능 또는 일회용 프로그램 가능 집적회로 또는 OTP IC(242)를 구비한다. 미스트 발생장치(201)를 물담배 장치(202)와 결합하면 OTP IC는 PMIC(300)와 전기적으로 결합되어 PMIC(300)가 OTP IC(242)에 공급되는 전압을 관리할 수 있도록 PMIC(300)로부터 전력을 수신한다. 또한, OTP IC(242)는 물담배 장치(202) 내 데이터 버스 또는 통신 버스(302)와 연결된다. 본 실시예에서, 통신 버스(302)는 I2C 버스이지만 다른 실시예에서는 통신 버스(302)는 다른 유형의 데이터 버스이다.
미스트 발생장치(201)의 초음파 트랜스듀서(215)는 물담배 장치(202)를 사용할 때 초음파 트랜스듀서(215)가 브리지 IC(301)에 의해 발생된 AC 구동 신호로 구동되도록 브리지 IC(301)에 전기적으로 연결된다.
물담배 장치(202)는 통신 버스(302)와 통신하도록 전기적으로 결합되는 마이크로컨트롤러(303)의 형태를 지닌 프로세서를 구비한다. 본 실시예에서, 마이크로컨트롤러(303)는 Bluetooth™ 저에너지(BLE) 마이크로컨트롤러이다. 마이크로컨트롤러(303)는 배터리 또는 본 실시예에서는, 외부 전원 공급장치에에 의해 구동되는 저 강하 레귤레이터(LDO)(304)로부터 전력을 수신한다. LDO(304)는 안정적으로 조절되는 전압을 마이크로컨트롤러(303)로 제공하여 마이크로컨트롤러(303)가 배터리 또는 다른 전원 공급장치의 전압이 변동되어도 지속적으로 작동하도록 한다.
물담배 장치(202)는 배터리 또는 외부 전원공급 장치에 의해 전원을 공급받는 DC-DC 부스트 컨버터(305) 형태를 지닌 전압 레귤레이터를 구비한다. 도 43에는 단지 한 개의 DC-DC 부스트 컨버터(305)가 도시되었지만 일부 실시예에서 물담배 장치(202)는 복수의 브리지 IC(301) 중 각각에 전력을 각각 공급하는 복수의 DC-DC 부스트 컨버터(305)를 구비한다. 다른 실시예에서 물담배 장치(202)는 복수의 브리지 IC(301) 각각에 전력을 공급하도록 구성된 단지 하나의 DC-DC 부스트 컨버터(305)를 구비한다.
부스트 컨버터(305)는 배터리 또는 전원 공급장치 전압을 프로그램 가능 전압 VBOOST로 높인다. 프로그램 가능 전압 VBOOST는 PMIC(300)로부터의 전압 제어 신호 VCTL에 반응하여 부스트 컨버터(305)에 의해 설정된다. 하기에서 더 상세히 설명된 바와 같이, 부스트 컨버터(305)는 전압 VBOOST를 브리지 IC(301)로 출력한다. 다른 실시예에서, 전압 레귤레이터는 선택 가능한 전압을 출력하는 벅(buck) 컨버터 또는 다른 유형의 전압 레귤레이터이다.
전압 제어 신호 VCTL은 디지털 아날로그 컨버터(DAC)에 의해 발생하고 본 실시예에서 PMIC(300) 내에서 구현된다. DAC는 DAC가 PMIC(300) 내에 통합되어 있어 도 30에 도시되지 않는다. DAC 및 PMIC(300) 내에 DAC를 통합할 때의 기술적 편익은 하기에 상세하게 기술되어 있다.
본 실시예에서, PMIC(300)는 전원 커넥터(306)에 연결되고 이에 따라 PMIC(300)는 전원 커넥터(306)를 USB 충전기에 연결할 때 충전 전압 VCHRG를 수신할 수 있다. 다른 실시예에서, PMIC(300)은 물담배 장치(202)를 외부 전원에 연결 및 전력을 공급받도록 하는 다른 전원 소켓에 연결된다.
물담배 장치(202)는 제1 압력 센서(307)를 구비하고 본 실시예에서는 정적 압력 센서이다. 물담배 장치(202)는 제2 압력 센서(308)를 구비하고 본 실시예에서는 동적 압력 센서이다. 하지만 다른 실시예에서, 물담배 장치(202)는 두 개의 압력 센서(307, 308) 중 하나만을 포함한다. 압력 센서(307, 308)는 공기압 변화를 센싱하여 사용자가 물담배를 인출하고 미스트 발생장치(201)를 통해 인출할 때, 이를 센싱한다.
본 예시에서, 물담배 장치(202)는 PMIC(300)가 제어하는 다수 개의 LED(308)를 구비한다. 다른 실시예에서, 하나 이상의 LED(308)가 생략된다.
마이크로컨트롤러(303)는 통신 버스(302)에 대한 마스터 장치로 작동하고 PMIC(300)는 제1 슬레이브 장치이고, OTP IC(242)는 제2 슬레이브 장치이고, 제2 압력 센서(308)는 제3 슬레이브 장치이고, 제1 압력 센서 (307)는 제4 슬레이브 장치이다. 복수의 PMIC(300) 중 각각의 추가 PMIC(300)는 통신 버스(302)의 다른 슬레이브 장치이다. 통신 버스(302)는 마이크로컨트롤러(303)가 물담배 장치(202) 내에서 다음 기능을 제어하도록 한다.
1. 각각의 PMIC(300)의 모든 기능은 마이크로컨트롤러(303)에 의해 고도로 구성 가능하다.
2. 초음파 트랜스듀서(215)를 통해 흐르는 전류는 높은 공통 모드 전압(브리지의 하이 사이드)에서 고 대역폭 센스 및 정류기 회로에 의해 센싱된다. 센싱된 전류는 rms 전류에 비례하여 전압으로 변환되고 브리지 IC(301)의 전류 센스 출력 핀(309)에서 버퍼링된 전압으로 제공된다. 이 전압은 PMIC(300)으로 공급 및 샘플링되고 I2C 요청을 통해 디지털 표현으로 사용할 수 있다. 초음파 트랜스듀서(215)를 통해 흐르는 전류를 센싱하는 방법은 공명 주파수 추적 기능의 일부를 형성한다. 본원에 설명된 바와 같이, 장치가 브리지 IC(301) 내에서 이 기능을 사용할 수 있는 능력은 유의한 기술적 편익을 제공한다.
3. PMIC(300) 내에 통합된 DAC(도 30에 도시되지 않음)는 DC-DC 부스트 컨버터 전압 VBOOST가 10V 및 20V 사이에서 프로그램되도록 한다.
4. 마이크로컨트롤러(303)는 장치(202)의 충전 서브시스템이 단일 셀 배터리가 될 수 있는 배터리의 충전을 관리하도록 한다.
5. 발광 다이오드(LED) 드라이버 모듈(도시되지 않음)은 PMIC(300)에 의해 전력을 제공받아 선형 모드 또는 감마 수정 모드 중 하나를 통해 LED(308)를 디지털적으로 구동 및 디밍한다.
6. 마이크로컨트롤러(303)는 압력 센서(307, 308)로부터 압력#1 및 압력#2 센서 값을 판독할 수 있다.
이제 첨부된 도 31를 참조하면, 본 실시예에서 각각의 PMIC(300)는 PMIC(300)에 전기적 입력 및 출력을 제공하는 통합형 서브시스템 및 다수 개의 핀을 포함하는 독립 칩 또는 집적회로이다. 본 개시 내 집적회로 또는 칩의 참조는 상호 교환 가능하며 두 개의 용어는 실리콘과 같은 반도체 장치를 포함한다.
PMIC(300)은 참조 블록(BG)(311), LDO(312), 전류 센서(313), 온도 센서(314) 및 오실레이터(315)를 포함하여 아날로그 부품을 포함하는 아날로그 코어(310)를 구비한다.
하기에 상세하게 설명된 바와 같이, 오실레이터(315)는 펄스 폭 변조(PWM) 위상 A 및 B를 출력하는 지연 잠금 루프(DLL)와 연결된다. 오실레이터(315) 및 DLL은 브리지 IC(301) 내 H 브리지를 구동하는 PWM 출력과 정렬된 두 개의 위상 중심을 생성한다.
DLL은 단대단(end to end)으로 연결된 복수의 지연 라인을 포함하고, 지연 라인의 총 지연은 메인 클럭 신호 clk_m의 주기와 동일하다. 본 실시예에서 DLL은 오실레이터(315)로부터의 클럭 신호 및 LDO(312)로부터의 조절된 전원 공급 전압을 수신하는 PMIC(300)의 디지털 프로세서 서브시스템(본원에서 디지털 코어(316)로 지칭됨) 내에 구현된다. DLL은 디지털 코어(316) 내 단대단으로 연결된 지연 게이트의 상당수(예: 수백만 개)로 구현된다.
PWM 신호에 정렬된 2개의 위상 중심을 생성하기 위하여 PMIC(300)의 동일한 집적회로 내에 오실레이터(315) 및 DLL이 구현된 것은 집적회로 시장에 존재하는 신호 발생기가 이러한 장치를 포함하지 않으므로 고유하다.
본원에 설명된 바와 같이, PWM은 물담배 장치(202)를 활성화함으로써 미스트 생성을 최적화하기 위해 전기 에너지에서 운동 에너지로의 효율적인 전달을 유지하기 위한 초음파 트랜스듀서(215)의 공명 주파수를 정확하게 추적하는 기능의 일부이다.
본 실시예에서, PMIC(300)는 이를테면 USB 전원으로부터의 전력에 의해 배터리 충전을 제어하는 충전기 회로(317)를 구비한다.
PMIC(300)는 PMIC(300)가 배터리로부터의 전력 또는 외부 전원으로부터의 전력에 의해 아날로그 코어(310)에 전원을 공급하도록 구성된 통합 전원 스위치 VSYS를 포함한다.
PMIC(300)은 내장형 아날로그 디지털 컨버터(ADC) 서브시스템(318)을 구비한다. 동일한 집적회로 내에 ADC(318) 및 오실레이터(315)를 함께 구현하는 장치는 집적회로 시장에서 집적회로 내에 하위 블록으로서 구현된 오실레이터 및 ADC를 포함하는 집적회로가 없으므로 그 자체로 고유하다. 종래의 장치에 있어서, ADC는 오실레이터로부터의 별도 분리된 부품으로 일반적으로 제공되고 별도의 ADC 및 오실레이터가 동일한 PCB에 장착되어 있다. 이러한 종래의 장치의 문제는 ADC 및 오실레이터의 별도의 두 개 부품이 PCB에서 불필요한 공간을 차지한다는 것이다. 추가적인 문제는 종래의 ADC 및 오실레이터는 일반적으로 직렬 데이터 통신 버스, 이를테면 I2C 버스에 의해 서로 연결되어 있어 단지 최대 400kHz의 제한된 통신 속도를 갖는다는 것이다. 종래의 장치에 비하여, PMIC(300)는 동일한 집적회로 내에 ADC(318) 및 오실레이터(315)를 구비하여 ADC(318) 및 오실레이터(315) 간의 통신 지연을 제거함으로써 ADC(318) 및 오실레이터(315)는 서로 고속으로, 이를테면 오실레이터(315) 속도(예: 3MHz 내지 5MHz)로 서로 통신할 수 있다.
본 실시예의 PMIC(300)에서 오실레이터(315)는 5MHz로 실행되고 5MHz에서 클럭 신호 SYS CLOCK을 생성한다. 하지만, 다른 실시예에서, 오실레이터(315)는 최대 105MHz의 높은 주파수에서 클럭 신호를 생성한다. 본원에 기술된 집적회로는 고주파 오실레이터(315)에서 작동하도록 모든 구성된다.
ADC(318)는 다수 개의 GPIO 입력을 포함하는(IF_GPIO1-3) 다수 개의 피드백 입력 터미널 또는 아날로그 입력부(319)를 구비한다. 적어도 하나의 피드백 입력 터미널 또는 아날로그 입력부(319)는 브리지 IC(301) 내 H-브리지 회로로부터 피드백 신호를 수신하고, 피드백 신호는 H-브리지 회로가 AC 구동 신호를 통해 공명 회로, 이를테면 초음파 트랜스듀서(215)를 구동할 때 H-브리지 회로 또는 AC 구동 신호의 작동 파라미터를 표시한다. 하기에 표시된 바와 같이, GPIO 입력부는 브리지 IC(301)에 의해 보고된 제곱 평균 제곱근(rms) 전류를 표시하는 전류 센스 신호를 브리지 IC(301)로부터 수신하는 데 사용된다. 본 실시예에서, GPIO 입력부 중 하나는 브리지 IC(301) 내 H-브리지로부터 피드백 신호를 수신하는 피드백 입력 터미널이다.
ADC 서브시스템(318)은 메인 클럭 신호의 주파수와 비례하는 샘플링 주파수에서 다수 개의 ADC 입력 터미널(319)에서 수신된 아날로그 신호를 샘플링한다. 그런 다음 ADC 서브시스템(318)은 샘플링된 아날로그 신호를 사용하여 ADC 디지털 신호를 생성한다.
본 실시예에서, PMIC(300) 내에 포함된 ADC(318)는 H-브리지(334) 및 초음파 트랜스듀서(215)를 통해 흐르는 RMS 전류 뿐만 아니라 시스템(예: VBAT, VCHRG, VBOOST)에 사용되는 전압, PMIC(300)의 온도, 배터리 및 GPIO 입력부(IF_GPIO1-3)의 온도까지 샘플링함으로써 향후 확장을 허용한다.
디지털 코어(316)는 ADC 서브시스템의 디지털 신호로부터 생성된 ADC를 수신하고 ADC 디지털 신호를 처리하여 드라이버 제어 신호를 생성한다. 디지털 코어(316)는 드라이버 제어 신호를 PWM 신호 발생기 서브시스템(DLL(332))에 전달하여 PWM 신호 발생기 서브시스템을 제어한다.
현재 시장에 존재하는 정류 회로는 매우 제한적인 대역폭(일반적으로 1MHz 미만)을 가진다. PMIC(300)의 오실레이터(315)는 최대 5MHz 또는 심지어 최대 105MHz까지 실행되므로 고 대역폭 정류 회로가 PMIC(300) 내에 구현된다. 하기에 설명된 바와 같이, 브리지 IC(301)의 H 브리지 내에서 RMS 전류를 센싱하는 방법은 물담배 장치(202)가 높은 정밀도로 초음파 트랜스듀서(215)를 구동할 수 있는 피드백 루프의 일부를 형성한다. 피드백 루프는 압전 트랜스듀서 생성에 있어 일체의 프로세스 변형(공명 주파수 변형)을 수용하고 공명 주파수의 온도 효과를 보상하므로 초음파 트랜스듀서 구동을 위한 업계의 게임 체인저이다. 이는 동일한 통합 회로 PMIC(300) 내에서 ADC(318), 오실레이터(315) 및 DLL을 통합하는 창의적인 구현에 의해 부분적으로 달성된다. 통합을 통하여 이러한 서브시스템은 서로 고속으로 통신할 수 있다(예를 들어, 클럭 주파수 5MHz 또는 최대 105MHz에서). 이러한 서브시스템 간의 지연을 축소하는 것은 초음파 업계에서, 특히 미스트 발생장치 분야에서 게임 체인저가 된다.
ADC(318)는 배터리 전압 모니터링 입력 VBAT 및 충전기 입력 전압 모니터링 입력 VCHG, 더불어 전압 모니터링 입력 VMON 및 VRTH, 더불어 온도 모니터링 입력 TEMP를 포함한다.
온도 모니터링 입력 TEMP는 PMIC(300) 내에 내장된 온도 센서(314)로부터 온도 신호를 수신한다. 이를 통해 PMIC(300)는 PMIC(300) 내의 실제 온도를 정확하게 센싱함으로써 PMIC(300)는 PMIC(300)의 온도에 영향을 미치는 PMIC(300) 내의 고장 뿐만 아리나 인쇄 회로 기판에 있는 다른 부품의 고장을 센싱할 수 있다. 그런 다음 PMIC(300)는 브리지 IC(301)를 제어하여 고장날 경우 초음파 트랜스듀서(215)의 여기를 방지함으로써 미스트 흡입장치(200)의 안전을 유지하고 이에 따라 물담배 장치(202)의 안전을 유지한다.
추가 온도 센서 입력 VRTH는 물담배 장치(202)의 온도를 모니터링하는 물담배 장치(202) 내 외부 온도 센서로부터 온도 센싱 신호를 수신한다. 이에 따라 PMIC(300)는 물담배 장치(202)를 중단시키도록 반응하여 과도하게 높은 작동 온도로부터의 손상 위험을 감소시킨다.
본 실시예에서, PMIC(300)는 디지털 코어(316)로부터 디지털 구동 신호를 수신하는 LED 드라이버(320)를 포함하고 PMIC(300)의 출력 핀과 결합하도록 구성되는 6개의 LED(321-326)에 LED 구동 출력 신호를 제공한다. 그런 다음 LED 드라이버(320)는 최대 6개의 독립 채널에서 LED(321-326)를 구동 및 디밍한다.
PMIC(300)는 제1 디지털 아날로그 컨버터(DAC)(327)를 포함하고 컨버터는 PMIC(300) 내의 디지털 신호를 아날로그 전압 제어 신호로 변환한 다음 이 신호는 출력 핀 VDAC0를 통해 PMIC(300)으로부터 출력된다. 제1 DAC(327)는 디지털 코어(316)에 의해 생성된 디지털 제어 신호를 아날로그 전압 제어 신호로 변환하고 이 신호는 출력 핀 VDAC0를 통해 출력되어 전압 레귤레이터 회로, 이를테면 부스트 컨버터(305)를 제어한다. 이에 따라 전압 제어 신호는 전압 레귤레이터 회로를 제어하여 H-브리지 회로에 의한 변조를 위해 사전결정된 전압을 생성함으로써 초음파 트랜스듀서(215)의 작동을 표시하는 피드백 신호에 반응하여 초음파 트랜스듀서(215)를 구동한다.
본 실시예에서, PMIC(300)는 제2 아날로그 출력 핀 VDAC1을 통해 PMIC(300)으로부터 출력되는 PMIC(300) 내 디지털 신호를 아날로그 전압 제어 신호로 변환하는 제2 DAC(328)를 포함한다.
DAC(327, 328)를 PMIC(300)의 다른 서브시스템으로서 동일한 마이크로칩에 내장하면 DAC(327, 328)는 통신 지연이 없거나 최소화된 상태에서 고속으로 PMIC(300) 내 디지털 코어(316) 및 다른 구성품과 통신할 수 있다. DAC(327, 328)는 외부 피드백 루프를 제어하는 아날로그 출력을 제공한다. 예를 들어, 제1 DAC(327)는 부스트 컨버터(305)에 제어 신호 VCTL을 제공하여 부스트 컨버터(305)의 동작을 제어한다. 다른 실시예에서, DAC(327, 328)는 부스트 컨버터(305) 대신에, 또는 추가적으로 DC-DC 벅(buck) 컨버터에 구동 신호를 제공하도록 구성된다. PMIC(300) 내 두 개의 독립적인 DAC 채널을 통합함으로써 PMIC(300)는 물담배 장치(202)에 사용되는 레귤레이터의 피드백 루프를 조작하고 물담배 장치(202)가 초음파 트랜스듀서(215)의 초음파 전력을 조절하거나 초음파 트랜스듀서(215)의 절대 최대 전류 및 온도에 대한 아날로그 임계값을 설정할 수 있도록 한다.
PMIC(300)는 직렬 통신 인터페이스를 구비하고, 본 실시예에서, 이는 핀을 통해 설정된 외부 I2C 주소를 포함하는 I2C 인터페이스이다.
PMIC(300)는 또한 디지털 머신(FSM)을 포함하여 마이크로칩의 기능을 구현하는 다양한 기능 블록을 구비한다. 이러한 블록은 하기에 더 상세하게 설명된다.
이제 첨부된 도 32를 참조하면, 펄스 폭 변조(PWM) 신호 발생 서브시스템(329)은 PMIC(300) 내에 내장된다. PWM 발생 시스템(329)은 오실레이터(315), 및 주파수 분주기(330), 멀티플렉서(331) 및 지연 잠금 루프(DLL)(332)를 포함한다. 하기에 설명된 바와 같이, PWM 발생 시스템(329)은 2상 중심 정렬 PWM 발생기이다.
주파수 분주기(330), 멀티플렉서(331) 및 DLL(332)은 디지털 코어(316) 내에 있는 디지털 로직 부품(예: 트랜지스터, 로직 게이트 등) 내에 구현된다.
본 개시의 예시에서, 오실레이터(315)에 의해 커버되고 PWM 발생 시스템(329)에 대해 각각인 주파수 범위는 50 kHz 내지 5 MHz 또는 최대 105MHz이다. PWM 발생 시스템(329)의 주파수 정밀도는 ±1%이고 온도 확산은 ±1%이다. 현재 IC 시장에서는 주파수 범위 50 kHz 내지 5 MHz 또는 최대 105MHz를 제공할 수 있는 내장형 오실레이터 및 2상 중심 정렬 PWM 발생기를 가지는 IC가 존재하지 않는다.
상기 오실레이터(315)는 주파수 범위 50 kHz 내지 5 MHz 또는 최대 105MHz를 포함하는 메인 클럭 신호(clk_m)를 생성한다. 메인 클럭 clk_m은 하나 이상의 사전결정된 젯수에 의해 메인 클럭 clk_m의 주파수를 분주하는 주파수 분주기(330)에 대한 입력이다. 본 실시예에서, 주파수 분주기(330)는 2, 4, 8 및 16으로 메인 클럭 clk_m의 주파수를 분주하고 분주된 주파수 클럭을 멀티플렉서(331)에 대한 출력으로 제공한다. 멀티플렉서(331)는 분주된 주파수 클럭을 다중화하고 분주된 주파수 출력을 DLL(332)로 제공한다. DLL(332)로 전달된 이 신호는 DLL(332)를 제어하여 신호를 원하는 주파수로 출력하는 주파수 참조 신호이다. 다른 실시예에서, 주파수 분주기(330) 및 멀티플렉서(331)는 생략되었다.
오실레이터(315)는 또한 2개의 위상, 즉 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2를 생성한다. 제1 위상 클럭 신호 및 제2 위상 클럭 신호의 위상들은 중앙 정렬되었다. 도 33의 그림과 같이:
· 제1 위상 클럭 신호 위상 1은 clk_m 양극 반주기의 다양한 시간 동안 높고 clk_m 음극 반주기 동안 낮다.
· 제2 위상 클럭 신호 위상 2는 clk_m 음극 반주기의 다양한 시간 동안 높고 clk_m 양극 반주기 동안 낮다.
그런 다음 위상 1 및 위상 2는 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2를 사용하여 이중 주파수 클럭 신호를 생성하는 DLL(332)로 전송된다. 이중 주파수 클럭 신호는 메인 클럭 신호 clk_m의 주파수에 비해 두 배이다. 본 실시예에서 DLL(332) 내의 “OR” 게이트는 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2를 사용하여 이중 주파수 클럭 신호를 생성한다. 이러한 이중 주파수 클럭 또는 주파수 분주기(330)로부터 수신되는 분주된 주파수는 선택된 목표 주파수를 기반으로 선택된 다음 DLL(332)의 참조로 사용된다.
DLL(332) 내에서 이하 "클럭"으로 지칭되는 신호는 2를 곱한 메인 클럭 clk_m을 나타내고 이하 "clock_del"로 지칭되는 신호는 한 주기의 주파수에 의해 지연된 클럭의 복제이다. 클럭 및 clock_del은 위상 주파수 검출기를 통해 전달된다. 그 이후에 노드 Vc는 위상 오류 극성을 기반으로 충전 펌프에 의해 충전 또는 방전된다. 제어 전류는 직접 공급되어 DLL(332)의 총 지연이 정확하게 한 주기가 될 때까지 DLL(332) 내에서 모든 단일 지연 유닛의 지연을 제어한다.
DLL(332)은 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2의 상승 에지를 제어하여 이중 주파수 클럭 신호의 상승 에지와 동기화시킨다. DLL(332)은 각각의 주파수 참조 신호 및 듀티 사이클 제어 신호에 반응하여 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2의 주파수 및 듀티 사이클을 조절하여 제1 위상 출력 신호 위상 A 및 제2 위상 출력 신호 위상 B를 생성함으로써 H-브리지 또는 인버터를 구동하여 AC 구동 신호를 생성한 다음 초음파 트랜스듀서를 구동한다.
PMIC(300)는 제1 위상 출력 신호 위상 A를 H-브리지 회로에 출력하는 제1 위상 출력 신호 터미널 PHASE_A 및 제2 위상 출력 신호 위상 B를 H-브리지 회로에 출력하는 제2 위상 출력 신호 터미널 PHASE_B를 포함한다.
본 실시예에서, DLL(332)은 듀티 사이클 제어 신호에 대한 DLL(332) 응답 내 각 지연 라인의 지연을 변화시켜 듀티 사이클 제어에 대응함으로써 제1 위상 클럭 신호 위상 1 및 제2 위상 클럭 신호 위상 2의 듀티 사이클을 조절한다.
더 우수한 정밀도를 보장하기 위하여 클럭은 주파수의 두 배로 사용된다. 도 34에 도시된 바와 같이, 메인 클럭 clk_m의 주파수를 사용하는 경우를 설명하기 위하여(본 개시의 실시예에 포함되지는 않음) 위상 A는 클럭의 상승 에지 R과 동기화되고 위상 B는 클럭의 하강 에지 F와 동기화된다. DLL(332)의 지연 라인은 상승 에지 R 등을 제어하고, 하강 에지 F의 경우, PWM 발생 시스템(329)은 불완전할 수 있는 DLL(332)의 지연 유닛과의 완벽한 매칭에 의존해야 한다. 하지만 이러한 오류를 제거하기 위해, PWM 생성 시스템(329)은 이중 주파수 클럭을 사용하여 양쪽 위상 A 및 위상 B는 이중 주파수 클럭의 상승 에지 R과 동기화된다.
2% 단계 크기로 20%에서 50%까지의 듀티 사이클을 수행하기 위해 DLL(332)의 지연 라인은 25개의 지연 유닛을 포함하는 데 각각의 지연 유닛의 출력은 n차 위상을 나타낸다. 결국에는 최종 지연 유닛 출력의 위상은 입력 클럭에 해당하게 된다. 모든 지연이 거의 동일하다는 점을 고려하면 특정한 듀티 사이클은 디지털 코어(316) 내 단순한 로직을 포함하는 특이적 지연 유닛의 출력으로 얻어진다.
DLL(332)이 한 지연 주기를 잠글 수 없지만 2개 이상의 주기는 가능하므로 DLL(332) 스타트업에 유의하면서 DLL(332)을 비수렴 영역으로 간주해야 한다. 이 문제를 피하기 위해 스타트업 회로는 DLL(332)이 알려진 결정적 조건에서 시작하도록 PWM 생성 시스템(329) 내에 구현된다. 더욱이 스타트업 회로는 DLL(332)이 최소 지연으로 시작하도록 허용한다.
본 개시의 실시예에서, PWM 발생 시스템(329)이 커버하는 주파수 범위는 확장되므로 DLL(332) 내 지연 유닛은 4ns(5MHz의 오실레이터 주파수의 경우) 내지 400ns(50kHz의 오실레이터 주파수의 경우)의 지연을 제공할 수 있다. 이러한 상이한 지연을 수용하기 위해 PWM 발생 시스템(329)에는 캐패시터 Cb가 포함되고 캐패시터 값은 필요한 지연을 제공하도록 선택된다.
위상 A 및 위상 B는 DLL(332)로부터의 출력이고 디지털 IO를 통해 브리지 IC(301)로 전달되므로 위상 A 및 위상 B는 브리지 IC(301)의 동작을 제어하는 데 사용될 수 있다.
이제 일부 실시예의 물담배 장치(202)의 배터리 충전 기능을 더 상세하게 설명한다. 하지만, 다른 실시예에서는 배터리 충전 기능을 생략하고, 물담배 장치(202)는 배터리 대신에 외부 전원에 의해 전력을 공급받도록 구성될 수 있다.
본 실시예에서, 배터리 충전 서브시스템은 PMIC(300) 내에 내장되고 PMIC(300) 내 호스팅된 디지털 충전 컨트롤러에 의해 제어되는 충전기 회로(317)를 구비한다. 충전기 회로(317)는 통신 버스(302)를 통해 마이크로컨트롤러(303)에 의해 제어된다. 배터리 충전 서브시스템은 단일 셀 리튬 폴리머(LiPo) 또는 리튬 이온(Li-ion) 배터리를 충전할 수 있다.
본 실시예에서, 배터리 충전 서브시스템은 5V 전원 공급장치(예: USB 전원 공급장치)로부터의 최대 1A 충전 전류로 배터리 또는 배터리들을 충전할 수 있다. 한 개 이상의 다음 파라미터는 통신 버스(302)(I2C 인터페이스)를 통해 프로그램하여 배터리 충전 파라미터를 조절할 수 있다.
· 충전 전압은 100mV 단계로 3.9V 내지 4.3V 사이에서 설정할 수 있다.
· 충전 전류는 50mA 단계로 150mA 내지 1000mA 사이에서 설정할 수 있다.
· 충전 전 전류는 충전 전류의 1/10이다.
· 충전 전 전류 및 신속 충전 타임아웃은 각각 5 내지 20분 및 85분 내지 340분 사이에서 설정할 수 있다.
· 선택적으로는 외부 음성 온도 계수(NTC) 써미스터는 배터리 온도를 모니터링하는 데 사용할 수 있다.
일부 실시예에서, 배터리 충전 서브시스템은 호스트 마이크로컨트롤러(303)에 대한 중단율을 상승시킴으로써 한 개 이상의 다음 이벤트를 보고한다.
· 배터리가 검출됨
· 배터리 충전 중
· 배터리 충전 완료
· 배터리가 없음
· 충전 타임아웃에 도달
· 충전 공급이 저전압 하한 이하임
PMIC(300)에 내장된 충전기 회로(317)를 구비할 때의 주요 이점은 모든 프로그래밍 옵션 및 이벤트 지시를 나열하여 PMIC(300) 내에 구현함으로써 배터리 충전 서브시스템의 안전한 작동을 보장하는 것이다. 더욱이, PCB에 별도로 장착된 충전 시스템의 별개 부품을 구비하는 종래의 미스트 흡입장치와 비교하면 유의한 제조 비용 및 PCB 공간을 절약할 수 있다. 충전기 회로(317)는 또한 매우 다양한 충전 전류 및 전압 설정, 다양한 오류 타임아웃 및 다수의 이벤트 플래그를 허용한다.
이제 아날로그 디지털 컨버터(ADC)(318)를 더 상세하게 설명한다. 발명자들은 고속 오실레이터(315)를 포함하여 PMIC(300) 내에 ADC(318)을 통합하기 위해 중요한 기술 문제를 극복해야 했다. 게다가, ADC(318)를 PMIC(300)에 통합하는 방식은 IC 시장에서 사용 가능한 다수의 별개 ADC 장치 중 하나를 사용하는 방법에 의존하는 종래의 기술 접근법에 반한다.
본 실시예에서, ADC(318)는 메인 클럭 신호 clk_m 주파수와 동일한 샘플링 속도로 초음파 트랜스듀서 드라이버 칩(PMIC(300)) 내에 적어도 하나의 파라미터를 샘플링한다. 본 실시예에서, ADC(318)는 마이크로프로세서(303)으로부터의 디지털 샘플링을 언로딩하여 마이크로프로세서(303)의 리소스를 저장할 수 있는 10비트 아날로그 디지털 컨버터이다. PMIC(300) 내에 ADC(318)를 통합하면 또한 ADC 샘플링 능력을 달리 저하시키는 I2C 버스를 사용할 필요성을 회피한다(종래 장치는 일반적으로 최대 400kHz의 제한된 클럭 속도로 별도의 전용 ADC 및 마이크로컨트롤러 사이의 데이터를 통신하기 위하여 I2C 버스에 의존한다).
본 개시의 예시에서 다음 파라미터 중 한 개 이상이 ADC(318)에 의해 순차적으로 샘플링될 수 있다.
i. 초음파 트랜스듀서를 구동하는 외부 인버터 회로로부터 초음파 트랜스듀서 드라이버 칩(PMIC(300))에 수신되는 rms 전류 신호. 본 실시예에서, 이 파라미터는 브리지 IC(301)에 의해 보고되는 제곱 평균 제곱근(rms) 전류이다. rms 전류를 센싱하는 과정은 초음파 트랜스듀서(215)를 구동하는 데 사용되는 피드백 루프를 구현하는 데 있어 중요하다. ADC(318)는 ADC(318)가 I2C 버스를 통해 전송되는 이 정보에 의존하지 않으므로 지연이 없거나 최소한의 지연으로 신호를 통해 브리지 IC(301)로부터 직접 rms 전류를 센싱할 수 있다. 이는 상대적으로 저속인 I2C 버스에 의해 제한되는 종래의 장치에 비해 속도 및 정밀도에서 유의한 편익을 제공한다.
ii. PMIC(300)에 연결된 배터리 전압.
iii. PMIC(300)에 연결된 충전기 전압.
iv. 온도 신호, 이를테면 PMIC(300) 칩 온도를 표시하는 온도 신호. 상기에 설명된 바와 같이, 이러한 온도는 온도 센서가 오실레이터(315)로서 동일한 IC 내에 내장된 온도 센서(314)로 인해 매우 정밀하게 측정될 수 있다. 예를 들어, PMIC(300) 온도가 상승하면 전류 주파수 및 PWM은 PMIC(300)에 의해 조절되어 트랜스듀서 진동을 제어하고 결과적으로 온도를 제어한다.
v. 두 개의 외부 핀.
vi. 배터리 팩 온도를 모니터링하는 외부 NTC 온도 센서.
일부 실시예에서 ADC(318)는 상기 소스 중 한 개 이상을 순차적으로, 예를 들어 라운드 로빈 방식으로 샘플링한다. ADC(318)는 고속, 이를테면 최대 5MHz 또는 최대 105MHz가 될 수 있는 오실레이터(315) 속도로 소소를 샘플링한다.
일부 실시예에서, 장치(202)는 사용자 또는 장치 제조업체가 평균화를 위해 각 소스로부터 수집하는 샘플의 양을 특정할 수 있도록 구성된다. 예를 들어, 사용자는 rms 전류 입력으로부터 512개의 샘플, 배터리 전압에서 64개의 샘플, 충전기 입력 전압에서 64개의 샘플, 외부 핀에서 32개의 샘플 및 NTC 핀에서 8개의 샘플을 수집하도록 시스템을 구성할 수 있다. 더욱이, 사용자는 또한 상기 소스 중 한 개를 단축할지 여부를 특정할 수 있다. 일부 실시예에서, 물담배 장치(202)는 사용자가 물담배 장치(202)와 무선으로 통신하는 외부 컴퓨팅 장치를 통해 구성한다.
일부 실시예에서, 각 소스에 대해 사용자는 다수 개의 영역, 이를테면 3개의 영역으로 전체 범위를 분주하는 두 개의 디지털 임계값을 특정할 수 있다. 후속적으로는, 사용자는 샘플링된 값이 영역, 이를테면 영역 2에서 영역 3으로 변경할 경우 중단을 해제하도록 시스템을 설정할 수 있다.
시장에 출시된 종래의 IC는 PMIC(300)의 상기 기능을 수행할 수 없다. 이러한 유연성과 세밀성으로 샘플링하는 방식은 초음파 트랜스듀서를 구동할 때 가장 중요하다.
본 실시예에서 PMIC(300)는 8비트 범용 디지털 입력 출력 포트(GPIO)를 구비한다. 각 포트는 디지털 입력 및 디지털 출력으로서 구성될 수 있다. 도 35의 표에 도시된 바와 같이 일부 포트는 아날로그 입력 기능을 가진다.
PMIC(300)의 GPIO7-GPIO5 포트는 통신(I2C) 버스(302)에 대한 장치 주소를 설정하도록 사용할 수 있다. 후속적으로는, 8개의 동일한 장치를 동일한 I2C 버스에 사용할 수 있다. 이는 주소가 상충하지 않으면서 8개의 동일한 장치를 동일한 I2C 버스에 사용할 수 있으므로 IC 업계에서 고유한 기능이다. 이 기능은 각 장치에 의해 구현되어 PMIC(300)의 스타트업 후 제1 100μs 중 GPIO7-GPIO5 상태를 판독하고 해당 주소 부분을 PMIC(300) 내에 내부적으로 저장한다. PMIC(300)를 스타트업한 후 GPIO는 다른 목적을 위해 사용할 수 있다.
상기에 설명된 바와 같이, PMIC(300)는 6개의 채널 LED 드라이버(320)를 구비한다. 본 실시예에서, LED 드라이버(320)는 5V 공차를 갖는 N형 금속 산화막 반도체(NMOS)를 포함한다. LED 드라이버(320)는 4개의 별도 레벨, 5mA, 10mA, 15mA 및 20mA에서 LED 전류를 설정하도록 구성된다. LED 드라이버(320)는 감마 보정 여부에 상관없이 12비트 PWM 신호를 통해 각 LED 채널을 디밍하도록 구성된다. LED 드라이버(320)는 300Hz에서 1.5KHz까지 PWM 주파수를 변동하도록 구성된다. 이 기능은 기능이 PMIC(300)의 서브시스템으로서 내장되므로 초음파 미스트 흡입장치 분야에서 고유하다.
본 실시예에서, PMIC(300)는 PMIC(300)에 통합되는 두 개의 독립형 6비트 디지털 아날로그 컨버터(DAC)(327, 328)를 포함한다. DAC(327, 328)의 목적은 아날로그 전압을 출력하여 외부 레큘레이터의 피드백 경로를 조작하는 것이다(예: DC-DC 부스트 컨버터(305), 벅 컨버터 또는 LDO). 더욱이, 일부 실시예에서, 하기에 설명된 바와 같이, DAC(327, 328)를 사용하여 브리지 IC(301)의 과전류 정지 레벨을 동적으로 조절할 수 있다.
각 DAC(327, 328)의 출력 전압은 0V 및 1.5V 사이, 또는 0V 및 V_battery(Vbat) 사이에서 프로그램 가능하다. 본 실시예에서, DAC 출력 전압의 제어는 I2C 명령을 통해 실행된다. 2개의 DAC를 PMIC(300) 내에 통합하는 방식은 고유하며 전류의 동적 모니터링 제어를 허용한다. 두 개의 DAC(327, 328)가 외부 칩인 경우, 속도는 I2C 프로토콜로 인해 동일한 속도 제한에 걸릴 수 있다. 장치(202)의 능동 전력 모니터링 장치는 이러한 내장형 기능이 PMIC에 모두 존재할 경우 최적의 효율성으로 작동한다. 외부 부품의 경우, 능동 전력 모니터링 장치는 전적으로 비효율적이다.
이제 첨부의 도 36을 참조하면, 브리지 IC(301)는 내장형 전력 스위칭 회로(333)를 포함하는 마이크로칩이다. 본 실시예에서, 전력 스위칭 회로(333)는 도 37에 도시된 H-브리지(334)이며 하기에 상세하게 설명되어 있다. 하지만 다른 실시예의 브리지 IC(301)는 H-브리지(334)에 대한 대체 전력 스위칭 회로를 구비할 수 있다. 단, 전력 스위칭 회로는 AC 구동 신호를 생성할 수 있는 동등한 기능을 수행하여 초음파 트랜스듀서(215)를 구동한다.
브리지 IC(301)는 PMIC(300)의 PWM 신호 발생 서브시스템으로부터 제1 위상 출력 신호 위상 A를 수신하는 제1 위상 터미널 위상 A를 포함한다. 브리지 IC(301)는 또한 PMIC(300)의 PWM 신호 발생 서브시스템으로부터 제2 위상 출력 신호 위상 B를 수신하는 제2 위상 터미널 위상 B를 포함한다.
브리지 IC(301)는 H-브리지(334) 내 전류 유동을 직접적으로 센싱하고 브리지 IC(301)의 RMS_CURR 핀을 통해 RMS 전류 출력 신호를 제공하는 전류 센싱 회로(335)를 구비한다. 전류 센싱 회로(335)는 과전류 모니터링을 위해 구성되어 H-브리지(334) 내 전류 유동이 사전결정된 임계값 이상인 경우 검출한다. H-브리지(334) 및 전류 센싱 회로(335)를 포함하는 전력 스위칭 회로(333)를 동일한 브리지 IC(301)의 내장형 회로 내에 모두 통합하는 방식은 IC 시장에 존재하는 고유한 조합이다. 현재 IC 시장에 존재하는 다른 집적회로는 H-브리지를 통해 흐르는 RMS 전류를 센싱할 수 있는 내장형 회로를 포함하는 H-브리지를 구비하지 않는다.
브리지 IC(301)는 초과 온도 모니터링을 포함하는 온도 센서(336)를 구비한다. 온도 센서(336)는 온도 센서(336)가 사전결정된 임계값 이상의 온도에서 브리지 IC(301)가 작동하는 것을 검출할 경우 브리지 IC(301)를 정지하거나 브리지 IC(301)의 적어도 일부를 불능화하도록 구성한다. 그러므로 온도 센서(336)는 브리지 IC(301)가 과도한 고온에서 작동할 때 물담배 장치(202) 내에 브리지 IC(301) 또는 기타 부품에 대한 손상을 방치하는 통합형 안전 기능을 제공한다.
브리지 IC(301)는 전력 스위칭 회로(333)와 완전하게 결합된 디지털 상태 머신(337)을 구비한다. 디지털 상태 머신(337)은 PMIC(300)로부터의 위상 A 및 위상 B 신호 및 ENABLE 신호, 이를테면 마이크로컨트롤러(303)로부터의 신호를 수신한다. 디지털 상태 머신(337)은 제1 위상 출력 신호 위상 A 및 제2 위상 출력 신호 위상 B를 기반으로 타이밍 신호를 생성한다.
디지털 상태 머신(337)은 위상 A 및 위상 B 신호에 해당하는 출력 타이밍 신호와 더불어 BRIDGE PR 및 BRIDGE EN 신호를 전력 스위칭 회로(333)에 출력하여 전력 스위칭 회로(333)를 제어한다. 이에 따라 디지털 상태 머신(337)은 H-브리지 회로(334)의 스위치 T1-T4에 타이밍 신호를 출력하여 스위치 T1-T4를 제어함으로써 순차적으로 켜고 끄고, 이에 따라 H-브리지 회로는 공명 회로, 이를테면 초음파 트랜스듀서(215)를 구동할 수 있는 AC 구동 신호를 출력한다.
하기에 상세하게 설명된 바와 같이, 스위칭 시퀀스에는 제1 스위치 T1 및 제2 스위치 T2 가 꺼지고 제3 스위치 T3 및 제4 스위치 T4 가 켜져 공명 회로(초음파 트랜스듀서(215))에 저장된 에너지를 소산하는 자유 부동 시간이 포함된다.
브리지 IC(301)는 브리지 IC(301)를 테스트하여 브리지 IC(301) 내 임베디드 컴포넌트가 올바르게 작동하고 있는지 여부를 결정하는 테스트 컨트롤러(338)를 구비한다. 테스트 컨트롤러(338)는 TEST DATA, TEST CLK 및 TEST LOAD 핀에 결합되고, 이에 따라 브리지 IC(301)는 데이터를 브리지 IC(301)에/로부터 주고 받아 브리지 IC(301)의 작동을 테스트하는 외부 제어 장치에 연결될 수 있다. 브리지 IC(301)는 또한 TST PAD 핀을 통해 테스트되는 브리지 IC(301) 내에 디지털 통신 버스를 활성화하는 TEST BUS를 구비한다.
브리지 IC(301)는 브리지 IC(301)의 스타트업 동작을 제어하는 파워 온 리셋 회로(POR)(339)를 구비한다. POR(339)은 공급 전압이 사전결정된 범위에 속하지 않을 경우에만 브리지 IC(301)가 적절하게 시동하도록 한다. 전원 공급장치 전압이 사전결정된 범위를 벗어나면, 이를테면 전원 공급장치 전압이 너무 높다면 POR(339)는 공급 전압이 사전결정된 범위 내에 도달할 때까지 브리지 IC(301)의 시동을 지연시킨다.
브리지 IC(301)는 브리지 IC(301)의 다른 서브시스템이 사용할 수 있도록 정밀한 참조 전압을 제공하는 참조 블록(BG)(340)을 포함한다.
브리지 IC(301)는 전력 스위칭 회로(333) 및/또는 브리지 IC(301) 내의 다른 서브시스템, 이를테면 전류 센서(335)에 정밀한 전류를 공급하는 전류 참조부(341)를 구비한다.
온도 센서(336)는 브리지 IC(301)의 실리콘 온도를 연속적으로 모니터링한다. 온도가 사전결정된 온도 임계값을 초과하면, 전력 스위칭 회로(333)는 자동으로 꺼진다. 게다가, 초과 온도는 외부 호스트에 보고되어 외부 호스트는 초과 온도가 발생했음을 통지받을 수 있다.
디지털 상태 머신(FSM)(337)은 전력 스위칭 회로(333)에 대한 타이밍 신호를 발생시키고. 본 실시예에서, 이는 H-브리지(334)를 제어할 수 있는 타이밍 신호이다.
브리지 IC(301)는 전압 및 전류 참조(340, 341)를 포함하여 브리지 IC(301)의 다양한 서브시스템으로부터의 신호를 비교하고 브리지 IC(301)의 핀을 통해 참조 출력 신호를 제공하는 비교기(342, 343)를 구비한다.
첨부된 도 37을 참조하면, 본 실시예의 H-브리지(334)는 H-브리지(334)의 양측에 있는 NMOS 전계 효과 트랜지스터(FET) 형식으로 4개의 스위치를 구비한다. H-브리지(334)는 H-브리지 구성과 결합된 4개의 스위치 또는 트랜지스터 T1-T4를 구비하고, 각 트랜지스터 T1-T4는 각각의 로직 입력 A-D에 의해 구동된다. 트랜지스터 T1-T4는 도 37에 설명된 바와 같이 결합된 두 개의 외부 캐패시터 Cb를 통해 내부적으로 발생하는 부트스트랩 전압에 의해 구동된다.
H-브리지(334)는 브리지 IC(301)의 각 핀에 결합된 다양한 전력 입력 및 출력을 구비한다. H-브리지(334)는 프로그램 가능 전압 VBOOST를 수신하고 이는 도 37에 VBOOST로 라벨링된 제1 전력 공급 터미널을 통한 부스트 컨버터(305)로부터의 출력이다. H-브리지(334)는 도 37에 VSS_P로 라벨링된 제2 전력 공급 터미널을 구비한다.
H-브리지(334)는 각각의 초음파 트랜스듀서(215)의 터미널에 연결하도록 구성된 출력 OUTP, OUTN을 구비하므로 H-브리지(334)로부터의 AC 구동 신호 출력은 초음파 트랜스듀서(215)를 구동할 수 있다.
4개의 스위치 또는 트랜지스터 T1-T4의 스위칭은 로직 입력 A-D를 통한 디지털 상태 머신(337)으로부터의 스위치 신호에 의해 제어된다. 도 37은 4개의 트랜지스터 T1-T4를 도시하지만, 다른 실시예에서는 H-브리지(334)가 H-브리지의 기능을 구현하기 위해 더 많은 트랜지스터 또는 기타 스위칭 부품을 구비한다.
본 실시예에서, H-브리지(334)는 스위칭 전력 22W 내지 37W에서 작동하여 충분한 전력의 AC 구동 신호를 전달함으로써 초음파 트랜스듀서(215)를 구동한 다음 최적의 미스트를 생성한다. 본 실시예에서 H-브리지(334)에 의해 스위칭되는 전압은 ±15V이다. 다른 실시예에서 전압은 ±20V이다.
본 실시예에서, H-브리지(334)는 3MHz 내지 5MHz 또는 최대 105MHz 주파수로 스위칭된다. 이는 IC 시장에서 사용할 수 있는 종래의 집적회로 H-브리지에 비해 고속으로 스위칭된다. 예를 들어, 현재 IC 시장에서 사용 가능한 종래의 집적회로 H-브리지는 최대 주파수 2MHz에서만 작동하도록 구성된다. 본원에서 설명된 브리지 IC(301) 이외에도 IC 시장에서 사용 가능한 종래의 집적회로 H-브리지 중에는 최대 105MHz는 차처하더라도 최대 주파수 5MHz에서 전력 22V 내지 37V로 작동하는 제품이 없다.
이제 첨부한 도 38을 참조하면, 전류 센서(335)는 도 37에 도시된 바와 같이 H-브리지(334)의 각 하이 사이드 및 로우 사이드와 직렬로 연결된 양극 및 음극 전류 센스 레지스터 RshuntP, RshuntN를 구비한다. 전류 센스 레지스터 RshuntP, RshuntN는 저가 레스트터로, 본 실시예에서는 0.1Ω이다. 전류 센서(335)는 제1 전류 센서 레지스터 RshuntP를 통해 전압 강하를 측정하는 제1 작동 앰프(344)의 형태를 지닌 제1 전압 센서 및 제2 전류 센서 레지스터 RshuntN를 통해 전압 강하를 측정하는 제2 작동 앰프(345)의 형태를 지닌 제2 전압 센서를 구비한다. 본 실시예에서, 각 작동 앰프(344, 345)의 게인은 2V/V이다. 본 실시예에서, 각 작동 앰프(344, 345)의 출력은 1mA/V이다. 전류 센서(335)는 풀다운 레지스터 Rcs를 구비하고, 본 실시예에서는 2kΩ이다. 작동 앰프(344, 345)의 출력은 신호 CSout 내 과도 현상을 제거한 다음 저주파 필터(346)를 통과하는 출력 CSout를 제공한다. 저주파 필터(346)의 출력 Vout는 전류 센서(335)의 출력 신호이다.
이에 따라 전류 센서(335)는 H-브리지(334)를 통해 흐르고 각각은 초음파 트랜스듀서(215)를 통해 흐르는 AC 전류를 측정한다. 전류 센서(335)는 AC 전류를 접지와 관련된 동등한 RMS 출력 전압(Vout)으로 변환한다. 전류 센서(335)는 H-브리지(334)가 최대 주파수 5MHz 또는 일부 실시예에서 최대 105MHz에서 작동할 수 있으므로 고 대역폭 기능을 구비한다. 전류 센서(335)의 출력 Vout은 초음파 트랜스듀서(215)를 통해 흐르는 측정된 AC rms 전류와 동등한 양전압을 보고한다. 본 실시예에서 전류 센서(335)의 출력 전압 Vout은 브리지 IC(301) 내의 제어 회로에 다시 공급되어 H-브리지(334)를 통과 후 트랜스듀서(215)를 통해 흐르는 전류가 사전결정된 임계값을 초과하는 경우 브리지 IC(301)가 H-브리지(334)를 정지시키도록 한다. 게다가, 전류 임계값 초과가 발생할 경우 브리지 IC(301) 내 제1 비교기(342)에 보고되므로 브리지 IC(301)는 브리지 IC(301)의 OVC TRIGG 핀을 통해 과도 전류 발생을 보고할 수 있다.
이제 첨부된 도 39를 참조하면, 초음파 트랜스듀서(215)의 동등한 압전 모델을 참조하여 H-브리지(334)의 제어부를 설명한다.
도 39의 V_out에 의해 도시된 바와 같이(화살표 방향 유의), H-브리지(334)의 출력 OUTP, OUTN을 통과하는 양전압을 개발하기 위해 사용되는 입력 A-D를 통한 트랜지스터 T1-T4의 스위칭 시퀀스는 다음과 같다.
1. 초음파 트랜스듀서(215)를 통과하는 출력 양전압: A-ON, B-OFF, C-OFF, D-ON
2. 출력 양전압에서 제로(zero)로 전이: A-OFF, B-OFF, C-OFF, D-ON. 이러한 전이 중 C는 처음으로 꺼져 A 내 스위칭 오류 또는 지연이 발생할 경우 A 및 C를 통해 흐르는 전류를 최소화하거나 회피함으로써 전력 손실을 최소화하거나 회피한다.
3. 제로 출력 전압: A-OFF, B-OFF, C-ON, D-ON. 이러한 제로 출력 전압 위상 중 H-브리지(334)의 출력 OUTP, OUTN 터미널은 켜져 있는 상태의 C 및 D 스위치에 의해 접지된다. 이는 초음파 트랜스듀서의 동등한 회로 내 캐패시터에 의해 저장된 에너지를 소산시켜 초음파 트랜스듀서에 인가되는 스위칭 파형 전압 내 전압 오버슈트를 최소화한다.
4. 제로에서 출력 음전압으로의 전이: A-OFF, B-OFF, C-ON, D-OFF.
5. 초음파 트랜스듀서(215)를 통과하는 출력 음전압: A-OFF, B-ON, C-ON, D-OFF
최대 5MHz 또는 심지어 최대 105MHz의 고주파에서 스위칭 스퀀스의 각 파트에 대한 시간은 매우 짧으며 대략적으로 나노초 또는 피코초이다. 예를 들어, 스위칭 주파수 6MHz에서 스위칭 시퀀스의 각 파트는 대략적으로 80ns에서 발생한다.
상기 스위칭 스퀀스에 따른 H-브리지(334)의 출력 전압 OUTP, OUTN를 도시하는 그래프는 도 40에 도시되어 있다. 스위칭 시퀀스의 제로 출력 전압부가 포함되어 초음파 트랜스듀서(215)에 의해 저장된 에너지(예: 초음파 트랜스듀서의 동등한 회로 내 캐패시터에 의해 저장된 에너지)를 수용한다. 상기에 설명된 바와 같이, 이는 초음파 트랜스듀서에 인가되는 스위칭 파형 전압 내 전압 오버슈트를 최소화함으로써 초음파 트랜스듀서 내 불필요한 전력 소산 및 가열을 최소화한다.
또한 전압 오버슈트를 최소화하거나 제거하면 트랜지스터가 정격 전압을 초과하는 전압에 노출되는 것을 방지함으로써 브리지 IC(301) 내 트랜지스터의 손상 위험을 줄인다. 더욱이, 전압 오버슈트를 최소화하거나 제거함으로써 브리지 IC(301)는 본원에서 설명된 전류 센스 피드백 루프에 대한 중단을 최소화하는 방식으로 정밀하게 초음파 트랜스듀서를 구동한다. 결과적으로 브리지 IC(301)는 고주파수 최대 5MHz 또는 심지어 최대 105MHz에서 최고 전력 22W 내지 50W 또는 심지어 최고 70W로 초음파 트랜스듀서를 구동할 수 있다.
본 실시예의 브리지 IC(301)는 PMIC(300)에 의해 제어되어 본원에서 강제 모드 및 네이티브 주파수 모드로 지칭되는 두 개의 다른 모드로 작동하도록 구성된다. 이러한 두 가지 작동 모드는 기존 브리지 IC에 비해 신규되었다. 특히, 음주파수 모드는 종래의 장치에 비해 초음파 트랜스듀서를 구동할 때 정밀도와 효율성에서 실질적인 편익을 제공하는 주요 혁신이다.
강제 주파수 모드(FFM)
강제 주파수 모드에서 H-브리지(334)는 상기에 설명된 시퀀스로 제어되지만 사용자가 주파수를 선택 가능하다. 결과적으로 H-브리지 트랜지스터 T1-T4는 초음파 트랜스듀서(215)의 고유한 공명 주파수와 상관없이 강제적으로 제어되어 초음파 트랜스듀서(215)를 통해 출력 전압을 변경한다. 따라서 강제 주파수 모드를 통해 H-브리지(334)는 공명 주파수 f1을 가진 초음파 트랜스듀서(215)를 다른 주파수 f2에서 구동한다.
공명 주파수와 다른 주파수에서 초음파 트랜스듀서를 구동하면 다른 응용 분야의 작업에 적합하도록 조절할 수 있다. 예를 들어, 공명 주파수를 다소 벗어나는 주파수로 초음파 트랜스듀서를 구동하기에 적합할 수 있다(트랜스듀서의 기계적 손상을 막기 위한 기계적 이유로). 선택적으로는, 초음파 트랜스듀서를 저주파에서 구동하지만 초음파 트랜스듀서가 그의 크기로 인하여 다른 네이티브 공명 주파수를 지닐 때 적합할 수 있다.
물담배 장치(202)는 특정 응용 분야 또는 특정 초음파 트랜스듀서를 위한 물담배 장치(202) 구성에 대응하여 브리지 IC(301)를 제어함으로써 강제 주파수 모드에서 초음파 트랜스듀서(215)를 구동한다. 예를 들어, 물담배 장치(202)는 미스트 흡입장치(200)가 특정 응용 분야, 이를테면 사용자에게 전달하기 위한 특정한 점도를 포함하는 약제를 생성하는 데 사용되는 경우 강제 주파수 모드에서 작동하도록 구성할 수 있다.
네이티브 주파수 모드(NFM)
다음 네이티브 주파수 작동 모드는 유의한 개발이며 현재 IC 시장에서 사용 가능한 종래의 초음파 드라이버에 비해 개선된 정밀도와 효율성 등 편익을 제공한다.
네이티브 주파수 작동 모드는 상기에 설명된 것과 동일한 스위칭 시퀀스를 따르지만 시퀀스의 제로 출력부 타이밍을 조절하여 강제 주파수 작동 모드 내 전류 스파이크로 인해 발생할 수 있는 문제를 최소화하거나 회피한다. 이러한 전류 스파이크는 초음파 트랜스듀서(215)를 통과하는 전압이 반대쪽 전압 극성으로 변환될 때 발생한다. 압전결정체를 구비하는 초음파 트랜스듀서는 병렬 연결 캐패시터를 포함하는 전기적으로 동등한 회로를 구비한다(예: 도 39의 압전 모델 참조). 초음파 트랜스듀서를 통과하는 전압이 높은 dV/dt로 인해 양전압에서 음전압으로 하드 스위칭될 때 캐패시터에 저장된 에너지가 소산되므로 대량의 전류 유동이 발생할 수 있다.
네이티브 주파수 모드는 초음파 트랜스듀서(215)를 통과하는 전압이 양전압에서 음전압으로(및 그 반대로) 하드 스위칭되는 현상을 회피한다. 그 대신에, 역전압을 인가하기 전에 초음파 트랜스듀서(215)(압전결정체)는 자유 부동으로 남아 있고, 자유 부동 주기 동안 터미널을 거쳐 제로 전압이 인가된다. PMIC(300)는 브리지 IC(301)의 구동 주파수를 설정하여 브리지(334)가 자유 부동 주기를 설정한 다음 초음파 트랜스듀서(215) 내부의 전류 유동이 자유 부동 주기 동안 (압전결정체 내에 저장된 에너지로 인하여) 초음파 트랜스듀서(215) 터미널을 거쳐 전압을 역전시킨다.
결과적으로, H-브리지(334)가 초음파 트랜스듀서(215)의 터미널에 음전압을 인가할 경우, 초음파 트랜스듀서(215)(동등한 회로 내 캐패시터)는 이미 역충전되어 있고 높은 dV/dt가 없으므로 전류 스파이크가 발생하지 않는다.
하지만 초음파 트랜스듀서(215)가 최초로 활성화될 때 초음파 트랜스듀서(215)(압전결정체)의 전하가 구축되는 데 시간이 걸릴 수 있다. 따라서, 초음파 트랜스듀서(215) 내 에너지가 자유 부동 주기 중 전압을 역전시키는 상황은 초음파 트랜스듀서(215) 내부의 진동이 전하를 구축한 후에만 발생하는 것이 적절하다. 이를 수용하기 위해, 브리지 IC(301)가 초음파 트랜스듀서(215)를 최초로 활성화했을 때, PMIC(300)는 H-브리지(334)를 통해 초음파 트랜스듀서(215)에 전달되는 전력을 저가인 제1 값(예: 5V)으로 제어한다. 그 이후에 PMIC(300)는 H-브리지(334)를 통해 초음파 트랜스듀서(215)에 전달되는 전력을 제어하여 제1 값보다 더 높은 제2 값(예: 15V)에 대한 주기 동안 증가함으로써 초음파 트랜스듀서(215) 내에 저장된 에너지를 구축한다. 초음파 트랜스듀서(215) 내부의 전류가 충분히 발전할 될 때까지 이러한 진동 램프 중 전류 스파이크가 여전히 발생한다. 하지만, 시작 시 낮은 제1 전압을 사용함으로써 그러한 전류 스파이크는 충분히 낮게 유지되어 초음파 트랜스듀서(215)의 작동에 미치는 영향을 최소화한다.
네이티브 주파수 모드를 구현하기 위해, 물담배 장치(202)는 오실레이터(315)의 주파수 및 H-브리지(334)로부터의 AC 구동 신호 출력의 듀티 사이클(켜진 시간 대비 자유 부동 시간의 비율)을 높은 정밀도로 제어한다. 본 실시예에서, 물담배 장치(202)는 3개의 제어 루프를 수행하여 오실레이터 주파수 및 듀티 사이클을 조절하고, 이에 따라 초음파 트랜스듀서(215)의 터미널에서 전압 역전이 가능한 한 정밀하게 발생하고 전류 스파이크가 최대한 최소화되거나 회피된다. 제어 루프를 사용한 오실레이터 및 듀티 사이클의 정밀한 제어는 IC 초음파 드라이버 분야에서 유의한 발전이다.
네이티브 주파수 작동 모드 중 전류 센서(335)는 자유 부동 주기 동안 초음파 트랜스듀서(215)(공명 회로)를 통해 흐르는 전류를 센싱한다. 디지털 상태 머신(337)은 타이밍 신호를 조절하여 전류 센서(335)가 자유 부동 주기가 제로인 동안 초음파 트랜스듀서(215)(공명 회로)를 통해 흐르는 전류를 센싱할 때 제1 스위치 T1 또는 제2 스위치 T2 중 하나로 스위칭한다.
첨부된 도 41는 오실레이터 전압 파형(347)(V(osc))을 도시하고, 한 스위칭 파형(348)은 H-브리지(334)의 턴-온 및 턴-오프 좌측 하이 스위치 T1로부터 유발되었고, 다른 스위칭 파형(349)은 H-브리지(334)의 턴-온 및 턴-오프 우측 하이 스위치 T2로부터 유발되었다. 개입된 자유 부동 주기(350)의 경우 H-브리지(334)의 양측 하이 스위치 T1, T2가 꺼진다(자유 부동 위상). 자유 부동 주기(350)의 기간은 자유 부동 제어 전압(351)(Vphioff)의 크기에 의해 제어된다.
첨부된 도 42는 초음파 트랜스듀서(215)의 제1 터미널에서의 전압 파형(352)(초음파 트랜스듀서(215)의 제2 터미널에서 전압 파형이 역전된다) 및 초음파 트랜스듀서(215)를 통해 흐르는 압전 전류(353)를 도시한다. 압전 전류(353)는 (거의) 이상적인 사인파이다(이는 강제 주파수 모드 또는 IC 시장 내 브리지에서는 불가능하다).
압전 전류(353)의 사인파가 제로에 도달하기 전에 H-브리지(334)의 좌측 하이 스위치 T1이 꺼진다(이 경우, 압전 전류(353)가 대략적으로 6A가 되면 스위치 T1 이 꺼진다). 초음파 트랜스듀서(215)(압전 동등 회로의 캐패시터)에 저장된 에너지로 인해 초음파 트랜스듀서(215) 내에 흐르는 잔류 압전 전류(353)는 자유 부동 주기(350) 동안 전압을 역전시킨다. 압전 전류(353)는 자유 부동 주기(350) 중 제로로 감쇠되고 그 이후 음전류 유동 영역이 된다. 초음파 트랜스듀서(215)의 터미널 전압은 공급 전압(이 경우 19V)에서 2V 이하로 강하하고 압전 전류(353)가 제로에 도달하면 강하 동작이 정지한다. 이는 전류 스파이크를 최소화하거나 회피하기 위해 H-브리지(334)의 로우 사이드 스위치 T3을 켤 완벽한 시간이다.
상기에 설명된 강제 주파수 모드와 비교하여 음주파수 모드는 적어도 세 개의 장점을 구비한다.
1. 패키지 캐패시터의 하드 스위칭과 관련된 전류 스파이크는 유의하게 감소하거나 완전히 회피된다.
2. 하드 스위칭에 의한 전력 손실은 거의 제거된다.
3. 주파수는 제어 루프에 의해 조절되며 압전결정체의 공명에 거의 근접하게 유지된다(즉, 압전결정체의 공명 음주파수).
제어 루프에 의해 주파수를 조절할 경우(상기 장점 3), PMIC(300)는 브리지 IC(301)를 제어하여 압전결정체의 공명 주파수 이상에서 초음파 트랜스듀서(215)를 구동함으로써 시동된다. 그 이후에 PMIC(300)는 브리지 IC(301)를 제어하여 AC 구동 신호 주파수가 시동 시 감쇠/축소된다. 주파수가 압전결정체의 공명 주파수에 근접하면서 압전 전류는 빠르게 발전/증가한다. 압전 전류가 원하는 전압 역전을 유발할 정도로 충분히 높으면 주파수 감쇠/축소가 PMIC(300)에 의해 중단된다. 그 이후에 PMIC(300)의 제어 루프는 AC 구동 신호의 주파수 및 듀티 사이클의 조절을 담당한다.
강제 주파수 모드에서, 초음파 트랜스듀서(215)에 전달되는 전력은 듀티 사이클 및/또는 주파수 시프트 및/또는 공급 전압의 변동을 통해 제어된다. 하지만, 본 실시예의 네이티브 주파수 모드에서 초음파 트랜스듀서(215)에 전달되는 전력은 공급 전압에 의해서만 제어된다.
본 실시예에서, 물담배 장치의 작동 설정 단계 중 브리지 IC(301)는 초음파 트랜스듀서(215)(공명 회로)를 통해 흐르는 전류에 대해 경과된 시간을 측정하여 제1 스위치 T1 및 제2 스위치 T2 는 꺼지고 제3 스위치 T3 및 제4 스위치 T4 가 켜지는 경우 제로로 떨어지도록 구성된다. 그 이후에 브리지 IC(301)는 자유 부동 주기의 시간이 측정된 시간과 동일하도록 설정한다.
첨부된 도 43을 참조하면, 본 실시예의 PMIC(300) 및 브리지 IC(301)는 동반 칩 세트로 작동하도록 설계되었다. PMIC(300) 및 브리지 IC(301)는 서로 통신하기 위하여 전기적으로 결합되었다. 본 실시예에서, PMIC(300) 및 브리지 IC(301) 간의 상호 결합은 다음 두 가지 범주의 통신을 가능하게 한다.
1. 제어 신호
2. 피드백 신호
PMIC(300) 및 브리지 IC(301)의 PHASE_A 및 PHASE_B 핀 간의 연결부는 H-브리지(334)를 구동하는 PWM 변조 제어 신호를 운반한다. PMIC(300) 및 브리지 IC(301)의 EN_BR 핀 사이의 연결부는 H-브리지(334)의 시동을 트리거하는 EN_BR 제어 신호를 운반한다. PHASE_A, PHASE_B 및 EN_BR 제어 신호 간의 타이밍은 중요하며 PMIC(300)의 디지털 브리지 제어에 의해 처리된다.
PMIC(300) 및 브리지 IC(301)의 CS, OC 및 OT 핀 간의 연결부는 PMIC(300)로 반환되는 브리지 IC(301)로부터의 CS(전류 센스), OC(과전류) 및 OT(초과 온도) 피드백 신호를 운반한다. 가장 현저하게는, CS(전류 센스) 피드백 신호는 브리지 IC(301)의 전류 센서(335)에 의해 측정되었고 초음파 트랜스듀서(215)를 통해 흐르는 rms 전류와 동등한 전압을 포함한다.
OC(과전류) 및 OT(초과 온도) 피드백 신호는 과전류 또는 초과 온도 발생이 브리지 IC(301)에 의해 검출되었는지 여부를 표시하는 디지털 신호이다. 본 실시예에서, 과전류 및 초과 온도의 임계값은 외부 레지스터로 설정된다. 선택적으로는, 임계값은 또한 PMIC(300)의 두 개의 DAC 채널 VDAC0, VDAC1 중 하나로부터 브리지 IC(301)의 OC_REF 핀으로 통과되는 신호에 반응하여 동적으로 설정될 수 있다.
본 실시예에서, PMIC(300) 및 브리지 IC(301)의 설계를 통해 이러한 두 개의 집적회로 핀들이 서로 직접 결합되어(예: PCB의 구리 트랙) PMIC(300) 및 브리지 IC(301) 간의 신호 통신에서 지연이 없거나 최소화된다. 이는 디지털 통신 버스를 통한 신호에 의해 일반적으로 제어되는 IC 시장 내 종래의 브리지에 비하여 유의한 속도 이점을 제공한다. 예를 들어, 표준 I2C 버스는 400kHz에서만 클럭되고 이는 본 개시의 실시예 최대 5MHz의 고속 클럭 속도에서 샘플링된 통신 데이터에 비해 매우 느리다.
본 개시의 실시예에서는 마이크로칩 하드웨어과 관련하여 상기에 설명되어 있는 반면, 본 개시의 다른 실시예에서는 본원에 설명된 기능을 수행하도록 각 마이크로칩의 부품 및 서브시스템의 작동 방법을 구비할 수 있다. 예를 들어, 강제 주파수 모드 또는 네이티드 주파수 모도 중 하나에서 PMIC(300) 및 브리지 IC(301)를 작동하는 방법이 포함된다.
첨부된 도 44을 참조하면, OTP IC(242)는 파워 온 리셋 회로(POR)(354), 밴드갭 참조(BG)(355), 무 캐패시터 저강하 레귤레이터(LDO)(356), 통신(예: I2C) 인터페이스(357), 일회용 프로그램 가능 메모리 뱅크(eFuse)(358), 오실레이터(359) 및 범용 입력-출력 인터페이스(360)를 구비한다. OTP IC(242)는 또한 암호 인증자를 포함하여 디지털 코어(361)를 구비한다. 본 실시예에서, 암호 인증자는 타원 곡선 디지털 서명 알고리즘(ECDSA)을 사용하여 OTP IC(242) 내에 저장된 데이터, 그리고 OTP IC(242)에서 수신 및 발신되는 데이터를 암호화/해독한다.
POR(354)은 공급 전압이 사전결정된 범위에 속하지 않을 경우에만 OTP IC(242)가 적절하게 시동하도록 한다. 공급 전압이 사전결정된 범위를 벗어나면 POR(354)은 OTP IC(242)를 리셋하고 공급 전압이 사전결정된 범위 내에 속할 때까지 대기한다.
BG(355)는 LDO(356) 및 오실레이터(359)에 대해 정밀한 참조 전압 및 전류를 제공한다. LDO(356)는 디지털 코어(361), 통신 인터페이스(357) 및 eFuse 메모리 뱅크(358)를 공급한다.
OTP IC(242)는 적어도 다음 모드를 작동하도록 구성된다.
· 퓨즈 프로그래밍(퓨징): efuse 프로그래밍(일회용 프로그램 가능 메모리의 프로그래밍) 과정 중 eFuse 메모리 뱅크(358) 내에 관련 퓨즈를 태우려면 고전류가 필요하다. 이 모드에서 조절 루프의 게인과 대역폭을 유지하도록 고속 바이어스 전류가 제공된다.
· 퓨즈 판독: 이 모드에서 eFuse 메모리 뱅크(358) 내의 efuse 판독을 유지하려면 중간 전류가 필요하다. 이 모드는 OTP IC(242) 시동 중 실행되어 퓨즈 콘텐츠를 섀도우 레지스터로 전송한다. 이 모드에서 조절 루프의 게인 및 대역폭은 퓨징 모드에 비해 낮은 값으로 설정된다.
· 정상 작동: 이 모드에서 LDO(356)는 매우 낮은 바이어스 전류 조건에서 구동되어 저전력으로 OTP IC(242)를 작동함으로써 OTP IC(242)가 가능한 한 적은 전력을 소비한다.
오실레이터(359)는 테스트(SCAN 테스트) 중, 퓨징 중, 및 정상 작동 중 디지털 코어/엔진(361)에 대한 필수 클럭을 제공한다. 오실레이터(359)는 퓨징 모드 중 엄밀한 타이밍 요건을 처리하도록 트리밍된다.
본 실시예에서, 통신 인터페이스(357)는 I2C 표준의 FM+ 사양을 준수하지만 저속 및 고속 모드와도 호환된다. OTP IC(242)는 통신 인터페이스(357)를 사용하여 데이터 및 키 교환을 위해 물담배 장치(202)(호스트)와 통신한다.
디지털 코어(361)는 OTP IC(242)의 제어 및 통신 기능을 구현한다. 디지털 코어(361)의 암호 인증자를 사용하여 OTP IC(242)는 물담배 장치(202)를 포함하여 자체적으로(예: ECDSA 암호화 메시지 사용) 인증함으로써(예: 특정 적용을 위해) OTP IC(242)가 정품이며 OTP IC(242)를 드라이버 장치(202)(또는 기타 장치)에 연결하도록 승인한다.
첨부된 도 45을 참조하면, OTP IC(242)는 다음 PKI 절차를 수행하여 OTP IC(242)를 호스트(예: 물담배 장치(202))와 사용하도록 인증한다.
1. 서명자 공개 키 검증: 호스트는 제조 공개 키 및 인증서를 요청한다. 호스트는 기관 공개 키를 통해 인증서를 검증한다.
2. 장치 공개 키 검증: 검증에 성공하면 호스트는 장치 공개 키 및 인증서를 요청한다. 호스트는 제조 공개 키를 통해 인증서를 검증한다.
3. 챌린지-응답: 검증에 성공하면 호스트는 난수 챌린지를 생성하고 장치에 전송한다. 최종 제품은 장치 개인 키를 통해 난수 챌린지를 서명한다.
4. 서명은 장치 공개 키를 사용하여 검증을 위해 호스트로 다시 전송된다.
모든 검증 절차를 성공적으로 완료하면 신뢰 체인은 신뢰 루트에 대해 다시 검증되었고 OTP IC(242)는 호스트 사용을 위해 성공적으로 검증되었다. 하지만 인증 절차 중 하나의 단계라도 실패하면 OTP IC(242)는 호스트 사용을 위해 검증되지 않으며 OTP IC(242)를 포함하는 장치 사용은 제한되거나 금지된다.
도 46 내지 48은 작동 중 미스트 발생장치(201)를 통과하는 공기 유동을 도시한다.
액체 약물(예: 니코틴)에 초음파를 가하면 액체는 미스트로 변환된다(에어로졸화). 하지만, 외기가 날아간 에어로졸을 충분히 대체하지 않으면 초음파 트랜스듀서(215)에 가라 앉게 된다. 초음파 처리 챔버(219) 내에서는 미스트(에어로졸)가 생성되고 미스트 방출 포트(208)를 통해 인출되면서 공기의 연속적인 공급이 필요하다. 이러한 요구사항을 충족하기 위해 공기 유동 채널이 제공된다. 본 실시예에서, 공기 유동 채널은 평균 단면적 11.5mm2를 구비하고 이는 평균 사용자의 공기 음압을 기준으로 계산된 다음 초음파 처리 챔버(219)에 설계되었다. 이는 또한 흡입되는 에어로졸의 미스트 공기 비율을 제어하여 사용자에게 전달되는 약제의 함량을 제어한다.
설계 요구사항에 기초하여, 공기 유동 채널은 초음파 챔버(219)의 바닥에서 시작되도록 라우팅된다. 에어로졸 챔버의 바닥에 있는 개구는 장치 내 공기 유동 브리지의 개구와 정렬되고 밀착되어 있다. 공기 유동 채널은 리저버를 향해 수직으로 진행하고 초음파 처리 챔버의 중앙까지 계속된다(초음파 트랜스듀서(215)에 동심형). 이곳에서 90º 안쪽으로 돌아간다. 초음파 트랜스듀서(215)에서 대략 1.5mm가 될 때까지 유동 경로가 계속된다. 이러한 경로를 통해 외기가 초음파 트랜스듀서(215)의 분무화 표면 방향으로 직접 공급되는 것을 최대화한다. 채널을 통해 트랜스듀서로 향하는 공기 유동은 미스트 방출 포트(208)를 통해 이동하면서 생성된 미스트를 모은다.
첨부된 도 49 및 도 50를 참조하면 일부 실시예의 물담배 장치(202)는 기존의 물담배(246)에 느슨하게 부착되도록 구성된다. 물담배 장치(202)는 담배 및 차콜(또는 전자식 가열 장치)을 달리 수용하는 종래의 물담배 헤드를 대체하는 스템(247)에 부착된다.
물담배(246)에는 용수 챔버 및 상기 용수 챔버에 부착된 제1 단부를 구비하는 장형 스템(247)이 포함된다. 스템(247)에는 스템(247)을 통해 스템(247)의 제2 단부로부터 제1 단부까지 용수 챔버로 연장되는 미스트 유동 경로가 포함된다.
본 실시예에서, 물담배 장치(202)는 물담배(246) 스템(247)의 제2 단부에 느슨하게 부착된다. 하지만, 다른 실시예에서, 물담배 장치(202)는 탈착 가능하게 설계되지 않고, 그 대신에, 물담배(246) 스템(247)에 고정되거나 일체식으로 형성된다.
첨부된 도 51~59를 참조하면, 물담배 장치(202)는 서로에 대해 부착되거나 느슨하게 부착되는 베이스(249) 및 커버(250)를 구비하는 하우징(248)을 포함한다. 본 실시예에서, 하우징(248)은 원통형 및 통상적으로 디스크 형상이다.
본 실시예에서, 커버(250)에는 복수의 공기 흡기구(251)가 제공되어 공기가 물담배 장치(202)로 인출될 수 있다. 베이스(249)에는 물담배 방출 포트(252)가 제공되어 공기 및 미스트가 물담배 장치(202)로부터 물담배(246)로 흐를 수 있도록 한다. 물담배 방출 포트(252)의 지름은 사용자가 물담배 장치(202) 및 물담배(246)를 통해 공기를 빠르게 인출하여 물담배(246) 내 물을 통해 이동하는 미스트 버블을 생성하기에 충분하다.
본 실시예에서, 물담배 방출 포트(252)는 물담배(246) 스템(247)의 단부를 수용하는 원형 애퍼처이다. 물담배 장치(202)는 담배 장치(202) 및 스템(247) 사이에서 통상적으로 기밀 밀폐시키도록 형성된 물담배(246)의 스템(247)에 의해 지지된다.
본 실시예에서, 물담배 장치(202)는 전자 부품 및 하우징(248) 내에 수용되는 e-리퀴드를 함유하는 미스트 발생장치를 포함하는 자급식 장치이다.
본 실시예에서, 물담배 장치(202)는 서로 상단에 쌓이는 상단 지지판(253), 중단 지지판(254) 및 하단 지지판(255)을 포함한다. 지지판(253~255)은 물담배 장치(202) 내 복수의 미스트 발생장치(201)를 지지한다. 각 미스트 발생장치는 본 개시에 설명된 미스트 발생장치(201)이다. 본 실시예에서, 미스트 발생장치(201)는 물담배 장치(202)에 느슨하게 부착되고, 이에 따라 미스트 발생장치(201)는 비었을 때 교체할 수 있다(즉, e-리퀴드가 일부 또는 완전히 고갈되었을 때).
본 실시예에서, 물담배 장치(202)는 물담배 장치(202)의 마이크로컨트롤러(3030)에 의해 제어되는 네 개의 미스트 발생장치(201)를 구비한다(각각의 PMIC(300) 및 브리지 IC(301)를 통해). 다른 실시예에서, 물담배 장치(202)는 복수의 미스트 발생장치(201), 이를테면 적어도 두 개의 미스트 발생장치(201) 또는 최대 여덟 개의 미스트 발생장치(201)를 구비한다.
물담배 장치(202)에는 물담배 장치(202)의 컨트롤러 및 각 미스트 발생장치(201)의 전기 컨택트(232 및 233) 사이에서 전기 연결부를 형성하는 제1 접촉 터미널(259)이 제공된다. 물담배 장치(202)에는 물담배 장치(202)의 컨트롤러 및 각 미스트 발생장치(201)의 OTP PCB 상의 전기 컨택트(241) 사이에서 전기 연결부를 형성하는 제2 접촉 터미널(260)이 제공된다.
본 실시예에서, 물담배 장치(202)는 상단 지지판(253) 상부에 위치한 상단 인쇄 회로 기판(PCB)(256) 및 중간 지지판(254)과 하단 지지판(255) 사이에 위치한 중간 PCB(257)를 포함한다. 하단 PCB(258)는 하단 지지판(255) 아래에 위치한다. PCB(256~258)는 물담배 장치(202)의 드라이버 장치를 구성하는 전자 부품을 운반한다. PCB(256~258)는 서로 결합하여 각 PCB(256~258) 상의 전자 부품이 서로 통신하도록 한다.
본 실시예에서는 세 개의 PCB(256~258)가 있지만, 다른 실시예는 단지 한 개의 PCB 또는 물담배 장치(202) 드라이버 장치의 동일한 기능을 수행하는 복수의 PCB를 구비한다.
본 실시예에서, 물담배 장치(202)는 지지판(253~255)이 서로 느슨하게 결합되도록 하는 복수의 자석(261)을 구비한다. 물담배 장치(202)가 지지판(253~255)과 조립되고 미스트 발생장치(201)와 함께 서로의 위에 쌓인 PCB(256~258)가 지지판(253~255) 사이에 고정되면, 커버(250)가 베이스(249)에 배치되고 복수의 나사(262)를 사용하여 커버(250)를 베이스(249)에 느슨하게 부착한다.
상단 지지판(253)은 상단 지지판(253)의 일측에 중앙으로 배치된 매니폴드(263)를 포함한다. 본 실시예에서, 매니폴드(263)에는 네 개의 애퍼처(264)가 제공되고(도 56에서는 한 개만 표시됨), 각각은 각각의 미스트 발생장치(201)의 방출 포트(208)를 수용한다. 본 실시예에서, 물담배 장치(202)는 서로에 대해 90º로 매니폴드와 느슨하게 결합된 네 개의 미스트 발생장치(201)를 구비한다. 다른 실시예에서, 매니폴드(263)는 물담배 장치(202)와 함께 사용되는 미스트 발생장치(201)의 개수에 해당하는 다양한 개수의 애퍼처(264)를 구비한다.
매니폴드(263)는 애퍼처(264)와 유체 연통하는 매니폴드 파이프(265)를 구비하고, 이에 따라 미스트 발생장치(201)에 의해 생성된 미스트가 결합되어 매니폴드(263)로부터 아래로 흐른 다음 매니폴드 파이프(265) 밖으로 흐를 수 있다. 물담배 장치(202)가 조립되면 매니폴드 파이프(265)는 중간 지지판(254) 내 애퍼처(266) 및 중간 PCB(257) 내 애퍼처(267)를 통해 연장된다. 그 이후에, 매니폴드 파이프(265)는 하단 지지판(255)을 통해 연장되는 방출 파이프(268)에 연결되어 하단 지지판을 통해 물담배 장치(202)의 물담배 방출 포트(252)까지 유체 유동 경로를 제공한다.
사용 중 각각의 미스트 발생장치(201)는 수평 방향으로 매니폴드에 의해 고정된다. 다시 말하자면, 각각의 미스트 발생장치(201)의 세로 길이는 미스트가 물담배 장치(202)의 베이스로부터 아랫 방향으로 흐를 때 미스트의 흐름 방향과 수직이거나 일반적으로 수직이다.
방출 파이프(268)는 하단 지지판(255) 밑면으로부터 하단 PCB(258)의 애퍼처(269)를 통해 아래쪽으로 연장된다. 그 이후에 방출 파이프(268)는 물담배 장치(202)의 베이스(249) 내 애퍼처(270)를 통해 연장된다. 본 실시예에서, 방출 파이프(268) 및 물담배 방출 포트(252)는 물담배 장치(202)를 물담배(246)에 부착하거나 부착하도록 구성된 물담배 부착 장치(271)이다. 본 실시예에서, 물담배 장치(202)는 물담배의 스템(247) 중 일부를 물담배 방출 포트(252)에 삽입함으로써 물담배(246)에 결합된다.
물담배 방출 포트(252)는 도 58 및 59에 도시된 바와 같이, 미스트 발생장치(201)의 미스트 방출 포트(208)로부터 물담배 장치(202) 밖으로 유체 유동 경로(272)를 제공하고, 이에 따라 미스트 발생장치(201)에 의해 생성된 미스트는 물담배 장치(202)로부터 나와 물담배(246)로 흐른다. 공기 및 미스트 혼합물은 물담배(246)의 물 내에 공기를 생성한다. 미스트가 물담배의 워터볼 내 물 표면 위로 떠오르면서 버블이 물 표면을 탈출하고 흡입 동작 중 파이프를 통해 사용자에게 이동한다.
본 실시예에서, 상단 PCB(256)는 미스트 발생장치(201)의 미스트 방출 포트(208) 근방 내 기압을 센싱하는 압력 센서를 운반한다. 이에 따라, 압력 센서는 사용자가 물담배를 인출하고 유체 유동 경로(272)를 따라 미스트 발생장치(201)를 통해 공기를 흡입할 때 미스트 방출 포트(208) 근방 내 음압을 검출한다. 압력 센서는 하기에 설명된 바와 같이, 물담배 장치의 컨트롤러에 신호를 제공하여 컨트롤러가 적어도 하나의 미스트 발생장치(201)를 활성화함으로써 사용자가 물담배를 인출할 때 미스트가 발생한다.
본 실시예에서, 하단 PCB(258)는 물담배 장치(202)의 다른 전자 부품에 대해 전력을 제어 및 배포하는 전력 제어 구성품(273)을 운반한다. 일부 실시예에서, 전력 제어 구성품(273)은 외부 전력원, 이를테면 물담배 장치(202)에 느슨하게 결합된 주전원 어댑터로부터의 전력을 수신한다. 본 실시예에서, 물담배 헤드(202)는 DC 전압 범위 20V 내지 40V에서 외부 전력 어댑터에 의해 전력이 제공되도록 구성된다.
다른 실시예에서, 물담배 장치(202)는 물담배 장치(202) 내에 통합되고 전력 제어 구성품(273)에 연결된 배터리를 포함한다. 일부 실시예에서, 배터리는 재충전이 가능한 Li-Po 배터리이다. 일부 실시예에서, 배터리는 20V 내지 40V DC 전압을 출력하도록 구성된다. 일부 실시예에서, 배터리는 높은 방전율을 가진다. 미스트 발생장치(201)의 초음파 트랜스듀서에 의해 필요한 전압 증폭을 위해 높은 방전율이 필요하다. 높은 방전율에 대한 요구사항에 따라 일부 실시예의 Li-Po 배터리는 연속적인 전류 인출을 위해 특별히 설계된다. 일부 실시예에서, 충전 포트가 물담배 장치(202)에 제공되어 배터리가 외부 전원에 의해 충전 가능하도록 한다.
중간 PCB(257)는 물담배 장치(202)의 컨트롤러 또는 컴퓨팅 장치의 프로세서(274) 및 메모리(275)를 포함한다. 본 실시예에서, 각각의 PMIC(300) 및 각각의 브리지 IC(301)는 물담배 장치(202)의 다른 전기 부품과 함께 PCB(257)에 장착되어 있다. 본 실시예에서, 프로세서(274) 및 메모리(275)는 물담배 장치(202) 내 드라이버 장치의 구성품이다. 본 실시예에서, 드라이버 장치의 기능은 메모리(275) 내에 저장된 실행 가능한 명령에 의해 구성되고, 프로세서(274)에 의해 실행될 때, 명령은 프로세서(274)가 드라이버 장치를 제어함으로써 적어도 하나의 기능을 수행하도록 한다. 드라이버 장치는 각각의 미스트 발생장치(201)와 전기적으로 연결된다. 본 실시예에서, 물담배 장치(202)의 드라이버 장치는 상기에 설명된 바와 같이, 통신 버스 또는 데이터 버스, 이를테면 I²C 데이터 버스에 의해 각각의 미스트 발생장치(201)와 통신하도록 결합되었다. 본 실시예에서, 각각의 미스트 발생장치(201)는 데이터 버스를 통해 미스트 발생장치(201)를 제어할 때 사용되는 고유 식별자에 의해 식별된다(마이크로컨트롤러(303)는 데이터 버스를 통해 각각의 PMIC(300)를 제어한 다음 각각의 미스트 발생장치(201)를 제어한다). 일부 실시예에서, 고유 식별자는 미스트 발생장치(201)의 OTP IC(242)에 저장된다.
일부 실시예에서, 드라이버 장치(마이크로컨트롤러(303))는 각각의 미스트 발생장치를 독립적으로 제어한다. 일부 실시예에서, 제어 기능은 메모리(275)에 저장된 실행 가능한 명령으로 구현된다. 독립적인 제어 구성에 따라 드라이버 장치는 다른 미스트 발생장치(201)와는 독립적으로 각 미스트 발생장치(201)를 활성화 또는 비활성화한다. 따라서, 드라이버 장치는 하나 이상의 미스트 발생장치(201)를 제어하여 사전결정된 요건에 따라 동시 또는 교대로 미스트를 발생시킨다.
일부 실시예에서, 드라이버 장치는 미스트 발생장치(201)를 제어하여 차례차례로 연속해서 활성화 및/또는 비활성화시킨다. 일부 실시예에서, 미스트 발생장치(201)의 활성 시퀀스는 미스트를 충분히 빠르게 생성하여 미스트가 물담배의 용수 챔버 내 물을 통해 버블 내에 들어가도록 함으로써 물담배 장치(202)의 작동을 최적화한다. 이에 따라, 일부 실시예의 물담배 장치(202)는 사용자가 물담배 마우스피스를 인출할 때 미스트 버블이 용수 챔버 내 물을 통해 높은 속도로 인출되도록 한다. 결과적으로, 수용성 화합물(예: 식물성 글리세인, 향미료 등)은 사용자가 흡입할 수 있도록 미스트 버블 내 물을 통해 이동할 수 있다.
일부 실시예에서, 드라이버 장치는 미스트 발생장치(201)를 제어하여 차례차례로 활성화시킨다. 일부 실시예에서, 드라이버 장치는 미스트 발생장치(201)를 제어하여 회전을 활성화하고, 이에 따라 미스트 발생장치(201)는 시계 방향 또는 반시계 방향으로 차례차례로 및/또는 한 번에 하나씩 활성화된다.
일부 실시예에서, 드라이버 장치는 미스트 발생장치(201)를 제어하여 쌍으로 활성화시킨다. 일부 실시예에서, 드라이버 장치는 두 개의 미스트 발생장치(201), 이를테면 서로 근접한 두 개의 미스트 발생장치(201) 또는 서로 반대측에 있는 두 개의 미스트 발생장치를 동시에 활성화시킨다.
일부 실시예에서, 드라이버 장치는 미스트 발생장치(201)가 모세관(222) 내 e-리퀴드를 적절하게 위킹하지 않거나, 액체 챔버(218)에 e-리퀴드가 없거나 거의 없는 경우, 활성화시키지 않도록 구성된다. 이렇게 하면, 물담배 장치(202)가 올바르게 작동하도록 보장함으로써 물담배 장치(202)를 보호한다.
물담배 장치(202) 드라이버 장치의 전자 부품(PCB(256~258)로 분포됨)은 하기에 논의되는 바와 같이 디바이딩된다. 다음 설명은 한 개의 미스트 발생장치(201) 제어와 관련되지만 물담배 장치(202)의 드라이버 장치는 같은 방법으로 각각의 미스트 발생장치(201)를 독립적으로 제어하는 것으로 간주된다.
입자 크기 1um 이하의 가장 효율적인 에어로졸화를 달성하기 위하여, 드라이버 장치는 고적응 주파수(대략적으로 3MHz)를 통해 초음파 트랜스듀서(215)(압전 세라믹 디스크(PZT))를 수용하는 컨택트 패드를 제공한다.
이 섹션은 고주파를 제공할 뿐만 아니라 지속적으로 최적화된 캐비테이션을 제공하면서 실패하지 않도록 초음파 트랜스듀서(215)를 보호한다.
PZT의 기계적 변형은 PZT에 인가되는 AC 전압 진폭과 관련되며, 모든 초음파 동작 중 최적의 기능을 보장하고 시스템에 전달하기 위해 최대 변형이 항상 PZT에 구현되어야 한다.
하지만 PZT의 실패를 방지하려면 전송되는 능동 전력이 정확하게 제어되어야 한다.
프로세서(274) 및 메모리(275)는 PZT 진동에 대한 기계적 진폭을 훼손하지 않으면서 모든 경우에 PZT에 제공된 능동 전력의 변조를 가능하게 한다.
PZT에 인가되는 AC 전압 펄스 폭 변조(PWM)에 의하여 진동의 기계적 진폭은 동일하게 유지된다.
실제로 인가되는 RMS 전압은 전압 변조와 듀티 사이클 변조의 효과는 동일하지만 PZT에 전송되는 능동 전력의 품질이 저하된다. 실제적으로 하기 방정식을 고려할 때
PZT에 대해 표시된 능동 전력은 이고
여기서
는 전류와 전압 사이의 위상(phase)의 시프트이다.
Irms는 제곱 평균 제곱근 전류이고
Vrms는 제곱 평균 제곱근 전압이다.
제1 고조파를 고려할 때, Irms는 트랜스듀서에 인가되는 실제 전압 진폭의 함수이고, 펄스 폭 변조는 트랜스듀서에 공급되는 전압 시간을 변경하여 Irms를 제어한다.
PMIC의 특정 설계는 최첨단 설계를 사용하여 완전한 피드백 루프 세트를 포함하여 PZT에 인가되는 주파수 범위 및 단계를 초고정밀도로 제어하고 사용하는 제어 섹션의 경로를 모니터링한다.
본 실시예에서, 드라이버 장치는 PZT 컨택트 패드에 필요한 전력을 운반하는 DC/DC 부스트 컨버터 및 트랜스포머를 구비한다.
본 실시예에서, 드라이버 장치에는 배터리의 전압을 사전결정된 주파수에서 AC 구동 신호로 변환함으로써 초음파 트랜스듀서를 구동할 수 있는 AC 드라이버가 포함된다.
드라이버 장치는 초음파 트랜스듀서가 AC 구동 신호에 의해 구동될 때 초음파 트랜스듀서에 의해 사용되는 능동 전력을 모니터링할 수 있는 능동 전력 모니터링 장치를 구비한다(상기에 설명된 바와 같음). 능동 전력 모니터링 장치는 초음파 트랜스듀서에 의해 사용되는 능동 전력을 나타내는 모니터링 신호를 제공한다.
드라이버 장치 내 프로세서(274)는 AC 드라이버를 제어하고, 능동 전력 모니터링 장치로부터의 모니터링 신호 드라이브를 수용한다.
드라이버 장치의 메모리(275)는 명령을 보관하고, 프로세서에 의해 실행되면, 명령은 프로세서로 하여금,
A. AC 드라이버를 제어하여 스위프 주파수에서 AC 구동 신호를 초음파 트랜스듀서로 출력하고;
B. 모니터링 신호에 기초하여 초음파 트랜스듀서에 의해 사용되는 능동 전력을 계산하고;
C. AC 드라이버를 제어하여 AC 구동 신호를 변조함으로써 초음파 트랜스듀서에 의해 사용되는 능동 전력을 최대화하고;
D. 초음파 트랜스듀서에 의해 사용된 최대 능동 전력 및 AC 구동 신호의 스위프 주파수를 메모리에 기록으로 보관하고;
E. 사전결정된 반복 횟수만큼 단계 A~D를 반복하되, 각 반복에 대하여 스위프 주파수를 증가시키거나 감소시키고, 이에 따라 사전결정된 횟수만큼 반복된 후, 스위프 주파수가 시작 스위프 주파수에서 종료 스위프 주파수까지 증가하거나 감소하고;
F. 초음파 트랜스듀서에 의해 최대 능동 전력이 사용되는 AC 구동 신호의 스위프 주파수인, AC 구동 신호를 위한 최적 주파수를 메모리에 보관된 기록으로부터 식별하고; 그리고
G. AC 드라이버를 제어하여 최적 주파수에서 AC 구동 신호를 초음파 트랜스듀서로 출력함으로써 초음파 트랜스듀서를 구동하여 액체를 분무하도록 한다.
일부 실시예에서, 능동 전력 모니터링 장치는 초음파 트랜스듀서를 구동하는 AC 구동 신호의 구동 전류를 센싱하기 위한 전류 센싱 장치를 포함하고, 능동 전력 모니터링 장치는 센싱된 구동 전류를 나타내는 모니터링 신호를 제공한다.
일부 실시예에서, 전류 센싱 장치는 프로세서에 의해 처리하기 위해 센싱된 구동 전류를 디지털 신호로 변환하는 아날로그 디지털 컨버터를 포함한다.
일부 실시예에서, 시작 주파수는 2900kHz이고 종료 주파수는 3100kHz이다. 다른 실시예에서, 시작 주파수는 3100kHz이고 종료 주파수는 2900kHz이다.
일부 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행될 때, 명령은 프로세서로 하여금, 시작 스위프 주파수 2900kHz에서 종료 스위프 주파수 2960kHz까지 증가되는 스위프 주파수로 상기 단계 A~D를 반복하도록 한다.
일부 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행될 때, 명령은 프로세서로 하여금, 시작 스위프 주파수 2900kHz에서 종료 스위프 주파수 3100kHz까지 증가되는 스위프 주파수로 단계 A~D를 반복하도록 한다.
일부 실시예에서, 메모리는 명령을 저장하고, 프로세스에 의해 실행될 때, 명령은 프로세서로 하여금, G 단계에서 AC 드라이버를 제어하여 최적 주파수로부터 사전결정된 시프트량으로 시프트하는 주파수에서 AC 구동 신호를 초음파 트랜스듀서로 출력하도록 한다.
일부 실시예에서, 사전결정된 시프트량은 최적 주파수의 1~10% 사이이다.
장치에 사용되는 압력 센서에는 두 가지 목적이 있다. 제1 목적은 초음파 엔진이 원하지 않게 사고로 시동되는 것(초음파 트랜스듀서 구동)을 방지하는 것이다. 이 기능은 장치의 처리 장치 내에서 구현되지만 낮은 전력으로 최적화되어 환경 파라미터, 이를테면 온도 및 주위 압력을 내부 보정 및 기준 설정을 통해 지속적으로 측정함으로써 소위 진성 흡입을 정밀하게 검출 및 분류한다.
압력 센서의 제2 목적은 정밀한 흡입량 측정을 위해 사용자에 의한 정확한 흡입 시간을 모니터링하는 것만이 아니라, 사용자 흡입 강도를 결정하는 것이다. 전반적으로 모든 흡입에 대한 압력 프로파일을 완전히 파악하고 최적화된 에어로졸화를 위한 흡입 종료를 예상할 수 있다.
일부 실시예에서, 물담배 장치(202)는 Bluetooth™ 저에너지(BLE) 마이크로컨트롤러를 구비한다. 실질적으로 이러한 기능은 극도로 정밀한 흡입 시간, 최적화된 에어로졸화를 제공하고, 다수의 파라미터를 모니터링하여 안전한 미스트 생성을 보장하고 비정품 e-리퀴드 또는 에어로졸 챔버의 사용을 방지하고 한꺼번에 장치의 과열 및 사용자의 과도한 미스트 생성을 방치할 수 있는 설정을 가능하게 한다.
BLE 마이크로컨트롤러의 사용을 통해 익명화된 데이터 수집 및 PZT 모델링에 대해 훈련된 AI를 기반으로 사용자에게 개선된 소프트웨어를 연속적으로 제공하도록 OTA(over-the-air) 업데이트가 가능하다. 또한, BLE 마이크로컨트롤러를 통해 원격 컴퓨팅 장치가 물담배 장치(202)와 통신할 수 있으므로 원격 컴퓨팅 장치는 물담배 장치(202)의 작동을 제어할 수 있다. 한 실시예에서, 복수의 물담배 장치는 이를테면 물담배 또는 시샤바(shisha bar) 내에 있는 하나 이상의 원격 컴퓨팅 장치에 의해 제어되어 바의 관리자가 작동을 제어하고/제어하거나 각 물담배 장치의 상태를 모니터링할 수 있다.
한 실시예에서, 각각의 물담배 장치 내 각각의 미스트 발생장치의 상태 표시 데이터가 물담배 장치에 의해 원격 컴퓨팅 장치로 전송되므로 원격 컴퓨팅 장치는 각각의 미스트 발생장치의 상태를 모니터링할 수 있다. 따라서 관리자 또는 사용자는 각각의 미스트 발생장치가 저수위 액체 상태이거나 올바르게 작동하지 않을 경우 이를 추적하여 미스트 발생장치를 교체할 수 있다.
물담배 장치(202)는 일상 고객 사용을 위한 정밀하고, 신뢰할 수 있으며 안전한 솔루션이므로 제어되는 안정적인 에어로졸화를 제공해야 한다.
이는 다음과 같은 다양한 섹션으로 구분될 수 있는 내부 방법을 통해 수행된다.
초음파 처리
가장 최적화된 에어로졸화를 제공하기 위해 초음파 트랜스듀서(PZT) 또는 각각의 미스트 발생장치(201)는 최고 효율적인 방법으로 진동해야 한다.
주파수
압전 세라믹의 전기 기계 특성에 따라 구성품은 공명 주파수에서 가장 효율적으로 작동한다. 하지만 공명 주파수에서 오랜 시간 동안 PZT를 진동시키면 결국 고장이 나고 구성품이 파손되어 에어로졸 챔버를 사용 불가하게 만든다.
압전 소재를 사용할 때 고려해야 할 다른 중요 요소로는 제조 과정 중 고유한 변동성을 지니고 온도와 시간에 따라 변동하게 된다는 점이다.
입경 <1um를 만들기 위해 3MHz에서 PZT를 공명시키려면 적응 수정법을 채택하여 모든 단일 흡입을 위해 장치에서 사용되는 모든 에어로졸 챔버 내부에서 특정 PZT의 '스윗 스팟'을 찾고 타겟팅해야 한다.
스위프
장치는 모든 단일 흡입에 대해 '스윗 스팟'을 찾아야 하고 과도한 사용으로 인하여 PZT 온도는 장치가 인하우스 이중 스위프 방법을 사용함에 따라 변동된다.
장치에서 모든 열소산이 발생하고 PZT가 '기본 온도'까지 냉각될 정도로 충분한 시간 동안 특정 에어로졸 챔버를 사용하지 않으면 제1 스위프가 사용된다. 이 절차는 또한 콜드 스타트라고 불린다. 이 절차가 진행되는 동안 PZT는 필수적인 에어로졸을 생성하기 위한 부스트가 필요하다. 이는 광범위한 연구와 실험에 따라 공명 지점을 커버하는 것으로 간주되는 2900kHz 내지 2960kHz 사이의 작은 주파수 서브세트를 조사함으로써 달성된다.
이 범위의 각 주파수에 대해 초음파 엔진이 활성화되고 PZT를 통해 흐르는 전류는 아날로그 디지털 컨버터(ADC)를 통해 마이크로컨트롤러에 의해 능동적으로 모니터링 및 저장된 다음, 전류로 다시 변환되어 PZT에 의해 사용되는 전력을 정밀하게 도출한다.
그 결과 주파수와 관련된 이 PZT의 콜드 프로파일을 얻게 되고 흡입 과정 중 사용된 주파수는 대부분의 전류를 사용하는 주파수이므로 최저 임피던스 주파수가 된다.
제2 스위프는 후속적인 흡입 중 수행되고 온도 및 변형과 관련하여 PZT 프로파일 변경으로 인하여 2900kHz 내지 3100kHz 사이의 전체 주파수 범위를 커버한다. 이러한 핫 프로파일은 적용할 시프트를 결정하는 데 사용된다.
시프트
에어로졸화는 최적화되어야 하므로 콜드 흡입 중 시프트를 사용하지 않으며 따라서 PZT는 공명 주파수에서 진동한다. 이는 짧고 반복적이지 않은 시간 동안만 가능하며 그렇지 않으며 PZT는 결국 파손될 것이다.
하지만 저임피던스 주파수를 여전히 타겟팅하는 방식으로 대부분의 흡입 중 시프트를 사용함으로써 고장이 나지 않도록 보호하면서 PZT를 유사 최적 작동 상태로 만든다.
핫 프로파일 및 콜드 프로파일은 흡입 중 저장되므로 마이크로컨트롤러는 스위프 중 PZT를 통과하는 전류의 측정 값에 따라 적절한 시프트 주파수를 선택하고 안전한 기계 작동을 보장한다.
시프트 방향의 선택은 이중 공명/반공명(anti-resonant) 주파수 외부이거나 이 범위 내부인 경우 압전 구성품이 다른 방식으로 거동하므로 중요하다. PZT는 유도적이며 축전적이지 않으므로 선택된 시프트는 공명 내지 반공명 주파수에 의해 정의된 이 범위 내에서 속해야 한다.
마지막으로 시프트 비율은 10% 이하로 유지되어 최저 임피던스에 근접하면서도 공명에서 충분히 멀어지도록 한다.
조절
PZT의 고유한 특성으로 인하여 모든 흡입은 다르다. 압전 요소 이외에 다수 개의 파라미터가 흡입의 결과에 영향을 미치고, 이를테면 에어로졸 챔버 내에 잔류된 e-리퀴드의 양, 거즈의 위킹 상태 또는 장치의 배터리 레벨 등으로부터 영향을 받는다.
이런 방식으로 장치는 에어로졸 챔버 내부의 PZT에 의해 사용되는 전류를 모니터링하고 마이크로컨트롤러는 파라미터, 이를테면 주파수 및 듀티 사이클을 지속적으로 조절하여 가장 최적의 안전한 에어로졸화를 위한 연구 및 실험 결과에 따라 사전 정의된 범위 내에서 가능한 최고 안정적인 전력을 에어로졸 챔버에 제공한다.
배터리 모니터링
일부 실시예에서, 배터리는 물담배 장치(202)에 통합된다. 본 실시예에서, 물담배 장치(202)는 물담배 장치(202)에 필요한 전압을 제공하는 DC Li-Po 배터리에 의해 전력이 공급된다. 높은 방전율에 대한 요구사항에 따라 일부 실시예의 Li-Po 배터리는 연속적인 전류 인출을 위해 특별히 설계된다.
초음파 섹션을 활성화할 때 배터리 전압이 강하 및 변동하기 때문에 마이크로컨트롤러는 에어로졸 챔버 내부에서 PZT가 사용하는 전력을 지속적으로 모니터링하여 적절하지만 안전한 에어로졸화를 보장한다.
에어로졸의 핵심은 제어이므로 장치는 먼저 장치의 제어 및 정보 섹션을 항상 작동하도록 하고 초음파 섹션의 손상으로 인해 중단되지 않도록 한다.
따라서 조절 방법은 실시간 배터리 레벨을 상당히 고려하고, 필요 시 듀티 사이클과 같은 파라미터를 변경하여 배터리를 안전한 레벨로 유지하며, 초음파 엔진을 시동하기 전에 배터리 레벨이 낮을 경우, 제어 및 정보 섹션은 활성화를 막는다.
전력 제어
상기에 기술된 바와 같이, 에어로졸화의 핵심은 제어이고 장치에 사용되는 방법은 PZT 프로파일, PZT 내부의 전류, 장치의 배터리 레벨을 항상 고려하는 실시간 다차원 기능이다.
이 모든 것은 장치의 모든 요소를 모니터링하고 제어하여 최적의 흡입을 생성할 수 있는 마이크로컨트롤러의 사용을 통해 달성할 수 있다.
간격
장치는 압전 부품에 의존하므로 장치는 흡입이 중단되면 초음파 섹션의 활성화를 막는다. 두 번의 흡입 간 안전한 지연은 이전 흡입의 시간에 따라 조절 가능한다. 따라서 다음 활성화 전에 거즈가 적절하게 위킹된다.
이러한 기능을 통해 장치는 안전하게 작동하고 에어로졸화는 PZT 요소의 파손이나 사용자가 독성 물질에 노출될 위험 없이 더 최적화된다.
연결성(BLE)
장치 제어 및 정보 섹션은 Bluetooth 저에너지 기능을 가진 마이크로컨트롤러 형식의 무선 통신 시스템으로 구성된다. 무선 통신 시스템은 장치 프로세서와 통신하고 드라이버 장치 및 컴퓨팅 장치, 이를테면 스마트폰 사이에서 데이터를 전송 및 수신하도록 구성된다.
Bluetooth 저에너지를 통한 동반 모바일 애플리케이션과의 연결은 종래의 무선 연결 솔루션, 이를테면 Wi-Fi, 클래식 Bluetooth, GSM 또는 심지어 LTE-M 및 NB-IOT와 비교하여 통신을 위한 작은 전력만 필요하므로 장치는 전혀 사용하지 않을 때 오랫동안 기능을 유지할 수 있다.
가장 중요하게는, 이러한 연결성은 기능으로서의 OTP 및 흡입의 완전한 제어와 안전을 가능하게 한다. 흡입의 공명 주파수 또는 사용자가 생성한 음압 및 시간의 모든 데이터가 저장되고 BLE를 통해 전송되어 추가적인 분석 및 내장 소프트웨어를 개선한다.
마지막으로 이러한 연결성은 장치 내부에 내장된 펌웨어 및 OTA(over the air)를 업데이트함으로써 최신 버전을 항상 빠르게 배포하도록 보장한다. 이는 장치 및 장치에 적용하고자 하는 보험에 대한 확장 가능성을 제공한다.
한 실시예에서, 물담배 장치는 음파 트랜스듀서(215)를 구동하는 AC 구동 신호의 rms 구동 전류를 센싱할 수 있는 전류 센서, 이를테면 상기에 설명된 전류 센서(335)를 포함하는 능동 전력 모니터를 구비하는 미스트 흡입장치(200)를 포함한다. 능동 전력 모니터는 상기 설명과 같이, 센싱된 구동 전류를 표시하는 모니터링 신호를 제공한다.
본 실시예의 추가 기능을 통해 미스트 흡입장치(200)는 초음파 트랜스듀서가 활성화된 동안 초음파 트랜스듀서의 작동을 모니터링한다. 미스트 흡입장치(200)는 장치 내 액체를 분무화하기 위해 초음파 트랜스듀서가 효율적으로 작동하는 정보를 표시하는 효율성 값 또는 품질 지표를 계산한다. 장치는 효율성 값을 사용하여 초음파 트랜스듀서의 활성 시간 동안 발생된 실제 미스트 함량을 계산한다.
실제 미스트 함량이 계산되면 장치는 미스트 내에 존재하는 실제 약제의 용량, 이에 따라 액체 내 약제 농도를 기준으로 사용자가 흡입한 실제 약제의 용량을 계산하도록 구성된다.
실질적으로, 상기에 설명된 바와 같이, 초음파 트랜스듀서의 작동에 영향을 미치고, 초음파 트랜스듀서에 의해 생성된 미스트 함량, 이에 따라 사용자에게 전달되는 실제 약제 용량에 영향을 미치는 다양한 요소가 존재한다.
이제 일부 실시예에서 미스트 흡입장치의 구성 및 미스트 흡입장치를 사용하여 미스트를 생성하는 방법을 하기에 상세하게 설명한다.
본 실시예에서, 미스트 흡입장치는 상기에 설명된 미스트 흡입장치(200)의 구성품을 포함하지만, 드라이버 장치(202)의 메모리는, 프로세서에 의해 실행될 때, 프로세서가 제1 사전결정된 시간 동안 미스트 발생장치(201)를 활성화하도록 하는 명령을 추가적으로 저장한다. 상기에 설명된 바와 같이, 미스트 발생장치는 AC 구동 신호를 포함하여 미스트 발생장치(201) 내 초음파 트랜스듀서(215)를 구동함으로써 작동하고, 이에 따라 초음파 트랜스듀서(215)는 모세관 요소(222)가 운반하는 액체를 분무화한다.
실행 명령에 의해 프로세서는 초음파 트랜스듀서(215)를 통해 흐르는 AC 구동 신호의 전류를 제1 사전결정된 시간 동안 전류 센서를 사용하여 주기적으로 센싱하고 주기적으로 측정된 전류 값을 메모리에 저장한다.
실행 명령에 의해 프로세서는 메모리에 저장된 전류 값을 사용하여 효율성 값을 계산한다. 효율성 값은 액체를 분무화할 때 초음파 트랜스듀서의 작동 효율성을 나타낸다.
한 실시예에서, 실행 명령에 의해 프로세서는 다음 방정식을 통해 효율성 값을 계산한다.
여기서
은 상기 효율성 값,
는 모니터링된 주파수 값(초음파 트랜스듀서(215)가 구동되는 주파수)을 기반으로 하는 주파수의 하위 효율성 값,
는 측정된 전류 값(초음파 트랜스듀서(215)를 통해 흐르는 rms 전류)을 기반으로 하는 아날로그 디지털 컨버터의 하위 효율성 값,
t=0는 제1 사전결정된 시간의 시작,
t=D는 제1 사전결정된 시간의 끝,
N은 상기 제1 사전결정된 시간 동안 주기적인 측정 횟수(샘플), 및
는 정규화 인자이다.
한 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행되면, 상기 명령은 프로세서가 제1 사전결정된 시간 동안 초음파 트랜스듀서를 구동하는 AC 구동 신호의 듀티 사이클을 주기적으로 측정하고 주기적으로 측정된 듀티 사이클 값을 메모리에 저장하도록 한다. 그 이후에 미스트 흡입장치는 메모리에 저장된 상기 전류 값에 기초하여 아날로그 디지털 컨버터 하위 효율성 값을 변조한다. 결과적으로, 본 실시예의 미스트 흡입장치는 장치가 효율성 값을 계산할 때 초음파 트랜스듀서(215)의 활성을 통해 발생할 수 있는 듀티 사이클의 변동을 고려한다. 따라서, 미스트 흡입장치는 초음파 트랜스듀서가 활성화되면서 발생할 수 있는 AC 구동 신호의 듀티 사이클 내 변동을 고려함으로써 정확하게 생성되는 실제 미스트 함량을 계산한다.
효율성 값은 미스트 발생장치에 의해 가중치로 사용되어 장치가 최적 상태로 작동할 때 생성되는 최대 미스트 함량 값을 비례적으로 감소시킴으로써 미스트 흡입장치에 의해 생성된 실제 미스트 함량을 계산한다.
한 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행되면, 상기 명령은 프로세서가 제1 사전결정된 시간 동안 초음파 트랜스듀서(215)를 구동하는 AC 구동 신호의 주파수를 주기적으로 측정하고 주기적으로 측정된 주파수 값을 메모리에 저장하도록 한다. 그 이후에 장치는 상기에 설명된 전류 값 이외에도 메모리에 저장된 주파수 값을 사용하여 효율성 값을 계산한다.
한 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행되면 상기 명령은 프로세서가 제1 사전결정된 시간 동안 초음파 트랜스듀서(215)가 최적 상태에서 작동할 때 생성되는 최대 미스트 함량을 계산하도록 한다. 한 실시예에서, 최대 미스트 함량은 초음파 트랜스듀서가 최적 상태로 작동할 때 생성되는 최대 미스트 함량을 결정하는 모델링을 기반으로 계산된다.
최대 미스트 함량 값이 계산되면, 미스트 흡입장치는 효율성 값을 기반으로 비례적으로 최대 미스트 함량 값을 축소함으로써 실질적인 미스트 함량을 계산하여 제1 사전결정된 시간 동안 생성된 실제 미스트 함량을 결정한다.
실제 미스트 함량이 계산되면, 미스트 흡입장치는 제1 사전결정된 시간 동안 생성된 실질적인 미스트 함량의 약제 용량을 표시하는 약제 용량 값을 계산할 수 있다. 그 이후에 미스트 흡입장치는 약제 용량 값의 기록을 메모리에 저장한다.
한 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행되면, 상기 명령은 프로세서가 효율성 값에 반응하여 제2 사전결정된 시간을 선택하도록 한다. 이 경우, 제2 사전결정된 시간은 사용자에 의한 제2 흡입 또는 흡연 동안 초음파 트랜스듀서(215)가 활성화되는 시간이다. 한 실시예에서, 제2 사전결정된 시간은 제1 사전결정된 시간과 동일하지만 효율성 값에 비례하여 감소되거나 증가한 시간이다. 예를 들어, 효율성 값이 초음파 트랜스듀서(215)가 효과적으로 작동하지 않음을 시사할 경우, 제2 사전결정된 시간은 효율성 값에 의해 더 길어지고, 이에 따라 제2 사전결정된 시간 동안 원하는 미스트 함량이 생성된다.
다음 흡입과 관련하여, 미스트 흡입장치는 제2 사전결정된 시간 동안 미스트 발생장치를 활성화하고, 이에 따라 미스트 발생장치는 제2 사전결정된 시간 동안 사전결정된 미스트 함량을 생성한다. 따라서, 미스트 흡입장치는 제2 사전결정된 시간 동안 생성된 미스트 함량을 정확하게 제어하고, 미스트 흡입장치의 작동에 영향을 미치는 효율성 값이 반영되는 다양한 파라미터를 고려한다.
한 실시예에서, 메모리는 명령을 저장하고, 프로세서에 의해 실행되면, 상기 명령은 프로세서가 다수 개의 사전결정된 시간 동안 미스트 발생장치를 활성화하도록 한다. 예를 들어, 미스트 발생장치는 사용자에 의한 복수의 연속적인 흡입 또는 흡연 동안 활성화된다.
미스트 흡입장치는 메모리 내 복수의 약제 용량 값을 저장하고, 각각의 약제 용량 값은 각각 사전결정된 시간 동안 생성된 미스트 내 약제 용량을 표시한다.
본 개시의 일부 실시예에서 미스트 흡입장치는 미스트 발생장치로부터의 약제 용량 값을 표시하는 데이터를 컴퓨팅 장치에 전송하여(예: Bluetooth™ 저에너지 통신을 통해) 컴퓨팅 장치(예: 스마트폰)의 메모리에 저장하도록 구성된다. 이에 따라, 컴퓨팅 장치에서 실행 가능한 애플리케이션은 사용자에게 전달된 약제 용량을 기록한다. 또한, 실행 가능한 애플리케이션이 미스트 흡입장치의 작동을 제어하고, 이에 따라 애플리케이션은 물담배 장치 내 각각의 미스트 흡입장치의 작동을 조정하여 최적의 방식으로 작동하지 않는 미스트 흡입장치를 수용한다.
e-리퀴드의 에어로졸화는 압전 디스크의 기계적 동작에 의해 달성되고 액체의 직접 가열에 의하지 않으므로, e-리퀴드(프로필렌 글리콜, 식물성 글리세린, 향미료 성분 등)의 개별 요소는 대부분 손상되지 않고 더 작은 유해 성분, 이를테면 아크롤레인, 아세트알데히드, 포름알데히드 등으로 분해되지 않으며, 이러한 성분은 종래의 최종 사용자 장치(ENDS)에서 높은 비율로 발견된다.
초음파 기술과 관련된 상기의 모든 응용 분야는 최적의 성능을 위해 초음파 주파수를 최적화하는 주파수 컨트롤러에 의해 달성되는 최적화로부터 이익을 얻을 수 있다.
본원의 개시는 니코틴 전달용으로만 제한되지 않는다. 본원에 개시된 장치는 모든 약제 또는 기타 화합물(예: CBD)과 함께 사용되고, 약제 또는 화합물은 장치에 의한 분무화를 위해 장치의 액체 챔버 내의 액체 내에 제공된다.
일부 실시예의 물담배 장치(202)는 차콜 또는 전기 부재의 열을 사용하여 담배를 태우는 종래의 물담배 헤드를 건강하게 대체한다. 그럼에도 불구하고, 일부 실시예의 물담배 장치(202)는 물담배의 물 내 미스트 버블로 인하여 여전히 종래의 물담배와 동일한 사용자 경험을 제공한다. 따라서, 사용자는 종래의 담배 연소 물담배 대신에 일부 실시예의 초음파 물담배 장치(202)를 사용함으로써 물담배 내 담배의 스모크 위험을 회피하고자 할 수 있다.
상기 내용은 통상의 기술을 지닌 자가 본 개시의 다양한 양태를 더 잘 이해할 수 있도록 다양한 장치, 예시 또는 실시예의 특징을 서술한다. 통상의 기술을 가진 자는 본원에 소개된 다양한 예시 또는 실시예의 것과 동일한 목적을 수행하고 및/또는 동일한 편익을 달성하기 위해 다른 프로세스 및 구조를 설계 또는 변경하기 위한 기본으로 본 개시를 사용할 수 있을 것이다. 또한 통상의 기술을 가진 자는 그러한 동등한 제품이 본 개시의 원칙과 범위를 벗어나지 않으며 본 개시의 원칙과 범위를 벗어나지 않으면서 다양한 변경, 대체, 및 개량을 수행할 수 있을 것이다.
본 주제는 구조적 특성이나 방법에 따른 언어로 설명되었지만 첨부된 청구항의 주제는 상기에 설명된 특정한 기능 또는 조치만으로 제한될 필요가 없다는 점을 인지할 수 있다. 오히려, 상기에 설명된 특정 기능 및 조치는 적어도 청구항의 일부를 구현하는 예시로서 공개되었다.
본원에서는 예시 또는 실시예의 다양한 조작이 제공되었다. 일부 또는 전체 조작이 설명된 주문은 이러한 조작이 주문에 필수적으로 의존함을 암시하는 것으로 해석되어서는 안 된다. 다른 주문이 본 설명으로부터 편익을 받는다고 인정된다. 나아가, 모든 조작이 본원에 개시된 각 실시예에 반드시 존재하지는 않는다. 또한, 모든 조치가 일부 예시 또는 실시예에서 필수적인 것은 아니라고 이해된다.
더구나, 본원에서 사용되는 "예시적"이라는 용어는 예시, 경우, 실례 등을 의미하지만 필수적인 장점은 아닌 것이다. 본 출원서에 사용된 "또는"이란 포용적인 "또는"을 의미하며 배타적인 "또는"을 의미하지 않는다. 게다가, 본원 및 첨부의 청구항에서 사용된 "하나"라는 용어는 달리 특정되거나 문맥상 단일 형식을 지칭하는 것이 명확하지 않는 한 "하나 이상"을 의미하는 것으로 해석된다. 또한, 적어도 하나의 A 및 B 및/또는 이와 유사한 표현은 일반적으로 A 또는 B, 또는 A 및 B 두 개를 모두 의미한다. 더구나, "포함", "구비하는", "구비", "함께" 또는 그의 변형된 범위에 있어서, 그러한 표현은 "포함하는"과 유사한 방식으로 포용하는 것으로 사용된다. 또한, 달리 명시되지 않는 한, "제1", "제2" 또는 그와 유사한 표현은 시간 한정적인 양태, 공간적 양태, 순서 등을 의미하지 않는다. 대신에 그러한 표현은 기능, 부재, 항목 등을 위한 식별자, 이름 등으로 단순히 사용된다. 예를 들어, 제1 부재 및 제2 부재는 일반적으로 부재 A 및 부재 B 또는 두 개의 다른 또는 두 개의 동일한 부재, 또는 같은 부재에 해당한다.
또한, 본 개시는 하나 이상의 구현과 관련하여 도시 및 설명되었지만, 동급의 변형 및 개조는 본 명세서 및 부속적인 도면의 판독 및 이해를 기반으로 통상의 기술을 사용하여 만든 다른 장치에서 실행된다. 본 개시는 그러한 모든 개조 및 변형을 포함하고 다음 청구의 범위에 의해서만 제한된다. 특히 상기에 설명된 기능(예: 부재, 리소스 등)에 의해 수행되는 다양한 기능과 관련하여, 그러한 기능을 설명하는 데 사용된 표현은 달리 명시되지 않는 한, 개시된 구조와 구조적으로 동일하지 않더라도, 설명된 특징의 구체적인 기능을 수행하는 특징(예: 기능적으로 동일함)에 해당한다. 더구나, 본 개시의 특정 기능은 다양한 구현 중 한 가지 구현에 대해서만 개시되지만, 그러한 기능은 특정 또는 특별한 응용 분야에 대해 원하는 대로, 및 유리한 대로 다른 구현의 하나 이상의 다른 기능과 결합될 수 있다.
본원에 설명된 주제 및 기능 조작의 예시 또는 실시예는 디지털 전자 회로, 또는 컴퓨터 소프트웨어, 펌웨어 또는 하드웨어, 본 명세서에 개시된 구조 및 구조적으로 동일한 장치를 포함하거나, 이들의 하나 이상을 조합으로서 구현될 수 있다.
일부 예시 또는 실시예는 데이터 처리 기구의 실행, 또는 그의 조작을 제어하기 위한 컴퓨터 판독 가능한 매체에서 인코딩된 컴퓨터 프로그램 명령의 하나 이상의 모듈을 사용하여 구현된다. 컴퓨터 판독 가능한 매체는 제조된 제품, 이를테면 컴퓨터 시스템 또는 내장형 시스템의 하드 드라이버가 될 수 있다. 컴퓨터 판독 가능한 매체는 별도로 획득하거나 하나 이상의 컴퓨터 프로그램 명령 모듈, 이를테면 유선 또는 무선 네트워크를 통하여 하나 이상의 컴퓨터 프로그램 명령 모듈을 전달함으로써 차후에 인코딩될 수 있다. 컴퓨터 판독 가능 매체는 기계 판독 가능 스토리지 장치, 기계 판독 가능 스토리지 기질, 메모리 장치 또는 이들의 하나 이상의 조합이 될 수 있다.
"컴퓨팅 장치" 및 "데이터 처리 기구"는 프로그램 가능 프로세서, 컴퓨터 또는 다수 개의 프로세서 또는 컴퓨터 등을 포함하여 데이터를 처리하는 모든 기구, 장치 및 머신을 포함한다. 기구에는 하드웨어 이외에, 문제의 컴퓨터 프로그램을 위한 실행 환경을 만드는 코드, 이를테면 프로세서 펌웨어, 프로토콜 스택, 데이터베이스 관리 시스템, 운영 시스템, 런타임 환경, 또는 이들의 하나 이상의 조합으로 구성되는 코드가 포함된다. 더구나, 기구는 다양한 컴퓨팅 모델 인프라, 이를테면 웹 서비스, 분산형 컴퓨팅 및 그리드 컴퓨팅 인프라를 사용할 수 있다.
본 명세서에 기술된 프로세스 및 로직 흐름은 하나 이상의 컴퓨터 프로그램을 실행하여 입력 데이터를 조작하고 출력을 생성하는 하나 이상의 프로그램 가능 프로세서에 의해 수행될 수 있다.
컴퓨터 프로그램의 실행에 적합한 프로세서에는 예시적으로, 일반 및 특수용 마이크로프로세서, 및 디지털 컴퓨터 유형의 하나 이상의 프로세서가 포함된다. 일반적으로, 읽기 전용 메모리 또는 랜덤 액세스 메모리 또는 두 가지 모두로부터 명령 및 데이터를 수신한다. 컴퓨터의 필수 요소에는 명령을 수행하는 프로세서와 명령 및 데이터를 보관하는 하나 이상의 메모리 장치가 있다. 일반적으로, 컴퓨터에는 자석, 광자기 디스크, 또는 광학 디스크와 같은 데이터를 보관할 수 있는 하나 이상의 대용량 스토리지 장치를 포함하거나, 장치에서 데이터를 수신, 장치로 데이터를 전송, 또는 두 가지 모두를 하기 위해 작용적으로 결합된다. 하지만, 컴퓨터가 그러한 장치를 반드시 가져야 하는 것은 아니다. 컴퓨터 프로그램 명령 및 데이터를 보관하기에 적합한 장치에는 모든 유형의 비휘발성 메모리, 매체 및 메모리 장치가 포함된다.
본 명세서의 "포함"이란 "구비 또는 구성"을 의미하고, "포함하는"이란 "구비하는 또는 구성하는"을 의미한다.
상기 설명, 또는 다음 청구항, 또는 첨부 도면에 개시되거나, 특정 형식으로 명시된 기능, 개시된 기능을 수행하기 위한 방법의 측면, 또는 개시된 결과를 얻기 위한 방법이나 프로세스는, 적절하게는, 별도로, 또는 그러한 기능의 조합으로, 다양한 형식에서 본 발명을 구현하기 위해 사용될 수 있다.
대표적인 기능
다음 문장에 명시된 대표적인 기능은 분리되거나, 본 명세서의 텍스트 및/또는 도면에 개시된 하나 이상의 기능을 조합함으로써 결합될 수 있다.
1. 물담배 장치로서,
복수의 초음파 미스트 발생장치;
복수의 H-브리지 회로;
마이크로컨트롤러;
상기 마이크로컨트롤러에 전기적으로 연결되어 상기 마이크로컨트롤러와 데이터를 상호 통신하는 데이터 버스;
상기 데이터 버스에 전기적으로 연결되어 상기 마이크로컨트롤러로부터 데이터를 수신하고 상기 마이크로컨트롤러에 데이터를 전송하는 복수의 마이크로칩; 및
상기 물담배 장치를 물담배에 부착하도록 구성된 물담배 부착 장치를 포함하고,
각 미스트 발생장치는,
장형이면서 공기 흡기 포트 및 미스트 방출 포트를 구비하는 미스트 발생장치 하우징;
상기 미스트 발생장치 하우징 내에 제공되고, 분무되는 액체를 저장하는 액체 챔버;
상기 미스트 발생장치 하우징 내에 제공되는 초음파 처리 챔버;
상기 액체 챔버 및 상기 초음파 처리 챔버 사이에서 연장되는 모세관 요소로서, 상기 모세관 요소의 제1 부분은 상기 액체 챔버 내에 있고 상기 모세관 요소의 제2 부분은 상기 초음파 처리 챔버 내에 있도록 하는 모세관 요소;
분무화 표면을 갖는 초음파 트랜스듀서로서, 상기 모세관 요소의 제2 부분의 일부는 상기 분무화 표면의 일부와 중첩되고, 상기 초음파 트랜스듀서가 AC 구동 신호에 의해 구동될 때, 상기 분무화 표면이 진동하여 상기 모세관 요소의 제2 부분에 의해 운반된 액체를 분무함으로써 상기 초음파 처리 챔버 내에 상기 분무된 액체 및 공기를 포함하는 미스트를 생성하는 초음파 트랜스듀서; 및
상기 공기 흡기 포트, 상기 초음파 처리 챔버 및 상기 공기 방출 포트 사이에 공기 유동 경로를 제공하는 공기 유동 장치를 포함하고,
상기 복수의 H-브리지 회로의 각각의 H-브리지 회로는 상기 초음파 트랜스듀서 중 각각 하나와 연결되고 AC 구동 신호를 발생하여 상기 초음파 트랜스듀서를 구동하도록 구성되고,
상기 복수의 마이크로칩의 각 마이크로칩은 상기 H-브리지 회로 중 각각 하나와 연결되어 상기 H-브리지 회로를 제어함으로써 상기 AC 구동 신호를 생성하고,
각각의 마이크로칩은 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템을 포함하는 단일 유닛으로서:
오실레이터;
펄스 폭 변조(PWM) 신호 발생기 서브시스템;
아날로그 디지털 컨버터(ADC) 서브시스템;
디지털 프로세서 서브시스템; 및
디지털 아날로그 컨버터(DAC) 서브시스템을 포함하고,
상기 오실레이터는:
메인 클럭 신호,
상기 메인 클럭 신호의 양(positive) 반주기 동안의 제1 시간에 대해 하이(high)이고, 상기 메인 클럭 신호의 음(negative) 반주기 동안에는 로우(low)인 제1 위상 클럭 신호, 및
상기 메인 클럭 신호의 음 반주기 동안의 제2 시간에 대해 하이이고, 상기 메인 클럭 신호의 양 반주기 동안에는 로우인 제2 위상 클럭 신호를 생성하도록 구성되고,
상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 위상은 중앙으로 정렬되며;
상기 펄스 폭 변조(PWM) 신호 발생기 서브시스템은:
상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호를 사용하고, 상기 메인 클럭 신호 주파수의 두 배인 이중 주파수 클럭 신호를 생성하도록 구성된 지연 잠금 루프 - 상기 지연 잠금 루프는 상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 상승 에지를 제어하여 상기 이중 주파수 클럭 신호의 상승 에지와 동기화되도록 구성되고, 상기 지연 잠금 루프는 드라이버 제어 신호에 응답하여 상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 듀티 출력 신 및 주파수를 조절하여 제1 위상 출력 신호 및 제2 위상 출력 신호를 생성하도록 구성되고, 상기 제1 위상 출력 신호 및 상기 제2 위상 출력 신호는 상기 마이크로칩에 연결된 상기 H-브리지 회로를 구동하여 AC 구동 신호를 생성함으로써 상기 초음파 트랜스듀서를 구동하도록 구성됨 -;
상기 마이크로칩에 연결된 상기 H-브리지 회로에 대해 상기 제1 위상 출력 신호를 출력하도록 구성된 제1 위상 출력 신호 터미널;
상기 마이크로칩에 연결된 상기 H-브리지 회로에 대해 상기 제2 위상 출력 신호를 출력하도록 구성된 제2 위상 출력 신호 터미널;
상기 H-브리지 회로로부터, 상기 H-브리지 회로가 상기 AC 구동 신호와 함께 상기 초음파 트랜스듀서를 구동하여 상기 액체를 분무할 때 상기 AC 구동 신호 또는 상기 마이크로칩에 연결된 상기 H-브리지 회로의 작동의 파라미터를 나타내는 피드백 신호를 수신하도록 구성되는 피드백 입력 터미널을 포함하고,
상기 아날로그 디지털 컨버터(ADC) 서브시스템은 복수의 각 아날로그 신호를 수신하도록 구성된 복수의 ADC 입력 터미널을 포함하고, 상기 복수의 ADC 입력 터미널 중 하나의 ADC 입력 터미널이 상기 피드백 입력 터미널에 연결됨으로써, 상기 ADC 서브시스템은 상기 마이크로칩에 연결된 상기 H-브리지 회로로부터 상기 피드백 신호를 수신하고, 상기 ADC 서브시스템은 상기 메인 클럭 신호의 주파수에 비례하는 샘플링 주파수에서 상기 복수의 ADC 입력 터미널에서 수신된 아날로그 신호를 샘플링하도록 구성되고, 상기 ADC 서브시스템은 샘플링된 아날로그 신호를 사용하여 ADC 디지털 신호를 생성하도록 구성되고;
상기 디지털 프로세서 서브시스템은, 상기 ADC 서브시스템으로부터 상기 ADC 디지털 신호를 수신하고, 상기 ADC 디지털 신호를 처리하여 상기 드라이버 제어 신호를 생성하도록 구성되고, 상기 드라이버 제어 신호를 상기 PWM 신호 발생기 서브시스템으로 전달하여 상기 PWM 신호 발생기 서브시스템을 제어하도록 구성되고; 그리고
상기 디지털 아날로그 컨버터(DAC) 서브시스템은:
상기 디지털 프로세서 서브시스템에 의해 생성된 디지털 제어 신호를 아날로그 전압 제어 신호로 변환하여 상기 마이크로칩에 연결된 상기 H-브리지 회로에 의한 변조를 위한 전압을 생성하는 전압 레귤레이터 회로를 제어하도록 구성된 디지털 아날로그 컨버터(DAC); 및
상기 아날로그 전압 제어 신호를 출력하여 상기 전압 레귤레이터 회로를 제어함으로써 상기 초음파 트랜스듀서의 작동을 나타내는 피드백 신호에 응답하여 상기 초음파 트랜스듀서를 구동하도록 상기 마이크로칩에 연결된 상기 H-브리지 회로에 의한 변조를 위한 사전결정된 전압을 생성하도록 구성된 DAC 출력 터미널을 구비하고;
상기 물담배 부착 장치는 상기 미스트 발생장치의 상기 미스트 방출 포트로부터 상기 물담배 장치 밖으로 향하는 유체 유동 경로를 제공하고, 이에 따라 상기 미스트 발생장치 중 적어도 하나가 드라이버 장치에 의해 활성화되면, 각각의 활성화된 미스트 발생장치에 의해 생성된 미스트가 상기 유체 유동 경로를 따라 상기 물담배 장치 밖을 향해 물담배로 흐르도록 하는 물담배 방출 포트를 구비하는, 물담배 장치.
2. 제1항에 있어서, 상기 마이크로컨트롤러는 상기 미스트 발생장치에 대한 각각의 고유 식별자를 사용하여 각 미스트 발생장치를 식별 및 제어하도록 구성되는, 물담배 장치.
3. 제1항 또는 제2항에 있어서, 각각의 미스트 발생장치는 식별 장치를 포함하고, 상기 식별 장치는,
상기 미스트 발생장치를 위한 고유 식별자를 저장하는 메모리를 구비하는 집적회로; 및
상기 집적회로와 통신하기 위한 전자 인터페이스를 제공하는 전기 연결부를 포함하는, 물담배 장치.
4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 마이크로컨트롤러는 각각의 마이크로칩 및 각각의 미스트 발생장치를 제어하여 다른 미스트 발생장치를 독립적으로 활성화하도록 구성되는, 물담배 장치.
5. 제4항에 있어서, 상기 마이크로컨트롤러는 상기 미스트 발생장치를 제어하여 사전결정된 시퀀스에 따라 활성화되도록 구성되는, 물담배 장치.
6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 물담배 장치는,
상기 미스트 발생장치의 상기 미스트 방출 포트와 유체 연통하는 매니폴드 파이프를 구비하는 매니폴드를 포함하고, 상기 미스트 방출 포트로부터의 미스트 출력은 상기 매니폴드 파이프에서 결합되고, 상기 매니폴드 파이프를 통해 상기 물담배 장치 밖을 향해 흐르는, 물담배 장치.
7. 제6항에 있어서, 상기 물담배 장치는 서로에 대해 90º로 상기 매니폴드와 느슨하게 결합된 4개의 미스트 발생장치를 구비하는, 물담배 장치.
8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 피드백 입력 터미널은 초음파 트랜스듀서를 구동하는 AC 구동 신호의 rms 전류를 나타내는 전압의 형태로 상기 H-브리지 회로로부터 피드백 신호를 수신하도록 구성되는, 물담배 장치.
9. 제1항 내지 제8항 중 어느 한 항에 있어서, 각각의 마이크로칩은,
상기 마이크로칩 내에 내장된 온도 센서를 더 포함하고, 상기 온도 센서는 상기 마이크로칩의 온도를 나타내는 온도 신호를 생성하도록 구성되고, 상기 온도 신호는 상기 ADC 서브시스템의 추가 ADC 입력 터미널에 의해 수신되고, 상기 온도 신호는 상기 ADC에 의해 샘플링되는, 물담배 장치.
10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 ADC 서브시스템은 상기 복수의 ADC 입력 터미널에서 수신된 신호를 순차적으로 샘플링하도록 구성되고, 각 신호는 각각의 사전결정된 횟수로 상기 ADC 서브시스템에 의해 샘플링되는, 물담배 장치.
11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 물담배 장치는 복수의 추가 마이크로칩을 더 포함하고, 상기 복수의 추가 마이크로칩의 각각의 추가 마이크로칩은 상기 복수의 마이크로칩의 각각의 마이크로칩과 연결되고, 상기 복수의 H-브리지 회로 중 하나의 H-브리지 회로를 구비하고,
각각의 추가 마이크로칩은 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템을 포함하는 단일 유닛으로서:
제1 전원공급 터미널;
제2 전원공급 터미널;
제1 스위치, 제2 스위치, 제3 스위치 및 제4 스위치를 포함하는 상기 추가 마이크로칩 내 H-브리지 회로 - 상기 제1 스위치 및 상기 제3 스위치는 상기 제1 전원공급 터미널 및 상기 제2 전원공급 터미널 사이에서 직렬로 연결되고, 제1 출력 터미널은 상기 제1 스위치 및 상기 제3 스위치 사이에서 전기적으로 연결되고, 상기 제1 출력 터미널은 상기 초음파 트랜스듀서의 제1 터미널에 연결되고, 상기 제2 스위치 및 상기 제4 스위치는 상기 제1 전원공급 터미널 및 상기 제2 전원공급 터미널 사이에서 직렬로 연결되며, 그리고 제2 출력 터미널은 상기 제2 스위치 및 상기 제4 스위치 사이에서 전기적으로 연결되고, 상기 제2 출력 터미널은 상기 초음파 트랜스듀서의 제2 터미널에 연결됨 -;
상기 펄스 폭 변조(PWM) 신호 발생기 서브시스템으로부터 상기 제1 위상 출력 신호를 수신하도록 구성된 제1 위상 터미널;
상기 PWM 신호 발생기 서브시스템으로부터 제2 위상 출력 신호를 수신하도록 구성된 제2 위상 터미널;
상기 제1 위상 출력 신호 및 상기 제2 위상 출력 신호에 기초하여 타이밍 신호를 생성하고, 상기 타이밍 신호를 상기 H-브리지 회로의 스위치로 출력하여 상기 스위치를 제어함으로써 시퀀스에 따라 켜고 끌 수 있고, 이에 따라 상기 H-브리지 회로가 상기 초음파 트랜스듀서를 구동하기 위한 AC 구동 신호를 출력하도록 구성되고, 상기 시퀀스에는 상기 제1 스위치 및 상기 제2 스위치를 끄고 상기 제3 스위치 및 상기 제4 스위치를 켜는 자유 부동 주기(free-float period)가 포함되어 상기 초음파 트랜스듀서에 저장된 에너지를 소산시키는, 디지털 상태 머신; 및
전류 센서를 포함하고,
상기 전류 센서는:
상기 제1 스위치 및 상기 제1 전원공급 터미널 사이에서 직렬로 연결되는 제1 전류 센스 레지스터;
상기 제1 전류 센스 레지스터에 걸쳐 전압 강하를 측정하고 상기 제1 전류 센스 레지스터를 통해 흐르는 전류를 나타내는 제1 전압 출력을 제공하도록 구성된 제1 전압 센서;
상기 제2 스위치 및 상기 제1 전원공급 터미널 사이에서 직렬로 연결되는 제2 전류 센스 레지스터;
상기 제2 전류 센스 레지스터에 걸쳐 전압 강하를 측정하고 상기 제2 전류 센스 레지스터를 통해 흐르는 전류를 나타내는 제2 전압 출력을 제공하도록 구성된 제2 전압 센서; 및
상기 제1 전압 출력 및 상기 제2 전압 출력과 동일한 접지에 대한 rms 출력 전압을 제공하도록 구성된 전류 센서 출력 터미널을 포함하고,
상기 rms 출력 전압은 상기 제1 스위치 또는 상기 제2 스위치를 통해 흐르는 rms 전류, 및 상기 제1 출력 터미널 및 상기 제2 출력 터미널 사이에서 연결된 상기 초음파 트랜스듀서를 통해 흐르는 전류를 나타내는, 물담배 장치.
12. 제11항에 있어서, 각각의 추가 마이크로칩 내 상기 H-브리지 회로는 상기 제1 출력 터미널과 상기 제2 출력 터미널에 연결된 상기 초음파 트랜스듀서에 전력 22W 내지 50W를 출력하도록 구성되는, 물담배 장치.
13. 제11항 또는 12항에 있어서, 각각의 추가 마이크로칩은 상기 추가 마이크로칩 내에 내장된 온도 센서를 더 포함하고, 상기 온도 센서는 상기 추가 마이크로칩의 온도를 측정하고, 상기 추가 마이크로칩의 온도가 사전결정된 임계값을 초과하는 것을 상기 온도 센서가 센싱하면 상기 추가 마이크로칩의 적어도 일부를 불능화하도록 구성되는, 물담배 장치.
14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 물담배 장치는 상기 DAC 출력 터미널로부터의 상기 아날로그 전압 출력 신호에 응답하여 전원 공급장치 전압을 부스트 전압까지 높이도록 구성된 부스트 컨버터 회로를 더 포함하고, 상기 부스트 컨버터 회로는 상기 제1 전원공급 터미널에 상기 부스트 전압을 제공하고 이에 따라 상기 H-브리지 회로의 스위치를 전환함으로써 상기 부스트 전압이 변조되도록 구성되는, 물담배 장치.
15. 제11항 내지 제14항 중 어느 한 항에 있어서, 상기 전류 센서는 상기 자유 부동 주기 동안 공명 회로를 통해 흐르는 전류를 센싱하도록 구성되고, 상기 디지털 상태 머신은 상기 타이밍 신호를 조절하여, 상기 전류 센서가 상기 자유 부동 주기 동안 상기 공명 회로를 통해 흐르는 전류가 제로(0)인 것을 센싱하는 경우 상기 제1 스위치 또는 상기 제2 스위치 중 하나를 켜도록 구성되는, 물담배 장치.
16. 제11항 내지 제15항 중 어느 한 항에 있어서, 상기 물담배 장치의 작동 설정 단계 중, 상기 추가 마이크로칩은,
상기 제1 스위치 및 상기 제2 스위치가 꺼지고 상기 제3 스위치 및 상기 제4 스위치가 켜지면 공명 회로를 통해 흐르는 전류가 제로(0)로 떨어지는 데 소요되는 시간의 길이를 측정하고; 그리고
상기 자유 부동 주기의 시간의 길이를 측정된 시간의 길이와 동일하게 설정하도록 구성되는, 물담배 장치.
17. 제1항 내지 제16항 중 어느 한 항에 있어서, 상기 물담배 장치는 명령을 저장하는 메모리를 더 포함하고, 상기 마이크로컨트롤러에 의해 실행될 때, 상기 명령은 상기 마이크로칩으로 하여금,
A. 상기 H-브리지 회로를 제어하여 스위프 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력하고;
B. 상기 피드백 신호에 기초하여, 상기 초음파 트랜스듀서에 의해 사용되는 능동 전력을 계산하고;
C. 상기 H-브리지 회로를 제어하여 상기 AC 구동 신호를 변조함으로써 상기 초음파 트랜스듀서에 의해 사용되는 상기 능동 전력을 최대화하고;
D. 상기 초음파 트랜스듀서에 의해 사용되는 최대 능동 전력 및 상기 AC 구동 신호의 스위프 주파수를 상기 메모리에 기록으로 보관하고;
E. 사전결정된 반복 횟수만큼 단계 A~D를 반복하되, 각 반복에 대하여 상기 스위프 주파수를 증가시키거나 감소시키고, 이에 따라 사전결정된 횟수만큼 반복된 후, 상기 스위프 주파수가 시작 스위프 주파수에서 종료 스위프 주파수까지 증가하거나 감소하고;
F. 상기 초음파 트랜스듀서에 의해 최대 능동 전력이 사용되는 상기 AC 구동 신호의 스위프 주파수인, 상기 AC 구동 신호를 위한 최적 주파수를 상기 메모리에 보관된 기록으로부터 식별하고; 그리고
G. 상기 H-브리지 회로를 제어하여 상기 최적 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력함으로써 상기 초음파 트랜스듀서를 구동하여 액체를 분무하도록 하는 단계들을 실행하도록 하는 물담배 장치.
18. 제17항에 있어서, 상기 시작 스위프 주파수는 2900kHz이고, 상기 종료 스위프 주파수는 3100kHz인, 물담배 장치.
19. 물담배로서,
용수 챔버;
상기 용수 챔버에 부착된 제1 단부를 구비하는 장형 스템; 및
제1항 내지 제18항 중 어느 한 항에 따르는 물담배 장치를 포함하고,
상기 스템은 상기 스템의 제2 단부에서 상기 스템을 통과하여 상기 제1 단부로 연장되는 미스트 유동 경로를 포함하고,
상기 물담배 장치의 상기 물담배 부착 장치는 상기 스템의 제2 단부에서 상기 물담배의 상기 스템에 부착되는, 물담배.

Claims (19)

  1. 물담배 장치로서,
    복수의 초음파 미스트 발생장치;
    복수의 H-브리지 회로;
    마이크로컨트롤러;
    상기 마이크로컨트롤러에 전기적으로 연결되어 상기 마이크로컨트롤러와 데이터를 상호 통신하는 데이터 버스;
    상기 데이터 버스에 전기적으로 연결되어 상기 마이크로컨트롤러로부터 데이터를 수신하고 상기 마이크로컨트롤러에 데이터를 전송하는 복수의 마이크로칩; 및
    상기 물담배 장치를 물담배에 부착하도록 구성된 물담배 부착 장치를 포함하고,
    각 미스트 발생장치는,
    장형(elongate)이면서 공기 흡기 포트 및 미스트 방출 포트를 구비하는 미스트 발생장치 하우징;
    상기 미스트 발생장치 하우징 내에 제공되고, 분무되는 액체를 저장하는 액체 챔버;
    상기 미스트 발생장치 하우징 내에 제공되는 초음파 처리 챔버;
    상기 액체 챔버 및 상기 초음파 처리 챔버 사이에서 연장되는 모세관 요소로서, 상기 모세관 요소의 제1 부분은 상기 액체 챔버 내에 있고 상기 모세관 요소의 제2 부분은 상기 초음파 처리 챔버 내에 있도록 하는 모세관 요소;
    분무화 표면을 갖는 초음파 트랜스듀서로서, 상기 모세관 요소의 제2 부분의 일부는 상기 분무화 표면의 일부와 중첩되고, 상기 초음파 트랜스듀서가 AC 구동 신호에 의해 구동될 때, 상기 분무화 표면이 진동하여 상기 모세관 요소의 제2 부분에 의해 운반된 액체를 분무함으로써 상기 초음파 처리 챔버 내에 상기 분무된 액체 및 공기를 포함하는 미스트를 생성하는 초음파 트랜스듀서; 및
    상기 공기 흡기 포트, 상기 초음파 처리 챔버 및 상기 미스트 방출 포트 사이에 공기 유동 경로를 제공하는 공기 유동 장치를 포함하고,
    상기 복수의 H-브리지 회로의 각각의 H-브리지 회로는 상기 초음파 트랜스듀서 중 각각 하나와 연결되고 AC 구동 신호를 발생하여 상기 초음파 트랜스듀서를 구동하도록 구성되고,
    상기 복수의 마이크로칩의 각 마이크로칩은 상기 H-브리지 회로 중 각각 하나와 연결되어 상기 H-브리지 회로를 제어함으로써 상기 AC 구동 신호를 생성하고,
    각각의 마이크로칩은 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템을 포함하는 단일 유닛으로서:
    오실레이터;
    펄스 폭 변조(PWM) 신호 발생기 서브시스템;
    아날로그 디지털 컨버터(ADC) 서브시스템;
    디지털 프로세서 서브시스템; 및
    디지털 아날로그 컨버터(DAC) 서브시스템을 포함하고,
    상기 오실레이터는:
    메인 클럭 신호,
    상기 메인 클럭 신호의 양(positive) 반주기 동안의 제1 시간에 대해 하이(high)이고, 상기 메인 클럭 신호의 음(negative) 반주기 동안에는 로우(low)인 제1 위상 클럭 신호, 및
    상기 메인 클럭 신호의 음 반주기 동안의 제2 시간에 대해 하이이고, 상기 메인 클럭 신호의 양 반주기 동안에는 로우인 제2 위상 클럭 신호를 생성하도록 구성되고,
    상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 위상은 중앙으로 정렬되며;
    상기 펄스 폭 변조(PWM) 신호 발생기 서브시스템은:
    상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호를 사용하고, 상기 메인 클럭 신호의 주파수의 두 배인 이중 주파수 클럭 신호를 생성하도록 구성된 지연 잠금 루프 - 상기 지연 잠금 루프는 상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 상승 에지를 제어하여 상기 이중 주파수 클럭 신호의 상승 에지와 동기화되도록 구성되고, 상기 지연 잠금 루프는 드라이버 제어 신호에 응답하여 상기 제1 위상 클럭 신호 및 상기 제2 위상 클럭 신호의 듀티 사이클 및 주파수를 조절하여 제1 위상 출력 신호 및 제2 위상 출력 신호를 생성하도록 구성되고, 상기 제1 위상 출력 신호 및 상기 제2 위상 출력 신호는 상기 마이크로칩에 연결된 상기 H-브리지 회로를 구동하여 AC 구동 신호를 생성함으로써 상기 초음파 트랜스듀서를 구동하도록 구성됨 -;
    상기 마이크로칩에 연결된 상기 H-브리지 회로에 대해 상기 제1 위상 출력 신호를 출력하도록 구성된 제1 위상 출력 신호 터미널;
    상기 마이크로칩에 연결된 상기 H-브리지 회로에 대해 상기 제2 위상 출력 신호를 출력하도록 구성된 제2 위상 출력 신호 터미널;
    상기 H-브리지 회로로부터, 상기 H-브리지 회로가 상기 AC 구동 신호와 함께 상기 초음파 트랜스듀서를 구동하여 상기 액체를 분무할 때 상기 AC 구동 신호 또는 상기 마이크로칩에 연결된 상기 H-브리지 회로의 작동의 파라미터를 나타내는 피드백 신호를 수신하도록 구성되는 피드백 입력 터미널을 포함하고,
    상기 아날로그 디지털 컨버터(ADC) 서브시스템은 복수의 각 아날로그 신호를 수신하도록 구성된 복수의 ADC 입력 터미널을 포함하고, 상기 복수의 ADC 입력 터미널 중 하나의 ADC 입력 터미널이 상기 피드백 입력 터미널에 연결됨으로써, 상기 ADC 서브시스템은 상기 마이크로칩에 연결된 상기 H-브리지 회로로부터 상기 피드백 신호를 수신하고, 상기 ADC 서브시스템은 상기 메인 클럭 신호의 주파수에 비례하는 샘플링 주파수에서 상기 복수의 ADC 입력 터미널에서 수신된 아날로그 신호를 샘플링하도록 구성되고, 상기 ADC 서브시스템은 샘플링된 아날로그 신호를 사용하여 ADC 디지털 신호를 생성하도록 구성되고;
    상기 디지털 프로세서 서브시스템은, 상기 ADC 서브시스템으로부터 상기 ADC 디지털 신호를 수신하고, 상기 ADC 디지털 신호를 처리하여 상기 드라이버 제어 신호를 생성하도록 구성되고, 상기 드라이버 제어 신호를 상기 PWM 신호 발생기 서브시스템으로 전달하여 상기 PWM 신호 발생기 서브시스템을 제어하도록 구성되고, 그리고
    상기 디지털 아날로그 컨버터(DAC) 서브시스템은:
    상기 디지털 프로세서 서브시스템에 의해 생성된 디지털 제어 신호를 아날로그 전압 제어 신호로 변환하여 상기 마이크로칩에 연결된 상기 H-브리지 회로에 의한 변조를 위한 전압을 생성하는 전압 레귤레이터 회로를 제어하도록 구성된 디지털 아날로그 컨버터(DAC); 및
    상기 아날로그 전압 제어 신호를 출력하여 상기 전압 레귤레이터 회로를 제어함으로써 상기 초음파 트랜스듀서의 작동을 나타내는 피드백 신호에 응답하여 상기 초음파 트랜스듀서를 구동하도록 상기 마이크로칩에 연결된 상기 H-브리지 회로에 의한 변조를 위한 사전결정된 전압을 생성하도록 구성된 DAC 출력 터미널을 구비하고,
    상기 물담배 부착 장치는 상기 미스트 발생장치의 상기 미스트 방출 포트로부터 상기 물담배 장치 밖으로 향하는 유체 유동 경로를 제공하고, 이에 따라 상기 미스트 발생장치 중 적어도 하나가 드라이버 장치에 의해 활성화되면, 각각의 활성화된 미스트 발생장치에 의해 생성된 미스트가 상기 유체 유동 경로를 따라 상기 물담배 장치 밖을 향해 물담배로 흐르도록 하는 물담배 방출 포트를 구비하는, 물담배 장치.
  2. 제1항에 있어서,
    상기 마이크로컨트롤러는 상기 미스트 발생장치에 대한 각각의 고유 식별자를 사용하여 각 미스트 발생장치를 식별 및 제어하도록 구성되는, 물담배 장치.
  3. 제1항 또는 제2항에 있어서,
    각각의 미스트 발생장치는 식별 장치를 포함하고, 상기 식별 장치는,
    상기 미스트 발생장치를 위한 고유 식별자를 저장하는 메모리를 구비하는 집적회로; 및
    상기 집적회로와 통신하기 위한 전자 인터페이스를 제공하는 전기 연결부를 포함하는, 물담배 장치.
  4. 제1항 또는 제2항에 있어서,
    상기 마이크로컨트롤러는 각각의 마이크로칩 및 각각의 미스트 발생장치를 제어하여 다른 미스트 발생장치를 독립적으로 활성화하도록 구성되는, 물담배 장치.
  5. 제4항에 있어서,
    상기 마이크로컨트롤러는 상기 미스트 발생장치를 제어하여 사전결정된 시퀀스에 따라 활성화되도록 구성되는, 물담배 장치.
  6. 제1항 또는 제2항에 있어서,
    상기 물담배 장치는,
    상기 미스트 발생장치의 상기 미스트 방출 포트와 유체 연통하는 매니폴드 파이프를 구비하는 매니폴드를 포함하고, 상기 미스트 방출 포트로부터의 미스트 출력은 상기 매니폴드 파이프에서 결합되고, 상기 매니폴드 파이프를 통해 상기 물담배 장치 밖을 향해 흐르는, 물담배 장치.
  7. 제6항에 있어서,
    상기 물담배 장치는 서로에 대해 90º로 상기 매니폴드와 느슨하게 결합된 4개의 미스트 발생장치를 구비하는, 물담배 장치.
  8. 제1항 또는 제2항에 있어서,
    상기 피드백 입력 터미널은 상기 초음파 트랜스듀서를 구동하는 AC 구동 신호의 rms 전류를 나타내는 전압의 형태로 상기 H-브리지 회로로부터 피드백 신호를 수신하도록 구성되는, 물담배 장치.
  9. 제1항 또는 제2항에 있어서,
    각각의 마이크로칩은,
    상기 마이크로칩 내에 내장된 온도 센서를 더 포함하고, 상기 온도 센서는 상기 마이크로칩의 온도를 나타내는 온도 신호를 생성하도록 구성되고, 상기 온도 신호는 상기 ADC 서브시스템의 추가 ADC 입력 터미널에 의해 수신되고, 상기 온도 신호는 상기 ADC 서브시스템에 의해 샘플링되는, 물담배 장치.
  10. 제1항 또는 제2항에 있어서,
    상기 ADC 서브시스템은 상기 복수의 ADC 입력 터미널에서 수신된 신호를 순차적으로 샘플링하도록 구성되고, 각 신호는 각각의 사전결정된 횟수로 상기 ADC 서브시스템에 의해 샘플링되는, 물담배 장치.
  11. 제1항 또는 제2항에 있어서,
    상기 물담배 장치는 복수의 추가 마이크로칩을 더 포함하고, 상기 복수의 추가 마이크로칩의 각각의 추가 마이크로칩은 상기 복수의 마이크로칩의 각각의 마이크로칩과 연결되고, 상기 복수의 H-브리지 회로 중 하나의 H-브리지 회로를 구비하고,
    각각의 추가 마이크로칩은 복수의 상호연결된 임베디드 컴포넌트 및 서브시스템을 포함하는 단일 유닛으로서:
    제1 전원공급 터미널;
    제2 전원공급 터미널;
    제1 스위치, 제2 스위치, 제3 스위치 및 제4 스위치를 포함하는 상기 추가 마이크로칩 내 H-브리지 회로 - 상기 제1 스위치 및 상기 제3 스위치는 상기 제1 전원공급 터미널 및 상기 제2 전원공급 터미널 사이에서 직렬로 연결되고, 제1 출력 터미널은 상기 제1 스위치 및 상기 제3 스위치 사이에서 전기적으로 연결되고, 상기 제1 출력 터미널은 상기 초음파 트랜스듀서의 제1 터미널에 연결되고, 상기 제2 스위치 및 상기 제4 스위치는 상기 제1 전원공급 터미널 및 상기 제2 전원공급 터미널 사이에서 직렬로 연결되며, 그리고 제2 출력 터미널은 상기 제2 스위치 및 상기 제4 스위치 사이에서 전기적으로 연결되고, 상기 제2 출력 터미널은 상기 초음파 트랜스듀서의 제2 터미널에 연결됨 -;
    상기 펄스 폭 변조(PWM) 신호 발생기 서브시스템으로부터 상기 제1 위상 출력 신호를 수신하도록 구성된 제1 위상 터미널;
    상기 PWM 신호 발생기 서브시스템으로부터 제2 위상 출력 신호를 수신하도록 구성된 제2 위상 터미널;
    상기 제1 위상 출력 신호 및 상기 제2 위상 출력 신호에 기초하여 타이밍 신호를 생성하고, 상기 타이밍 신호를 상기 H-브리지 회로의 스위치로 출력하여 상기 스위치를 제어함으로써 시퀀스에 따라 켜고 끌 수 있고, 이에 따라 상기 H-브리지 회로가 상기 초음파 트랜스듀서를 구동하기 위한 AC 구동 신호를 출력하도록 구성되고, 상기 시퀀스에는 상기 제1 스위치 및 상기 제2 스위치를 끄고 상기 제3 스위치 및 상기 제4 스위치를 켜는 자유 부동 주기(free-float period)가 포함되어 상기 초음파 트랜스듀서에 저장된 에너지를 소산시키는, 디지털 상태 머신; 및
    전류 센서를 포함하고,
    상기 전류 센서는:
    상기 제1 스위치 및 상기 제1 전원공급 터미널 사이에서 직렬로 연결되는 제1 전류 센스 레지스터;
    상기 제1 전류 센스 레지스터에 걸쳐 전압 강하를 측정하고 상기 제1 전류 센스 레지스터를 통해 흐르는 전류를 나타내는 제1 전압 출력을 제공하도록 구성된 제1 전압 센서;
    상기 제2 스위치 및 상기 제1 전원공급 터미널 사이에서 직렬로 연결되는 제2 전류 센스 레지스터;
    상기 제2 전류 센스 레지스터에 걸쳐 전압 강하를 측정하고 상기 제2 전류 센스 레지스터를 통해 흐르는 전류를 나타내는 제2 전압 출력을 제공하도록 구성된 제2 전압 센서; 및
    상기 제1 전압 출력 및 상기 제2 전압 출력과 동일한 접지에 대한 rms 출력 전압을 제공하도록 구성된 전류 센서 출력 터미널을 포함하고,
    상기 rms 출력 전압은 상기 제1 스위치 또는 상기 제2 스위치를 통해 흐르는 rms 전류, 및 상기 제1 출력 터미널 및 상기 제2 출력 터미널 사이에서 연결된 상기 초음파 트랜스듀서를 통해 흐르는 전류를 나타내는, 물담배 장치.
  12. 제11항에 있어서,
    각각의 추가 마이크로칩 내 상기 H-브리지 회로는 상기 제1 출력 터미널과 상기 제2 출력 터미널에 연결된 상기 초음파 트랜스듀서에 전력 22W 내지 50W를 출력하도록 구성된, 물담배 장치.
  13. 제11항에 있어서,
    각각의 추가 마이크로칩은 상기 추가 마이크로칩 내에 내장된 온도 센서를 더 포함하고,
    상기 온도 센서는 상기 추가 마이크로칩의 온도를 측정하고, 상기 추가 마이크로칩의 온도가 사전결정된 임계값을 초과하는 것을 상기 온도 센서가 센싱하면 상기 추가 마이크로칩의 적어도 일부를 불능화하도록 구성되는, 물담배 장치.
  14. 제11항에 있어서,
    상기 물담배 장치는 상기 DAC 출력 터미널로부터의 상기 아날로그 전압 제어 신호에 응답하여 전원 공급장치 전압을 부스트 전압까지 높이도록 구성된 부스트 컨버터 회로를 더 포함하고,
    상기 부스트 컨버터 회로는 상기 제1 전원공급 터미널에 상기 부스트 전압을 제공하고 이에 따라 상기 H-브리지 회로의 스위치를 전환함으로써 상기 부스트 전압이 변조되도록 구성되는, 물담배 장치.
  15. 제11항에 있어서,
    상기 전류 센서는 상기 자유 부동 주기 동안 공명 회로를 통해 흐르는 전류를 센싱하도록 구성되고,
    상기 디지털 상태 머신은 상기 타이밍 신호를 조절하여, 상기 전류 센서가 상기 자유 부동 주기 동안 상기 공명 회로를 통해 흐르는 전류가 제로(0)인 것을 센싱하는 경우 상기 제1 스위치 또는 상기 제2 스위치 중 하나를 켜도록 구성되는, 물담배 장치.
  16. 제11항에 있어서,
    상기 물담배 장치의 작동 설정 단계 중, 상기 추가 마이크로칩은,
    상기 제1 스위치 및 상기 제2 스위치가 꺼지고 상기 제3 스위치 및 상기 제4 스위치가 켜지면 공명 회로를 통해 흐르는 전류가 제로(0)로 떨어지는 데 소요되는 시간의 길이를 측정하고; 그리고
    상기 자유 부동 주기의 시간의 길이를 측정된 시간의 길이와 동일하게 설정하도록 구성되는, 물담배 장치.
  17. 제1항 또는 제2항에 있어서,
    상기 물담배 장치는 명령을 저장하는 메모리를 더 포함하고, 상기 마이크로컨트롤러에 의해 실행될 때, 상기 명령은 상기 마이크로칩으로 하여금,
    A. 상기 H-브리지 회로를 제어하여 스위프 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력하고;
    B. 상기 피드백 신호에 기초하여 상기 초음파 트랜스듀서에 의해 사용되는 능동 전력을 계산하고;
    C. 상기 H-브리지 회로를 제어하여 상기 AC 구동 신호를 변조함으로써 상기 초음파 트랜스듀서에 의해 사용되는 상기 능동 전력을 최대화하고;
    D. 상기 초음파 트랜스듀서에 의해 사용되는 최대 능동 전력 및 상기 AC 구동 신호의 스위프 주파수를 상기 메모리에 기록으로 보관하고;
    E. 사전결정된 반복 횟수만큼 단계 A~D를 반복하되, 각 반복에 대하여 상기 스위프 주파수를 증가시키거나 감소시키고, 이에 따라 사전결정된 횟수만큼 반복된 후, 상기 스위프 주파수가 시작 스위프 주파수에서 종료 스위프 주파수까지 증가하거나 감소하고;
    F. 상기 초음파 트랜스듀서에 의해 최대 능동 전력이 사용되는 상기 AC 구동 신호의 스위프 주파수를 상기 AC 구동 신호를 위한 최적 주파수로서 상기 메모리에 보관된 기록으로부터 식별하고; 그리고
    G. 상기 H-브리지 회로를 제어하여 상기 최적 주파수에서 AC 구동 신호를 상기 초음파 트랜스듀서로 출력함으로써 상기 초음파 트랜스듀서를 구동하여 액체를 분무하도록 하는 단계들을 실행하도록 하는, 물담배 장치.
  18. 제17항에 있어서,
    상기 시작 스위프 주파수는 2900kHz이고, 상기 종료 스위프 주파수는 3100kHz인, 물담배 장치.
  19. 물담배로서,
    용수 챔버;
    상기 용수 챔버에 부착된 제1 단부를 구비하는 장형 스템; 및
    제1항 또는 제2항에 따르는 물담배 장치를 포함하고,
    상기 스템은 상기 스템의 제2 단부에서 상기 스템을 통과하여 상기 제1 단부로 연장되는 미스트 유동 경로를 포함하고,
    상기 물담배 장치의 상기 물담배 부착 장치는 상기 스템의 제2 단부에서 상기 물담배의 상기 스템에 부착되는, 물담배.

KR1020227031909A 2019-12-15 2021-12-15 물담배 장치 KR102576901B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237030279A KR20230132626A (ko) 2020-12-15 2021-12-15 물담배 장치
KR1020237030275A KR20230132625A (ko) 2020-12-15 2021-12-15 물담배 장치

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
PCT/IB2019/060810 WO2021123869A1 (en) 2019-12-15 2019-12-15 Ultrasonic mist inhaler
PCT/IB2019/060811 WO2021123870A1 (en) 2019-12-15 2019-12-15 Ultrasonic mist inhaler
PCT/IB2019/060812 WO2021123871A1 (en) 2019-12-15 2019-12-15 Ultrasonic mist inhaler
PCT/IB2019/060808 WO2021123867A1 (en) 2019-12-15 2019-12-15 Ultrasonic mist inhaler
EP20168245.7A EP3834949A1 (en) 2019-12-15 2020-04-06 Ultrasonic systems and methods
EP20168231 2020-04-06
EP20168938.7A EP3834636A1 (en) 2019-12-15 2020-04-09 An ultrasonic mist inhaler device
US17/122,025 US11672928B2 (en) 2019-12-15 2020-12-15 Mist inhaler devices
US17/122,025 2020-12-15
US17/220,189 US20210307376A1 (en) 2020-04-06 2021-04-01 Compositions Comprising Nicotine and/or Nicotine Salts and Ultrasonic Aerosolisation of Compositions Comprising Nicotine and/or Nicotine Salts
US17/220,189 2021-04-01
GB2104872.3A GB2592144B (en) 2020-04-06 2021-04-06 Hookah device
GB2104872.3 2021-04-06
PCT/GB2021/053316 WO2022129911A1 (en) 2020-12-15 2021-12-15 A hookah device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020237030275A Division KR20230132625A (ko) 2020-12-15 2021-12-15 물담배 장치
KR1020237030279A Division KR20230132626A (ko) 2020-12-15 2021-12-15 물담배 장치

Publications (2)

Publication Number Publication Date
KR20220138405A KR20220138405A (ko) 2022-10-12
KR102576901B1 true KR102576901B1 (ko) 2023-09-13

Family

ID=73740352

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020227024453A KR102515974B1 (ko) 2019-12-15 2020-12-15 미스트 흡입장치
KR1020237009599A KR20230042763A (ko) 2019-12-15 2020-12-15 미스트 흡입장치
KR1020227031909A KR102576901B1 (ko) 2019-12-15 2021-12-15 물담배 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020227024453A KR102515974B1 (ko) 2019-12-15 2020-12-15 미스트 흡입장치
KR1020237009599A KR20230042763A (ko) 2019-12-15 2020-12-15 미스트 흡입장치

Country Status (17)

Country Link
US (4) US11672928B2 (ko)
EP (3) EP3837999B1 (ko)
JP (2) JP7241980B2 (ko)
KR (3) KR102515974B1 (ko)
AU (2) AU2020410172B2 (ko)
CA (2) CA3161546A1 (ko)
CL (1) CL2022001608A1 (ko)
ES (1) ES2926952T3 (ko)
HU (1) HUE060002T2 (ko)
IL (2) IL295717B1 (ko)
JO (1) JOP20220147A1 (ko)
LT (1) LT3837999T (ko)
PL (1) PL3837999T3 (ko)
RS (1) RS63694B1 (ko)
SI (1) SI3837999T1 (ko)
WO (1) WO2021123753A1 (ko)
ZA (1) ZA202207046B (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778054B (zh) * 2017-05-02 2022-09-21 瑞士商菲利浦莫里斯製品股份有限公司 具有盒子之氣溶膠產生系統
WO2019002613A1 (en) * 2017-06-30 2019-01-03 Philip Morris Products S.A. INDUCTION HEATING DEVICE, AEROSOL GENERATING SYSTEM COMPRISING AN INDUCTION HEATING DEVICE, AND METHOD OF USE
CN110604339B (zh) * 2018-06-14 2021-12-03 湖南中烟工业有限责任公司 一种超声波电子烟追频方法
US20210113783A1 (en) * 2019-10-20 2021-04-22 Respira Technologies, Inc. Electronic devices and liquids for aerosolizing and inhaling therewith
EP3860696B1 (en) 2019-12-15 2024-04-10 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
JP7480338B2 (ja) 2019-12-15 2024-05-09 シャヒーン イノベーションズ ホールディング リミテッド 超音波ミスト吸入器
US11730193B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11666713B2 (en) 2019-12-15 2023-06-06 Shaheen Innovations Holding Limited Mist inhaler devices
US11589610B2 (en) 2019-12-15 2023-02-28 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
SI3837999T1 (sl) 2019-12-15 2022-10-28 Shaheen Innovations Holding Limited Naprave za inhaliranje meglic
KR20220141281A (ko) 2019-12-15 2022-10-19 샤힌 이노베이션즈 홀딩 리미티드 초음파 미스트 흡입장치
KR102450715B1 (ko) * 2020-04-20 2022-10-04 주식회사 케이티앤지 초음파 기반 에어로졸 발생 장치
CA3202349A1 (en) 2020-12-15 2022-06-23 Shaheen Innovations Holding Limited A nicotine delivery device
WO2023022394A1 (en) * 2021-08-20 2023-02-23 Kt&G Corporation Aerosol generating device
CN113647698A (zh) * 2021-08-23 2021-11-16 深圳麦克韦尔科技有限公司 雾化介质载体及雾化系统
US20230188900A1 (en) 2021-12-15 2023-06-15 Shaheen Innovations Holding Limited Microchip for driving a resonant circuit
WO2023111495A1 (en) * 2021-12-15 2023-06-22 Shaheen Innovations Holding Limited A microchip for driving a resonant circuit
US20230188901A1 (en) 2021-12-15 2023-06-15 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves
WO2023198845A1 (en) * 2022-04-14 2023-10-19 Philip Morris Products S.A. Aerosolisation assembly
WO2023205385A1 (en) 2022-04-22 2023-10-26 Qnovia, Inc. Electronic devices for aerosolizing and inhaling liquid
CN116459989B (zh) * 2023-06-19 2023-09-05 广东科高电器有限公司 一种雾化装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066619A1 (en) * 2014-09-10 2016-03-10 Fernando Di Carlo Multi-user electronic hookah and a method of its use
US20160324212A1 (en) * 2015-05-08 2016-11-10 Lunatech, Llc Electronic Hookah Simulator And Vaporizer
WO2018115781A1 (fr) * 2016-12-21 2018-06-28 Thang Nguyen Chicha ou narguilé perfectionné
WO2019238064A1 (zh) * 2018-06-14 2019-12-19 湖南中烟工业有限责任公司 一种超声雾化片工作控制电路及超声波电子烟

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537765B2 (de) * 1975-08-25 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Medizinisches Inhalationsgerät zur Behandlung von Krankheiten der Atmungswege
GB1528391A (en) 1976-01-05 1978-10-11 Gildemeister V Aerosol compositions
DE2656370C3 (de) 1976-12-13 1979-07-26 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart Inhalationsgerät zur Behandlung der Atemwege
DE7917568U1 (de) * 1979-06-19 1979-09-20 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart Inhalationsgeraet
DE3627222A1 (de) 1986-08-11 1988-02-18 Siemens Ag Ultraschall-taschenzerstaeubergeraet
GB8713645D0 (en) 1987-06-11 1987-07-15 Imp Tobacco Ltd Smoking device
DE4004541A1 (de) 1990-02-14 1991-08-22 Siemens Ag Verfahren und einrichtung fuer die ultraschall-fluessigkeits-zerstaeubung
AU641268B2 (en) 1990-07-27 1993-09-16 Franco Del Bon Inhalation device
DE4117078A1 (de) 1991-05-25 1992-11-26 Boehringer Ingelheim Kg Verfahren zur herstellung therapeutisch anwendbarer aerosole
EP0516565B1 (en) 1991-05-27 1996-04-24 TDK Corporation An ultrasonic wave nebulizer
GB2291605B (en) 1991-11-12 1996-05-01 Medix Ltd A nebuliser and nebuliser control system
JP2849647B2 (ja) 1991-12-04 1999-01-20 ザ テクノロジー パートナーシップ ピーエルシー 流体の小水滴製造装置及びその方法
JP2579614Y2 (ja) 1992-05-25 1998-08-27 ティーディーケイ株式会社 超音波霧化器
WO1995001137A1 (en) 1993-06-29 1995-01-12 Voges Innovation Pty. Ltd. Dispenser
US6011345A (en) 1996-02-08 2000-01-04 Emf Industries, Inc. Device and method for controlling transductive systems
GB9604065D0 (en) 1996-02-27 1996-05-01 Medix Ltd A nebuliser
JP3325028B2 (ja) 1996-06-17 2002-09-17 日本たばこ産業株式会社 香味生成物品
IT1289590B1 (it) 1996-08-19 1998-10-15 Guido Belli Dispositivo per l'erogazione di sostanze nebulizzate per indurre la disassuefazione da droghe e in particolare dal tabagismo e per curare
US6040560A (en) 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
KR100289448B1 (ko) 1997-07-23 2001-05-02 미즈노 마사루 향미발생장치
CN1044314C (zh) 1997-12-01 1999-07-28 蒲邯名 健身香烟
CA2334590C (en) * 1998-06-12 2009-08-18 Microdose Technologies, Inc. Inhalation device
JP3312216B2 (ja) 1998-12-18 2002-08-05 オムロン株式会社 噴霧装置
US6196218B1 (en) 1999-02-24 2001-03-06 Ponwell Enterprises Ltd Piezo inhaler
JP2001069963A (ja) 1999-09-06 2001-03-21 Nobuya Fushimi 超音波式タバコ喫霧装置
DE19962280A1 (de) 1999-12-23 2001-07-12 Draeger Medizintech Gmbh Ultraschallvernebler
DE10051792A1 (de) 2000-10-18 2002-05-08 Rainer Puellen System für unschädliches Rauchen
DE10051762B4 (de) 2000-10-18 2006-11-16 Röhm Gmbh Wässriges Monomer-Polymer-System und dessen Verwendung
US6601581B1 (en) 2000-11-01 2003-08-05 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6546927B2 (en) 2001-03-13 2003-04-15 Aerogen, Inc. Methods and apparatus for controlling piezoelectric vibration
DE10122065B4 (de) 2001-05-07 2007-10-04 Pari GmbH Spezialisten für effektive Inhalation Vorrichtung zur Erzeugung von Flüssigkeitströpfchen mit einer in Schwingungen versetzten Membran
AU2002310054B2 (en) 2001-05-21 2007-02-01 Injet Digital Aerosols Limited Compositions for protein delivery via the pulmonary route
SE0104388D0 (sv) 2001-12-27 2001-12-27 Pharmacia Ab New formulation and use and manufacture thereof
US20030192532A1 (en) 2002-04-12 2003-10-16 Hopkins Andrew David Nebulizer
US20030209005A1 (en) 2002-05-13 2003-11-13 Fenn John Bennett Wick injection of liquids for colloidal propulsion
SE0201669D0 (sv) 2002-06-03 2002-06-03 Pharmacia Ab New formulation and use thereof
TW562704B (en) 2002-11-12 2003-11-21 Purzer Pharmaceutical Co Ltd Ultrasonic atomizer device for generating high contents of sub-micron atomized droplets
GB2395437C (en) 2002-11-20 2010-10-20 Profile Respiratory Systems Ltd Improved inhalation method and apparatus
GB2396825B (en) 2002-11-20 2004-12-08 Profile Respiratory Systems Lt Improved inhalation method and apparatus
CN100381083C (zh) 2003-04-29 2008-04-16 韩力 一种非可燃性电子喷雾香烟
JP2005288400A (ja) 2004-04-05 2005-10-20 Mikuni Corp 化粧品又は薬剤の供給方法、及び同供給装置
CN2719043Y (zh) 2004-04-14 2005-08-24 韩力 雾化电子烟
FR2879482B1 (fr) 2004-12-20 2007-03-30 Oreal Dispositif de pulverisation d'un produit, notamment d'un parfum
US20070017505A1 (en) 2005-07-15 2007-01-25 Lipp Brian A Dispensing device and method
US9101949B2 (en) 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
GB0601077D0 (en) 2006-01-19 2006-03-01 Power Generation Technology Lt Method and apparatus for delivering liquid in droplet form
FR2903331B1 (fr) 2006-07-07 2008-10-10 Oreal Generateur pour exciter un transducteur piezoelectrique
JP2008104966A (ja) 2006-10-26 2008-05-08 Seiko Epson Corp 霧化装置、吸引装置
US20080156320A1 (en) 2007-01-03 2008-07-03 Thomas Low Ultrasonic nebulizer and method for atomizing liquid
US8439033B2 (en) * 2007-10-09 2013-05-14 Microdose Therapeutx, Inc. Inhalation device
WO2009096346A1 (ja) 2008-01-31 2009-08-06 Mitsubishi Electric Corporation 超音波発生装置及びそれを備えた設備機器
DE102008022987A1 (de) 2008-05-09 2009-11-12 Pari Pharma Gmbh Vernebler für Beatmungsmaschinen und Beatmungsmaschine mit einem solchen Vernebler
US8006918B2 (en) 2008-10-03 2011-08-30 The Proctor & Gamble Company Alternating current powered delivery system
US8115366B2 (en) 2008-10-23 2012-02-14 Versatile Power, Inc. System and method of driving ultrasonic transducers
US8991722B2 (en) 2009-05-11 2015-03-31 Monash University Microfluidic apparatus for the atomisation of a liquid
US8897628B2 (en) 2009-07-27 2014-11-25 Gregory D. Conley Electronic vaporizer
WO2011024766A1 (ja) 2009-08-26 2011-03-03 パナソニック電工 株式会社 放電装置及びそれを備えた静電霧化装置
CN101648041A (zh) 2009-09-02 2010-02-17 王成 一种医疗微孔雾化吸药器
US8757147B2 (en) 2010-05-15 2014-06-24 Minusa Holdings Llc Personal vaporizing inhaler with internal light source
US11344683B2 (en) 2010-05-15 2022-05-31 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US20170368273A1 (en) 2010-08-23 2017-12-28 Darren Rubin Systems and methods of aerosol delivery with airflow regulation
US11247003B2 (en) 2010-08-23 2022-02-15 Darren Rubin Systems and methods of aerosol delivery with airflow regulation
GB201018796D0 (en) 2010-11-08 2010-12-22 British American Tobacco Co Aerosol generator
KR20120107219A (ko) 2011-03-21 2012-10-02 (주)메나리 전자담배
US8953350B2 (en) 2011-04-08 2015-02-10 Sunedison, Inc. Photovoltaic power converters
WO2013028934A1 (en) 2011-08-23 2013-02-28 Temptu , Inc. Ultrasonic spraying device/air-assisted ultrasonic spraying device with advancing cartridge piston
KR101369846B1 (ko) 2012-02-17 2014-03-25 (주) 디바이스이엔지 디스펜서형 노즐장치
JP5981194B2 (ja) 2012-03-30 2016-08-31 住友化学株式会社 霧化装置
EA201491906A1 (ru) 2012-04-20 2015-03-31 Айновиа, Инк. Распылительное эжекторное устройство и способы его использования
EP2849949A4 (en) 2012-05-15 2017-07-26 Eyenovia, Inc. Ejector devices, methods, drivers, and circuits therefor
AU2013201383B2 (en) 2013-03-01 2015-07-02 Royal Melbourne Institute Of Technology Atomisation apparatus using surface acoustic wave generaton
US9242263B1 (en) * 2013-03-15 2016-01-26 Sono-Tek Corporation Dynamic ultrasonic generator for ultrasonic spray systems
US9884157B2 (en) 2013-03-15 2018-02-06 Microdose Therapeutx, Inc. Inhalation device, control method and computer program
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
KR20230013165A (ko) 2013-05-06 2023-01-26 쥴 랩스, 인크. 에어로졸 장치를 위한 니코틴 염 제제 및 그 방법
GB201312263D0 (en) 2013-07-09 2013-08-21 The Technology Partnership Plc Separable membrane improvements
IL217513A0 (en) * 2013-09-04 2012-02-29 Nektar Therapeutics Negatively biased sealed nebulizers systems and methods
CA2932464C (en) 2013-12-05 2023-01-03 Pax Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
CN103736180B (zh) 2014-01-13 2015-07-01 常州正元医疗科技有限公司 手持式高频超声雾化全呼吸道药物导入装置
US9713681B2 (en) * 2014-01-17 2017-07-25 Health & Life Co., Ltd. Method and nebulization module providing constant electric power by automatic compensation
WO2015115006A1 (ja) 2014-01-31 2015-08-06 株式会社良品計画 超音波霧化装置、超音波加湿器、及び、超音波芳香揮散器
TWI527629B (zh) 2014-02-14 2016-04-01 德技股份有限公司 霧化器噴頭
US20150230522A1 (en) 2014-02-18 2015-08-20 Jeffrey L. Horn Self-Powered Electronic Vaporizer
DE202014001718U1 (de) 2014-02-27 2015-05-28 Xeo Holding GmbH Rauchvorrichtung
US9278365B2 (en) 2014-03-26 2016-03-08 S.C. Johnson & Son, Inc. Volatile material dispenser and method of emitting a volatile material
US10932493B2 (en) 2014-04-23 2021-03-02 Fontem Holdings 1 B.V. Electronic cigarette with coil-less atomizer
CN104055225A (zh) 2014-06-20 2014-09-24 深圳市合元科技有限公司 基于后台监控的电子水烟系统
WO2016008124A1 (zh) 2014-07-16 2016-01-21 惠州市吉瑞科技有限公司 一种带有多个雾化组件的电子烟
WO2016010864A1 (en) 2014-07-18 2016-01-21 Fantasia Distribution, Inc. E-hookah bowl
CN204070580U (zh) 2014-09-11 2015-01-07 广西中烟工业有限责任公司 一种超声雾化式电子烟
US20160089508A1 (en) 2014-09-25 2016-03-31 ALTR, Inc. Vapor inhalation device
CA2973360A1 (en) * 2015-01-08 2016-09-01 Convexity Scientific Llc Nebulizer device and reservoir
US10721964B2 (en) 2015-01-19 2020-07-28 Ngen Smoke Llc Electronic hookah apparatus
FR3031936B1 (fr) 2015-01-23 2017-02-17 Valeo Systemes Thermiques Dispositif de rafraichissement d'air par nebulisation pour vehicule automobile
WO2016118941A1 (en) 2015-01-23 2016-07-28 William Tan Ultrasonic vaporizing element
US9867398B2 (en) 2015-04-09 2018-01-16 David Guo Ultrasonic e-cigarette device
WO2016175720A1 (en) 2015-04-29 2016-11-03 Entovest İlaç Κi̇μυα Ve Teknoloji̇ Araştirma Merkezi San. Ti̇c. Ltd. Şti̇. Electric liquid vaporizer composition comprising para-menthane-3,8-diol
AU2016202404B2 (en) 2015-04-29 2020-08-06 Scentsy, Inc. Diffuser and related methods
CN108348696B (zh) 2015-06-03 2021-05-28 诺沃派西斯公司 流体输送装置和方法
GB201517091D0 (en) 2015-09-28 2015-11-11 Nicoventures Holdings Ltd Policy notification system and method for electronic vapour provision systems
US20170303580A1 (en) 2016-04-25 2017-10-26 Lunatech, Llc Natural-based liquid composition and electronic vaporizing devices for using such composition
US10328218B2 (en) 2015-10-15 2019-06-25 Engineered Medical Systems, Inc. Respiratory medicament nebulizer system
US20170119052A1 (en) * 2015-10-30 2017-05-04 R.J. Reynolds Tobacco Company Application specific integrated circuit (asic) for an aerosol delivery device
MX2018004861A (es) 2015-11-02 2018-08-01 Philip Morris Products Sa Sistema generador de aerosol que comprende un elemento vibratorio.
US10039327B2 (en) 2015-11-17 2018-08-07 Lunatech, Llc Computing device with enabled electronic vapor device
FR3043576B1 (fr) 2015-11-18 2020-09-18 Areco Finances Et Tech Arfitec Dispositif miniaturise de pulverisation a transducteur piezoelectrique
KR102656344B1 (ko) 2015-12-22 2024-04-12 필립모리스 프로덕츠 에스.에이. 액체 펌프를 갖는 전동식 에어로졸 발생 시스템
EP3192381B1 (en) 2016-01-15 2021-07-14 Fontem Holdings 1 B.V. Electronic vaping device with a plurality of heating elements
US11325149B2 (en) 2016-01-23 2022-05-10 William Tan Ultrasonic atomizer and cartridge for the dispersal of a liquid
US9980140B1 (en) 2016-02-11 2018-05-22 Bigfoot Biomedical, Inc. Secure communication architecture for medical devices
EP3413731B1 (en) 2016-02-23 2021-04-07 Fontem Holdings 1 B.V. High frequency polarization aerosol generator
CN205432145U (zh) 2016-03-21 2016-08-10 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
CN105559151B (zh) * 2016-03-21 2019-05-24 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
US20170265520A1 (en) 2016-03-21 2017-09-21 Tyler Chi Do Fliptech Hookah Bowl System and Uses Thereof
US10946407B2 (en) 2016-04-07 2021-03-16 David B. Go Apparatus and method for atomization of fluid
CN105747277B (zh) 2016-04-15 2018-08-31 刘东原 一种电子烟用导油棉及其制备方法
CN206101579U (zh) * 2016-05-16 2017-04-19 湖南中烟工业有限责任公司 一种电子烟雾化器
CN105768238B (zh) 2016-05-16 2019-05-24 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
CN205962833U (zh) 2016-05-23 2017-02-22 湖南中烟工业有限责任公司 一种雾化芯及雾化器
WO2017206022A1 (zh) 2016-05-30 2017-12-07 惠州市吉瑞科技有限公司深圳分公司 一种储液瓶以及储液瓶组件
CN105795526B (zh) * 2016-05-31 2019-05-03 湖南中烟工业有限责任公司 一种电子烟雾化器
CN105795527B (zh) 2016-06-03 2019-01-29 湖南中烟工业有限责任公司 一种电子烟雾化器及电子烟
US20190289914A1 (en) 2016-06-15 2019-09-26 China Tobacco Hunan Industrial Co., Ltd. Ultrasonic electronic cigarette atomizer and electronic cigarette
CN105876870B (zh) * 2016-06-15 2019-11-05 湖南中烟工业有限责任公司 一种储油装置、电子烟雾化器及电子烟
CN206808661U (zh) 2016-06-22 2017-12-29 深圳市合元科技有限公司 用于雾化器的储油杯及雾化器
EP3459373B1 (en) 2016-06-29 2022-01-05 China Tobacco Hunan Industrial Co., Ltd. Ultrasonic electronic cigarette atomizer
CN205831074U (zh) 2016-06-30 2016-12-28 湖南中烟工业有限责任公司 一种组合式超声雾化器及电子烟
CN105876873B (zh) 2016-06-30 2018-12-07 湖南中烟工业有限责任公司 一种组合式超声雾化器及其雾化方法、电子烟
CN205757215U (zh) 2016-07-01 2016-12-07 湖南中烟工业有限责任公司 发热丝雾化与压电陶瓷雾化并联设置的电子烟雾化器
US10034495B2 (en) 2016-07-25 2018-07-31 Fontem Holdings 1 B.V. Device for storing and vaporizing liquid
US9993025B2 (en) 2016-07-25 2018-06-12 Fontem Holdings 1 B.V. Refillable electronic cigarette clearomizer
CN205912905U (zh) 2016-08-03 2017-02-01 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯及雾化器
US11324253B2 (en) 2016-08-04 2022-05-10 China Tobacco Hunan Industrial Co., Ltd. Disposable cigarette cartridge, atomizer and electronic cigarette
WO2018027189A2 (en) 2016-08-05 2018-02-08 Juul Labs, Inc. Anemometric-assisted control of a vaporizer
US20200345058A1 (en) 2016-08-08 2020-11-05 Juul Labs, Inc. Nicotine Oxalic Acid Formulations
CN106108118B (zh) 2016-08-12 2019-04-02 云南中烟工业有限责任公司 一种随振型储油雾化器
CN205947130U (zh) 2016-08-18 2017-02-15 湖南中烟工业有限责任公司 一种雾化器及其电子烟
CN206043434U (zh) 2016-08-18 2017-03-29 湖南中烟工业有限责任公司 一种雾化器及其电子烟
CN206079025U (zh) 2016-08-19 2017-04-12 湖南中烟工业有限责任公司 一种超声雾化片、超声雾化器和电子烟
CN106174706A (zh) 2016-08-31 2016-12-07 云南中烟工业有限责任公司 一种声表面波雾化器
WO2018040380A1 (zh) 2016-08-31 2018-03-08 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯及雾化器
CN206025223U (zh) 2016-08-31 2017-03-22 云南中烟工业有限责任公司 一种储油式声表面波雾化器
CN206043451U (zh) 2016-09-20 2017-03-29 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯及雾化器
CN106422005B (zh) 2016-09-22 2023-06-30 声海电子(深圳)有限公司 一种超声雾化结构及采用该结构的超声雾化设备
JP6801335B2 (ja) * 2016-09-27 2020-12-16 オムロンヘルスケア株式会社 超音波振動子駆動装置およびメッシュ式ネブライザ
CN206079040U (zh) 2016-09-28 2017-04-12 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯及雾化器
US9718078B1 (en) 2016-09-30 2017-08-01 Acoustic Arc International Limited Piezoceramic based atomizer for high viscosity liquids
WO2018058883A1 (zh) * 2016-09-30 2018-04-05 湖南中烟工业有限责任公司 一种超声波电子烟雾化器
CN206119183U (zh) 2016-10-20 2017-04-26 湖南中烟工业有限责任公司 一种雾化器及其电子烟
CN206119184U (zh) 2016-10-20 2017-04-26 湖南中烟工业有限责任公司 一种雾化器及其电子烟
CN108078009B (zh) 2016-11-22 2024-02-27 湖南中烟工业有限责任公司 斜置超声雾化片结构及雾化器、电子烟
CA3046954C (en) 2016-12-12 2024-01-02 Vmr Products Llc Refillable cartridge for vaporizer
CN206333372U (zh) 2016-12-14 2017-07-18 皖西学院 一种便于雾化吸入的电子烟
CN106617319A (zh) 2016-12-14 2017-05-10 郑州游爱网络技术有限公司 一种便于雾化吸入的电子烟
WO2018113669A1 (zh) 2016-12-19 2018-06-28 湖南中烟工业有限责任公司 一种超声雾化体及制备方法、雾化芯及雾化器
CN206303211U (zh) 2016-12-20 2017-07-07 湖南中烟工业有限责任公司 一种超声波雾化电子烟
EP3346798B1 (fr) * 2017-01-10 2020-06-17 Shenzhen Innokin Technology Co., Ltd. Un atomiseur de cigarette électronique équipé d'une puce d'enregistrement et une cigarette électronique équipée dudit atomiseur ainsi que son procédé de contrôle
CN206586397U (zh) 2017-01-19 2017-10-27 深圳市合元科技有限公司 电子烟及雾化器
JP6462966B2 (ja) * 2017-01-24 2019-01-30 日本たばこ産業株式会社 吸引装置並びにこれを動作させる方法及びプログラム
JP6929349B2 (ja) 2017-03-09 2021-09-01 株式会社 資生堂 香り発生装置
US10327479B2 (en) 2017-03-15 2019-06-25 Canopy Growth Corporation System and method for an improved personal vapourization device
JP6965537B2 (ja) 2017-03-16 2021-11-10 富士電機株式会社 半導体素子の駆動装置
FR3064502A1 (fr) 2017-03-28 2018-10-05 Areco Finances Et Technologie - Arfitec Dispositif de nebulisation compact, et ensemble de nebulisation comprenant un tel dispositif
US20200016344A1 (en) 2017-03-31 2020-01-16 Enovap Portable device for inhalation of at least one active composition
US20180296778A1 (en) * 2017-04-12 2018-10-18 Accugentix, LLC Volume displacement dosage vaporizer
EP3597057B1 (en) 2017-04-13 2022-01-05 China Tobacco Hunan Industrial Co., Ltd. Atomizer and electronic cigarette thereof
EP3597056B1 (en) 2017-04-13 2023-03-08 China Tobacco Hunan Industrial Co., Ltd. Ultrasonic electronic cigarette atomizer
WO2018188642A1 (zh) 2017-04-13 2018-10-18 湖南中烟工业有限责任公司 一种超声雾化式电子烟
CN206949536U (zh) 2017-05-23 2018-02-02 湖南中烟工业有限责任公司 一种超声波电子烟雾化器及该电子烟
WO2018210264A1 (zh) 2017-05-16 2018-11-22 湖南中烟工业有限责任公司 一种超声波电子烟雾化器及该电子烟
GB201707805D0 (en) 2017-05-16 2017-06-28 Nicoventures Holdings Ltd Atomiser for vapour provision device
WO2018217926A1 (en) 2017-05-24 2018-11-29 Vmr Products Llc Flavor disk
WO2018220586A2 (en) 2017-06-01 2018-12-06 Fontem Holdings 1 B.V. Electronic cigarette fluid pump
CA3065739A1 (en) 2017-06-02 2018-12-06 Fontem Holdings 1 B.V. Electronic cigarette wick
US10819148B2 (en) 2017-08-18 2020-10-27 Google Llc Smart-home device switching circuitry with integrated power stealing control
WO2019046315A1 (en) 2017-08-28 2019-03-07 Juul Labs, Inc. DRYER FOR SPRAY DEVICE
FR3070907B1 (fr) 2017-09-11 2020-05-15 Valeo Systemes Thermiques Systeme de nebulisation pour vehicule automobile
WO2019052506A1 (zh) 2017-09-13 2019-03-21 湖南中烟工业有限责任公司 一种超声波电子烟雾化器
WO2019052574A1 (zh) 2017-09-18 2019-03-21 湖南中烟工业有限责任公司 一种超声波电子烟雾化芯及雾化器
GB2604314A (en) 2017-09-22 2022-09-07 Nerudia Ltd Device, system and method
WO2019063008A1 (zh) 2017-09-30 2019-04-04 湖南中烟工业有限责任公司 一种电子烟
DE102017123000B4 (de) 2017-10-04 2021-05-12 Schott Ag Sinterkörper mit leitfähiger Beschichtung, Verfahren zur Herstellung eines Sinterkörpers mit leitfähiger Beschichtung und dessen Verwendung
EP3691479A1 (en) 2017-10-06 2020-08-12 Philip Morris Products S.a.s. Shisha device with aerosol condensation
US20190116863A1 (en) 2017-10-24 2019-04-25 Rai Strategic Holdings, Inc. Method for formulating aerosol precursor for aerosol delivery device
GB201717498D0 (en) 2017-10-24 2017-12-06 British American Tobacco Investments Ltd Aerosol provision device
WO2019080932A1 (zh) 2017-10-27 2019-05-02 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
WO2019104223A1 (en) * 2017-11-22 2019-05-31 Juul Labs, Inc. Electronic vaporizer sessioning
WO2019104441A1 (en) 2017-12-02 2019-06-06 Michael Alexander Trzecieski Vaporizer device with removable cartridge and apparatus and method for filling removable cartridge
CN207613202U (zh) 2017-12-07 2018-07-17 湖南中烟工业有限责任公司 一种超声波电子烟
GB2570439A (en) 2017-12-13 2019-07-31 British American Tobacco Investments Ltd Method and apparatus for analysing user interaction
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
WO2019138076A1 (en) 2018-01-12 2019-07-18 Philip Morris Products S.A. An aerosol-generating device comprising an ultrasonic transducer
CN108355210A (zh) * 2018-02-27 2018-08-03 华健 一种变频变压的雾化器
US20210401061A1 (en) * 2018-03-14 2021-12-30 Canopy Growth Corporation Vape devices, including cartridges, tablets, sensors, and controls for vape devices, and methods for making and using the same
CN108283331A (zh) 2018-03-22 2018-07-17 刘东原 具有t形气道的烟弹雾化器及安装其的电子烟
US20190289915A1 (en) 2018-03-23 2019-09-26 National Concessions Group Inc. Crowdsourced data for vaporizers
WO2019198162A1 (ja) * 2018-04-10 2019-10-17 日本たばこ産業株式会社 霧化ユニット
CN209060228U (zh) * 2018-04-17 2019-07-05 华健 一种可调档位控制雾化量的便携式雾化器
CN110393837B (zh) 2018-04-25 2022-03-29 微邦科技股份有限公司 微雾产生器及雾化模块
CN110394268B (zh) 2018-04-25 2021-07-02 微邦科技股份有限公司 微雾生成装置及微雾产生器
CN112351697A (zh) 2018-05-29 2021-02-09 尤尔实验室有限公司 具有料匣的蒸发器装置
EP3574902A1 (en) 2018-06-01 2019-12-04 Yatzz Limited Nicotine formulation and mode of delivery
TWI668021B (zh) 2018-06-06 2019-08-11 國立臺灣大學 無使用方向限制之霧化器
US10986875B2 (en) * 2018-06-25 2021-04-27 Juul Labs, Inc. Vaporizer device heater control
WO2020006311A1 (en) * 2018-06-27 2020-01-02 Juul Labs, Inc. Connected vaporizer device systems
US10888125B2 (en) * 2018-06-27 2021-01-12 Juul Labs, Inc. Vaporizer device with subassemblies
CN208434721U (zh) 2018-07-06 2019-01-29 湖南中烟工业有限责任公司 一种超声波雾化芯及超声波雾化器
US11416515B2 (en) * 2018-07-16 2022-08-16 Mark Krietzman Track and trace vaporizers and cartridges
WO2020023547A1 (en) * 2018-07-23 2020-01-30 Wellness Insight Technologies, Inc. System for analyzing and controlling consumable media dosing information
US20210268209A1 (en) 2018-07-24 2021-09-02 Monash University Nebulizer
CN209255084U (zh) 2018-08-03 2019-08-16 深圳市几素科技有限公司 一种雾化装置及补水器
US20200068949A1 (en) 2018-08-28 2020-03-05 Fontem Holdings 1 B.V. Dual-tank electronic cigarette
CN208837110U (zh) 2018-09-03 2019-05-10 湖南中烟工业有限责任公司 一种雾化器及电子烟
US11517051B2 (en) 2018-09-19 2022-12-06 Fontem Ventures B.V. Electronic smoking device with self-heating compensation
JP7181413B2 (ja) 2018-09-21 2022-11-30 チャイナ タバコ フーナン インダストリアル カンパニー リミテッド 超音波電子タバコ
EP3863453A4 (en) * 2018-10-18 2022-11-23 Qnovia, Inc. ELECTRONIC DEVICE FOR PRODUCING AN AEROSOL INTENDED TO BE INHALED BY A PERSON
CA3103713A1 (en) 2018-10-19 2020-04-23 Juul Labs, Inc. Vaporizer power system
CA3118314A1 (en) * 2018-11-09 2020-05-14 Juul Labs, Inc. Vaporizing related data protocols
CN209900345U (zh) 2018-11-16 2020-01-07 泗水县人民医院 一种儿科用雾化吸入装置
US20200178598A1 (en) 2018-12-08 2020-06-11 Soweto Abijah Mitchell Smart Wireless Water Pipe System For Smoke Sanitization, Storage and Portability
CN109619655A (zh) 2019-01-18 2019-04-16 深圳市同信兴投资有限公司 一种复合尼古丁盐及其溶液、其制备方法及应用
US11553730B2 (en) * 2019-02-01 2023-01-17 Lunatech, Llc Pre-filled vaporizing liquid container and personal vaporizing devices for using such container
CN111685375A (zh) 2019-03-15 2020-09-22 湖南中烟工业有限责任公司 一种电子烟雾化芯及雾化器
GB201906279D0 (en) 2019-05-03 2019-06-19 Nicoventures Trading Ltd Electronic aerosol provision system
CN210076566U (zh) 2019-05-27 2020-02-18 湖南中烟工业有限责任公司 超声波雾化芯及超声波雾化器
CN110150760A (zh) 2019-05-31 2019-08-23 钟术光 一种气溶胶生成系统
EP3905908A4 (en) 2019-06-20 2023-01-04 Shaheen Innovations Holding Limited PERSONAL ULTRASONIC ATOMIZER
CN110279157A (zh) * 2019-06-27 2019-09-27 深圳雾芯科技有限公司 电子雾化器装置、电子雾化器装置主体及操作方法
US20220273037A1 (en) 2019-08-30 2022-09-01 China Tobacco Hunan Industrial Co., Ltd. Electronic cigarette atomization core and atomizer
CN110946315A (zh) 2019-11-25 2020-04-03 深圳雾芯科技有限公司 电子烟液
US11528939B2 (en) * 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11490656B2 (en) * 2019-11-26 2022-11-08 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11596172B2 (en) * 2019-11-26 2023-03-07 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11576432B2 (en) * 2019-11-26 2023-02-14 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528938B2 (en) * 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11484062B2 (en) * 2019-11-26 2022-11-01 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528937B2 (en) * 2019-11-26 2022-12-20 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11564416B2 (en) * 2019-11-26 2023-01-31 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
SI3837999T1 (sl) 2019-12-15 2022-10-28 Shaheen Innovations Holding Limited Naprave za inhaliranje meglic
WO2021191163A1 (en) 2020-03-24 2021-09-30 Stamford Devices Limited A vibrating aperture plate nebulizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066619A1 (en) * 2014-09-10 2016-03-10 Fernando Di Carlo Multi-user electronic hookah and a method of its use
US20160324212A1 (en) * 2015-05-08 2016-11-10 Lunatech, Llc Electronic Hookah Simulator And Vaporizer
WO2018115781A1 (fr) * 2016-12-21 2018-06-28 Thang Nguyen Chicha ou narguilé perfectionné
WO2019238064A1 (zh) * 2018-06-14 2019-12-19 湖南中烟工业有限责任公司 一种超声雾化片工作控制电路及超声波电子烟

Also Published As

Publication number Publication date
CA3231968A1 (en) 2021-06-24
HUE060002T2 (hu) 2023-01-28
JP2022172216A (ja) 2022-11-15
IL295717A (en) 2022-10-01
IL294000A (en) 2022-08-01
US20220370740A1 (en) 2022-11-24
PL3837999T3 (pl) 2022-10-10
ES2926952T3 (es) 2022-10-31
IL294000B (en) 2022-09-01
JP2022553457A (ja) 2022-12-22
AU2022221529A1 (en) 2022-09-22
JOP20220147A1 (ar) 2023-01-30
US11744963B2 (en) 2023-09-05
JP7241980B2 (ja) 2023-03-17
IL295717B1 (en) 2024-01-01
US11672928B2 (en) 2023-06-13
EP3837999A1 (en) 2021-06-23
AU2020410172A1 (en) 2022-06-30
ZA202207046B (en) 2024-01-31
KR102515974B1 (ko) 2023-03-31
AU2020410172B2 (en) 2023-02-23
EP4101317B1 (en) 2024-01-24
WO2021123753A1 (en) 2021-06-24
LT3837999T (lt) 2022-10-10
KR20220138405A (ko) 2022-10-12
CL2022001608A1 (es) 2023-03-10
US11717623B2 (en) 2023-08-08
US20220362494A1 (en) 2022-11-17
US20230263967A1 (en) 2023-08-24
SI3837999T1 (sl) 2022-10-28
KR20230042763A (ko) 2023-03-29
KR20220134750A (ko) 2022-10-05
EP4101317A1 (en) 2022-12-14
RS63694B1 (sr) 2022-11-30
JP7472211B2 (ja) 2024-04-22
EP4364853A2 (en) 2024-05-08
CA3161546A1 (en) 2021-06-24
US20210178090A1 (en) 2021-06-17
EP3837999B1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
KR102576901B1 (ko) 물담배 장치
US20220218020A1 (en) Nicotine delivery device
JP7245396B2 (ja) ニコチンデリバリー装置
JP7313567B2 (ja) 水タバコ装置
US11785985B2 (en) Hookah device
KR20230132626A (ko) 물담배 장치
EP4041004B1 (en) A hookah device
US20220361565A1 (en) Hookah device
US20240108058A1 (en) Mist generator device
JP2023060880A (ja) 水タバコ装置
JP2023060896A (ja) ニコチンデリバリー装置
AU2021404156A1 (en) A nicotine delivery device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant