KR102551237B1 - 기저 구조 재료에 대한 직접적인 rf 노출 없이 등각성의 밀폐 유전체 캡슐화를 위한 sibn 필름 - Google Patents
기저 구조 재료에 대한 직접적인 rf 노출 없이 등각성의 밀폐 유전체 캡슐화를 위한 sibn 필름 Download PDFInfo
- Publication number
- KR102551237B1 KR102551237B1 KR1020197020710A KR20197020710A KR102551237B1 KR 102551237 B1 KR102551237 B1 KR 102551237B1 KR 1020197020710 A KR1020197020710 A KR 1020197020710A KR 20197020710 A KR20197020710 A KR 20197020710A KR 102551237 B1 KR102551237 B1 KR 102551237B1
- Authority
- KR
- South Korea
- Prior art keywords
- nitrogen
- memory
- encapsulation layer
- over
- dielectric encapsulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/38—Borides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02252—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Semiconductor Memories (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662437986P | 2016-12-22 | 2016-12-22 | |
| US62/437,986 | 2016-12-22 | ||
| PCT/US2017/061976 WO2018118288A1 (en) | 2016-12-22 | 2017-11-16 | Sibn film for conformal hermetic dielectric encapsulation without direct rf exposure to underlying structure material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20190090026A KR20190090026A (ko) | 2019-07-31 |
| KR102551237B1 true KR102551237B1 (ko) | 2023-07-03 |
Family
ID=62627181
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020197020710A Active KR102551237B1 (ko) | 2016-12-22 | 2017-11-16 | 기저 구조 재료에 대한 직접적인 rf 노출 없이 등각성의 밀폐 유전체 캡슐화를 위한 sibn 필름 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11011371B2 (enExample) |
| JP (1) | JP7191023B2 (enExample) |
| KR (1) | KR102551237B1 (enExample) |
| CN (1) | CN110168698B (enExample) |
| WO (1) | WO2018118288A1 (enExample) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200211834A1 (en) | 2019-01-02 | 2020-07-02 | Applied Materials, Inc. | Methods for forming films containing silicon boron with low leakage current |
| CN115280467B (zh) * | 2019-11-08 | 2025-09-12 | 应用材料公司 | 减少材料表面粗糙度的方法 |
| US11515145B2 (en) * | 2020-09-11 | 2022-11-29 | Applied Materials, Inc. | Deposition of silicon boron nitride films |
| US11676813B2 (en) | 2020-09-18 | 2023-06-13 | Applied Materials, Inc. | Doping semiconductor films |
| US12033848B2 (en) * | 2021-06-18 | 2024-07-09 | Applied Materials, Inc. | Processes for depositing sib films |
| US20240363337A1 (en) * | 2023-04-26 | 2024-10-31 | Applied Materials, Inc. | Methods for forming low-k dielectric materials |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5712193A (en) * | 1994-12-30 | 1998-01-27 | Lucent Technologies, Inc. | Method of treating metal nitride films to reduce silicon migration therein |
| US6002202A (en) * | 1996-07-19 | 1999-12-14 | The Regents Of The University Of California | Rigid thin windows for vacuum applications |
| US5994209A (en) * | 1996-11-13 | 1999-11-30 | Applied Materials, Inc. | Methods and apparatus for forming ultra-shallow doped regions using doped silicon oxide films |
| CN100442454C (zh) * | 2000-09-19 | 2008-12-10 | 马特森技术公司 | 形成介电薄膜的方法 |
| CN1244145C (zh) * | 2001-11-21 | 2006-03-01 | 哈娄利公司 | 双monos单元制造方法及集成电路组件 |
| KR100449028B1 (ko) * | 2002-03-05 | 2004-09-16 | 삼성전자주식회사 | 원자층 증착법을 이용한 박막 형성방법 |
| US7611943B2 (en) * | 2004-10-20 | 2009-11-03 | Texas Instruments Incorporated | Transistors, integrated circuits, systems, and processes of manufacture with improved work function modulation |
| JP4506677B2 (ja) * | 2005-03-11 | 2010-07-21 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
| US7294543B2 (en) * | 2006-03-22 | 2007-11-13 | International Business Machines Corporation | DRAM (Dynamic Random Access Memory) cells |
| JP2008166594A (ja) | 2006-12-28 | 2008-07-17 | Toshiba Corp | 不揮発性半導体記憶装置およびその製造方法 |
| US8084105B2 (en) * | 2007-05-23 | 2011-12-27 | Applied Materials, Inc. | Method of depositing boron nitride and boron nitride-derived materials |
| KR20100042644A (ko) * | 2007-07-13 | 2010-04-26 | 어플라이드 머티어리얼스, 인코포레이티드 | 보론 유도 물질 증착 방법 |
| US7879683B2 (en) * | 2007-10-09 | 2011-02-01 | Applied Materials, Inc. | Methods and apparatus of creating airgap in dielectric layers for the reduction of RC delay |
| KR101231019B1 (ko) * | 2007-12-18 | 2013-02-07 | 양병춘 | 집적회로장치 제조방법 |
| JP2010251654A (ja) * | 2009-04-20 | 2010-11-04 | Elpida Memory Inc | 成膜方法および半導体装置の製造方法 |
| JP2011023576A (ja) * | 2009-07-16 | 2011-02-03 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
| US8426085B2 (en) | 2010-12-02 | 2013-04-23 | Intermolecular, Inc. | Method and apparatus for EUV mask having diffusion barrier |
| US9252019B2 (en) * | 2011-08-31 | 2016-02-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method for forming the same |
| US9234276B2 (en) | 2013-05-31 | 2016-01-12 | Novellus Systems, Inc. | Method to obtain SiC class of films of desired composition and film properties |
| US20140187045A1 (en) * | 2013-01-02 | 2014-07-03 | Applied Materials, Inc. | Silicon nitride gapfill implementing high density plasma |
| JP6267080B2 (ja) * | 2013-10-07 | 2018-01-24 | 東京エレクトロン株式会社 | シリコン窒化物膜の成膜方法および成膜装置 |
| US10023958B2 (en) | 2013-11-22 | 2018-07-17 | Applied Materials, Inc. | Atomic layer deposition of films comprising silicon, carbon and nitrogen using halogenated silicon precursors |
| US9685325B2 (en) * | 2014-07-19 | 2017-06-20 | Applied Materials, Inc. | Carbon and/or nitrogen incorporation in silicon based films using silicon precursors with organic co-reactants by PE-ALD |
| US9355837B2 (en) | 2014-09-25 | 2016-05-31 | Micron Technology, Inc. | Methods of forming and using materials containing silicon and nitrogen |
| JP6946185B2 (ja) * | 2014-11-17 | 2021-10-06 | セイジ・エレクトロクロミクス,インコーポレイテッド | 複数バリア層封止積層体 |
| US9589790B2 (en) | 2014-11-24 | 2017-03-07 | Lam Research Corporation | Method of depositing ammonia free and chlorine free conformal silicon nitride film |
| US10763103B2 (en) | 2015-03-31 | 2020-09-01 | Versum Materials Us, Llc | Boron-containing compounds, compositions, and methods for the deposition of a boron containing films |
| US10157736B2 (en) * | 2016-05-06 | 2018-12-18 | Lam Research Corporation | Methods of encapsulation |
-
2017
- 2017-11-16 KR KR1020197020710A patent/KR102551237B1/ko active Active
- 2017-11-16 JP JP2019532948A patent/JP7191023B2/ja active Active
- 2017-11-16 WO PCT/US2017/061976 patent/WO2018118288A1/en not_active Ceased
- 2017-11-16 CN CN201780079463.3A patent/CN110168698B/zh active Active
- 2017-11-16 US US16/462,513 patent/US11011371B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US11011371B2 (en) | 2021-05-18 |
| US20190326110A1 (en) | 2019-10-24 |
| WO2018118288A1 (en) | 2018-06-28 |
| CN110168698B (zh) | 2024-03-22 |
| JP7191023B2 (ja) | 2022-12-16 |
| KR20190090026A (ko) | 2019-07-31 |
| JP2020502809A (ja) | 2020-01-23 |
| CN110168698A (zh) | 2019-08-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102551237B1 (ko) | 기저 구조 재료에 대한 직접적인 rf 노출 없이 등각성의 밀폐 유전체 캡슐화를 위한 sibn 필름 | |
| US11289327B2 (en) | Si precursors for deposition of SiN at low temperatures | |
| JP7171604B2 (ja) | 高アスペクト比トレンチをアモルファスシリコン膜で間隙充填するための2段階プロセス | |
| US9349587B2 (en) | Method of manufacturing semiconductor device and method of processing substrate and substrate processing apparatus | |
| KR102271768B1 (ko) | 반응성 어닐링을 사용하는 갭충전 | |
| US20070251444A1 (en) | PEALD Deposition of a Silicon-Based Material | |
| KR100390831B1 (ko) | 플라즈마 원자층 증착법에 의한 탄탈륨옥사이드 유전막형성 방법 | |
| KR100660890B1 (ko) | Ald를 이용한 이산화실리콘막 형성 방법 | |
| US9343317B2 (en) | Methods of forming silicon-containing dielectric materials and semiconductor device structures | |
| US12451345B2 (en) | PECVD of SiBN thin films with low leakage current | |
| US20090278224A1 (en) | Methods of forming an amorphous silicon thin film | |
| WO2011005433A2 (en) | Boron film interface engineering | |
| WO2017070192A1 (en) | METHODS OF DEPOSITING FLOWABLE FILMS COMPRISING SiO and SiN | |
| CN100590805C (zh) | 原子层沉积方法以及形成的半导体器件 | |
| WO2008147689A1 (en) | Boron nitride and boron nitride-derived materials deposition method | |
| JP2008523640A5 (enExample) | ||
| JP2020516079A (ja) | シリコン間隙充填のための二段階プロセス | |
| KR20020037337A (ko) | 결정질 질화 실리콘 형성 방법 | |
| TW202231905A (zh) | 共形氧化矽膜沉積 | |
| WO2021016063A1 (en) | Surface roughness for flowable cvd film | |
| US20250333837A1 (en) | Methods of filling a recessed feature on a substrate employing metal sequential infiltration synthesis processes | |
| US8049264B2 (en) | Method for producing a dielectric material on a semiconductor device and semiconductor device | |
| JP7289465B2 (ja) | 薄膜形成方法 | |
| WO2022245641A1 (en) | Flowable cvd film defect reduction | |
| Senzaki et al. | Ultrathin Si3N4 Films Deposited From Dichlorosilane For Gate Dielectrics Using Single-Wafer Hot-Wall Rapid Thermal CVD |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
St.27 status event code: A-0-1-A10-A15-nap-PA0105 |
|
| AMND | Amendment | ||
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| A201 | Request for examination | ||
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| E601 | Decision to refuse application | ||
| PE0601 | Decision on rejection of patent |
St.27 status event code: N-2-6-B10-B15-exm-PE0601 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| AMND | Amendment | ||
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PX0901 | Re-examination |
St.27 status event code: A-2-3-E10-E12-rex-PX0901 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-2-2-P10-P22-nap-X000 |
|
| PX0701 | Decision of registration after re-examination |
St.27 status event code: A-3-4-F10-F13-rex-PX0701 |
|
| X701 | Decision to grant (after re-examination) | ||
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U12-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| R17-X000 | Change to representative recorded |
St.27 status event code: A-5-5-R10-R17-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |