KR102381562B1 - 마이크로 엘이디 모듈 및 그 제조방법 - Google Patents

마이크로 엘이디 모듈 및 그 제조방법 Download PDF

Info

Publication number
KR102381562B1
KR102381562B1 KR1020170030833A KR20170030833A KR102381562B1 KR 102381562 B1 KR102381562 B1 KR 102381562B1 KR 1020170030833 A KR1020170030833 A KR 1020170030833A KR 20170030833 A KR20170030833 A KR 20170030833A KR 102381562 B1 KR102381562 B1 KR 102381562B1
Authority
KR
South Korea
Prior art keywords
micro led
laser beam
electrode pad
solders
solder
Prior art date
Application number
KR1020170030833A
Other languages
English (en)
Other versions
KR20180103624A (ko
Inventor
유태경
원예림
Original Assignee
주식회사 루멘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루멘스 filed Critical 주식회사 루멘스
Priority to KR1020170030833A priority Critical patent/KR102381562B1/ko
Priority to JP2017153436A priority patent/JP6366799B1/ja
Priority to PCT/KR2017/009856 priority patent/WO2018147525A1/ko
Priority to TW106134202A priority patent/TW201841392A/zh
Priority to US15/818,738 priority patent/US10319706B2/en
Priority to JP2018126761A priority patent/JP6649997B2/ja
Publication of KR20180103624A publication Critical patent/KR20180103624A/ko
Priority to US16/394,121 priority patent/US10847504B2/en
Application granted granted Critical
Publication of KR102381562B1 publication Critical patent/KR102381562B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Abstract

마이크로 엘이디 모듈 제조방법이 개시된다. 이 마이크로 엘이디 모듈 제조방법은, 다수의 전극패드와 다수의 엘이디 셀을 포함하는 마이크로 엘이디를 준비하는 단계; 상기 다수의 전극패드에 상응하는 다수의 전극을 포함하는 서브마운트 기판을 준비하는 단계; 및 상기 다수의 전극패드와 상기 다수의 전극 사이에 위치하는 다수의 솔더를 이용하여, 상기 마이크로 엘이디를 상기 서브마운트 기판에 플립 본딩하는 단계를 포함하되, 상기 플립 본딩하는 단계는 상기 다수의 솔더를 레이저빔으로 가열하는 것을 포함한다.

Description

마이크로 엘이디 모듈 및 그 제조방법{micro LED module and method for making the same}
본 발명은 서브마운트 기판 상에 그 서브마운트 기판과 열팽창 계수 차이가 큰 투광성 기판을 포함하는 마이크로 엘이디를 플립 본딩하여 마이크로 엘이디 모듈을 제조하는 방법에 관한 것이다.
마이크로 엘이디 모듈을 이용하는 디스플레이 장치가 알려져 있다. 마이크로 엘이디 모듈은 다수의 엘이디 셀을 포함하는 마이크로 엘이디를 서브마운트 기판 상에 플립 본딩하여 제작된다.
통상, 마이크로 엘이디는 투광성 사파이어 기판과, 상기 투광성 사파이어 기판 상에 형성되고 다수의 엘이디 셀을 갖는 질화갈륨계 반도체 발광부를 포함한다. 반도체 발광부는 식각에 의해 형성된 n형 반도체층 노출 영역을 포함하며, 상기 n형 반도체층 노출 영역 상에 상기 다수의 엘이디 셀이 매트릭스 배열로 형성된다. 각 엘이디 셀은 n형 반도체층, 활성층 및 p형 도전형 반도체층을 포함하고, 각 엘이디 셀의 p형 도전형 반도체층에는 p형 전극패드가 형성된다. 또한 상기 n형 반도체층 노출 영역에는 n형 전극패드가 형성된다.
한편, 서브마운트 기판은 마이크로 엘이디의 전극패드들에 대응되게 마련된 다수의 전극들을 포함한다. 솔더 범프를 이용하여 마이크로 엘이디를 마운드 기판에 플립 본딩함으로써, 마이크로 엘이디의 전극패드들이 서브마운트 기판의 전극들과 연결된다. 마이크로 엘이디를 서브마운트 기판에 플립 본딩하기 위해서는, 솔더 범프의 적어도 일부를 구성하는 솔더를 용융점 근처의 온도로 가열하여야 한다. 이때, Si 기반 서브마운트 기판의 열팽창 계수와 사파이어 기판의 열팽창 계수의 차이가 크기 때문에, 플립 본딩 공정 중의 가열 및 냉각시, Si 서브마운트 기판과 사파이어 기판 사이에는 팽창 변형량 및 수축 변형량에 있어서 큰 차이를 나타내며, 이 차이로 인해 서브마운트 기판과 마이크로 엘이디 사이에는 심각한 미스얼라인먼트(misalignment)이 발생한다. 이와 같은 미스얼라인먼트는 마이크로 엘이디의 전극패드들과 서브마운트 기판의 전극들이 연결되지 못하거나, 더 심각하게는, 잘못 연결되어 쇼트 등과 같은 심각한 불량을 초래한다.
예컨대 마이크로 엘이디의 기반이 되는 사파이어 기판의 열팽창계수가 7.6㎛m-1K이고, Si 기반 서브마운트 기판의 열팽창 계수가 2.6㎛m-1K이므로, 온도에 따라, S사파이어 기판의 열팽창계수가 Si 기반 서브마운트 기판의 열팽창계수의 대략 2.5배에 이른다. 플립 본딩에 사용하는 범프가 용융점이 높은 솔더를 사용하면, 본딩 온도가 높아지는데, 이때, 열팽창계수의 심각한 차이로 인해 마이크로 엘이디와 서브마운트 기판 사이에 미스얼라인먼트가 발생되어 본딩이 안될 수 있다. 예컨대, 260℃ 솔더 용융점 온도를 본딩 온도로 설정하면, 1cm 기판 기준으로, 약 5~6um 미스얼라인먼트가 발생되어 마이크로 엘이디의 플립 본딩과 같이 2um 본딩 정밀도가 요구되는 공정에서는 실질적으로 이용이 어렵게 된다.
따라서, 당해 기술 분야에는 마이크로 엘이디와 서브마운트 기판을 플립 본딩함에 있어서 마이크로 엘이디 측 사파이어 기판과 서브마운트 기판 사이의 열팽창 계수 차이로 인한 미스얼라인먼트 문제를 해결하는 기술의 필요성이 존재한다.
대한민국등록특허10-1150861(2012.05.22. 등록) 대한민국등록특허10-0470904(2005.01.31. 등록)
본 발명이 해결하고자 하는 과제는, 마이크로 엘이디와 서브마운트 기판 사이에 위치하는 솔더를 레이저로 국부 가열하여, 마이크로 엘이디와 서브마운트 기판이 고온으로 가열되는 것을 막고, 이를 통해, 기판 간 열팽창 계수 차이로 인한 미스얼라인먼트 문제를 해결할 수 있는 마이크로 엘이디 모듈 제조방법을 제공하는 것이다.
본 발명의 일측면에 따른 마이크로 엘이디 모듈 제조방법은, 다수의 전극패드와 다수의 엘이디 셀을 포함하는 마이크로 엘이디를 준비하는 단계; 상기 다수의 전극패드에 상응하는 다수의 전극을 포함하는 서브마운트 기판을 준비하는 단계; 및 상기 다수의 전극패드와 상기 다수의 전극 사이에 위치하는 다수의 솔더를 이용하여, 상기 마이크로 엘이디를 상기 서브마운트 기판에 플립 본딩하는 단계를 포함하되, 상기 플립 본딩하는 단계는 상기 다수의 솔더를 레이저빔으로 가열하는 것을 포함한다.
일 실시예에 따라, 상기 플립 본딩하는 단계는 다수의 레이저빔으로 상기 다수의 솔더 각각을 국부적으로 가열하는 것을 포함한다.
일 실시예에 따라, 상기 엘이디 셀 각각에 개별 전극패드가 형성되되, 상기 플립 본딩하는 단계는 상기 엘이디 셀과 상기 개별 전극패드를 차례로 통과하는 레이저빔으로 상기 개별 전극패드와 상기 서브마운트 기판 사이에 위치하는 솔더를 가열하는 것을 포함한다.
일 실시예에 따라, 상기 개별 전극패드는 레이저빔 투과성을 갖는다.
일 실시예에 따라, 상기 개별 전극패드는 레이저빔이 통과하는 공동을 포함한다.
일 실시예에 따라, 상기 마이크로 엘이디는 상기 다수의 엘이디 셀 주변 에피층 표면에 공통 전극패드를 포함하되, 상기 플립 본딩하는 단계는 상기 에피층과 상기 공통 전극패드를 차례로 통과하는 레이저빔으로 상기 공통 전극패드와 상기 서브마운트 기판 사이에 위치하는 솔더를 가열한다.
일 실시예에 따라, 상기 공통 전극패드는 레이저빔 투과성을 갖는다.
일 실시예에 따라, 상기 공통 전극패드는 레이저빔이 통과하는 공동을 포함한다.
일 실시예에 따라, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하며, 상기 다수의 레이저빔은 기판과 엘이디 셀이 없는 에피층을 통하는 레이저빔과 기판과 엘이디 셀이 있는 에피층을 통과하는 레이저빔을 포함한다.
일 실시예에 따라, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하되, 상기 레이저빔이 상기 솔더 각각에 집속되도록 집속 렌즈를 이용한다.
일 실시예에 따라, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하기 위해, 상기 다수의 솔더의 배열에 상응하는 배열로 상기 마이크로 엘이디의 일측에 다수의 레이저빔 조사 유닛을 배열하는 것을 포함한다.
일 실시예에 따라, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하기 위해, 상기 다수의 솔더의 배열에 상응하는 배열로 상기 마이크로 엘이디의 일측에 다수의 레이저빔 조사 유닛을 배열하되, 상기 다수의 레이저빔 조사 유닛은 레이저 광원과 연괼된 옵틱 가이드와, 상기 옵틱 가이드를 통과한 레이저빔을 평행 빔으로 만드는 콜리메이터와, 평행 빔으로 된 레이저빔의 단면 크기를 조절하는 빔 조절기와, 상기 빔 조절기에 조절된 레이저빔을 상기 솔더 각각에 집속시키기 위한 집속 렌즈를 포함한다.
일 실시예에 따라, 상기 플립 본딩하는 단계는 다수의 레이저빔 조사 유닛을 다수의 솔더와 1:1로 매칭시켜 상기 다수의 레이저빔 조사 유닛 각각이 조사한 레이저빔으로 상기 다수의 솔더 각각을 가열할 수 있다.
일 실시예에 따라, 상기 플립 본딩하는 단계는 하나의 레이저빔 조사 유닛을 2개 이상의 솔더와 1:n(n은 2 이상의 자연수)으로 매칭시켜, 상기 레이저빔 조사 유닛을 선형 또는 지그재그형으로 이동시키면서, 상기 레이저빔 조사 유닛이 조사한 레이저빔으로 상기 2개 이상의 솔더를 가열할 수 있다.
일 실시예에 따라, 상기 플립 본딩하는 단계는 2개 이상의 레이저빔 조사 유닛을 2개 이상의 솔더 그룹 각각에 매칭시켜, 상기 레이저빔 조사 유닛 각각이 각 솔더 그룹 내 솔더들을 가열할 수 있다.
본 발명의 다른 측면에 따라 마이크로 엘이디 모듈이 제공되며, 이 마이크로 엘이디 모듈은, 기판과 에피층을 포함하고, 상기 에피층에는 다수의 엘이디 셀이 형성되고, 상기 다수의 엘이디 셀 각각에는 제2 도전형의 개별 전극패드가 형성되고 상기 다수의 엘이디 셀 주변에는 제1 도전형의 공통 전극패드가 형성된 마이크로 엘이디; 상기 개별 전극패드와 상기 공통 전극패드에 대응하는 다수의 전극이 형성된 서브마운트 기판; 상기 전극과 상기 개별 전극패드 또는 상기 공통 전극패드 사이에 위치하는 솔더를 포함하며, 상기 솔더는 레이저빔에 의해 가열된 후 경화되어 상기 전극을 상기 개별 전극패드 또는 상기 공통 전극패드에 연결한다.
일 실시예에 따라, 상기 레이저빔이 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디 타측을 통과하여 상기 솔더를 가열할 수 있도록, 상기 기판, 상기 에피층, 상기 개별 전극패드 및 상기 공통 전극패드는 레이저빔을 통과시키도록 구성된다.
일 실시예에 따라 상기 개별 전극패드는 상기 레이저빔을 투과하는 재료로 형성될 수 있다.
일 실시에예 따라, 상기 개별 전극패드는 상기 레이저빔을 통과시키는 공동을 포함할 수 있다.
일 실시예에 따라, 상기 공통 전극패드는 상기 레이저빔을 투과하는 재료로 형성될 수 있다.
일 실시예에 따라, 상기 공통 전극패드는 상기 레이저빔을 통과시키는 공동을 포함할 수 있다.
본 발명에 따르면, 마이크로 엘이디와 서브마운트 기판 사이에 위치한 복수의 솔더 각각에 대하여 레이저를 국부적으로 조사하여, 솔더를 급속 용융시키므로, 레이저 투과성을 갖는 마이크로 엘이디 및 레이저가 미치지 않는 서브마운트 기판에 열이 거의 가해지지 않을 수 있으며, 따라서, 마이크로 엘이디와 서브마운트 기판 상이의 열팽창계수 차이로 인한 미스얼라인먼트 문제를 해결할 수 있다.
도 1a 내지 도 1e는 마이크로 엘이디를 제작하는 공정을 설명하기 위한 도면이다.
도 2는 서브마운트 기판의 일부를 도시한 단면도이다.
도 3 및 도 4는 서브마운트 기판에 솔더를 포함하는 범프를 형성하는 공정을 설명하기 위한 도면이다.
도 5a, 도 5b 및 도 5c는 마이크로 엘이디와 서브마운트 기판을 플립 본딩하는 공정을 설명하기 위한 도면이다.
도 6은 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 7 및 도 8은 본 발명의 또 다른 실시예를 설명하기 위한 도면들이다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 첨부된 도면들 및 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 사람이 용이하게 이해할 수 있도록 간략화되고 예시된 것이므로, 도면들 및 실시예들이 본 발명의 범위를 한정하는 것으로 해석되어서는 아니 될 것이다.
본 발명의 일 실시예에 따르면, 마이크로 엘이디를 액티브 매트릭스 기판인 서브마운트 기판에 플립 본딩하여 마이크로 엘이디 모듈을 제조하는 방법이 제공된다. 본 발명의 일 실시예에 따른 마이크로 엘이디 모듈 제조방법은 전기 회로와 전극들이 미리 형성된 Si 기반의 서브마운트 기판을 준비하는 공정과 사파이어 기판을 기반으로 하는 마이크로 엘이디를 제작하는 공정에 뒤 이어 수행된다.
이하에서는, 마이크로 엘이디 제작, 범프 형성, 마이크로 엘이디와 서브마운트 기판의 플립 본딩에 대해 차례로 설명한다.
마이크로 엘이디 제작(준비)
도 1a 내지 도 1e를 참조하여 마이크로 엘이디를 제작하는 공정에 대하여 설명한다.
먼저, 도 1a에 도시된 바와 같이, 열팽창 계수가 7.6㎛m-1K인 투광성 사파이어 기판(131)의 주면(primary surface) 상에 n형 반도체층(132), 활성층(133) 및 p형 반도체층(134)을 포함하는 에피층이 형성된다.
다음, 도 1b에 도시된 바와 같이, 마스크 패턴을 이용하여 상기 에피층을 일정 깊이 식각하여, 엘이디 셀(130)들을 분리하는 도랑(101)들과, 적어도 상기 엘이디 셀(130)들의 외곽을 둘러싸는 n형 반도체층(132)의 노출 영역(102)을 형성하며, 이에 의해, n형 반도체층(132) 상에 활성층(133) 및 p형 반도체층(134)을 모두 포함하는 다수의 엘이디 셀(130)들이 형성된다. 도시하지 않았지만, n형 반도체층(132)과 사파이어 기판(131) 사이에는 버퍼층이 형성될 수 있다. 그리고, 상기 n형 반도체층(132)과 활성층(133) 사이, 상기 활성층(133)과 p형 반도체층(134) 사이, 그리고, p형 반도체층(134)의 노출 표면 상에는 임의의 기능들을 수행하는 다른 반도체층들이 개재될 수 있다. 상기 n형 반도체층(132), 활성층(133) 및 p형 반도체층(134)를 포함하는 에피층과 사파이어 기판(131)이 레이저 투과성을 가지므로, 엘이디 셀(130) 또한 레이저 투과성을 갖는다.
다음, 도 1c에 도시된 바와 같이, 엘이디 셀(130)들 각각의 p형 반도체층(134) 상에 레이저 투과성 p형 전극패드(150)를 형성하고, n형 반도체층(132) 노출 영역(102) 중 외곽 영역에도 레이저 투과성 n형 전극패드(140)를 형성한다. 상기 p형 전극패드(150)와 상기 n형 전극패드(140)의 두께를 다르게 함으로써, 상기 p형 반도체층(134)과 n형 반도체층(132)의 단차를 보상하고, 이에 의해, 상기 p형 전극패드(150)의 솔더 본딩면과 상기 n형 전극패드(140)의 솔더 본딩면이 실질적으로 동일 평면 상에 있도록 해줄 수도 있다.
다음, 도 1d에 도시된 바와 같이, 상기 엘이디 셀(130)들과 상기 n형 반도체층(132)의 노출 영역(102)을 모두 덮도록 부동태층(160)을 형성한다.
다음, 도 1e에 도시된 바와 같이, 상기 p형 전극패드(150)를 노출시키는 제1 패드 노출 홀(162)과 상기 n형 전극패드(140)를 노출시키는 제2 패드 노출 홀(164)을 형성한다. 제1 패드 노출 홀(162)과 상기 제2 패드 노출홀(164)은 마스크 패턴을 이용한 식각에 의해 형성될 수 있다. 본 실시예에서, 상기 부동태층(160)은 상기 엘이디 셀(130)들의 단면 프로파일을 따라 거의 일정 두께로 형성되어, 이웃하는 엘이디 셀(130) 사이의 골(101)의 폭 및 깊이를 감소시키지만, 그 골이 그대로 유지되도록 함을 알 수 있다. 그러나, 상기 부동태층(160)이 상기 골(101)을 완전히 메우도록 형성될 수도 있다.
서브마운트 기판 준비 및 범프 형성
먼저 도 2를 참조하면, 필라 범프 형성 단계 전에, 대략 15,000㎛ㅧ 10,000㎛ 크기를 가지며 엘이디 셀들에 대응되는 CMOS셀들이 형성된 Si 기반 서브마운트 기판(200)이 준비된다. 상기 서브마운트 기판(200)은 전술한 다수의 엘이디 셀에 상응하는 복수의 CMOS셀들과, 마이크로 엘이디의 p형 전극패드들에 대응되는 다수의 개별 전극(240)들과, 마이크로 엘이디의 n형 전극패드에 대응되는 공통 전극(미도시됨)을 포함할 수 있다. 상기 서브마운트 기판(200)은 Si 기반 기판 모재(201) 상에 행렬 배열로 형성되어 CMOS셀들과 연결되는 다수의 전극(240)들과, 상기 전극(240)들을 덮도록 형성된 부동태층(250)을 포함하며, 이 부동태층(250)에는 개별 전극(240)들을 노출시키는 전극 노출홀(252)들이 형성된다.
도 3 및 도 4를 참조하면, 상기 범프를 형성하는 공정은 제1 세척 단계(S101), UBM(Under Bump Metallurgy) 형성 단계(S102), 포토리소그래피 단계(S103), 스컴 제거 단계(S104), Cu 플레이팅 단계(S105), 솔더 금속 플레이팅 단계(S106), PR 제거 단계(S107), UBM 식각 단계(S108), 제2 세척 단계(S109), 리플로우 단계(S110) 및 제3 세척 단계(S111)를 포함한다.
제1 세척 단계(S101)는 스크러버(scrubber)를 이용하여 도 4의 (a)와 같이 도입된 서브마운트 기판(200)에 대하여 세척을 수행한다. 서브마운트 기판(200)은 CMOS 공정에 의해 CMOS셀이 형성된 기판 모재(201)에 Al 또는 Cu 재료에 의해 형성된 패드형 전극(240)과, 상기 전극(240)의 일 영역을 노출시키는 전극 노출홀(252)을 구비한 채 상기 기판 모재(201)에 형성된 부동태층(250)을 포함한다.
UBM 형성 단계(S102)는, 도 4의 (b)에 도시된 바와 같이, 전극(240)과 Cu 필라 사이의 접착성을 높이고 솔더의 확산을 방지하기 위한 UBM(261)을 상기 부동태층(250)과 상기 전극(240)을 덮도록 서브마운트 기판(200) 상에 형성한다. 본 실시예에서 UBM(261)은 Ti/Cu 적층 구조로 형성되는 것이며, 해당 금속의 스퍼터링에 의해 형성될 수 있다.
포토리소그래피 단계(103)는, 도 4의 (c) 에 도시된 바와 같이, 서브마운트 기판(200) 상의 UBM(261)을 전체적으로 덮도록 감광성 PR(Photoresist; 300)을 형성한 후, 그 위에 마스크 패턴(미도시됨)을 올려놓고 빛을 가해 전극(240) 직상의 UBM(261) 일 영역만을 노출시키는 전극 노출홀(302)을 형성한다. 다음, 포토리소그래피 단계 수행 중 발생한 스컴을 제거하는 스컴 제거 단계(S104)가 수행된다.
다음, Cu 플레이팅(plating) 단계(S105)와 솔더 금속 플레이팅 단계(S106)가 차례로 수행되어, 도 4의 (d)에 도시된 바와 같이, PR(300)의 오프닝(302)을 통해 먼저 Cu가 플레이팅되어 Cu 필라(262)가 형성되며, 상기 Cu 필라(262) 상에 솔더 금속으로서 SnAg가 플레이팅되어 SnAg 솔더 캡(263)이 일정 두께의 층상으로 형성된다. 본 명세서에서, Cu가 Cu 또는 Cu를 포함하는 Cu합금일 수 있다는 것에 유의한다.
다음, PR 제거 단계(S107)가 수행되어, 도 4의 (e)에 도시된 바와 같이, Cu 필라(262)와 솔더(263)를 포함하는 범프의 상면과 측면이 노출된다.
다음, UBM 식각 단계(S108)이 수행되어, 도 4의 (f)에 도시된 바와 같이, Cu 필라(262) 직하 영역에 위치하는 UBM(261)을 제외한 나머지 UBM이 식각으로 제거된다. 다음, 잔류물을 제거하는 제2 세척 단계(S109)가 수행된다. UBM 식각 단계(S109) 후, 서브마운트 기판(200)의 전극(240) 상의 UBM(261) 상에 Cu 필라(262) 및 솔더 캡(263)이 차례로 적층된 범프(260)가 형성된다. 다음, 리플로우 단계(S110)가 수행되어, 층상의 솔더(263)가 용융 후 응고되어, 반구형 또는 반원 단면 형상으로 형성한다. 급속 열처리(RTP; Rapid Thermal Processing)가 유용하게 이용될 수 있다. 다음, 리플로우 단계(S110) 후에 다시 잔류물을 제거하는 제3 세척 단계(S111)이 수행된다.
상기 서브마운트 기판(200) 상의 Cu 필라 범프(260)들 간격은 Cu 필라(262)의 직경과 거의 같은 것이 바람직하며, Cu 필라 범프(260)의 간격이 5㎛를 초과하지 않는 것이 좋다. 만일 Cu 필라 범프(260)의 간격이 5㎛을 초과하면 Cu 필라 범프(260)의 직경 및 그에 상응하는 엘이디 셀의 크기도 커져야 하므로 마이크로 엘이디를 포함하는 디스플레이 장치의 정밀도를 떨어뜨릴 수 있게 된다.
플립 본딩
도 5a 및 도 5b 및 도 5c를 참조하면, 2.6㎛m-1K의 열팽창 계수를 갖는 Si 기판 모재를 기반으로 하는 서브마운트 기판(200)에 Si 기판 모재의 열팽창 계수의 약 2.5배에 이르는 7.6㎛m-1K의 열팽창 계수를 갖는 사파이어 기판(131)을 기반으로 한 마이크로 엘이디(100) 간의 플립 본딩이 수행된다.
앞에서 언급한 바와 같이, 서브마운트 기판(200)은 마이크로 엘이디(100)의 전극패드(150)들에 대응되게 마련된 다수의 전극들을 포함하며, 상기 다수의 전극들 각각에는 Cu 필라(262)와 SnAg 솔더(즉, 솔더캡; 263)로 구성된 범프(260)가 미리 형성된다. 앞에서도 간략하게 언급된 바와 같이, 상기 마이크로 엘이디(100)의 각 엘이디 셀(130)들과 전극패드(150, 140)들은, 솔더(263)를 국부적으로 가열하기 위한 레이저빔을 솔더(263)에 이르게 하도록, 레이저 투과성을 갖는다. 예컨대, 상기 전극패드(150, 140)는 도전성을 갖는 투명 금속 화합물 재료로 형성되어, 레이저빔을 투과시킨다.
이하 자세히 설명되는 바와 같이, 필라(262) 상에 형성된 솔더(263)를 마이크로 엘이디(100)의 전극패드(150, 140)와 서브마운트 기판(200)의 전극 사이에 위치시킨 후, 솔더(263)만으로 레이저로 국부 가열하면, 마이크로 엘이디(100)의 전극패드(150, 140)들과 서브마운트 기판(200)의 전극들이 본딩된다.
레이저를 이용하여 마이크로 엘이디(100)를 서브마운트 기판(200)에 플립 본딩하기 위해서는, 먼저, 마이크로 엘이디(100)의 엘이디 셀(130)들에 구비된 개별 전극패드(150)들과 마이크로 엘이디(100)의 외곽 영역에 형성된 공통 전극패드(140)가 서브마운트 기판(200)의 전극들과 마주하게 배치한 상태에서, 서브마운트 기판(200) 측 전극들 각각과 마이크로 엘이디(100) 측 전극패드들 각각의 사이에 솔더(263) 또는 솔더(263)를 포함하는 범프(260)를 위치시키는 것이 필요하다. 이에 따라, 다수의 솔더(263)가 마이크로 엘이디(110)와 서브마운트 기판(100) 사이에서 다수의 전극패드(150, 140)의 배열과 대응되는 배열로 위치한다.
다음, 다수의 레이저빔 조사 유닛(1000)이, 다수의 솔더(263)들의 배열과 동일한 배열로서, 마이크로 엘이디(100)의 상측에 배열된다. 각 레이저빔 조사유닛(1000)은 레이저 광원과 연결된 옵틱 화이버로 형성된 옵틱 가이드(1100)와, 상기 옵틱 가이드(1100)를 통과한 레이저를 평행 빔으로 만드는 콜리메이터(1200)와, 평행 빔으로 된 레이저빔의 단면 크기를 조절하는 빔 조절기(1300)와, 상기 빔 조절기(1300)에서 조절된 레이저빔을 한 점에 집속시키기 위한 집속 렌즈(1400)를 포함한다. 도시하지는 않았지만, 상기 레이저빔 조사 유닛(1000)은 레이저광 증폭기와, 옵틱 커플러와, 레이저 발진 조절부 등을 더 포함할 수 있다. 레이저빔의 출력은 솔더 재료의 용융점에 맞게 적절히 선택된다.
다수의 레이저빔 조사 유닛(1000)이 동시에 작동하면, 레이저빔(L)이 옵틱 가이드(1100)를 통해 콜리메이터(1200)로 공급되고, 콜리메이터(1200)는 레이저빔을 평행광으로 만들어 출력하고, 빔 조절기(1300)는 콜리메이터(1200)를 통해 평행 광 형태로 만들어진 레이저빔의 직경을 확장시키고, 집속 렌즈(1400)는 직경이 확장된 레이저빔을 마이크로 엘이디(100)를 통과시킨 후 마이크로 엘이디(100)의 전극패드(150, 140)들과 접해 있는 솔더(263)들 각각에 집속시킨다. 결과적으로, 솔더(263) 각각에 집속된 레이저빔(L)에 의해 솔더(263)가 가열되어 용융된다. 레이저빔이 마이크로 엘이디(100)를 통과하지만, 집속되지 않은 상태로 통과하므로, 레이저빔(L)에 의한 마이크로 엘이디(100)의 가열 효과는 미미하며, 따라서, 마이크로 엘이디(100) 측에는 열에 의한 팽창 및 수축이 일어나지 않는다. 또한, 레이저빔(L)에 의해 급속 가열된 솔더(2963)가 냉각, 경화되어, 솔더(263)에 의한 마이크로 엘이디(100) 측 전극패드(150, 140)와 서브마운트 기판(200) 측 전극 사이의 본딩이 완료된다. 레이저빔(L)의 집속 위치는 용용전 솔더 높이의 1/3 ~ 2/3로 정해지는 것이 바람직하다. 상기 레이저빔(L)의 집속 위치가 솔더 높이 2/3를 초과하여 마이크로 엘이디(100) 측과 가까워지면, 엘이디 셀(130) 및 전극패드(150, 140)가 열에 의해 손상될 수 있고, 반대로, 상기 레이저빔(L)의 집속 위치가 솔더 높이 1/3 미만이 되면, 서브마운트 기판(200) 측 회로가 열에 의해 손상될 우려가 높아지게 된다.
다른 실시예
대안적으로, 도 6a과 같이, 전극패드(150, 140)가 레이저빔(L)에 대하여 비투과성을 갖는 재료로 형성되되, 전극패드(150, 140) 각각에 레이저빔(L)을 통과시키는 공동(152, 142)이 형성될 수 있다. 공동(152, 142) 각각은 일측으로 레이저빔 투과성을 갖는 마이크로 엘이디(100)의 엘이디 셀(130)과 접해 있고, 서브마운트 기판(200)과 마이크로 엘이디(100) 사이에 배치한 솔더(263) 각각을 향해 개방되어 있다. 레이저 조사 유닛(1000)이 동작하면, 집속 렌즈(1400)을 통과한 레이저빔(L)은 마이크로 엘이디(100)를 통과한 후, 전극패드(150, 140) 각각의 공동(152, 142)을 통해 솔더(263)에 도달하여 솔더(263)에 집속된다. 이에 의해, 솔더(263)가 용융 및 경화되어 마이크로 엘이디(100) 측 전극패드와 서브마운트 기판(200) 측 전극(또는 그 전극에 형성된 필라)사이를 연결하게 된다. 용융된 솔더(263)는 상기 공동(152, 142)을 채우므로 더욱 더 신뢰성 있는 본딩이 가능하다.
또 다른 실시예들
앞선 실시예 설명에서는 다수의 레이저빔 조사 유닛(1000)을 다수의 솔더 각각에 1:1로 매칭시켜, 다수의 레이저빔 조사 유닛(1000) 각각에서 조사된 다수의 레이저빔(L)이 1:1의 비로 솔더를 가열하는 것에 대해 설명하였다. 그러나, 본 발명의 다른 실시예들에 따르면, 도 7에 도시된 바와 같이, 하나의 레이저빔 조사 유닛(1000)이 임의의 방향으로 이동하면서 여러 개의 솔더(L) 가열에 참여할 수 있다. 즉, 하나의 레이저빔 조사 유닛(1000)이 1:n(n은 2 이상의 수)의 비율로 2개 이상의 솔더 가열에 참여할 수 있다.
위와 같이, 솔더 개수에 비해 적은 수의 레이저빔 조사 유닛을 이용하는 방법의 예들로는, 도 8의 (a) 같이 여러 개의 솔더(263)를 선형 패턴으로 1줄씩 가열하거나, 도 8의 (b)와 같이 여러 개의 솔더(263)를 지그재그로 패턴으로 가열하거나, 도 8의 (c) 및 (d)와 같이 여러 개의 레이저빔(L1, L2, L3, L4)이 여러 그룹(G1, G2, G3, G4)의 솔더(263)들을 그룹별로 가열할 수 있다. 그룹별 가열의 경우에는 8의 (c)와 같은 레이저빔 조사 유닛의 선형 패턴 이동을 통한 가열 및 도 8의 (d)와 같은 레이저빔 조사 유닛의 지그재그 패턴 이동을 통한 가열, 그외, 다른 다양한 패턴 이동을 통한 가열을 고려할 수 있다.
전술한 바와 같이, 본 발명은 수의 레이저빔 조사 유닛을 다수의 솔더와 1:1로 매칭시켜 상기 다수의 레이저빔 조사 유닛 각각이 조사한 레이저빔으로 상기 다수의 솔더 각각을 가열하는 방식으로 플립 본딩 단계를 수행할 수 있음은 물론이고, 하나의 레이저빔 조사 유닛을 2개 이상의 솔더와 1:n(n은 2 이상의 자연수)으로 매칭시켜, 상기 레이저빔 조사 유닛을 선형 또는 지그재그형으로 이동시키면서, 상기 레이저빔 조사 유닛이 조사한 레이저빔으로 상기 2개 이상의 솔더를 가열하는 방식으로, 또는, 2개 이상의 레이저빔 조사 유닛을 2개 이상의 솔더 그룹 각각에 매칭시켜, 상기 레이저빔 조사 유닛 각각이 각 솔더 그룹 내 솔더들을 가열하는 방식으로 플립 본딩 단계를 수행할 수 있다..
특히, 전술한 그룹별 가열을 이용하는 플립 본딩은 레이저빔과 솔더가 1:1로 매칭되어 수행되는 방법의 문제점인 경제성 및 작업 공간 활용의 문제점과, 하나의 레이저빔 조사유닛만으로 모든 솔더를 가열하는 방법의 문제점인 가열과 냉각 시간 지체로 인한 문제점을 각각 보완해줄 수 있다.
또한, 앞선 실시예들의 설명에서는 사파이어 기판을 포함하는 마이크로 엘이디를 투과하는 레이저빔으로 솔더를 가열하는 것이 주로 설명되었지만, 레이저빔 투과성 서브마운트 기판을 이용하여, 서브마운트 기판 측에서 레이저빔 조사하여 솔더링하는 방법도 가능하다는 것에 유의한다.
100..............................마이크로 엘이디
130..............................엘이디 셀
131..............................엘이디 기판(또는, 사파이어 기판)
200..............................서브마운트 기판
1000.............................레이저 조사유닛

Claims (22)

  1. 다수의 전극패드와 다수의 엘이디 셀을 포함하는 마이크로 엘이디를 준비하는 단계;
    상기 다수의 전극패드에 상응하는 다수의 전극을 포함하는 서브마운트 기판을 준비하는 단계; 및
    상기 다수의 전극패드와 상기 다수의 전극 사이에 위치하는 다수의 솔더를 이용하여, 상기 마이크로 엘이디를 상기 서브마운트 기판에 플립 본딩하는 단계를 포함하되,
    상기 엘이디 셀 각각에 개별 전극패드가 형성되며,
    상기 개별 전극패드는 레이저빔이 통과하는 공동을 포함하고,
    상기 플립 본딩하는 단계는 상기 다수의 솔더를 레이저빔으로 가열하며, 상기 엘이디 셀과 상기 개별 전극패드를 차례로 통과하는 레이저빔으로 상기 개별 전극패드와 상기 서브마운트 기판 사이에 위치하는 솔더를 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  2. 청구항 1에 있어서, 상기 플립 본딩하는 단계는 다수의 레이저빔으로 상기 다수의 솔더 각각을 국부적으로 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  3. 삭제
  4. 청구항 1에 있어서, 상기 개별 전극패드는 레이저빔 투과성을 갖는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  5. 삭제
  6. 청구항 1에 있어서, 상기 마이크로 엘이디는 상기 다수의 엘이디 셀 주변 에피층 표면에 공통 전극패드를 포함하되, 상기 플립 본딩하는 단계는 상기 에피층과 상기 공통 전극패드를 차례로 통과하는 레이저빔으로 상기 공통 전극패드와 상기 서브마운트 기판 사이에 위치하는 솔더를 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  7. 청구항 6에 있어서, 상기 공통 전극패드는 레이저빔 투과성을 갖는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  8. 청구항 6에 있어서, 상기 공통 전극패드는 레이저빔이 통과하는 공동을 포함하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  9. 청구항 1에 있어서, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하며, 상기 다수의 레이저빔은 기판과 엘이디 셀이 없는 에피층을 통하는 레이저빔과 기판과 엘이디 셀이 있는 에피층을 통과하는 레이저빔을 포함하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  10. 청구항 1에 있어서, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하되, 상기 레이저빔이 상기 솔더 각각에 집속되도록 집속 렌즈를 이용하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  11. 청구항 1에 있어서, 상기 플립 본딩하는 단계는, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하기 위해, 상기 다수의 솔더의 배열에 상응하는 배열로 상기 마이크로 엘이디의 일측에 다수의 레이저빔 조사 유닛을 배열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  12. 청구항 1에 있어서, 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디의 타측으로 상기 마이크로 엘이디를 수직으로 통과하는 다수의 레이저빔으로 상기 다수의 솔더를 가열하기 위해, 상기 다수의 솔더의 배열에 상응하는 배열로 상기 마이크로 엘이디의 일측에 다수의 레이저빔 조사 유닛을 배열하되, 상기 다수의 레이저빔 조사 유닛은 레이저 광원과 연결된 옵틱 가이드와, 상기 옵틱 가이드를 통과한 레이저빔을 평행 빔으로 만드는 콜리메이터와, 평행 빔으로 된 레이저빔의 단면 크기를 조절하는 빔 조절기와, 상기 빔 조절기에 조절된 레이저빔을 상기 솔더 각각에 집속시키기 위한 집속 렌즈를 포함하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  13. 청구항 1에 있어서, 상기 플립 본딩하는 단계는 상기 다수의 솔더와 다수의 레이저빔을 1:1로 매칭시켜 상기 다수의 레이저빔으로 상기 다수의 솔더를 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  14. 청구항 1에 있어서, 상기 플립 본딩하는 단계는 다수의 레이저빔 조사 유닛을 다수의 솔더와 1:1로 매칭시켜 상기 다수의 레이저빔 조사 유닛 각각이 조사한 레이저빔으로 상기 다수의 솔더 각각을 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  15. 청구항 1에 있어서, 상기 플립 본딩하는 단계는 하나의 레이저빔 조사 유닛을 2개 이상의 솔더와 1:n(n은 2 이상의 자연수)으로 매칭시켜, 상기 레이저빔 조사 유닛을 선형 또는 지그재그형으로 이동시키면서, 상기 레이저빔 조사 유닛이 조사한 레이저빔으로 상기 2개 이상의 솔더를 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  16. 청구항 1에 있어서, 상기 플립 본딩하는 단계는 2개 이상의 레이저빔 조사 유닛을 2개 이상의 솔더 그룹 각각에 매칭시켜, 상기 레이저빔 조사 유닛 각각이 각 솔더 그룹 내 솔더들을 가열하는 것을 특징으로 하는 마이크로 엘이디 모듈 제조방법.
  17. 기판과 에피층을 포함하고, 상기 에피층에는 다수의 엘이디 셀이 형성되고, 상기 다수의 엘이디 셀 각각에는 제2 도전형의 개별 전극패드가 형성되고 상기 다수의 엘이디 셀 주변에는 제1 도전형의 공통 전극패드가 형성된 마이크로 엘이디;
    상기 개별 전극패드와 상기 공통 전극패드에 대응하는 다수의 전극이 형성된 서브마운트 기판;
    상기 전극과 상기 개별 전극패드 또는 상기 공통 전극패드 사이에 위치하는 솔더를 포함하며,
    상기 솔더는 레이저빔에 의해 가열된 후 경화되어 상기 전극을 상기 개별 전극패드 또는 상기 공통 전극패드에 연결하고,
    상기 개별 전극패드는 상기 레이저빔을 통과시키는 공동을 포함하는 것을 특징으로 하는 마이크로 엘이디 모듈.
  18. 청구항 17에 있어서, 상기 레이저빔이 상기 마이크로 엘이디의 일측에서 상기 마이크로 엘이디 타측을 통과하여 상기 솔더를 가열할 수 있도록, 상기 기판, 상기 에피층, 상기 개별 전극패드 및 상기 공통 전극패드는 레이저빔을 통과시키도록 구성된 것을 특징으로 하는 마이크로 엘이디 모듈.
  19. 청구항 17에 있어서, 상기 개별 전극패드는 상기 레이저빔을 투과하는 재료로 형성된 것을 특징으로 하는 마이크로 엘이디 모듈.
  20. 삭제
  21. 청구항 17에 있어서, 상기 공통 전극패드는 상기 레이저빔을 투과하는 재료로 형성된 것을 특징으로 하는 마이크로 엘이디 모듈.
  22. 청구항 17에 있어서, 상기 공통 전극패드는 상기 레이저빔을 통과시키는 공동을 포함하는 것을 특징으로 하는 마이크로 엘이디 모듈.
KR1020170030833A 2017-02-10 2017-03-10 마이크로 엘이디 모듈 및 그 제조방법 KR102381562B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020170030833A KR102381562B1 (ko) 2017-03-10 2017-03-10 마이크로 엘이디 모듈 및 그 제조방법
JP2017153436A JP6366799B1 (ja) 2017-02-10 2017-08-08 マイクロledモジュール及びその製造方法
PCT/KR2017/009856 WO2018147525A1 (ko) 2017-02-10 2017-09-08 마이크로 엘이디 모듈 및 그 제조방법
TW106134202A TW201841392A (zh) 2017-02-10 2017-10-03 微發光二極體模組及其製造方法
US15/818,738 US10319706B2 (en) 2017-02-10 2017-11-20 Micro-LED module and method for fabricating the same
JP2018126761A JP6649997B2 (ja) 2017-02-10 2018-07-03 マイクロledモジュールのフリップチップボンディング方法
US16/394,121 US10847504B2 (en) 2017-02-10 2019-04-25 Micro-LED module and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170030833A KR102381562B1 (ko) 2017-03-10 2017-03-10 마이크로 엘이디 모듈 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20180103624A KR20180103624A (ko) 2018-09-19
KR102381562B1 true KR102381562B1 (ko) 2022-04-04

Family

ID=63718797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170030833A KR102381562B1 (ko) 2017-02-10 2017-03-10 마이크로 엘이디 모듈 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR102381562B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362060B2 (en) 2019-01-25 2022-06-14 Epistar Corporation Method and structure for die bonding using energy beam
KR20200094498A (ko) 2019-01-30 2020-08-07 삼성전자주식회사 마스크를 포함하는 마이크로 엘이디 전사 장치 및 이를 이용한 마이크로 엘이디 전사 방법
KR20200103973A (ko) 2019-02-26 2020-09-03 (주) 에이프로 마이크로 엘이디의 자가 조립 장치
KR102192828B1 (ko) * 2019-04-08 2020-12-18 (주)큐에스아이 레이저 솔더링 본딩 기술을 이용한 고출력 레이저 다이오드 모듈 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140295A (ja) * 2004-11-11 2006-06-01 Sony Corp 半導体装置の製造方法
JP2008047618A (ja) * 2006-08-11 2008-02-28 Canon Inc 発光素子アレイ及び画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470904B1 (ko) 2002-07-20 2005-03-10 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법
KR101150861B1 (ko) 2010-08-16 2012-06-13 한국광기술원 멀티셀 구조를 갖는 발광다이오드 및 그 제조방법
KR101192816B1 (ko) * 2011-01-07 2012-10-18 유버 주식회사 Led 패키지 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140295A (ja) * 2004-11-11 2006-06-01 Sony Corp 半導体装置の製造方法
JP2008047618A (ja) * 2006-08-11 2008-02-28 Canon Inc 発光素子アレイ及び画像形成装置

Also Published As

Publication number Publication date
KR20180103624A (ko) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6366799B1 (ja) マイクロledモジュール及びその製造方法
KR102381562B1 (ko) 마이크로 엘이디 모듈 및 그 제조방법
US9335474B2 (en) Optical devices and methods of fabricating the same
US6324010B1 (en) Optical assembly and a method for manufacturing lens systems
US7535949B2 (en) VCSEL with integrated lens
JP6536004B2 (ja) 面発光レーザ装置及びその製造方法
KR20190060525A (ko) 고효율 마이크로 엘이디 모듈의 제조방법
JP2016213412A (ja) 光学装置及び光照射装置
JP2020520115A (ja) オプトエレクトロニクス部品のためのカバーおよびオプトエレクトロニクス装置
US20090207875A1 (en) Light chip and optical module
JP2007013002A (ja) 半導体レーザー装置
TWI823087B (zh) 巨量轉移晶片的裝置
KR102657122B1 (ko) 마이크로 엘이디의 플립 본딩 방법
WO2009118916A1 (en) Multi-chip hybrid-mounted device and method of manufacturing the same
JP5013681B2 (ja) 半導体実装体、半導体実装体半製品及びその製造方法
EP3175266A1 (en) Laser-machined optical components and related methods for pick and bond assembly
KR20180092731A (ko) 마이크로 엘이디 모듈 및 그 제조방법
KR102610835B1 (ko) 광 모듈 및 그 제조방법
WO2022054573A1 (ja) 半導体チップ、製造方法
KR20220083629A (ko) 레이저 리플로우 장치의 레이저 리플로우 방법
JP2005303116A (ja) 光モジュール及びその製造方法
JPH0730092A (ja) 光素子モジュール
JPS6265481A (ja) 光起電力装置の製造方法
JP2016086107A (ja) 発光素子基板、発光素子基板の製造方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant